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Abstract— With the recent growing number of cyberattacks
and the constant lack of effective defense methods, cyber risks
have become ubiquitous in enterprise networks, manufacturing
plants, and government computer systems. Cyber insurance
provides a valuable approach to transfer the cyber risks to
insurance companies and further improve the security status
of the insured. The designation of effective cyber-insurance
contracts requires considerations from both the insurance market
and the dynamic properties of the cyber risks. To capture the
interactions between the users and the insurers, we present a
dynamic moral-hazard type of principal–agent model incorpo-
rated with Markov decision processes, which are used to capture
the dynamics and correlations of the cyber risks as well as the
user’s decisions on the protections. We study and fully analyze
a case with a two-state two-action user under linear coverage
insurance and further show the risk compensation, Peltzman
effect, linear insurance contract principle, and zero-operating
profit principle in this case. Numerical experiments are provided
to verify our conclusions and further extend to cases of a four-
state three-action user under linear coverage insurance and
threshold coverage insurance.

Index Terms— Cyber insurance, information asymmetry,
Markov decision processes (MDPs), mechanism design, moral
hazard, principal–agent problem.

NOMENCLATURE

t Time t .
S and N Set and number of all possible states.
Sn State n (1 ≤ n ≤ N).
s and st State and state at time t (s, st ∈ S ).
X Set of direct losses at all possible states.
Xn Direct Loss at State Sn .
x and xt Direct loss, direct loss at time t .
p(st , st+1) Transition probability from st to st+1.
A and M Set and number of all possible protections.
Am Protection m (1 ≤ m ≤ M).
a and at Protection and protection at time t

(a, at ∈ A ).
p(st , at , st+1) Transition probability from st to st+1

under at .
c(a) Cost function.

Manuscript received September 27, 2019; revised July 27, 2021 and
September 14, 2021; accepted September 30, 2021. This work was supported
in part by the National Science Foundation (NSF) under Grant SES-1541164,
Grant ECCS-1847056, Grant CNS-2027884, and Grant BCS-2122060; and in
part by the Army Research Office (ARO) under Grant W911NF-19-1-0041.
(Corresponding author: Rui Zhang.)
The authors are with the Department of Electrical and Computer

Engineering, New York University, Brooklyn, NY 11201 USA (e-mail:
rz885@nyu.edu; qz494@nyu.edu).
Digital Object Identifier 10.1109/TCSS.2021.3117905

αs Stationary state protection at state s
(αs ∈ A ).

� Set of all possible stationary protection poli-
cies.

π Stationary protection policy (π(s) =
αs ,∀s ∈ S ).

ρ Value of transition probabilities.
R Set of all possible coverage functions.
r(x) and K Coverage function (r ∈ R) and premium

(K ∈ R≥0).
r0(x) Zero coverage function (r0(x) = 0,

∀x ∈ R≥0).
R Coverage level (r(x) = Rx).
l(s, a, r) Effective loss function.
V (s, π, r) Expected cumulative effective loss function.
π∗

r Optimal stationary protection policy under
coverage r .

SG B Set of two states (SG B = {SG, SB }).
SG and SB Good state and bad state.
s and sc One state and other state (s, sc ∈ SG B;

sc �= s).
XG and X B Direct losses at good state and bad state.
AH L Set of two actions (AH L = {AH , AL}).
AH and AL Strong protection and weak protection.
αG and αB Stationary state protections at good state and

bad state.
αs and αsc Stationary state protections.
RG and RB Threshold coverage levels at good state and

bad state.

I. INTRODUCTION

CYBER risks created by malicious attackers, such as ran-
somware [1], data breaches [2], and denial of service [3],

have become severe threats to the security of important
devices and private data in the Internet of Things (IoT) and
cyber-physical systems (CPSs) [4]–[6]. For example, the Cryp-
toLocker ransomware attack has caused an estimated loss of
$3 million [7]. The 2016 Dyn cyberattack has resulted in the
disruption of major Internet platforms and services to large
swathes of users in Europe and North America [8].
Although various defense methods, such as firewalls [9],

intrusion detection systems [10], and moving-target
defenses [11], have been deployed to detect the intrusion
attempts and protect the networked devices, they cannot
eliminate the cyber risks due to the complexities of cyber
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environments [12]. Moreover, cyber threats are becoming
stealthier, more strategic, and purposeful as exemplified by
the advanced persistent threats such as Stuxnet attacks on the
Iranian nuclear power plant in 2009 and the Ukrainian power
plant attack in 2015 [13], [14].
Recently emerged cyber insurance provides an economi-

cally viable solution to further mitigate the cyber risks and
improve network resiliency [15]–[19]. The insured network
users could quickly recover from severe cyber incidents since
part of the losses has been covered by the insurers. However,
such as the classic insurance, the insurers may suffer from
offering coverage to reckless users due to the information
asymmetry that the insurers cannot directly observe the users’
protections [20]–[22].
Moreover, as suggested by the theory of risk compensation

in traditional insurance scenarios [23], the users may become
less careful against cyberattacks knowing that insurers will
cover their losses, for example, users may click more phishing
emails, ignore the warnings of upgrading firewalls or systems,
and reduce the frequency of scanning viruses or worms. As a
result, the users may encounter more severe cyber incidents
and the insurers may bear extra cyber risks.
Thus, it is imperative to study cyber-insurance contracts and

their impacts on the users’ cyber-risk statuses. However, clas-
sic risk analysis and insurance frameworks cannot be directly
applied to cyber risks and cyber insurance as cyber risks are
dynamically evolving and strongly correlated [24]–[27]. For
example, an adversary can first launch a node capture attack
to compromise the system [28], [29] and then gain the admin-
istration to the devices [30], steal private information [31],
or inject ransomware worms or viruses [32].
In this article, we capture the correlations and dynamics

of the cyber risks as well as the users’ decisions on the
protections with the Markov decision processes (MDPs) [33],
[34]. Different states of the MDP are used to capture the
different cyber risks from various sources, such as service
failures, attackers, or network connections. The transitions of
states capture the connections of different cyber risks, and they
are affected by the user’s actions of protection at different
times.
To further mitigate the cyber risks, the user has a choice of

purchasing cyber insurance. After paying a premium, the user
could receive financial coverages from the insurer to reimburse
his losses caused by various cyber risks, as shown in Fig. 1.
The objective of the user is to find an optimal deployment
of protections and cyber insurance that minimizes his cyber
losses.
A rational user selects a cyber insurance from which he

could benefit more, i.e., contracts with a low premium and
high coverage. However, an insurer tends to offer an insurance
contract that has a high premium and low coverage, as the
insurer aims to maximize his operating profit. Moreover,
similar to the traditional insurance scenarios, the insurer is not
aware of the local protections of the user, and an inappropriate
insurance contract could largely damage the insurer’s profit.
We address such conflicting interests and the information

asymmetry between the user and the insurer with a moral
hazard type of principal–agent problem [21], [22], [35], [36].

Fig. 1. Cyber-insurance example. The blue, red, and green icons represent
user, attacker, and insurer, respectively. A user pays a premium to an insurer to
purchase the cyber insurance. Then, the user could receive financial coverages
from the insurer to cover part of his losses caused by cyberattacks.

The analysis, as well as the solution of the problem, is impor-
tant to study the impacts of cyber insurance on the user and
design effective insurance contracts. The major contributions
of this work are summarized as follows.
1) We integrate MDPs into a moral hazard type of

principal–agent model to investigate the impacts of cyber
insurance on the user’s cyber risks and design effective
cyber-insurance contracts for the insurer.

2) We fully characterize a case between a two-state two-
action user and a linear coverage insurer. The results
of this case indicate that the optimal insurance con-
tracts follow the linear insurance contract principle
and zero-operating profit principle. The analysis also
demonstrates the existence of risk compensation and the
Peltzman effect in cyber insurance.

