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Spectral splits and entanglement entropy in collective neutrino oscillations
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In environments such as core-collapse supernovae, neutron star mergers, or the early universe, where the
neutrino fluxes can be extremely high, neutrino-neutrino interactions are appreciable and contribute

substantially to their flavor evolution. Such a system of interacting neutrinos can be regarded as a quantum
many-body system, and prospects for nontrivial quantum correlations, i.e., entanglement, developing in a
gas of interacting neutrinos have been investigated previously. In this work, we uncover an intriguing
connection between the entropy of entanglement of individual neutrinos with the rest of the ensemble, and
the occurrence of spectral splits in the energy spectra of these neutrinos, which develop as a result of
collective neutrino oscillations. In particular, for various types of neutrino spectra, we demonstrate that the
entanglement entropy is highest for the neutrinos whose locations in the energy spectrum are closest to the
spectral split(s). This trend demonstrates that the quantum entanglement is strongest among the neutrinos
that are close to these splits, a behavior that seems to persist even as the size of the many-body system is

increased.

DOI: 10.1103/PhysRevD.104.123035

I. INTRODUCTION

Several decades of theoretical and experimental work
dedicated to the solar neutrinos culminated with an explan-
ation of the measured distortions of the solar neutrino
spectrum in terms of adiabatic and non-adiabatic level
crossings [1-6]. In the denser media inside supernovae and
neutron-star mergers, where neutrinos interact not only
with the background particles but also among themselves,
more complex phenomena take place. While solar neutrino
oscillations can be primarily described by one-body evo-
lution in a potential governed by coherent forward scatter-
ing on background particles, describing neutrino flavor
evolution within supernovae and neutron-star mergers
requires solving a quantum many-body problem involving
nonlinear flavor-dependent forward scattering among neu-
trinos and inelastic interactions with matter particles
destroying coherence [7-16]. Even when one ignores those
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inelastic interactions, which are subdominant for example
sufficiently away from the neutrinosphere in a supernova,
one still needs to deal with a Hamiltonian that exhibits an
interplay of one- and two-body interaction terms. There are
significant implications of these collective neutrino oscil-
lations in astrophysics: since neutrinos play an essential
role in the supernova explosions and nucleosynthesis [17—
20], neither the explosion mechanism nor the nucleosyn-
thetic output can be reliably predicted unless all aspects of
the neutrino flavor evolution problem are understood. The
same physics also affects the interpretation of the super-
nova neutrino signals in terrestrial detectors.

In an interacting quantum system with N particles, the
size of the Hilbert space typically scales exponentially with
N. Therefore, in order to study systems with large numbers
of particles, various simplifying approaches such as the
“mean-field” approximations are frequently adopted. In
particular, the mean-field approximations explicitly forbid
quantum correlations among the constituent particles,
thereby reducing the scaling of the effective Hilbert space
from exponential to linear. Such approximations have
paved the way for extensive numerical treatments of
various collective phenomena exhibited by systems of
oscillating neutrinos in dense environments (see., e.g.,
the reviews in Refs. [21-24], and the references
therein). Whether beyond-the-mean-field effects could
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have significant implications for the neutrino flavor evo-
lution in these environments remains an interesting and
open question. To this end, several exploratory studies have
been conducted to investigate the behavior of interacting
neutrino systems where inter-particle quantum correlations
are permitted [14,15,25-39]. Recent interest in this prob-
lem has also been spurred by the prospect of simulating
such systems using quantum computers [38,39].

In our previous work we described a procedure for
obtaining exact eigenvalues and eigenstates of a many-
body neutrino Hamiltonian using a method based on
Richardson-Gaudin technique (also known as the Bethe-
Ansatz technique), in the two-flavor, single-angle approxi-
mation [32]. Subsequently, we showed how one could use
these eigenvalues and eigenstates to compute the evolution
of the many-body neutrino state in the adiabatic limit, using
the principle of homotopy continuation, for a variety of
initial conditions in flavor [34]. We compared the evolution
of both the “mean-field” and the many-body density
matrices for systems with number of neutrinos N <09,
where the time-dependence of the v-v interaction strength
was taken to mimic the bulb model of a core-collapse
supernova [34]. In the mean-field case, each neutrino
interacts separately with the mean field and in the 2 x 2
density matrix of each neutrino all the many-particle
correlations vanish. A reliable measure to identify the
effect of correlations is the entanglement entropy, which
should be zero for the mean-field calculations, but nonzero
(albeit bounded) for many-body calculations.

