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In environments such as core-collapse supernovae, neutron star mergers, or the early universe, where the
neutrino fluxes can be extremely high, neutrino-neutrino interactions are appreciable and contribute
substantially to their flavor evolution. Such a system of interacting neutrinos can be regarded as a quantum
many-body system, and prospects for nontrivial quantum correlations, i.e., entanglement, developing in a
gas of interacting neutrinos have been investigated previously. In this work, we uncover an intriguing
connection between the entropy of entanglement of individual neutrinos with the rest of the ensemble, and
the occurrence of spectral splits in the energy spectra of these neutrinos, which develop as a result of
collective neutrino oscillations. In particular, for various types of neutrino spectra, we demonstrate that the
entanglement entropy is highest for the neutrinos whose locations in the energy spectrum are closest to the
spectral split(s). This trend demonstrates that the quantum entanglement is strongest among the neutrinos
that are close to these splits, a behavior that seems to persist even as the size of the many-body system is
increased.
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I. INTRODUCTION

Several decades of theoretical and experimental work
dedicated to the solar neutrinos culminated with an explan-
ation of the measured distortions of the solar neutrino
spectrum in terms of adiabatic and non-adiabatic level
crossings [1–6]. In the denser media inside supernovae and
neutron-star mergers, where neutrinos interact not only
with the background particles but also among themselves,
more complex phenomena take place. While solar neutrino
oscillations can be primarily described by one-body evo-
lution in a potential governed by coherent forward scatter-
ing on background particles, describing neutrino flavor
evolution within supernovae and neutron-star mergers
requires solving a quantum many-body problem involving
nonlinear flavor-dependent forward scattering among neu-
trinos and inelastic interactions with matter particles
destroying coherence [7–16]. Even when one ignores those

inelastic interactions, which are subdominant for example
sufficiently away from the neutrinosphere in a supernova,
one still needs to deal with a Hamiltonian that exhibits an
interplay of one- and two-body interaction terms. There are
significant implications of these collective neutrino oscil-
lations in astrophysics: since neutrinos play an essential
role in the supernova explosions and nucleosynthesis [17–
20], neither the explosion mechanism nor the nucleosyn-
thetic output can be reliably predicted unless all aspects of
the neutrino flavor evolution problem are understood. The
same physics also affects the interpretation of the super-
nova neutrino signals in terrestrial detectors.
In an interacting quantum system with N particles, the

size of the Hilbert space typically scales exponentially with
N. Therefore, in order to study systems with large numbers
of particles, various simplifying approaches such as the
“mean-field” approximations are frequently adopted. In
particular, the mean-field approximations explicitly forbid
quantum correlations among the constituent particles,
thereby reducing the scaling of the effective Hilbert space
from exponential to linear. Such approximations have
paved the way for extensive numerical treatments of
various collective phenomena exhibited by systems of
oscillating neutrinos in dense environments (see., e.g.,
the reviews in Refs. [21–24], and the references
therein). Whether beyond-the-mean-field effects could
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have significant implications for the neutrino flavor evo-
lution in these environments remains an interesting and
open question. To this end, several exploratory studies have
been conducted to investigate the behavior of interacting
neutrino systems where inter-particle quantum correlations
are permitted [14,15,25–39]. Recent interest in this prob-
lem has also been spurred by the prospect of simulating
such systems using quantum computers [38,39].
In our previous work we described a procedure for

obtaining exact eigenvalues and eigenstates of a many-
body neutrino Hamiltonian using a method based on
Richardson-Gaudin technique (also known as the Bethe-
Ansatz technique), in the two-flavor, single-angle approxi-
mation [32]. Subsequently, we showed how one could use
these eigenvalues and eigenstates to compute the evolution
of the many-body neutrino state in the adiabatic limit, using
the principle of homotopy continuation, for a variety of
initial conditions in flavor [34]. We compared the evolution
of both the “mean-field” and the many-body density
matrices for systems with number of neutrinos N ≤ 9,
where the time-dependence of the ν-ν interaction strength
was taken to mimic the bulb model of a core-collapse
supernova [34]. In the mean-field case, each neutrino
interacts separately with the mean field and in the 2 × 2
density matrix of each neutrino all the many-particle
correlations vanish. A reliable measure to identify the
effect of correlations is the entanglement entropy, which
should be zero for the mean-field calculations, but nonzero
(albeit bounded) for many-body calculations.
In the calculations reported in Ref. [34] we observed that

the entanglement entropy could already reach to its nearly
maximal value, log(2), with a small number of neutrinos
starting with various initial flavor states. Understanding the
behavior of the entanglement entropy is crucial to ascertain
the validity of the mean-field approximation for the very
large number of neutrinos present in core-collapse super-
novae and neutron-star mergers. Hence, one of the goals of
this paper is to present calculations with an increased
number of neutrinos. In doing so, we also identify a very
intriguing connection between the entanglement entropy
and the “spectral splits” [30,40–54], which are a commonly
occurring phenomenon in systems that exhibit collective
neutrino oscillations, even in the mean-field limit. As we
illustrate below, the largest values of entanglement entro-
pies occur for neutrinos with energies closest to the spectral
split energies.
We introduce the problem and describe the formalism we

use in Sec. II. Section III contains a description of the
numerical treatment of the many-body evolution. Our
results establishing the connection between entanglement
entropy and the location(s) of the spectral split(s) are given
in Sec. IV. We present the analytical inequalities pertaining
to the connection between entanglement entropy and the
polarization vectors in Sec. V. Section VI includes brief
conclusions.