3) We develop scientific methods incorporating dynamic
programming or linear programming for problems
involving multiple cyber-risk states, various protection
choices, and complex insurance contracts. Our numer-
ical experiments illustrate risk compensation, Peltzman
effect, and zero-operating profit principle in cases of a
four-state three-action user under linear coverage insur-
ance and threshold coverage insurance.

A. Organization of This Article

The rest of this article is organized as follows. Section II
presents the related works. Sections III and IV discuss
the user’s problem and the insurer’s problem, respectively.
Section V presents a case study of a linear coverage insur-
ance contract on a two-state two-action user. Sections VI
and VII present numerical results and concluding remarks,
respectively. Appendixes A, B, and C provide the proofs of the
Proposition 2, and Theorem 1, and Proposition 4, respectively.
We provide a summary of notations in Nomenclature.

II. RELATED WORKS

Recently, with fast-growing types and amounts of networked
devices and shortages of effective and state-of-the-art defense
methods, cyber insurance has drawn huge attention as it
can transfer the unexpected cyber risks to the insurance
companies [15]–[19], [27], [37]–[41]. The existing insurance
framework could bring useful insights on modeling the cyber
insurance [15], [42]. The moral hazard models in the eco-
nomics literature are good tools to capture the information
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asymmetry between the insured and the insurers [20]–[22].
Various frameworks and methodologies have been brought up
to investigate cyber-insurance contracts and their impacts on
cyber risks.
Several works have studied cyber insurance through

market-based approaches by analyzing the supply and demand
relations between insurers and insureds [16], [18], [27], [37].
Pal et al. [18] have analyzed regulated monopolistic and com-
petitive cyber-insurance markets and showed that cyber insur-
ance can improve the network security, but the insurer
can make zero expected profits in monopoly markets.
Böhme et al. [16], Böhme and Kataria [27], and Böhme [37]
have presented several market models of cyber insurance with
the consideration of interdependency between cyber risks and
information asymmetries between insurers and insureds and
showed analytical results on the impacts of cyber insurance to
cybersecurity and the viability of a market for cyber insurance.
Game theory has been used to capture the interactions

between insurers and insureds of cyber insurance [19], [38],
[41]. Laszka et al. [41] have used a two-player signaling game
to capture the information asymmetry between a potential
client and an insurer and further studied incentives for auditing
potential clients before cyber-insurance premium calculations.
Grossklags et al. [38] have presented several security games
to capture the decision-making of network users on protections
and insurance. The equilibrium analysis shows that users may
seek to self-protect themselves at just slightly above the lowest
protection level in the weakest target game. Zhang et al. [19]
have studied the interactions between insureds, attackers, and
insurers with a bilevel game-theoretic framework in a net-
worked environment and demonstrated the impacts of network
connections to the three types of players.
Most previous works have focused on the information asym-

metry and interdependencies of cyber risks, and however, their
models have not captured the dynamics and correlations of the
cyber risks, which have been studied with different method-
ologies and models [43]–[47]. Poolsappasit et al. [46] have
used a Bayesian attack graphs model to analyze the network
security risk assessment and mitigation. Kim et al. [47] have
used a differential epidemic model to capture the spreading of
viruses and worms in computer networks. These works aim to
reduce the impacts of cyber risks through local protections,
such as firewalls [9], intrusion detection [30], or moving-
target defenses [11], which cannot fully mitigate the risks of
cyberattacks.
In this work, we focus on studying the dynamics and

correlations of the cyber risks and analyzing the impacts
of the cyber insurance to both the insureds and the insur-
ers. Markov models have been applied in various types of
insurance to capture dynamic and correlated risks [48]–[50].
Haberman and Pitacco [48] have investigated the disabil-
ity insurance based on Markov and semi-Markov models;
Lambrinoudakis et al. [49] have proposed a Markov model to
describe the transitions of an information system as a result
of a security incident and further utilized it to estimate the
premium of the insurance contract against the expected losses
from the incident. However, they have not yet considered the
fact that the user’s decisions on deploying local protections

Fig. 2. Illustration of cyber insurance. The dynamics of the user’s cyber risks
are captured by MDP with st denoting the cyber-risk state at time t , which is
associated with a direct loss xt . The user can choose various protections at to
reduce future losses. The objective of the user is to find the optimal protection
sequence {at }t≥0, which minimizes his cumulative losses. The user can also
purchase cyber insurance to mitigate his losses. The insurer first announces
the insurance contract {K , r}, where K and r indicate the premium and the
coverage function, respectively. The user can decide whether to purchase the
insurance or not. If the user chooses to purchase the insurance, he must pay a
premium K , and when he faces a loss of x , the insurer should provide coverage
of r(x) to him. The objective of the insurer is to maximize his profit. Note
that the insurer has no information on the user’s protection sequences.

could significantly change the cyber risks and the insurer could
face notable losses if it fails to take that into consideration
while designing cyber-insurance contracts.
We capture the cyber risks as well as the user’s deploy-

ments of local protections with MDPs, which have been
used variously to analyze cybersecurity [51]–[53]. We then
use the existing moral hazard type of principal–agent model
to capture the interactions between the user and the insurer
with incomplete information. The analysis of both the optimal
insurance contract and the user’s response to it provides useful
insights on the designation of the cyber-insurance contracts in
the real world.

III. USER’S OPTIMAL PROTECTION POLICIES

We use discrete MDPs to capture the evolvements of the
user’s cyber risks with time, and an illustration is shown
in Fig. 2. Let st ∈ S denote the user’s cyber-risk state at
time t ∈ Z≥0, where S ≡ {Sn|1 ≤ n ≤ N} is the set of all
possible cyber-risk states. Different cyber-risk states may incur
various types of losses, e.g., data breaches, physical device
damages, and compromised financial accounts. In this article,
we consider that all types of losses are measurable and can
be quantified by monetary direct losses. We assume that each
cyber-risk state Sn ∈ S is associated with a fixed direct loss
Xn ∈ R≥0, and the user’s direct loss at time t can be denoted
by xt ∈ X , where X ≡ {Xn|1 ≤ n ≤ N}.
The user can adopt different protections, such as fire-

walls, intrusion detection systems, and moving-target defenses,
to reduce the possibilities of entering cyber-risk states that
can incur severe losses. Let at ∈ A denote the protections
at time t , where A ≡ {Am|1 ≤ m ≤ M} is the set of all
available protections. The transition probability p(st , at , st+1)
denotes the probability that the user goes to state st+1 at
time t + 1 when he is currently in state st and adopts
protection at , which naturally captures the correlations among
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different cyber-risk states under different protections. Note that∑N
n=1 p(st , at , Sn) = 1 as the user can only enter states within

S at time t + 1.
We further provide two examples to illustrate the states S

and protections A of the user.
Example 1: Suppose a customer whose computer faces

threats of Ransomware. In this example, the customer has
S = {S1, S2} and A = {A1, A2}. States S1 and S2 denote
that the computer is secure and compromised, respectively.
The customer can choose to do nothing A1 or add firewalls A2.
The computer has a lower probability of facing Ransomware,
i.e., entering state S2, if the customer deploys firewalls. When
the computer is compromised, the customer needs to either
pay the money or replace the computer, which can be covered
if he has purchased cyber insurance.