In the calculations reported in Ref. [34] we observed that
the entanglement entropy could already reach to its nearly
maximal value, log(2), with a small number of neutrinos
starting with various initial flavor states. Understanding the
behavior of the entanglement entropy is crucial to ascertain
the validity of the mean-field approximation for the very
large number of neutrinos present in core-collapse super-
novae and neutron-star mergers. Hence, one of the goals of
this paper is to present calculations with an increased
number of neutrinos. In doing so, we also identify a very
intriguing connection between the entanglement entropy
and the “spectral splits” [30,40-54], which are a commonly
occurring phenomenon in systems that exhibit collective
neutrino oscillations, even in the mean-field limit. As we
illustrate below, the largest values of entanglement entro-
pies occur for neutrinos with energies closest to the spectral
split energies.

We introduce the problem and describe the formalism we
use in Sec. II. Section III contains a description of the
numerical treatment of the many-body evolution. Our
results establishing the connection between entanglement
entropy and the location(s) of the spectral split(s) are given
in Sec. IV. We present the analytical inequalities pertaining
to the connection between entanglement entropy and the
polarization vectors in Sec. V. Section VI includes brief
conclusions.

II. FORMALISM

Collective neutrino oscillations in two flavors can be
minimally described by the time-dependent Hamiltonian
[14,29,30,32,34,55]

H(t) ==Y wli+u(0)> Ty Tu, (1)

v
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in the single-angle approximation, where neutrinos having
the same energy but moving along different trajectories are
assumed to have identical flavor evolution. In many cases,
this approximation can qualitatively reproduce many of the
same behaviors that are observed in the results of more
sophisticated multiangle treatments [40,41,47,56].1 Here
we adopt the single-angle approximation for simplicity,
since our focus here is not on trajectory-dependent effects
but rather on the role of quantum correlations. We describe
the neutrinos as interacting plane waves (which is quantum
mechanically consistent with the choice of assigning them
well-defined discrete momenta or oscillation frequencies).
Such an approach has been adopted previously in literature
[26-28], and has been shown to be adequate for capturing
coherent effects [27,28]. A calculation that also takes into
account incoherent effects would require careful consid-
eration of the fact that individual neutrino trajectories may
cross only once per pair, but we regard this to be beyond the
scope of this current work.

In the above equation, @ = ém?*/(2E) is the oscillation
frequency in vacuum of a neutrino with energy E, where
om? is the difference between the two mass-squared

eigenvalues. u = (v/2Gp/V)D parametrizes the v-v inter-
action strength, where G is the Fermi coupling constant, V
is the quantization volume and D is a time-dependent
geometric factor arising from averaging over the intersec-
tion angles of the various neutrino trajectories in the single-
angle approximation. Since the number densities decrease
as the neutrino many-body gas expands, and the average
over the intersection angles can also be time-dependent,
u(1) is, in general, explicitly time-dependent. Note that, for
simplicity, here we have left out neutrino interactions with
background matter, since those can be represented by a
one-body interaction term not too dissimilar to the first term
in Eq. (1).

We write the Hamiltonian in Eq. (1) in terms of the
neutrino flavor isospin operators in the mass basis:

N =

'There are situations where the differences between single-
angle and multi-angle calculations can be important (see, e.g.,
Refs. [57-62], and also the extensive recent literature on fast
neutrino oscillations—Ref. [24] and references therein).
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J(J; = c;wCZw = (J(;)T’ (3)
where ¢} and c,, are the creation and annihilation
operators of a neutrino mass eigenstate |v;) with label w.
In our calculations we assume that there is exactly one
neutrino at each bin in which case the operators above
can be represented by Pauli matrices: i.e., JX, = 6,/2. The
N-neutrino many-body state |¥(z)) satisfies the equation

d
i, [¥(0) = HO¥(1), 4)

where H () is given in Eq. (1). This state is a pure quantum
state in the sense that the associated density matrix p =
|¥ (1)) (P(t)| satisfies the condition Trp? = 1.