II. FORMALISM

Collective neutrino oscillations in two flavors can be
minimally described by the time-dependent Hamiltonian
[14,29,30,32,34,55]

HðtÞ ¼ −
X

ω

ωJzω þ μðtÞ
X

ω;ω0
ω0≠ω

J⃗ω · J⃗ω0 ; ð1Þ

in the single-angle approximation, where neutrinos having
the same energy but moving along different trajectories are
assumed to have identical flavor evolution. In many cases,
this approximation can qualitatively reproduce many of the
same behaviors that are observed in the results of more
sophisticated multiangle treatments [40,41,47,56].1 Here
we adopt the single-angle approximation for simplicity,
since our focus here is not on trajectory-dependent effects
but rather on the role of quantum correlations. We describe
the neutrinos as interacting plane waves (which is quantum
mechanically consistent with the choice of assigning them
well-defined discrete momenta or oscillation frequencies).
Such an approach has been adopted previously in literature
[26–28], and has been shown to be adequate for capturing
coherent effects [27,28]. A calculation that also takes into
account incoherent effects would require careful consid-
eration of the fact that individual neutrino trajectories may
cross only once per pair, but we regard this to be beyond the
scope of this current work.
In the above equation, ω ¼ δm2=ð2EÞ is the oscillation

frequency in vacuum of a neutrino with energy E, where
δm2 is the difference between the two mass-squared
eigenvalues. μ ¼ ð

ffiffiffi
2

p
GF=VÞD parametrizes the ν-ν inter-

action strength, whereGF is the Fermi coupling constant, V
is the quantization volume and D is a time-dependent
geometric factor arising from averaging over the intersec-
tion angles of the various neutrino trajectories in the single-
angle approximation. Since the number densities decrease
as the neutrino many-body gas expands, and the average
over the intersection angles can also be time-dependent,
μðtÞ is, in general, explicitly time-dependent. Note that, for
simplicity, here we have left out neutrino interactions with
background matter, since those can be represented by a
one-body interaction term not too dissimilar to the first term
in Eq. (1).
We write the Hamiltonian in Eq. (1) in terms of the

neutrino flavor isospin operators in the mass basis:

Jzω ¼ 1

2
ðc†1ωc1ω − c†2ωc2ωÞ; ð2Þ

1There are situations where the differences between single-
angle and multi-angle calculations can be important (see, e.g.,
Refs. [57–62], and also the extensive recent literature on fast
neutrino oscillations—Ref. [24] and references therein).
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Jþω ¼ c†1ωc2ω ¼ ðJ−ωÞ†; ð3Þ

where c†iω and ciω are the creation and annihilation
operators of a neutrino mass eigenstate jνii with label ω.
In our calculations we assume that there is exactly one
neutrino at each bin in which case the operators above
can be represented by Pauli matrices: i.e., Jkω ¼ σk=2. The
N-neutrino many-body state jΨðtÞi satisfies the equation

i
d
dt
jΨðtÞi ¼ HðtÞjΨðtÞi; ð4Þ

where HðtÞ is given in Eq. (1). This state is a pure quantum
state in the sense that the associated density matrix ρ ¼
jΨðtÞihΨðtÞj satisfies the condition Tr ρ2 ¼ 1.

One can introduce the polarization vector as

P⃗ω ¼ 2Tr ðρJ⃗ωÞ; ð5Þ

where J⃗ω is the corresponding weak isospin operator for
that neutrino. To explore the degree of entanglement
between different neutrinos one introduces a reduced
density matrix for the neutrino with label ω by tracing
over all other neutrinos with label ω0 not equal to ω:

ρðredÞω ¼ Trω0ð≠ωÞρ: ð6Þ

This reduced density matrix is a 2 × 2 matrix and can be
written in terms of the Pauli matrices as

ρðredÞω ¼ 1

2
ðI þ σ⃗ · P⃗ωÞ; ð7Þ

where I is the 2 × 2 identity matrix and σj are the Pauli spin
matrices. Hence the probability of finding an individual
neutrino in the mass eigenstate jν1i is

Pν1ðωÞ ¼
1

2
ð1þ Pz;ωÞ ¼ ½ρðredÞω &11; ð8Þ

i.e., the 11 matrix element of the (reduced) density matrix.
The entanglement entropy between a neutrino with

frequency ω and the rest of the ensemble takes the form

SðωÞ ¼ −Tr ½ρðredÞω log ρðredÞω &

¼ −
X

s¼'
λs;ω log λs;ω; ð9Þ

where the eigenvalues of the reduced density matrix ρðredÞω

are given by

λ';ω ¼ 1

2
ð1' jP⃗ωjÞ: ð10Þ

If the neutrino mode ω is maximally entangled with its
environment (comprised of all the other neutrinos),
jP⃗ωj ¼ 0, and so entanglement entropy SðωÞ ¼ logð2Þ.