Example 2: Consider a cloud center who aims to protect
itself from the damages caused by potential attackers. In this
example, the cloud center has S = {S1, S2, S3} and A =
{A1, A2, A3, A4}. State S1 denotes the situation when it is
safe and faces no cyberattacks. However, the cloud center
may encounter data breaches and denial of services, which
are represented by states S2 and S3, respectively. Each state
Sn ∈ S is associated with a direct loss Xn . For example,
at time t , st = S2 indicates that the cloud center faces
data breaches that inflict X2 direct losses to it. Especially,
the direct loss X1 = 0 at state S1, which indicates that
the cloud center has no loss when it faces no cyberattacks.
To defend against these cyberattacks, the cloud center may
deploy firewalls, intrusion detection systems, and moving-
target defense, which are represented by protections A2, A3,
and A4, respectively. Especially, the cloud center can also
choose to do nothing, which is denoted as A1. The cloud
center has smaller probabilities of entering states with high
losses if he deploys protections, and however, these protections
are also costly. The cloud center can also purchase cyber
insurance to cover part of its losses and help it recover from
cyber incidents. The objective of the cloud center is to find an
optimal deployment of protections and cyber insurance such
that its future cumulative losses are minimized. Cases involve
other cyber risks or protections can be extended through
increasing the size of S and A .
Besides the protections, the user can also mitigate his losses

through purchasing cyber insurance. After paying a premium
to an insurer, the user could receive a coverage of r(xt) from
the insurer when he faces a direct loss of xt , where r : R≥0 →
R≥0 is the coverage function of the insurance. The objective of
the user is to find an optimal sequence of protections {at}t∈Z≥0

that minimizes the expected cumulative effective losses given
the initial state s0 ∈ S , which can be captured as

min{at }
E

{ ∞∑
t=0

δt(xt − r(xt) + c(at))
∣∣∣s0} (1)

where function c(at) returns the cost of protection at and δ ∈
(0, 1) is the discount factor, which indicates that future losses
are valued less at time 0.
In this article, we consider that the user decides his protec-

tions contingent on his current state. Such feedback strategy

allows the user to maintain his security level by adopting
the necessary protections that can reduce the losses from
cyberattacks and save the costs of protection at the same time.
The strategy is usually denoted by a stationary protection
policy π : S → A , e.g., π(Sn) = Am indicates that the
user always takes protection Am at state Sn . As a result,
the expected cumulative effective losses of the user under a
stationary protection policy can be captured as

V (s0, π, r) = E

{ ∞∑
t=0

δt(xt − r(xt) + c(π(st )))
∣∣∣s0}. (2)

The user aims to find an optimal stationary protection policy
π∗

r ∈ � that minimizes his expected cumulative effective
losses given the coverage function r , and such objective can
be captured as

π∗
r ∈ argmin

π∈�
V (s0, π, r) (3)

where � denotes the set of all possible stationary policies.
A rational user purchases the insurance only when the

expected cumulative effective losses plus the premium under
the insurance is lower than the losses without insurance, which
can be captured as

V (s0, π
∗
r , r) + K ≤ V (s0, π

∗
r0 , r0) (4)

where K ∈ R≥0 is the premium of the insurance and r0
indicates a zero coverage function, i.e., r0(X) = 0 for all
X ∈ R≥0, which corresponds to the case when there is no
insurance. The fact that the user purchases the insurance only
when inequality (4) is satisfied must be considered by the
insurer while designing effective insurance contracts.
The optimal protection policy π∗

r could be obtained by
solving (3) with either dynamic programming or linear pro-
gramming [54], and we summarize both approaches in the
following.

A. Dynamic Programming Approach

Recall (2), and let us define the loss function l(st , at , r) =
xt − r(xt ) + c(at), which indicates the effective loss at time
t under the coverage function r . Note that l(st , at , r) does
not take xt as variable since the direct loss xt is uniquely
determined by the user’s cyber-risk state st . Thus, we can
express the expected cumulative effective losses as

V (s0, π, r) =E

{ ∞∑
t=0

δt l(st , π(st ), r)|s0
}

= l(s0, π(s0), r)+ δ
∑
s ′∈S

p(s0, π(s0), s ′)V (s′, π, r)

(5)

where l(s0, π(s0), r) and δ
∑

s∈S p(s0, π(s0), s)V (s, π, r)
capture the effective loss at time 0 and the future expected
cumulative effective losses, respectively. As a result, given a
coverage function r , the optimal protection policy π∗

r can be
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found by the following dynamic programming operators [54]:

π∗
r (s) ∈ arg min

a∈A

{
l(s, a, r) + δ

∑
s ′∈S

p(s, a, s′)V (s′, π∗
r , r)

}
(6)

V (s, π∗
r , r)= l(s, π∗

r (s), r)+ δ
∑
s ′∈S

p(s, π∗
r (s), s ′)V (s′, π∗

r , r).

(7)

By iterating (6) and (7) for all states s ∈ S until no further
changes take place, we can achieve π∗

r and V (s, π∗
r , r), and

the convergence to the optimum is guaranteed [54].

B. Linear Programming Approach

Besides the dynamic programming, we can also use linear
programming to solve the user’s problem (3) [54]. Let η ∈
R

N M×1 and θ ∈ R
N×1 denote the prime variable and the dual

variable of the linear programming problems, respectively. Let
b ∈ R

N×1 denote a column vector of size N with all the
elements equal to 1. Let d ∈ R

N M×1 denote a column vector
of size N M , which captures the per-state and per-action losses,
and the (N(n − 1) + m)th element of it equals l(Sn, Am, r),
where 1 ≤ n ≤ N and 1 ≤ m ≤ M . Let matrix O = E − δP ,
where matrix E ∈ R

N×N M has that En,N(n−1)+m = 1 for 1 ≤
n ≤ N and 1 ≤ m ≤ M and all the other elements are 0, and
matrix P ∈ R

N×N M is the transition probability matrix, where
Pn′,N(n−1)+m = p(n, am, n′), 1 ≤ n ≤ N , 1 ≤ n′ ≤ N , and
1 ≤ m ≤ M . Problem (3) can be reformulated into a linear
programming problem in the standard form as [54]

min
η

dT η

s.t.Oη = b, η ≥ 0

with its dual problem

max
θ

bT θ

s.t.d − OT θ ≥ 0.

The optimal primal variable η∗ represents the optimal
state–action frequencies; the optimal dual variable θ∗ repre-
sents the expected cost-to-go values of the states for the given
coverage function r , i.e., θ∗

n = V (Sn, π
∗
r , r) for 1 ≤ n ≤ N .

After solving the dual problem, we can find the optimal
protection policy π∗

r by plugging V (Sn, π
∗
r , r) into (6).

IV. INSURER’S OPTIMAL INSURANCE CONTRACTS

In this section, we present and analyze the insurer’s prob-
lem of designing cyber-insurance contracts. An illustration of
the interactions between the user and the insurer is shown
in Fig. 2. Note that the insurer first announces the insurance
contract {K , r}, and the user then makes the decision of
purchasing the insurance based on the expected cumulative
effective losses under that insurance contract. If the user
chooses to purchase the insurance, the insurer instantly earns
a profit of K at time 0, but the insurer is required to pay the
coverage of r(xt) when the user faces a loss of xt at time
t . As a result, the insurer’s operating profit can be captured
as K −E

{∑∞
t=0 δt r(xt)

∣∣s0}, where E{∑∞
t=0 δtr(xt)

∣∣s0} denotes
the expected cumulative coverage provided by the insurer to

the user. The objective of the insurer is to find an optimal insur-
ance contract {K ∗, r∗} that maximizes his operating profit.
As a result, the insurer’s problem can be captured as

max
{K ,r}

K − E

{ ∞∑
t=0

δtr(xt)
∣∣s0}

s.t. K − E

{ ∞∑
t=0

δt r(xt)
∣∣s0} ≥ 0 (8a)

V (s0, π
∗
r , r) + K ≤ V (s0, π

∗
r0 , r0). (8b)

Constraint (8a) captures the insurer’s individual rationality
that he chooses not to provide the insurance if he has a negative
profit. Constraint (8b) captures the user’s individual rationality
on purchasing the insurance and it comes from inequality (4).
By solving problem (8), the insurer can find an optimal

insurance contract, which maximizes his operating profit and
is acceptable by the user. After combining the user’s problem
and the insurer’s problem, the interactions of the user and
the insurer can be captured by the following principal–agent
problem:

max{K ,r} K − E

{ ∞∑
t=0

δtr(xt)
∣∣s0}

s.t. K − E

{ ∞∑
t=0

δt r(xt)
∣∣s0} ≥ 0 (9a)

V (s0, π
∗
r , r) + K ≤ V (s0, π

∗
r0
, r0) (9b)

π∗
r ∈ argmin

π∈�
V (s0, π, r). (9c)

Problem (9) is an optimization problem nested with vari-
ous suboptimization problems. The solution of Problem (9)
captures both the user’s objective of minimizing his expected
cumulative effective losses and the insurer’s objective of
maximizing his own profit with the consideration of the
user’s rational choice of purchasing the insurance. To find
the solution of problem (9), we can first solve the user’s
problem (3) and obtain the optimal protection policies π∗

r
and the corresponding losses V (s0, π∗

r , r) to the coverage
function r and then achieve {K ∗, r∗} by solving the insurer’s
problem (8).
We can simplify the insurer’s problem (8) by exploring the

expected cumulative effective losses and the optimal protection
policies as discussed in the following.