One can introduce the polarization vector as

PwZZTr(pr)’ (5)
where 7(,, is the corresponding weak isospin operator for
that neutrino. To explore the degree of entanglement
between different neutrinos one introduces a reduced
density matrix for the neutrino with label @ by tracing
over all other neutrinos with label @’ not equal to w:

red

P = Tt (- (6)
This reduced density matrix is a 2 x 2 matrix and can be
written in terms of the Pauli matrices as

e 1 - B
P =5(1+35-P,), (7

where [is the 2 x 2 identity matrix and ¢; are the Pauli spin
matrices. Hence the probability of finding an individual
neutrino in the mass eigenstate |v;) is

P, (@) =5 (1+P.,) = [p5],, (8)

| =

i.e., the 11 matrix element of the (reduced) density matrix.
The entanglement entropy between a neutrino with
frequency @ and the rest of the ensemble takes the form

S(w) = —-Tr [pfj“'d) log p,(,fed)]

= _Z/Is,w log ls,wv (9)
s==+

where the eigenvalues of the reduced density matrix pifed)

are given by

1 -
Aoy =5 (1£ [P, (10)

If the neutrino mode @ is maximally entangled with its
environment (comprised of all the other neutrinos),

|P,| =0, and so entanglement entropy S(w) = log(2).

In the mean-field limit the wave function factorizes into a
direct product of individual neutrino wave functions, i.e.,
|Puvr) = ®ly,,), and the polarization vectors are given by

w

75&; = 2<y/w|7w|y/w>, using only the mean-field state |y, ).
As a consequence, these polarization vectors satisfy the
condition |P,| = 1 (implying S(w) = 0 exactly). In this
sense, the entanglement entropy probes deviations from the
mean-field limit due to many-body effects. Finally we note
that in the mean-field limit the polarization vectors 73&)
satisfy the evolution equations [22]

P, - - B R
T = wB x Pw +”([)[;Pw’] X Pw’ (11)

where in the mass basis B = (0,0, —1).

III. MANY-BODY EVOLUTION

We consider a system comprised by neutrinos initially in
definite flavor states propagating in an isotropic geometry
as in the bulb model. We assume that the neutrino flavor
field can be represented by a steady-state configuration,
wherein the neutrino flavor state at any given location does
not explicitly depend on time. As a result, the Schrodinger
equation can be rewritten in terms of the variable of
integration r (radius) instead of r. The initial many-body

N
state has the form |¥) = ® [v,,), where a; = e or x for
j=1

each j, and evolves according to Eq. (4) with the time-
dependent Hamiltonian in Eq. (1). The neutrinos are chosen
to have discrete, equally spaced vacuum oscillation
frequencies w; = jw,, for j=1,...,N (where g is an
arbitrary reference frequency), such that each oscillation
frequency is occupied by a single neutrino.

For the v-v interaction strength y, we use the following
form that is motivated by the single-angle neutrino bulb
model [22,40]:

where V(R,) is the quantization volume for the neutrinos at
the neutrinosphere surface R,. For definiteness, we choose
in our calculations the values R, =322w;', and
u(R,) = 3.62 x 10*w,. Subsequently, our starting radius
for the evolution was chosen to be ry = 210.64awy; ", so as to
have p(ry) = 5wy. These choices are the same as is
Ref. [34] and reasonably mimic the physical conditions
in a core-collapse supernova environment. The quantiza-
tion volume is related to the neutrino number densities as
n, = N/V, where N is the total number of neutrinos in the
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system under consideration.” The large initial values of u
arise as a result of large neutrino densities (small quantiza-
tion volumes) in these environments.

In order to transform between the flavor and mass basis,
we have chosen to explore two different examples of
vacuum mixing angles: (i) @ = 0.161 (approximately equal
to 013) and (i) @ = 0.584 (approximately equal to 6,,).
These choices are made in order to explore the dependence
of our results on the mixing angles. In addition, we also
performed calculations for a smaller mixing angle
6 = 0.01, which would be a typical value of the matter-
suppressed mixing angle at our starting radius r,. The
results of these calculation were found to be qualitatively
similar to those for @ = 0.161, and therefore we omit them
from this paper in the interest of brevity.

A. Numerical methods

The state |¥(z)) is calculated via the classical fourth
order Runge-Kutta (RK4) method, accurate through order
(6t)* at each time step &t

W(z+061)) = [¥(1)) +é5tz |ki(1)) + Ol(1)°):  (13)

ki (1)) = H(1)|¥ (1)), (14)
t+%&>0wu»+%&mxm>, (15)

t+%&>OTU»+%&Mﬂm>, (16)

|ka(2)) = H(t + 60)([¥(1)) + otlks(1))).  (17)

Note that the normalization of the state |¥) is not exactly
preserved when evolved approximately according to
Eq. (13); so, between time steps one can choose to
explicitly renormalize the resulting wave function,
should step sizes be too large to preserve approximate
normalization.