In the mean-field limit the wave function factorizes into a
direct product of individual neutrino wave functions, i.e.,
jΨMFi ¼ ⊗

ω
jψωi, and the polarization vectors are given by

P⃗ω ¼ 2hψωjJ⃗ωjψωi, using only the mean-field state jψωi.
As a consequence, these polarization vectors satisfy the
condition jP⃗ωj ¼ 1 (implying SðωÞ ¼ 0 exactly). In this
sense, the entanglement entropy probes deviations from the
mean-field limit due to many-body effects. Finally we note
that in the mean-field limit the polarization vectors P⃗ω
satisfy the evolution equations [22]

dP⃗ω

dt
¼ ωB⃗ × P⃗ω þ μðtÞ½

X

ω0

P⃗ω0 & × P⃗ω; ð11Þ

where in the mass basis B⃗ ¼ ð0; 0;−1Þ.

III. MANY-BODY EVOLUTION

We consider a system comprised by neutrinos initially in
definite flavor states propagating in an isotropic geometry
as in the bulb model. We assume that the neutrino flavor
field can be represented by a steady-state configuration,
wherein the neutrino flavor state at any given location does
not explicitly depend on time. As a result, the Schrödinger
equation can be rewritten in terms of the variable of
integration r (radius) instead of t. The initial many-body

state has the form jΨi ¼ ⊗
N

j¼1
jναji, where αj ¼ e or x for

each j, and evolves according to Eq. (4) with the time-
dependent Hamiltonian in Eq. (1). The neutrinos are chosen
to have discrete, equally spaced vacuum oscillation
frequencies ωj ¼ jω0, for j ¼ 1;…; N (where ω0 is an
arbitrary reference frequency), such that each oscillation
frequency is occupied by a single neutrino.
For the ν-ν interaction strength μ, we use the following

form that is motivated by the single-angle neutrino bulb
model [22,40]:

μðrÞ ¼ GFffiffiffi
2

p
VðRνÞ

"
1 −

#
1 −

R2
ν

r2

$
1=2

%
2

; ð12Þ

where VðRνÞ is the quantization volume for the neutrinos at
the neutrinosphere surface Rν. For definiteness, we choose
in our calculations the values Rν ¼ 32.2ω−1

0 , and
μðRνÞ ¼ 3.62 × 104ω0. Subsequently, our starting radius
for the evolution was chosen to be r0 ¼ 210.64ω−1

0 , so as to
have μðr0Þ ¼ 5ω0. These choices are the same as is
Ref. [34] and reasonably mimic the physical conditions
in a core-collapse supernova environment. The quantiza-
tion volume is related to the neutrino number densities as
nν ¼ N=V, where N is the total number of neutrinos in the
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system under consideration.2 The large initial values of μ
arise as a result of large neutrino densities (small quantiza-
tion volumes) in these environments.
In order to transform between the flavor and mass basis,

we have chosen to explore two different examples of
vacuum mixing angles: (i) θ ¼ 0.161 (approximately equal
to θ13) and (ii) θ ¼ 0.584 (approximately equal to θ12).
These choices are made in order to explore the dependence
of our results on the mixing angles. In addition, we also
performed calculations for a smaller mixing angle
θ ¼ 0.01, which would be a typical value of the matter-
suppressed mixing angle at our starting radius r0. The
results of these calculation were found to be qualitatively
similar to those for θ ¼ 0.161, and therefore we omit them
from this paper in the interest of brevity.

A. Numerical methods

The state jΨðtÞi is calculated via the classical fourth
order Runge-Kutta (RK4) method, accurate through order
ðδtÞ4 at each time step δt:

jΨðtþ δtÞi ¼ jΨðtÞiþ 1

6
δt
X4

i¼1

jkiðtÞiþO½ðδtÞ5&; ð13Þ

jk1ðtÞi ¼ HðtÞjΨðtÞi; ð14Þ

jk2ðtÞi ¼ H
#
tþ 1

2
δt
$#

jΨðtÞiþ 1

2
δtjk1ðtÞi

$
; ð15Þ

jk3ðtÞi ¼ H
#
tþ 1

2
δt
$#

jΨðtÞiþ 1

2
δtjk2ðtÞi

$
; ð16Þ

jk4ðtÞi ¼ Hðtþ δtÞðjΨðtÞiþ δtjk3ðtÞiÞ: ð17Þ

Note that the normalization of the state jΨi is not exactly
preserved when evolved approximately according to
Eq. (13); so, between time steps one can choose to
explicitly renormalize the resulting wave function,
should step sizes be too large to preserve approximate
normalization.
As we ramp our calculations up to larger and larger

values of number of neutrinos, N, we must be wary of the
scaling of the difference between the extremal eigenvalues
in our Hamiltonian, which increases the frequency of the
oscillatory nature in the integral of our time evolution
operator. To this end, we take time steps of size