A. Insurer’s Problem: Simplifications and Direct Conclusions

We first notice that the expected cumulative coverage is
equal to the expected cumulative direct losses minus the
expected cumulative effective losses, i.e.,

E

{ ∞∑
t=0

δt r(xt)|s0
}

= E

{ ∞∑
t=0

δt
(
xt + c(π∗

r (st ))
)|s0 }

−E

{ ∞∑
t=0

δt
(
xt − r(xt) + c(π∗

r (st ))
)|s0 }

= V (s0, π
∗
r , r0) − V (s0, π

∗
r , r)
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where V (s0, π∗
r , r0) can be interpreted as the expected cumu-

lative effective losses given the optimal protection policy π∗
r

and the zero coverage function r0. Thus, Problem (8) can be
rewritten as follows:

max
{K ,r}

K − (
V (s0, π

∗
r , r0) − V (s0, π

∗
r , r)

)
s.t. K − (

V (s0, π
∗
r , r0) − V (s0, π

∗
r , r)

) ≥ 0 (10a)

V (s0, π
∗
r , r) + K ≤ V (s0, π

∗
r0
, r0). (10b)

Constraint (10b) indicates that the maximum premium that
can be charged by the insurer for a coverage function r is

Kmax = V (s0, π
∗
r0 , r0) − V (s0, π

∗
r , r). (11)

The user chooses not to purchase the insurance with a
premium K > Kmax because the losses and the premium under
the insurance are higher than the losses without insurance.
As a result, problem (8) is equivalent to the following

problem after letting K be equal to Kmax and plugging (11)
into its objective function and constraint:

max
r∈R

V (s0, π
∗
r0
, r0) − V (s0, π

∗
r , r0)

s.t. V (s0, π
∗
r0 , r0) − V (s0, π

∗
r , r0) ≥ 0 (12)

whereR denotes the set of all possible coverage functions, and
the constraint indicates that the profit of the insurer cannot be
negative. After solving (12), we can find the optimal coverage
function r∗, and then, the optimal premium can be computed
through (11). Similarly, the principal–agent problem (9) can
also be rewritten as

max
r∈R

V (s0, π
∗
r0
, r0) − V (s0, π

∗
r , r0)

s.t. V (s0, π
∗
r0 , r0) − V (s0, π

∗
r , r0) ≥ 0 (13a)

π∗
r ∈ argmin

π∈�
V (s0, π, r). (13b)

Comparing (8) and (9), we only need to find the optimal
protection policies π∗

r to obtain the optimal insurance contract
{K ∗, r∗} through (12) and (13).

One useful insight regarding the operating profit could be
obtained without solving (12) or (13), which is summarized
in the following remark and proposition.

Remark 1: Any coverage function r that yields π∗
r = π∗

r0
,

i.e., the user has the same optimal protection policy between
the case under the coverage function r and the case under
no insurance, is a feasible solution with the corresponding
premium K = V (s0, π∗

r0 , r0) − V (s0, π∗
r , r) = V (s0, π∗

r0 , r0) −
V (s0, π∗

r0
, r) ≥ 0 as V (s0, π∗

r0
, r) ≤ V (s0, π∗

r0
, r0), and

the insurer has a zero-operating profit under that insurance
contract as V (s0, π∗

r0 , r0) − V (s0, π∗
r , r0) = V (s0, π∗

r0 , r0) −
V (s0, π∗

r0
, r0) = 0.

Proposition 1: Any insurance contract {K , r} that yields
π∗

r = π∗
r0 and meets (11) is optimal for the insurer, and the

insurer has a zero-operating profit under that contract.
Proof: The operating profit of the insurer has that

V (s, π∗
r0
, r0) − V (s, π∗

r , r0) ≤ 0 from (13b), i.e., π∗
r0

∈
argminπ∈� V (s, π, r0). Thus, the maximum profit that the
insurer can achieve is 0. As a result, if the user has π∗

r = π∗
r0

under an insurance contract {K , r}, this contract is feasible
from Remark 1 and it is also optimal.

Remark 1 indicates that the insurer has a zero-operating
profit when the user has the same protection policies with or
without insurance, which explains market neutrality. Propo-
sition 1 indicates that the insurance contract in Remark 1
is optimal for the insurer. We denote this conclusion as the
zero-operating profit principle.

V. CASE STUDY: TWO-STATE TWO-ACTION USER AND

LINEAR COVERAGE INSURER

In this section, we present a representative case where the
user has two states and two actions and the insurer provides
the linear coverage. Analysis of this case provides structural
insights into the insurance contracts. Recall Section III that the
user in this case has the set of states SG B ≡ {SG, SB }, where
SG and SB indicate good state and bad state, respectively. The
losses that associated with the states can be further identified
as XG and X B . The difference between the good state and the
bad state is that the user has lower losses at the good state
than that at the bad state, i.e., 0 ≤ XG < X B .

To reduce the losses, the user can choose to take strong
protection AH or weak protection AL ; in other words, the user
has the action set AH L = {AH , AL}. We further use shorthand
notations CH and CL to represent the costs of protections AH

and AL , respectively, i.e., c(AH ) = CH and c(AL) = CL . The
differences between strong protection and weak protection can
be identified in detail as follows.

1) p(s, AH , SB) < p(s, AL , SB),∀s ∈ SG B , which indi-
cates that the user has a higher probability of going to
the bad state when he has a weak protection.

2) p(s, AL , SG) < p(s, AH , SG),∀s ∈ SG B , which indi-
cates that the user has a higher probability of going to
the good state when he has strong protection.

3) 0 ≤ CL < CH , which indicates that the cost of a strong
protection is higher than the cost of a weak protection.

These differences capture the fact that a strong protection can
make the user more secure, but its cost is also higher.
With two states and two actions, the user has only

four possible stationary protection policies, i.e., � =
{	H H ,	H L,	L H ,	L L }, where the following conditions
hold.

1) 	H H(SG) = AH and 	H H (SB) = AH .
2) 	H L(SG) = AH and 	H L(SB) = AL .
3) 	L H (SG) = AL and 	L H (SB) = AH .
4) 	L L(SG) = AL and 	L L (SB) = AL .