As we ramp our calculations up to larger and larger
values of number of neutrinos, N, we must be wary of the
scaling of the difference between the extremal eigenvalues
in our Hamiltonian, which increases the frequency of the
oscillatory nature in the integral of our time evolution
operator. To this end, we take time steps of size

*This would suggest that the choice of initial value of y should
vary with N in order to have the same initial number density n,, in
each case. In practice, however, the results do not qualitatively
depend on the choice of initial y, as long as the system is evolving
smoothly from a regime where Gpn, 2~ w, to one where
Grn, < wy. As a result, for ease of numerical implementation,
we choose to start our computations from the same initial value
u =5, regardless of N.

0.1u5E+1)+ >, |@|]™", where u is evaluated at the
radius prior to taking this time step. The reason for this
choice is that the maximal energy eigenvalue for our system
for u>0 is given by E_y,=pu5&+1)+3>, |l
while =13~ |w| serves as a lower bound for the lowest
energy eigenvalue (and is equal to the lowest energy
eigenvalue for y = 0). Our chosen step-size is dynamically
adjusted at each time step so that it remains inversely
proportional to the difference between these two bounds as
u changes.

By comparing with the Bethe-ansatz/homotopy-continu-
ation based method presented in Ref. [34] for evolving a
many-body state with the Hamiltonian H (r), we verified for
N <9 that using Runge-Kutta methods to approximate
the evolved state to order (6¢)° with the appropriately
chosen ot produces accurate results for the wave function
even after evolving over many time steps. When compared
with results obtained using that method, the value
of each coefficient in the wave function, (j|¥(7))
G=0,..., 2N — 1) was found to be discrepant at a level
of <1076,

Our reason for not persisting with the Bethe-ansatz
method for the purposes of the current calculations was
that we found, at least in our implementation, it can be
numerically unstable for N > 10. The principle used by that
method was to construct the solutions of the Bethe-ansatz
equations for an arbitrary value of u by smoothly increasing
u from zero (where the solutions have an easy analytic
form), since one could show that the solutions for any y are
continuously connected to the corresponding solutions for
u = 0. However, for N > 10, this process did not prove
robust, as the solutions demonstrated a tendency to jump
among one another as the parameter y was increased. A
more careful treatment of solutions to the Bethe-ansatz
equations at large u will be deferred to a future publication.

This use of RK4 in a sparse-matrix representation
permits calculations of the evolved many-body wave
function according to a time-dependent Hamiltonian for
up to N = 16 on a personal computer. In implementing the
sparse representation in our own calculations, submodules
from the SPARSKIT Fortran 90 library [63] for performing
operations with sparse matrices are utilized. However, the
ability to store the entire many-body Hamiltonian even-
tually becomes inhibited by limitations on memory as N
increases, as its matrix in the mass basis contains O(N?2V)
nonzero elements. Additionally, the computation time of
this evolution similarly scales exponentially in N according
to this procedure.

IV. RESULTS

Using the methods outlined in the previous section, we
performed numerical integration of interacting neutrino
ensembles, for total neutrino numbers ranging from N = 2
to N = 16, and for various different initial conditions in
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A comparison between many-body (purple) and mean-field (green) calculations of the flavor evolution of systems with a total
neutrino number ranging from, N = 2 to N = 16, each starting from an initial configuration |v,, ...

,Ue) at gy = 5wy. Shown here are the

asymptotic (i.e., at r > R,, or equivalently, u < @) values of P, (wy), i.e., the probability of detecting the neutrino with the highest
oscillation frequency wy in a |v;) mass eigenstate at a large distance. Also shown in each plot is the asymptotic value of the entropy of
entanglement (cyan) between the neutrino with frequency @y and the remaining neutrinos in the ensemble. (a),(b) portray the results of
calculations with mixing angles 8 = 0.161 and 6 = 0.584, respectively.

flavor. To begin with, we wanted to investigate how the
amount of entanglement scales with N—for this purpose,
we picked a test case wherein the initial state consists of all

N
electron-flavor neutrinos, ie., [¥(rg)) = ® |v,,,). The
J=1

results of our calculations with this particular initial
condition are shown in Figs. 1-3, and they essentially
amount to an extension of Fig. 1(a) from our previous
paper (Ref. [34]).