0.1½μ N
2 ð

N
2 þ 1Þ þ

P
ω jωj&−1, where μ is evaluated at the

radius prior to taking this time step. The reason for this
choice is that the maximal energy eigenvalue for our system
for μ ≥ 0 is given by E−N=2 ≡ μ N

2 ð
N
2 þ 1Þ þ 1

2

P
ω jωj,

while − 1
2

P
ω jωj serves as a lower bound for the lowest

energy eigenvalue (and is equal to the lowest energy
eigenvalue for μ ¼ 0). Our chosen step-size is dynamically
adjusted at each time step so that it remains inversely
proportional to the difference between these two bounds as
μ changes.
By comparing with the Bethe-ansatz/homotopy-continu-

ation based method presented in Ref. [34] for evolving a
many-body state with the HamiltonianHðtÞ, we verified for
N ≤ 9 that using Runge-Kutta methods to approximate
the evolved state to order ðδtÞ5 with the appropriately
chosen δt produces accurate results for the wave function
even after evolving over many time steps. When compared
with results obtained using that method, the value
of each coefficient in the wave function, hjjΨðtÞi
(j ¼ 0;…; 2N − 1) was found to be discrepant at a level
of ≲10−6.
Our reason for not persisting with the Bethe-ansatz

method for the purposes of the current calculations was
that we found, at least in our implementation, it can be
numerically unstable forN ≥ 10. The principle used by that
method was to construct the solutions of the Bethe-ansatz
equations for an arbitrary value of μ by smoothly increasing
μ from zero (where the solutions have an easy analytic
form), since one could show that the solutions for any μ are
continuously connected to the corresponding solutions for
μ ¼ 0. However, for N ≥ 10, this process did not prove
robust, as the solutions demonstrated a tendency to jump
among one another as the parameter μ was increased. A
more careful treatment of solutions to the Bethe-ansatz
equations at large μ will be deferred to a future publication.
This use of RK4 in a sparse-matrix representation

permits calculations of the evolved many-body wave
function according to a time-dependent Hamiltonian for
up to N ¼ 16 on a personal computer. In implementing the
sparse representation in our own calculations, submodules
from the SPARSKIT Fortran 90 library [63] for performing
operations with sparse matrices are utilized. However, the
ability to store the entire many-body Hamiltonian even-
tually becomes inhibited by limitations on memory as N
increases, as its matrix in the mass basis containsOðN22NÞ
nonzero elements. Additionally, the computation time of
this evolution similarly scales exponentially in N according
to this procedure.

IV. RESULTS

Using the methods outlined in the previous section, we
performed numerical integration of interacting neutrino
ensembles, for total neutrino numbers ranging from N ¼ 2
to N ¼ 16, and for various different initial conditions in

2This would suggest that the choice of initial value of μ should
vary with N in order to have the same initial number density nν in
each case. In practice, however, the results do not qualitatively
depend on the choice of initial μ, as long as the system is evolving
smoothly from a regime where GFnν ≳ ω0 to one where
GFnν ≪ ω0. As a result, for ease of numerical implementation,
we choose to start our computations from the same initial value
μ ¼ 5, regardless of N.
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flavor. To begin with, we wanted to investigate how the
amount of entanglement scales with N—for this purpose,
we picked a test case wherein the initial state consists of all

electron-flavor neutrinos, i.e., jΨðr0Þi ¼ ⊗
N

j¼1
jνe;ωj

i. The

results of our calculations with this particular initial
condition are shown in Figs. 1–3, and they essentially
amount to an extension of Fig. 1(a) from our previous
paper (Ref. [34]).
Subsequently, we explored the evolution of neutrino

ensembles with different initial conditions, where some
neutrinos start as jνei and others as jνxi. In Fig. 4(a), we
reproduce a result previously shown in Ref. [34] (albeit
using a different numerical method), whereas through the
remaining plots shown in Figs. 4–5, we extend the results
of Ref. [34] in various ways—e.g., by changing to a large
mixing angle [Fig. 4(b)] or by adding more particles
(Fig. 5). Through these calculations, we glean a number
of interesting insights which are described throughout the
remainder of this section.
Figure 1 shows the results of computing Pν1ðωNÞ, i.e.,