An optimal protection policy π∗ ∈ � can be achieved by
solving Problem (3), which minimizes the user’s expected
cumulative effective losses.
Besides protection, the user can also purchase insurance to

further mitigate his losses. We consider that the insurer offers
a linear coverage with R ∈ [0, 1] denoting the coverage level
of the insurance, i.e., r(x) = Rx . Especially, R = 0 and R = 1
indicate no coverage and full coverage, respectively.
Methods in Sections III and IV can be used to find the

optimal protection policy of the user and the optimal insurance
contract for the insurer. Since there are only two states and
two actions for the user, we can find them analytically.
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A. User’s Optimal Protection Policy

We first introduce several notations to simplify representa-
tions. Since the user has only two states SG and SB , we use
sc �= s to denote the other state for a given state s ∈ SG B .
Since the user adopts a stationary protection policy, i.e., he has
fixed protections at each state, we identify his state protections
as αG and αB for the good state and the bad state, respectively.
We further define the action-dependent expected cumulative
effective loss function as follows:
V (s, αs; αsc , R)= l(s, αs , R)+δp(s, αs , SG)V (SG , αG ; αB, R)

+ δp(s, αs , SB)V (SB , αB ; αG, R). (14)

Remark 2: For a protection policy π that has π(SG) = αG

and π(SB) = αB , the expected cumulative effective loss
function (5) is equivalent to the action-dependent expected
cumulative effective loss function (14), i.e.,

V (SG, π, R) = V (SG, π(SG); π(SB), R) = V (SG, αG ; αB , R)

V (SB , π, R) = V (SB , π(SB ); π(SG), R) = V (SB , αB; αG, R).

As a result, the dynamic programming operators (6) and (7)
can be written as

π∗
R(SG) ∈ arg min

αG∈AH L

V (SG, αG ; π∗
R(SB), R) (15)

π∗
R(SB) ∈ arg min

αB ∈AH L

V (SB , αB; π∗
R(SG), R) (16)

where

V (SG, αG ; αB , R) = l(SG , αG, R)

+ δp(SG, αG , SG)V (SG , αG ; αB, R)

+ δp(SG, αG , SB )V (SB , αB ; αG, R)

(17)

V (SB , αB ; αG, R) = l(SB , αB , R)

+ δp(SB, αB , SG)V (SG, αG ; αB , R)

+ δp(SB, αB , SB )V (SB , αB; αG, R).

(18)

Both (17) and (18) are linear equations on V (SG, αG ; αB, R)
and V (SB , αB; αG, R), and thus, we can solve them together
and achieve

V (SG , αG ; αB, R)

= (1 − δp(SB, αB , SB))l(SG, αG, R) + δp(SG, αG, SB)l(SB, αB, R)

Ip(αG, αB)

(19)

V (SB , αB; αG, R)

= δp(SB, αB, SG)l(SG, αG, R) + (1− δp(SG, αG, SG))l(SB, αB, R)

Ip(αG, αB)

(20)

where

Ip(αG, αB ) =
(
1 − δp(SG, αG, SG)

)(
1 − δp(SB, αB , SB)

)
− δ2 p(SG, αG , SB)p(SB , αB , SG). (21)

As a result, we can find π∗
R by solving (15) and (16)

with (19) and (20), respectively. Since there are only two
protection choices AH and AL , we can find the optimal

protection policy by comparing the action-dependent expected
cumulative effective losses under AH and AL .

Lemma 1: The optimal protection policy π∗
R given the cov-

erage level R can be summarized as follows.

1) π∗
R = 	L L if and only if V (SG, AH ; AL , R) ≥

V (SG , AL; AL, R) and V (SB , AH ; AL , R) ≥
V (SB , AL; AL, R).

2) π∗
R = 	L H if and only if V (SG, AH ; AH , R) ≥

V (SG , AL; AH , R) and V (SB , AH ; AL , R) <
V (SB , AL; AL, R).

3) π∗
R = 	H L if and only if V (SG , AH ; AL, R) <

V (SG , AL; AL, R) and V (SB , AH ; AH , R) ≥
V (SB , AL; AH , R).

4) π∗
R = 	H H if and only if V (SG , AH ; AH , R) <

V (SG , AL; AH , R) and V (SB , AH ; AH , R) <
V (SB , AL; AH , R).

Proof: The user chooses a protection policy with lower
expected cumulative effective losses in both good state and
bad state.

We consider that the user always takes AL when
V (s, AH ; αsc , R) = V (s, AL; αsc , R). We can further simplify
the comparisons in Lemma 1 as shown in the following
proposition.

Proposition 2: Let us define function h : S ×A ×R → R

as

h(s, αsc , R)

= (1 − R)δ
(

p(s, AH , sc) − p(s, AL , sc)
)
(Xsc − Xs)

+ (1 − δ + δp(SB, αsc , SG) + δp(SG, αsc , SB ))(CH − CL )

the optimal protection policy π∗
R can be summarized as fol-

lows.

1) π∗ = 	L L if and only if h(SG , AL , R) ≥ 0 and
h(SB , AL , R) ≥ 0.

2) π∗ = 	L H if and only if h(SG , AH , R) ≥ 0 and
h(SB , AL , R) < 0.

3) π∗ = 	H L if and only if h(SG , AL , R) < 0 and
h(SB , AH , R) ≥ 0.

4) π∗ = 	H H if and only if h(SG , AH , R) < 0 and
h(SB , AH , R) < 0.

Proof: See Appendix A.
Thus, we could obtain the optimal protection policy of

the user by analyzing h(s, αsc , R), and we further have the
following observation on it.

Proposition 3: Function h(s, αsc , R) is linearly increasing
on the coverage level R.

Proof: We can see that h(s, αsc , R) is linear on R
with a slope of −δ(p(s, AH , sc) − p(s, AL , sc))(Xsc − Xs).
From the properties of protections and direct losses, we have
p(SG, AH , SB) − p(SG, AL , SB ) < 0, X B − XG > 0,
p(SB , AH , SG) − p(SB , AL , SG) > 0, and XG − X B < 0.
As a result, −δ(p(s, AH , sc) − p(s, AL , sc))(Xsc − Xs) > 0
and h(s, αsc , R) is linearly increasing on R.
Before we obtain the optimal protection policy π∗

R , we note
the following proposition regarding the uniqueness of π∗

R .
Theorem 1: The optimal protection policy π∗

R is unique.
Proof: See Appendix B.
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With Lemma 1, Proposition 3, and Theorem 1, we can
obtain the optimal protection policies of the user with respect
to the coverage level as stated in the following proposition.

Proposition 4: Let us define the value of transition proba-
bilities as

ρ = p(SB , AH , SG) + p(SG, AH , SB)

− p(SB, AL , SG) − p(SG, AL , SB ). (22)

The user’s optimal protection policies with respect to the
insurer’s coverage level can be summarized with the following
cases, as also shown in Fig. 3.

Case 1: If h(SG, AL , 0) ≥ 0 and h(SB , AL , 0) ≥ 0,
the optimal protection policies π∗

R = 	L L for R ∈ [0, 1].
Case 2: If h(SG , AL , 0) < 0 and h(SB , AH , 0) ≥ 0, we have

ρ < 0 in this case. The optimal protection policies π∗
R = 	H L

for R ∈ [0, RG) and π∗
R = 	L L for R ∈ [RG, 1], where

RG =1− (1−δ+δp(SB, AL , SG)+δp(SG, AL , SB))(CH −CL)

δ(p(SG, AL , SB) − p(SG, AH , SB))(X B − XG)
.

Case 3: If h(SG , AH , 0) ≥ 0 and h(SB , AL , 0) < 0, we have
ρ > 0 in this case. The optimal protection policies π∗

R = 	L H

for R ∈ [0, RB) and π∗
R = 	L L for R ∈ [RB, 1], where

RB =1− (1−δ+δp(SG, AL , SB )+δp(SB, AL , SG))(CH −CL)

δ(p(SB , AH , SG) − p(SB , AL , SG))(X B − XG)
.

Case 4: If h(SG, AH , 0) < 0 and h(SB , AH , 0) < 0, then
the following conditions hold.

1) Case 4(a): If ρ < 0, π∗
R = 	H H for R ∈ [0, RB),

π∗
R = 	H L for R ∈ [RB, RG), and π∗

R = 	L L for
R ∈ [RG, 1], where

RG =1− (1−δ+δp(SB, AL , SG)+δp(SG, AL , SB ))(CH −CL)

δ(p(SG, AL , SB ) − p(SG, AH , SB ))(X B − XG)
,

RB =1− (1−δ+δp(SG, AH , SB )+δp(SB, AH , SG))(CH −CL)

δ(p(SB , AH , SG) − p(SB, AL , SG))(X B − XG)
.