Subsequently, we explored the evolution of neutrino
ensembles with different initial conditions, where some
neutrinos start as |v,) and others as |v,). In Fig. 4(a), we
reproduce a result previously shown in Ref. [34] (albeit
using a different numerical method), whereas through the
remaining plots shown in Figs. 4-5, we extend the results
of Ref. [34] in various ways—e.g., by changing to a large
mixing angle [Fig. 4(b)] or by adding more particles
(Fig. 5). Through these calculations, we glean a number
of interesting insights which are described throughout the
remainder of this section.

Figure 1 shows the results of computing P, (wy), i.e.,
the probability of the neutrino in bin wy (= Nw,, the
highest vacuum oscillation frequency) being found in the
lv) mass eigenstate, at a final time where u < @y, for
systems with neutrino numbers ranging from N =2 to
N = 16. As mentioned previously, we performed two sets
of calculations, with mixing angles € =0.161 and
60 = 0.584, represented in Figs. 1(a) and 1(b), respectively.
At each w, this probability P, (w) is related to the z-
component of the mass-basis polarization vector, P_,,
by Eq. (8).

For the small mixing angle, we find that, among all the
neutrinos, the ones with frequencies wy_; and wy exhibit

the highest amount of entanglement with the rest of the
ensemble, as quantified by their respective entanglement
entropies. Correspondingly, at these two frequencies, the
value of P, deviates the most from its mean-field predicted
value [see, e.g., Fig. 3(a)]. One must note that, for this
particular initial condition and mixing angle, the location of
the spectral split frequency w;, lies in-between wy_; and wy
for the range of values of N considered here. For a system
of N neutrinos with an evenly spaced spectrum of oscil-
lation frequencies (as described in Sec. III), all initially in
the v, flavor state, and with a mixing angle 6, the spectral
split will center around the split frequency @, given by3

(18)

as a consequence of the conservation of J¢ = > JZ. Since
the neutrinos showing the highest degree of entanglement
in this case are the ones closest to wy, this suggests that it
may be instructive to more closely examine the neutrinos
close to the split frequencies in various other cases as well.

In order to test a scenario where the location of w; is
further inside the spectrum rather than close to its edge, we
also performed a set of calculations with a larger mixing
angle, 6 = 0.584. For a large mixing angle, we find that the
final value of P, (wy) — 0 as N grows, so that the many-
body result converges toward the mean-field predicted
value. Correspondingly, the entanglement entropy of this
neutrino decreases with growing N as well. Indeed, this
behavior is correlated with the location of the spectral split
frequency w, moving further inside and away from wy as N

@, = woN cos” 0,

3For a proof, see Refs. [30,55], for example.
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FIG. 2. Same as Fig. 1, but where the asymptotic probabilities and entanglement entropies at evaluated at ® = @, instead of @y, using
an interpolation scheme. P, () is defined as a linear interpolation of the |v,) eigenstate detection probabilities, P, (|N,]wy) and
P, ([N]ay), for the neutrinos with oscillation frequencies on either side of the spectral swap frequency @, = N@,. The specific linear
interpolation scheme used here is described in Eq. (19). Likewise, in each figure, the asymptotic value of the entropy of entanglement at
the split frequency, S(w ), is defined as a linear interpolation between the frequencies | N, |@, and [N ]wy as per Eq. (19). (a),(b) portray
the results of calculation with mixing angles # = 0.161 and 6 = 0.584, respectively.

is increased. With these trends in mind, it is then natural to
consider the behavior of the neutrino modes nearer to
the spectral split frequency @, instead. These results
are shown in Fig. 2, for small and large mixing angles
(Figs. 2(a) and 2(b), respectively).

In general, w, lies somewhere in between two consecu-
tive oscillation frequencies in our discrete spectral grid. Let
N, := w;/w, be the effective index of a neutrino in the
frequency spectrum at which the spectral split is centered.
To estimate the values of the relevant physical quantities
(such as P, or §) “at” the spectral split location, one must
interpolate between the discrete steps in oscillation
frequencies in our calculations. For a distribution of
neutrinos evenly spaced in oscillation frequencies, we
can define an estimated value at the split frequency by
linearly interpolating a function of the discrete oscillation
frequency spectrum as

Flwy) = (1= (Ny = [N;])F([N;]ay)
+ (1= (IN;T = Ny))F([Nglay).  (19)

where F may be P, or S for example, and where | -]” and
“I-]” respectively represent the floor and ceiling
functions.