the probability of the neutrino in bin ωN (¼ Nω0, the
highest vacuum oscillation frequency) being found in the
jν1i mass eigenstate, at a final time where μ ≪ ω0, for
systems with neutrino numbers ranging from N ¼ 2 to
N ¼ 16. As mentioned previously, we performed two sets
of calculations, with mixing angles θ ¼ 0.161 and
θ ¼ 0.584, represented in Figs. 1(a) and 1(b), respectively.
At each ω, this probability Pν1ðωÞ is related to the z-
component of the mass-basis polarization vector, Pz;ω,
by Eq. (8).
For the small mixing angle, we find that, among all the

neutrinos, the ones with frequencies ωN−1 and ωN exhibit

the highest amount of entanglement with the rest of the
ensemble, as quantified by their respective entanglement
entropies. Correspondingly, at these two frequencies, the
value of Pν1 deviates the most from its mean-field predicted
value [see, e.g., Fig. 3(a)]. One must note that, for this
particular initial condition and mixing angle, the location of
the spectral split frequency ωs lies in-between ωN−1 and ωN
for the range of values of N considered here. For a system
of N neutrinos with an evenly spaced spectrum of oscil-
lation frequencies (as described in Sec. III), all initially in
the νe flavor state, and with a mixing angle θ, the spectral
split will center around the split frequency ωs given by3

ωs ¼ ω0N cos2 θ; ð18Þ

as a consequence of the conservation of Jz ¼
P

ω J
z
ω. Since

the neutrinos showing the highest degree of entanglement
in this case are the ones closest to ωs, this suggests that it
may be instructive to more closely examine the neutrinos
close to the split frequencies in various other cases as well.
In order to test a scenario where the location of ωs is

further inside the spectrum rather than close to its edge, we
also performed a set of calculations with a larger mixing
angle, θ ¼ 0.584. For a large mixing angle, we find that the
final value of Pν1ðωNÞ → 0 as N grows, so that the many-
body result converges toward the mean-field predicted
value. Correspondingly, the entanglement entropy of this
neutrino decreases with growing N as well. Indeed, this
behavior is correlated with the location of the spectral split
frequencyωs moving further inside and away fromωN asN

(a) (b)

FIG. 1. A comparison between many-body (purple) and mean-field (green) calculations of the flavor evolution of systems with a total
neutrino number ranging from, N ¼ 2 to N ¼ 16, each starting from an initial configuration jνe;…; νei at μ0 ¼ 5ω0. Shown here are the
asymptotic (i.e., at r ≫ Rν, or equivalently, μ ≪ ω0) values of Pν1ðωNÞ, i.e., the probability of detecting the neutrino with the highest
oscillation frequency ωN in a jν1i mass eigenstate at a large distance. Also shown in each plot is the asymptotic value of the entropy of
entanglement (cyan) between the neutrino with frequency ωN and the remaining neutrinos in the ensemble. (a),(b) portray the results of
calculations with mixing angles θ ¼ 0.161 and θ ¼ 0.584, respectively.

3For a proof, see Refs. [30,55], for example.
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is increased. With these trends in mind, it is then natural to
consider the behavior of the neutrino modes nearer to
the spectral split frequency ωs instead. These results
are shown in Fig. 2, for small and large mixing angles
(Figs. 2(a) and 2(b), respectively).
In general, ωs lies somewhere in between two consecu-

tive oscillation frequencies in our discrete spectral grid. Let
Ns ≔ ωs=ω0 be the effective index of a neutrino in the
frequency spectrum at which the spectral split is centered.
To estimate the values of the relevant physical quantities
(such as Pν1 or S) “at” the spectral split location, one must
interpolate between the discrete steps in oscillation
frequencies in our calculations. For a distribution of
neutrinos evenly spaced in oscillation frequencies, we
can define an estimated value at the split frequency by
linearly interpolating a function of the discrete oscillation
frequency spectrum as

FðωsÞ ¼ ð1 − ðNs − bNscÞÞFðbNscω0Þ
þ ð1 − ð⌈Ns⌉ − NsÞÞFð⌈Ns⌉ω0Þ; ð19Þ

where F may be Pν1 or S for example, and where “b·c” and
“⌈ · ⌉” respectively represent the floor and ceiling
functions.
With this convention for defining physical quantities at