2) Case 4(b): If ρ > 0, π∗
R = 	H H for R ∈ [0, RG),

π∗
R = 	L H for R ∈ [RG, RB), and π∗

R = 	L L for
R ∈ [RB, 1], where

RG =1− (1−δ+δp(SB, AH , SG)+δp(SG, AH , SB ))(CH −CL)

δ(p(SG, AL , SB ) − p(SG, AH , SB ))(X B − XG)
,

RB =1− (1−δ+δp(SG, AL , SB)+δp(SB, AL , SG))(CH −CL)

δ(p(SB , AH , SG) − p(SB, AL , SG))(X B − XG)
.

3) Case 4(c): If ρ = 0, π∗
R = 	H H for R ∈ [0, Rs) and

π∗
R = 	L L for R ∈ [Rs, 1], where

Rs = RG = 1

− (1−δ+δp(SB, AH , SG)+δp(SG, AH , SB ))(CH −CL)

δ(p(SG , AL , SB) − p(SG, AH , SB))(X B − XG)
= RB = 1

− (1−δ+δp(SG, AH , SB )+δp(SB, AH , SG))(CH −CL)

δ(p(SB , AH , SG) − p(SB, AL , SG))(X B − XG)
.

Proof: See Appendix C.
We can see from Proposition 4 that the user tends to take

weak protections with the increase of the coverage level in
all cases, and this reckless behavior is often referred to as
the risk compensation [23]. One critical impact of the risk

Fig. 3. All possible cases of the user’s optimal protection policies with
respect to the insurer’s coverage level. A detailed discussion is provided in
Proposition 4. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4(a). (e) Case 4(b).
(f) Case 4(c).

compensation is the Peltzman effect as shown in the following
theorem.

Theorem 2 (Peltzman Effect): The user faces higher cyber
risks under cyber insurance. Such phenomena exists in the
following cases.

1) R ∈ [RG, 1] in Cases 2 and 4(b).
2) R ∈ [RB, 1] in Cases 3 and 4(a).
3) R ∈ [Rs, 1] in Case 4(c).

Proof: We only need to prove that the user has higher
expected cumulative direct losses in these cases. Let Vd(s, π)
and Vc(π) denote the expected cumulative direct losses and
the expected cumulative costs given the initial state s and
the protection policy π . We have that Vd(s, π) + Vc(π) =
V (s, π, 0). Recall that the optimal protection policy π∗

0 with-
out insurance has V (s, π∗

0 , 0) ≤ V (s, π, 0) for π ∈ �;
thus, when the user has a different optimal protection policy
π∗

R �= π∗
0 given the coverage level R, we have V (s, π∗

0 , 0) ≤
V (s, π∗

R, 0). As a result, we can achieve Vd(s, π∗
0 )+Vc(π

∗
0 ) ≤

Vd(s, π∗
R) + Vc(π

∗
R). Note that Vc(π

∗
0 ) > Vc(π

∗
R) in these

cases as Vc(	H H) > Vc(	H L) > Vc(	L L) and Vc(	H H) >
Vc(	L H ) > Vc(	L L) from CH > CL . Thus, we have
Vd(s, π∗

0 ) < Vd(s, π∗
R) and the user faces higher cyber

risks.
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B. Optimal Insurance Contract

Recall Section IV that, the insurer’s problem (12) in this
case can be written as follows:

max
R∈[0,1]

τ (R) = V (SG, π∗
0 , 0) − V (SG, π∗

R, 0)

s.t. τ (R) ≥ 0 (23)

where τ (R) denotes the operating profit of the insurer if he
provides a coverage level of R. Note that SG in τ (R) indicates
that the initial state of the user is the good state.

Proposition 5: The optimal insurance contract {K ∗, R∗} for
each case in Proposition 4 can be summarized as follows.
1) Case 1: R∗ ∈ [0, 1] and K ∗ = R∗k(SG, AL; AL).
2) Case 2: R∗ ∈ [0, RG] and K ∗ = R∗k(SG , AH ; AL).
3) Case 3: R∗ ∈ [0, RB ] and K ∗ = R∗k(SG , AL; AH ).
4) Case 4(a): R∗ ∈ [0, RB ] and K ∗ = R∗k(SG, AH ; AH ).
5) Case 4(b): R∗ ∈ [0, RG ] and K ∗ = R∗k(SG , AH ; AH ).
6) Case 4(c): R∗ ∈ [0, Rs] and K ∗ = R∗k(SG, AH ; AH ).
Here,

k(SG , αG; αB) = (1−δp(SB, αB , SB))XG +δp(SG, αG , SB )XB

Ip(αG, αB )
.

(24)

For all the cases, the operating profit under the optimal
insurance contract is 0, i.e., τ (R∗) = 0.

Proof: We can obtain the optimal insurance contract for all
cases using the results from Proposition 1. In Case 1, any cov-
erage level R∗ ∈ [0, 1] is optimal, and the associated premium
K ∗ = V (SG,	L L , 0)−V (SG,	L L , R) = V (SG , AL; AL, 0)−
V (SG, AL; AL , R) = R∗k(SG , AL; AL), where k(SG , AL; AL)
comes from (27) in Appendix A. Similarly, we can obtain the
optimal insurance contracts in Cases 2–4.
We can see from the optimal insurance contracts that the

premium is linear on the coverage level, which can be sum-
marized as the linear insurance contract principle. Moreover,
all the optimal insurance contracts lead to a zero-operating
profit for the insurer, which indicates a zero-operating profit
principle. The optimal insurance contracts usually provide
limited coverage levels. When the coverage level is high,
the user tends to act recklessly, which induces high risks and
high direct losses of the user as shown in Theorem 2, and the
insurer is required to cover the extra losses caused by that,
which induces a negative profit of him. As a result, the insurer
chooses not to provide the insurance to the user in that
case.

VI. NUMERICAL EXAMPLES

In this section, we first present numerical experiments on
a two-state two-action user and a linear coverage insurer
to verify our previous analytical results. We then present
numerical experiments on a four-state three-action user with
a linear coverage insurer and a threshold coverage insurer.

A. Two-State Two-Action User and Linear Coverage Insurer

In this section, we aim to verify our analysis on the two-
state two-action user and the linear coverage insurer with
numerical experiments. We assume that the user has δ = 0.9,

Fig. 4. Two-state two-action user and threshold coverage insurer. The green
area denotes the region of optimal insurance contracts.

XG = 0, X B = 10, CL = 0, CH = 1, p(SG, AL , SB) =
p(SG, AL , SG) = 0.5, p(SB , AL , SG) = p(SB , AL , SB) =
0.5, p(SG, AH , SB ) = 1 − p(SG, AH , SG) = 0.2, and
p(SB , AH , SG) = 1 − p(SB, AH , SB ) = 0.6. We can achieve
that ρ = −0.20, h(SG , AH , 0) = −1.88, h(SG, AL , 0) =
−1.70, h(SB , AH , 0) = −0.08, and h(SB , AL , 0) = 0.10.
Thus, the user’s optimal protection policies can be described
as Case 4(a) in Proposition 4. The optimal insurance contract
{K ∗, R∗} has R∗ ∈ [0, RB ] and K ∗ = R∗k(SG, AH ; AH ),
where RB = 0.0889 and k(SG, AH ; AH ) = 21.9512 from
Proposition 5.
With the dynamic programming approach or linear program-

ming approach in Section III, we can compute the optimal pro-
tection policies and the expected cumulative effective losses
of the user, as shown in Fig. 4(a) and (b). We can further
calculate the premium and the operating profit of the insurer,
as shown in Fig. 4(c) and (d). We can see that the numerical
results coincide with our analytical results.