With this convention for defining physical quantities at
w,, we display the analogous results for the asymptotic
(u < @) evolved values of P, (w) and S(w) at ® = w, in
Fig. 2. Here, we find for a small mixing angle that the
deviation of final P, (w,) from the mean-field predicted
value grows at a smaller rate in N; however, we again find a
steady growth in entanglement entropy with N. These

results are unsurprising, because @, is close to @y for small
0, as per Eq. (18). In contrast, for a large mixing angle, we
find that w, is much further from wy, and therefore in
Fig. 2(b) we observe an entirely different trend with
increasing N for the corresponding P, and S values,
compared to Fig. 1(b). The P, (w;) values for the many-
body calculations decrease monotonically with N, whereas
in the mean-field calculations, one observes sharp oscil-
latory features in the P, (w,) vs N trend, arising mainly
because of the mean-field spectral splits being much
sharper, resulting in the interpolation also being less
smooth (e.g., see Fig. 3(b)—the P, values on either side
of the split are sharply pulled toward 1 and O in the mean-
field calculations, in contrast with the many-body spectral
split, where the trend toward P, = 1 or O on either side of
the split is much more gradual). But the key takeaway is
that S(w,) continues to grow with N, which seems to
suggest that increasing the particle number does not result
in a decrease of entanglement around the spectral split
region.

Figures 3, 4, and 5 show the results of the asymptotic
spectra of P, (@) vs w, i.e., the probabilities for each of the
neutrinos in the ensemble to be detected in the |v;) state at
far distances where y < wq. Different figures represent
neutrino ensembles that started from different initial con-
ditions in flavor. For instance, Fig. 3 represents a neutrino
ensemble wherein all neutrinos started in electron flavor,
whereas Figs. 4 and 5 represent neutrino ensembles where
some neutrinos started as |v,) and others as |v,). In each
figure, we show the results for two sets of calculations,
namely with mixing angles in vacuum of § = 0.161 and
0 = 0.584, respectively. The final state configurations of
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FIG. 3. Comparison of the asymptotic (i.e., at r > R, or equivalently, 4 << @) spectra of P, vs vacuum oscillation frequency w, i.e.,
the probabilities of each of the neutrinos being found in the |v;) mass eigenstate. Shown here are the many-body (purple) and mean-field
(green) calculations, for a N = 16 neutrino system with an initial configuration consisting of a |v,) at each of the frequencies
1, ..., W1e; the initial values of these probabilities (red) at each frequency are also shown for comparison. Also shown are the entropies
of entanglement (blue) between each neutrino and the remaining neutrinos in the ensemble. (a),(b) portray the results of calculation with
mixing angles & = 0.161 and € = 0.584, respectively. It can be seen, particularly in (b), that the entropy of entanglement peaks around
the spectral split frequency (w/wy = 11-12), implying that the neutrinos closest to the split have the strongest entanglement.

--+-- Many-body
- = - Mean-field
—————— Entropy
—=— Initial Value

log(2)

0.5

L4025

w/wo

(a)

--+-- Many-body
- = - Mean-field
—————— Entropy
—=— Initial Value

¥ * .Y log(2)

FIG. 4. Same as Fig. 3, but for an N = 8 neutrino system with an initial configuration consisting of a |v,) at each of the frequencies
oy, ...,04, and a |v,) at each of ws, ..., wg. (a),(b) portray the results of calculation with mixing angles @ = 0.161 and 8 = 0.584,
respectively. The entropy of entanglement can be seen to peak near the two spectral split frequencies, w/w, =2 and 7.

the neutrino ensembles in all of these calculations exhibit
the presence of spectral splits, in the many-body as well as
in the mean-field calculations. Unsurprisingly, in each
figure, the locations of the spectral splits in the many-
body and mean-field calculations coincide with one
another, since in either case, the physics behind the origin
of these splits is based on the total J* being a conserved
charge of the neutrino Hamiltonian. Generically, across all
the results, one can make the following observations:

(1) The entanglement entropy is maximum for the
neutrinos that have frequencies nearest to the spec-
tral split frequencies. This is more robust of a finding
than the correlation between entanglement entropy

123035-7
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and the deviation in asymptotic values of P, that was
noted in Ref. [34].

The spectral splits generically appear to be much
broader in the many-body calculations than in the
mean-field calculations. This observation was al-
ready noted in Ref. [34] for neutrino ensembles with
N < 8, and here the same behavior is manifested
even in systems with neutrino numbers up
to N = 16.