ωs, we display the analogous results for the asymptotic
(μ ≪ ω0) evolved values of Pν1ðωÞ and SðωÞ at ω ¼ ωs in
Fig. 2. Here, we find for a small mixing angle that the
deviation of final Pν1ðωsÞ from the mean-field predicted
value grows at a smaller rate in N; however, we again find a
steady growth in entanglement entropy with N. These

results are unsurprising, because ωs is close to ωN for small
θ, as per Eq. (18). In contrast, for a large mixing angle, we
find that ωs is much further from ωN , and therefore in
Fig. 2(b) we observe an entirely different trend with
increasing N for the corresponding Pν1 and S values,
compared to Fig. 1(b). The Pν1ðωsÞ values for the many-
body calculations decrease monotonically with N, whereas
in the mean-field calculations, one observes sharp oscil-
latory features in the Pν1ðωsÞ vs N trend, arising mainly
because of the mean-field spectral splits being much
sharper, resulting in the interpolation also being less
smooth (e.g., see Fig. 3(b)—the Pν1 values on either side
of the split are sharply pulled toward 1 and 0 in the mean-
field calculations, in contrast with the many-body spectral
split, where the trend toward Pν1 ¼ 1 or 0 on either side of
the split is much more gradual). But the key takeaway is
that SðωsÞ continues to grow with N, which seems to
suggest that increasing the particle number does not result
in a decrease of entanglement around the spectral split
region.
Figures 3, 4, and 5 show the results of the asymptotic

spectra of Pν1ðωÞ vs ω, i.e., the probabilities for each of the
neutrinos in the ensemble to be detected in the jν1i state at
far distances where μ ≪ ω0. Different figures represent
neutrino ensembles that started from different initial con-
ditions in flavor. For instance, Fig. 3 represents a neutrino
ensemble wherein all neutrinos started in electron flavor,
whereas Figs. 4 and 5 represent neutrino ensembles where
some neutrinos started as jνei and others as jνxi. In each
figure, we show the results for two sets of calculations,
namely with mixing angles in vacuum of θ ¼ 0.161 and
θ ¼ 0.584, respectively. The final state configurations of

(a) (b)

FIG. 2. Same as Fig. 1, but where the asymptotic probabilities and entanglement entropies at evaluated at ω ¼ ωs instead of ωN , using
an interpolation scheme. Pν1ðωsÞ is defined as a linear interpolation of the jν1i eigenstate detection probabilities, Pν1ðbNscω0Þ and
Pν1ð⌈Ns⌉ω0Þ, for the neutrinos with oscillation frequencies on either side of the spectral swap frequency ωs ¼ Nsω0. The specific linear
interpolation scheme used here is described in Eq. (19). Likewise, in each figure, the asymptotic value of the entropy of entanglement at
the split frequency, SðωsÞ, is defined as a linear interpolation between the frequencies bNscω0 and ⌈Ns⌉ω0 as per Eq. (19). (a),(b) portray
the results of calculation with mixing angles θ ¼ 0.161 and θ ¼ 0.584, respectively.

PATWARDHAN, CERVIA, and BALANTEKIN PHYS. REV. D 104, 123035 (2021)

123035-6



the neutrino ensembles in all of these calculations exhibit
the presence of spectral splits, in the many-body as well as
in the mean-field calculations. Unsurprisingly, in each
figure, the locations of the spectral splits in the many-
body and mean-field calculations coincide with one
another, since in either case, the physics behind the origin
of these splits is based on the total Jz being a conserved
charge of the neutrino Hamiltonian. Generically, across all
the results, one can make the following observations:
(1) The entanglement entropy is maximum for the

neutrinos that have frequencies nearest to the spec-
tral split frequencies. This is more robust of a finding
than the correlation between entanglement entropy

and the deviation in asymptotic values of Pz that was
noted in Ref. [34].

(2) The spectral splits generically appear to be much
broader in the many-body calculations than in the
mean-field calculations. This observation was al-
ready noted in Ref. [34] for neutrino ensembles with
N ≤ 8, and here the same behavior is manifested
even in systems with neutrino numbers up
to N ¼ 16.

(3) The width of the spectral splits in the many-body
calculations seem to depend on the mixing angle θ,
unlike in the mean-field case where the splits are
always sharp.

(a) (b)

FIG. 3. Comparison of the asymptotic (i.e., at r ≫ Rν, or equivalently, μ ≪ ω0) spectra of Pν1 vs vacuum oscillation frequency ω, i.e.,
the probabilities of each of the neutrinos being found in the jν1imass eigenstate. Shown here are the many-body (purple) and mean-field
(green) calculations, for a N ¼ 16 neutrino system with an initial configuration consisting of a jνei at each of the frequencies
ω1;…;ω16; the initial values of these probabilities (red) at each frequency are also shown for comparison. Also shown are the entropies
of entanglement (blue) between each neutrino and the remaining neutrinos in the ensemble. (a),(b) portray the results of calculation with
mixing angles θ ¼ 0.161 and θ ¼ 0.584, respectively. It can be seen, particularly in (b), that the entropy of entanglement peaks around
the spectral split frequency (ω=ω0 ≈ 11–12), implying that the neutrinos closest to the split have the strongest entanglement.