B. Four-State Three-Action User and Linear
Coverage Insurer

In this section, we consider a more complicated example
where the user has four states and three actions, and the insurer
provides linear coverage. We show that our model can be used
to analyze the interactions between the user and the insurer in
a numerical way.
We assume that the user’s states can be identified as SG ,

SB,1, SB,2, and SB,3 with the state losses XG = 0, X B,1 = 4,
X B,2 = 8, and X B,3 = 16, respectively. SG indicates the good
state, while SB,i indicates the bad states with i capturing the
level of the damage. The user can take no protection A0, weak
protection AL , or strong protection AH , and the costs of them
can be identified as c(A0) = 0, c(AL) = 0.3, and c(AH ) =
0.6, respectively. Different actions have different impacts on
the transition probabilities. For convenience, we summarize
the transition probabilities in (25), shown at the bottom of the
next page.
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Fig. 5. Four-state three-action user and linear coverage insurer. The green
area denotes the region of optimal insurance contracts.

The user has a larger probability of going to the good state
and a smaller probability of going to the bad state with better
protections. We then take the following transition probabilities
in this example:

PA0 =

⎡⎢⎢⎣
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎤⎥⎥⎦,

PAL =

⎡⎢⎢⎣
0.4 0.3 0.2 0.1
0.4 0.3 0.2 0.1
0.4 0.3 0.2 0.1
0.4 0.3 0.2 0.1

⎤⎥⎥⎦,

PAH =

⎡⎢⎢⎣
0.8 0.2 0.0 0.0
0.7 0.2 0.1 0.0
0.6 0.2 0.1 0.1
0.5 0.2 0.2 0.1

⎤⎥⎥⎦.

Let δ = 0.9, and the optimal protection policies and the
expected cumulative effective losses of the user are shown
in Fig. 5(a) and (b). We can see from Fig. 5(a) and (b) that the
user decreases his protections with the increase of the coverage
level, and the user also has lower expected cumulative effective
losses with higher coverage levels. The premium and the
operating profit of the insurer are shown in Fig. 5(c) and (d).
We can see that with the increase of the coverage level,
the premium is linearly increasing. Moreover, the maximum
operating profit that can be achieved by the insurer is 0.
We can also observe that the optimal insurance contract tends
to provide limited coverage levels, and higher coverage levels
can lead to negative operating profits of the insurer. Thus,
the risk compensation, the zero-operating profit principle,

Fig. 6. Four-state three-action user and threshold coverage insurer. The green
area denotes the region of optimal insurance contracts.

and the linear insurance contract principle still hold in this
example.

C. Four-State Three-Action User and Threshold
Coverage Insurer

In this section, we consider a threshold coverage insurance
and show its impact on the four-state three-action user and the
insurer.
We use the same settings for the user as in Section VI-B.

The threshold insurance contract has two coverage levels
R0 = 0 and R1 = 0.9, which are distinguished by a threshold
X R ∈ [0, 20]. When the loss of the user x ≤ X R , the insurer
provides no coverage R0x ; otherwise, the insurer provides a
coverage R1x . A lower X R indicates that the insurance has a
higher coverage for smaller losses. The objective of the insurer
is to maximize his operating profit by finding the optimal
threshold X∗

R and the associated premium K ∗.
The optimal protection policies and the expected cumulative

effective losses of the user are shown in Fig. 6(a) and (b), and
we can see from them that the user decreases his protections
with the decrease of the threshold X R , which indicates that the
user tends to act recklessly knowing that the insurer provides a
high coverage even he has a small loss from cyber risks. More-
over, we can see that the premium is a staircase function on the
threshold X R , and it decreases with the increase of X R , which
shows that the insurer charges a higher premium to provide
a higher coverage level. The maximum operating profit that
can be achieved by the insurer is 0. As a result, this example
shows the similar risk compensation and zero-operating profit
principle as in the previous examples. Note that the gray area
has X R > X B,3, i.e., the insurer provides no coverage for the
user at any states, which is equivalent to the case when there
is no insurance.

Pa =

⎡⎢⎢⎣
p(SG, a, SG) p(SG, a, SB,1) p(SG, a, SB,2) p(SG, a, SB,3)

p(SB,1, a, SG) p(SB,1, a, SB,1) p(SB,1, a, SB,2) p(SB,1, a, SB,3)
p(SB,2, a, SG) p(SB,2, a, SB,1) p(SB,2, a, SB,2) p(SB,2, a, SB,3)
p(SB,3, a, SG) p(SB,3, a, SB,1) p(SB,3, a, SB,2) p(SB,3, a, SB,3)

⎤⎥⎥⎦ (25)
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VII. CONCLUSION

In this article, we have presented a dynamic moral-hazard
type of principal–agent model to study cyber insurance and
its impacts on cybersecurity. The dynamics and correlations
of the cyber risks have been modeled by MDPs where the
user aims to find the optimal protection policy to mitigate the
impacts of cyberattacks. We have studied and fully analyzed
a case where the user has two states and two actions, and the
insurer provides linear coverage insurance. We have further
demonstrated the Peltzman effect that the user has higher
cyber risks under insurance due to risk compensation, i.e., the
user tends to act more recklessly knowing he is protected.
We have presented the linear insurance contract principle
and the zero-operating profit principle of the optimal cyber-
insurance contract. Numerical experiments have been used to
corroborate our results and further demonstrate the case study
with a four-state three-action user and his interactions with
linear coverage insurance and threshold coverage insurance.
The risk compensation and the zero-operating profit principle
have been shown to hold in these cases. One direction of
future research is the investigation of cyber-insurance contracts
over complex networks, such as scale-free and small-world
networks with dynamic cyber risks.

APPENDIX A
PROOF OF PROPOSITION 2

To simplify the notation in this proof, we define the
discounted transition probabilities as

p̂(s, αs , s) = 1 − δp(s, αs , s)

p̂(s, αs , sc) = δp(s, αs , sc).

Remark 3: The following facts hold for p̂.
1) p̂(SG, αG , SG) − p̂(SG, αG , SB ) = p̂(SB , αB , SB ) −

p̂(SB , αB , SG) = 1 − δ.
2) If δ = 1, we have p̂(SG, αG , SG) = p̂(SG, αG , SB) and

p̂(SB , αB , SB ) = p̂(SB , αB , SG).
Thus, (21) can be written as

Ip(αG, αB ) = p̂(SG , αG, SG) p̂(SB , αB , SB)

− p̂(SG, αG , SB) p̂(SB , αB , SG).

Remark 4: The following facts hold for Ip .
1) Ip(αG , αB) = (1 − δ + p̂(SG , αG, SB ))(1 − δ +

p̂(SB , αB , SG)) − p̂(SG , αG , SB) p̂(SB , αB , SG) = (1 −
δ)2 + (1− δ)( p̂(SG , αG , SB)+ p̂(SB , αB , SG)) > 0 when
0 ≤ δ < 1.

2) Ip(AH , αB) − Ip(AL , αB) = (1 − δ)( p̂(SG, AH , SB ) −
p̂(SG, AL , SB )).

3) Ip(αG , AH ) − Ip(αG, AL) = (1 − δ)( p̂(SB , AH , SG) −
p̂(SB , AL , SG)).

The action-dependent expected cumulative effective
losses (19) and (20) can be rewritten as follows:

V (s, αs; αsc , R) = (1 − R)k(s, αs ; αsc) + b(s, αs; αsc) (26)

where

k(s, αs ; αsc) = p̂(SB , αB , sc)XG + p̂(SG, αG , sc)X B

Ip(αG, αB )
(27)

b(s, αG; αsc ) = p̂(SB , αB , sc)c(αG) + p̂(SG , αG , sc)c(αB)

Ip(αG , αB)
.