The width of the spectral splits in the many-body
calculations seem to depend on the mixing angle 0,
unlike in the mean-field case where the splits are
always sharp.
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Same as Fig. 3, but for N = 16 neutrino systems with different initial configurations: shown in (a),(b) are the results for a

., @, and a |v,) at each of @3, ..., w 6. (2),(b)

portray the results of calculation with mixing angles # = 0.161 and € = 0.584, respectively. (c),(d) show the corresponding results for
0 =0.161 and 6 = 0.584, respectively, for a system with an initial configuration consisting of a |v,) at each of the frequencies
oy, ..., wg, and a |v,) at each of w, ..., w¢. In each case, the entropy of entanglement appears to peak near the respective spectral split

frequencies, e.g., at w/wy ~ 3 and 14 in (¢).

(4) A comparison of Fig. 4(a) and Fig. 5(c) shows that,
as N is increased, the width of the S(w) vs @ bell
curves does not appear to grow in proportion with
the total width of the neutrino spectrum. In fact, the
width seems to remain more or less constant, even as
N is increased from 8 to 16, suggesting that the
entanglement remains localized in the immediate
neighborhood of the splits. In other words, in
relation to the total width of the neutrino spectrum
(wy — @), the width of the splits appears to shrink
with increasing N. We have verified that this latter
assertion holds true even if (wy — @;) is held fixed
through a rescaling of the oscillation frequencies as
N is increased.

In particular, given the correlation between entanglement
entropy and the deviation relative to mean-field calcula-
tions, observation 4 suggests that, even as the system gets
larger, only the neutrinos that are closest to the split

frequency deviate strongly from the mean-field calcula-
tions. Such behavior suggests that, in order to scale such
computations to systems with large numbers of neutrinos, a
hybrid computational approach may be feasible, wherein
neutrinos away from the spectral split region(s) are evolved
using a mean-field treatment, whereas those closer to the
split are treated as true many-body system.

V. TRACE INEQUALITIES AND
DERIVED CONSTRAINTS

In light of the observations regarding the entanglement
entropy and the smearing of spectral splits, one can attempt
to formally relate the entropies S(w) of individual neutrinos
with their probabilities of being found in particular mass
eigenstates (or equivalently, with the z-components of their
polarization vectors). For this purpose, one might employ
the Gibbs variational principle, which states that for any
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self-adjoint operator Q such that e~ is in the trace class,
and for any y > 0 with Try = 1, one can write down the
inequality

Tr(yQ) + Tr(y log y) > —log Tr(e™¢),  (20)

with the equality satisfied if and only if y is given
by y = e 2/Tr(e79).
Taking y to be the reduced density matrix of a single

neutrino pﬁ,?dl as given by Eq. (6), one can obtain a

sequence of inequalities with different choices of operators
Q. Taking the trivial case Q =1, i.e., the 2 x 2 identity
matrix, one recovers the inequality S(w) < log(2), using
the definition of S(w) from Eq. (9). Taking Q = o, instead,
one obtains a constraint relation connecting the polarization
vector component P, , and the entanglement entropy S(w):

P,, > S(w) —log (e + é) (21)

Similarly, for any component of 13“, along a general
direction, we can write the inequality

A-P, +log(2cosh|A|) > S(w). (22)

where A is an arbitrary three-dimensional real vector. One
could also generalize Eq. (21) by taking Q = no,,
obtaining a series of such inequalities. Combining the
constraints derived by taking Q = +no,, one obtains the
symmetric inequality

1
S(w) < log <e” + —n) —nlP,,| =S, (23)
e

where we have defined S, as the limiting expression on the
right-hand side of the inequality. This can be turned around
to yield a bound on the size of |P_,| as a function of the
entanglement entropy S(w), namely,

1 1\ s
[P-| <= log <e" 4 ?) _S(e) (24)

n

One may use such a bound to predict the smearing
of the spectral split based on the degree of entanglement.
For instance, from Fig. 5(c), taking the particular neu-
trino at w/wy =13 as an example, the entangle-
ment entropy is approximately S(w) ~ 0.5, and therefore,
taking Eq. (24) with n =1, one can derive the bound
P,, <log(e+1/e)—0.5~0.6, or equivalently, P, (w) =
1/2(1 + P,,) < 0.8, which suggests that the spectral split
is being smeared in the many-body case, compared to the
mean-field result which has P, ~ 1 at that frequency.