(a) (b)

FIG. 4. Same as Fig. 3, but for an N ¼ 8 neutrino system with an initial configuration consisting of a jνei at each of the frequencies
ω1;…;ω4, and a jνxi at each of ω5;…;ω8. (a),(b) portray the results of calculation with mixing angles θ ¼ 0.161 and θ ¼ 0.584,
respectively. The entropy of entanglement can be seen to peak near the two spectral split frequencies, ω=ω0 ≈ 2 and 7.
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(4) A comparison of Fig. 4(a) and Fig. 5(c) shows that,
as N is increased, the width of the SðωÞ vs ω bell
curves does not appear to grow in proportion with
the total width of the neutrino spectrum. In fact, the
width seems to remain more or less constant, even as
N is increased from 8 to 16, suggesting that the
entanglement remains localized in the immediate
neighborhood of the splits. In other words, in
relation to the total width of the neutrino spectrum
(ωN − ω1), the width of the splits appears to shrink
with increasing N. We have verified that this latter
assertion holds true even if (ωN − ω1) is held fixed
through a rescaling of the oscillation frequencies as
N is increased.

In particular, given the correlation between entanglement
entropy and the deviation relative to mean-field calcula-
tions, observation 4 suggests that, even as the system gets
larger, only the neutrinos that are closest to the split

frequency deviate strongly from the mean-field calcula-
tions. Such behavior suggests that, in order to scale such
computations to systems with large numbers of neutrinos, a
hybrid computational approach may be feasible, wherein
neutrinos away from the spectral split region(s) are evolved
using a mean-field treatment, whereas those closer to the
split are treated as true many-body system.

V. TRACE INEQUALITIES AND
DERIVED CONSTRAINTS

In light of the observations regarding the entanglement
entropy and the smearing of spectral splits, one can attempt
to formally relate the entropies SðωÞ of individual neutrinos
with their probabilities of being found in particular mass
eigenstates (or equivalently, with the z-components of their
polarization vectors). For this purpose, one might employ
the Gibbs variational principle, which states that for any

(a) (b)

(c) (d)

FIG. 5. Same as Fig. 3, but for N ¼ 16 neutrino systems with different initial configurations: shown in (a),(b) are the results for a
system with an initial configuration consisting of a jνei at each of the frequencies ω1;…;ω12, and a jνxi at each of ω13;…;ω16. (a),(b)
portray the results of calculation with mixing angles θ ¼ 0.161 and θ ¼ 0.584, respectively. (c),(d) show the corresponding results for
θ ¼ 0.161 and θ ¼ 0.584, respectively, for a system with an initial configuration consisting of a jνei at each of the frequencies
ω1;…;ω8, and a jνxi at each of ω9;…;ω16. In each case, the entropy of entanglement appears to peak near the respective spectral split
frequencies, e.g., at ω=ω0 ≈ 3 and 14 in (c).
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self-adjoint operator Q such that e−Q is in the trace class,
and for any γ ≥ 0 with Trγ ¼ 1, one can write down the
inequality

TrðγQÞ þ Trðγ log γÞ ≥ − log Trðe−QÞ; ð20Þ

with the equality satisfied if and only if γ is given
by γ ¼ e−Q=Trðe−QÞ.
Taking γ to be the reduced density matrix of a single

neutrino ρðredÞω , as given by Eq. (6), one can obtain a
sequence of inequalities with different choices of operators
Q. Taking the trivial case Q ¼ I, i.e., the 2 × 2 identity
matrix, one recovers the inequality SðωÞ ≤ logð2Þ, using
the definition of SðωÞ from Eq. (9). Taking Q ¼ σz instead,
one obtains a constraint relation connecting the polarization
vector component Pz;ω and the entanglement entropy SðωÞ:

Pz;ω ≥ SðωÞ − log
#
eþ 1

e

$
: ð21Þ

Similarly, for any component of P⃗ω along a general
direction, we can write the inequality

A⃗ · P⃗ω þ logð2 cosh jA⃗jÞ ≥ SðωÞ: ð22Þ

where A⃗ is an arbitrary three-dimensional real vector. One
could also generalize Eq. (21) by taking Q ¼ nσz,
obtaining a series of such inequalities. Combining the
constraints derived by taking Q ¼ 'nσz, one obtains the
symmetric inequality

SðωÞ ≤ log
#
en þ 1

en

$
− njPz;ωj≡ Sn; ð23Þ

where we have defined Sn as the limiting expression on the
right-hand side of the inequality. This can be turned around
to yield a bound on the size of jPz;ωj as a function of the
entanglement entropy SðωÞ, namely,

jPz;ωj ≤
1

n
log

#
en þ 1

en

$
− SðωÞ

n
: ð24Þ

One may use such a bound to predict the smearing
of the spectral split based on the degree of entanglement.
For instance, from Fig. 5(c), taking the particular neu-
trino at ω=ω0 ¼ 13 as an example, the entangle-
ment entropy is approximately SðωÞ ≈ 0.5, and therefore,
taking Eq. (24) with n ¼ 1, one can derive the bound
Pz;ω< logðeþ1=eÞ−0.5≈0.6, or equivalently, Pν1ðωÞ ¼
1=2ð1þ Pz;ωÞ ≤ 0.8, which suggests that the spectral split
is being smeared in the many-body case, compared to the
mean-field result which has Pz;ω ≈ 1 at that frequency.
However, it can be demonstrated that none of the bounds

derived from the Gibbs variational principle are stronger

than the bounds on Pz (or other polarization vector
components) imposed by the relation between entangle-
ment entropy and the length of the polarization vector, jP⃗j,
given by in Eqs. (9) and (10) (see also Ref. [34] for a closed
form expression). In fact, each of these constraints derived
from Eq. (23) for various values of n can be represented as
tangents of the constraint in Eqs. (9) and (10). This relation
is depicted in Fig. 6. Even though the constraints based on
the Gibbs variational principle are weaker than the one
derived from Eqs. (9) and (10), they do nevertheless furnish
straightforward, linear relations between Pz and S of
individual neutrinos, which may be utilized as shown
above.
From these relations, and as demonstrated using the

simple example above, one can observe that the entangle-
ment entropy growth tightens the bound on the size of the
polarization vectors corresponding to the neutrinos most
entangled with the rest of the ensemble. As a consequence,
we can see that neutrinos closest to the spectral split, which
we have found to have greater entanglement entropy, also
have values limt→∞ jPz;ωj < 1. In this sense, entanglement
entropy of several neutrinos with frequencies around the
split frequency result in a broadening of the split in many-
body theory, even for calculations performed using the
single-angle approximation. Interestingly, such broadening

FIG. 6. A juxtaposition of the constraints derived from the
Gibbs variational principle [Eq. (23)] and the constraint derived
from the relation between entanglement entropy of individual
neutrinos, SðωÞ, and the length of the neutrino polarization
vectors, jP⃗ωj [Eqs. (9) and (10)]. The dot-dashed straight lines
are the limiting lines Sn from Eq. (23), for n ¼ 1 (purple), n ¼ 3
(green), and n ¼ 1=3 (dark red), respectively. The regions above
and to the right of each of these lines in the SðωÞ vs jPz;ωj space
are excluded. The solid (black) line represents the relation
between SðωÞ and jP⃗ωj. Since jPz;ωj ≤ jP⃗ωj, this curve can also
be considered as a limiting case of the permitted Pz;ω values as a
function of the entanglement entropy. As is apparent, Eqs. (9) and
(10) furnish the strongest constraint on Pz;ω vs SðωÞ, whereas the
other limiting lines derived from the Gibbs variational principle
can be seen to be tangents of this curve.
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of the spectral split may also be observed in the mean field
limit, with the inclusion of multi-angle effects [50] or
nonstandard ν-ν interactions [64].

VI. CONCLUSIONS

We showed that many-body calculations, in a single-
angle approximation, predict a smeared spectral split—in
contrast with mean-field calculations, which predict
smearing only in certain multiangle scenarios or with the
addition of a nonstandard self-interaction potential.
Furthermore, we find that the width of this smeared spectral
split is dependent upon the size of the mixing angle.
Additionally, we note that growth in entanglement entropy
is most substantial around the spectral split and note the
role of entanglement in the smearing of the spectral split.
Along with the results summarized above, we explain the
smearing of the spectral split in terms of the relationship
between the entanglement entropy and the third component
of the polarization vector, which we establish numerically
as well as formally using the Gibbs variational principle.
The results presented in this article were established in

calculations with up to 16 neutrinos. As a result of being
limited in terms of neutrino number, and due to the various
physical assumptions used in this work (single-angle
approximation, plane wave neutrinos, etc.), it remains to
be seen whether the results obtained here could be
considered to be representative of an actual core-collapse
supernova environment. The goal of this study was to
extend previous explorations of the potential effects of
quantum entanglement on collective neutrino flavor evo-
lution, using simplified numerical models. Looking for-
ward, it is clearly desirable to increase the number of
neutrinos treated in these calculations. Through this

process, we intend to explore how the entanglement and
the associated flavor phenomena scale with neutrino
number would offer some clues about the large-N limit
of such systems (i.e., approaching the realistic number of
neutrinos present in core-collapse supernovae and neutron-
star mergers). A more technical analysis comparing various
pros and cons of several numerical approaches toward this
goal is beyond the scope of this work, but this issue will be
discussed in a future paper [65].
Our results suggest that a full many-body calculation

may not be necessary in all cases. At least in some cases,
one can first run a mean-field calculation and obtain the
split frequencies, and once they are determined, a many-
body calculation may be run only for those neutrinos with
energies near the split frequencies, keeping the mean-field
results for other neutrinos. Such a hybrid approach could
certainly cut down the computational time needed. One
method to implement such a hybrid of entangled and
nonentangled particles in the same ensemble will be
presented in future work [65].
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