However, it can be demonstrated that none of the bounds
derived from the Gibbs variational principle are stronger

1 S \
A < Sn=1 \\._ Sn—3
N \
- \
0.8 7‘5?1,:1/3 AN A
\,_: L \.‘\‘ \\.
0.6 | Svs |P| \/:: \
3 Az S
0.4} oy 4T
\
\‘.
0.2+ '\\,‘\. J
-
0 . . . .
0 0.2 0.4 0.6 0.8 1

1Pzl

FIG. 6. A juxtaposition of the constraints derived from the
Gibbs variational principle [Eq. (23)] and the constraint derived
from the relation between entanglement entropy of individual
neutrinos, S(w), and the length of the neutrino polarization
vectors, F’w| [Egs. (9) and (10)]. The dot-dashed straight lines
are the limiting lines §,, from Eq. (23), for n = 1 (purple), n =3
(green), and n = 1/3 (dark red), respectively. The regions above
and to the right of each of these lines in the S(w) vs |P_,| space
are excluded. The solid (black) line represents the relation

between S(w) and |P,|. Since |P.o| < |P,,|, this curve can also
be considered as a limiting case of the permitted P, values as a
function of the entanglement entropy. As is apparent, Eqs. (9) and
(10) furnish the strongest constraint on P_,, vs S(®), whereas the
other limiting lines derived from the Gibbs variational principle
can be seen to be tangents of this curve.

than the bounds on P, (or other polarization vector
components) imposed by the relation between entangle-

ment entropy and the length of the polarization vector, |I3|
given by in Egs. (9) and (10) (see also Ref. [34] for a closed
form expression). In fact, each of these constraints derived
from Eq. (23) for various values of n can be represented as
tangents of the constraint in Egs. (9) and (10). This relation
is depicted in Fig. 6. Even though the constraints based on
the Gibbs variational principle are weaker than the one
derived from Egs. (9) and (10), they do nevertheless furnish
straightforward, linear relations between P, and S of
individual neutrinos, which may be utilized as shown
above.

From these relations, and as demonstrated using the
simple example above, one can observe that the entangle-
ment entropy growth tightens the bound on the size of the
polarization vectors corresponding to the neutrinos most
entangled with the rest of the ensemble. As a consequence,
we can see that neutrinos closest to the spectral split, which
we have found to have greater entanglement entropy, also
have values lim,_ , |P,,| < 1. In this sense, entanglement
entropy of several neutrinos with frequencies around the
split frequency result in a broadening of the split in many-
body theory, even for calculations performed using the
single-angle approximation. Interestingly, such broadening
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of the spectral split may also be observed in the mean field
limit, with the inclusion of multi-angle effects [50] or
nonstandard v-v interactions [64].

VI. CONCLUSIONS

We showed that many-body calculations, in a single-
angle approximation, predict a smeared spectral split—in
contrast with mean-field calculations, which predict
smearing only in certain multiangle scenarios or with the
addition of a nonstandard self-interaction potential.
Furthermore, we find that the width of this smeared spectral
split is dependent upon the size of the mixing angle.
Additionally, we note that growth in entanglement entropy
is most substantial around the spectral split and note the
role of entanglement in the smearing of the spectral split.
Along with the results summarized above, we explain the
smearing of the spectral split in terms of the relationship
between the entanglement entropy and the third component
of the polarization vector, which we establish numerically
as well as formally using the Gibbs variational principle.

The results presented in this article were established in
calculations with up to 16 neutrinos. As a result of being
limited in terms of neutrino number, and due to the various
physical assumptions used in this work (single-angle
approximation, plane wave neutrinos, etc.), it remains to
be seen whether the results obtained here could be
considered to be representative of an actual core-collapse
supernova environment. The goal of this study was to
extend previous explorations of the potential effects of
quantum entanglement on collective neutrino flavor evo-
lution, using simplified numerical models. Looking for-
ward, it is clearly desirable to increase the number of
neutrinos treated in these calculations. Through this

process, we intend to explore how the entanglement and
the associated flavor phenomena scale with neutrino
number would offer some clues about the large-N limit
of such systems (i.e., approaching the realistic number of
neutrinos present in core-collapse supernovae and neutron-
star mergers). A more technical analysis comparing various
pros and cons of several numerical approaches toward this
goal is beyond the scope of this work, but this issue will be
discussed in a future paper [65].

Our results suggest that a full many-body calculation
may not be necessary in all cases. At least in some cases,
one can first run a mean-field calculation and obtain the
split frequencies, and once they are determined, a many-
body calculation may be run only for those neutrinos with
energies near the split frequencies, keeping the mean-field
results for other neutrinos. Such a hybrid approach could
certainly cut down the computational time needed. One
method to implement such a hybrid of entangled and
nonentangled particles in the same ensemble will be
presented in future work [65].
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