(28)

Note that

k(SG, AH ; αB) − k(SG , AL; αB)

= p̂(SB, αB , SB)XG + p̂(SG, AH , SB)X B

Ip(AH , αB)

− p̂(SB, αB, SB)XG + p̂(SG, AL, SB)X B

Ip(AL, αB)

= p̂(SB, αB , SB)Ip(AL, αB)XG + p̂(SG, AH , SB)Ip(AL, αB)X B

Ip(AH , αB)Ip(AL, αB)

− p̂(SB, αB, SB)Ip(AH , αB)XG + p̂(SG, AL , SB)Ip(AH , αB)X B

Ip(AH , αB)Ip(AL, αB)

= p̂(SB, αB , SB)(Ip(AL, αB) − Ip(AH , αB))XG

Ip(AH , αB)Ip(AL, αB)

+ p̂(SG, AH , SB)Ip(AL, αB)X B − p̂(SG, AL, SB)Ip(AH , αB)X B

Ip(AH , αB)Ip(AL, αB)

= (1 − δ) p̂(SB, αB, SB)( p̂(SG, AL, SB) − p̂(SG, AH , SB))XG

Ip(AH , αB)Ip(AL, αB)

+ (1 − δ) p̂(SB, αB, SB)( p̂(SG, AH , SB) − p̂(SG, AL, SB))X B

Ip(AH , αB)Ip(AL, αB)

= (1−δ) p̂(SB, αB , SB)( p̂(SG, AL, SB)− p̂(SG, AH , SB))(XG −X B)

Ip(AH , αB)Ip(AL, αB)

(29)

where the fourth equality is achieved by plugging Remark 41)
and 2). Similarly, we can achieve that

k(SB , AH ; αG) − k(SB , AL; αG)

= (1−δ) p̂(SG, αG, SG)( p̂(SB, AH , SG)− p̂(SB, AL, SG))(XG −X B)

Ip(αG, AH )Ip(αG, AL)

(30)

b(SG, AH ; αB) − b(SG, AL; αB)

= (1−δ) p̂(SB, αB, SB)( p̂(SB, αB, SB)+ p̂(SG, αB, SB))(CH −CL)

Ip(AH , αB)Ip(AL, αB)

(31)

b(SB, AH ; αG) − b(SB , AL; αG)

= (1−δ) p̂(SG, αG, SG)( p̂(SG, αG, SG)+ p̂(SB, αG, SG))(CH −CL)

Ip(αG, AH )Ip(αG, AL)
.

(32)

As a result, we have

V (SG, AH ; αB, R) − V (SG, AL; αB , R)

= (1 − R)(k(SG, AH ; αB) − k(SG, AL; αB))

+ b(SG, AH ; αB) − b(SG, AL; αB)

= (1 − δ) p̂(SB , αB , SB )

Ip(AH , αB)Ip(AL , αB )
h(SG , αB , R) (33)

V (SB , AH ; αG, R) − V (SB , AL; αG, R)

= (1 − δ) p̂(SG, αG , SG)

Ip(αG , AH )Ip(αG , AL)
h(SB , αG , R) (34)

where h(s, αsc , R) has been defined in Proposition 2. Since
1 − δ > 0, p̂(s, αs , s) > 0, and Ip(αs, αsc ) > 0, we have
that V (s, AH ; αsc , R) < V (s, AL ; αsc , R) if h(s, αsc , R) < 0
and V (s, AH ; αsc , R) ≥ V (s, AL ; αsc , R) if h(s, αsc , R) ≥ 0.
Proposition 2 holds.
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APPENDIX B
PROOF OF THEOREM 1

Recall the value of transition probabilities ρ from (22) in
Proposition 4. Besides Proposition 3, we note that h(s, αsc , R)
has the following extra facts:
h(SG , AH , R) − h(SG , AL , R)

= h(SB , AH , R) − h(SB , AL , R) = ρδ(CH − CL) (35)

h(SG , AH , R) − h(SB , AH , R)

= h(SG, AL , R) − h(SB , AL , R) = ρδ(1 − R)(X B − XG)

(36)

h(SG , AH , R) − h(SB , AL , R)

= ρδ((CH − CL) + (1 − R)(X B − XG)) (37)

h(SB , AH , R) − h(SG , AL , R)

= ρδ((CH − CL) − (1 − R)(X B − XG)). (38)

If π∗
R = 	H L , we have h(SG, AL , R) < 0 and

h(SB , AH , R) ≥ 0 from Proposition 2. Thus, π∗
R �= 	L L and

π∗
R �= 	H H . Similarly, if π∗

R = 	L H , we have π∗
R �= 	L L

and π∗
R �= 	H H ; if π∗

R = 	L L , we have π∗
R �= 	L H and

π∗
R �= 	H L ; if π∗

R = 	H H , we have π∗
R �= 	L H and

π∗
R �= 	H L . Thus, to prove the uniqueness of π∗

R , we only
need to prove that π∗

R = 	L H and π∗
R = 	H L cannot exist at

the same time and π∗
R = 	L L and π∗

R = 	H H cannot exist at
the same time.
If π∗

R = 	L H and π∗
R = 	H L at the same time, we have

h(SG , AH , R) ≥ 0, h(SB , AL , R) < 0, h(SG , AL , R) < 0,
and h(SB , AH , R) ≥ 0 from Proposition 2, which indicates
that ρ > 0 from (37) as h(SG , AH , R) > h(SB , AL , R)
and ρδ((CH − CL ) − (1 − R)(X B − XG)) > 0 from (38) as
h(SG , AL , R) < h(SB , AH , R). Thus, we can achieve that
(CH − CL) > (1 − R)(X B − XG). However,

h(SG , AL , R)

= (1 − R)δ(p(SG , AH , SB ) − p(SG, AL , SB))(X B − XG)

+ (1 − δ + δp(SB , AL , SG) + δp(SG, AL , SB ))(CH − CL )

> (1 − R)δ(p(SG , AH , SB ) − p(SG, AL , SB))(X B − XG)

+ (1 − δ + δp(SB , AL , SG)

+ δp(SG, AL , SB))(1 − R)(X B − XG)

= (1 − R)(X B − XG)(1 − δ + δp(SG, AH , SB )

+ δp(SB, AL , SG))

> 0 (39)

which violates h(SG, AL , R) < 0. As a result, π∗
R = 	L H and

π∗
R = 	H L cannot exist at the same time.
If π∗

R = 	L L and π∗
R = 	H H at the same time, we have

h(SG , AL , R) ≥ 0, h(SB , AL , R) ≥ 0, h(SG , AH , R) < 0, and
h(SB , AH , R) < 0, which indicates that ρ < 0 from (35) and
ρδ((CH − CL ) − (1 − R)(X B − XG)) < 0 from (38). Thus,
we can achieve that (CH − CL) − (1 − R)(X B − XG) > 0.
However,

h(SB , AH , R)

= (1 − R)δ(p(SB , AH , SG) − p(SB , AL , SG))(XG − X B)

+ (1 − δ + δp(SB, AH , SG) + δp(SG, AH , SB))(CH − CL )

> (1 − R)δ(p(SB , AH , SG) − p(SB , AL , SG))(XG − X B)

+ (1 − δ + δp(SB, AH , SG)

+ δp(SG, AH , SB))(1 − R)(X B − XG)

= (1 − R)(X B − XG)(1 − δ + δp(SG, AH , SB)

+ δp(SB, AL , SG))

> 0

which violates h(SB , AH , R) < 0. As a result, π∗
R = 	L L and

π∗
R = 	H H cannot exist at the same time. Thus, Theorem 1

holds.

APPENDIX C
PROOF OF PROPOSITION 4

There are only four possible protection policies 	L L , 	H L ,
	L H , and 	H H . Thus, the optimal protection policy π∗

0
without insurance has only four cases: Cases 1–4 as presented
in Proposition 4, which are determined by h(s, αsc , 0) in
Proposition 2. As a result, we only need to prove the trends
of π∗

R with respect to R in different cases.
We first note that when R = 1, we have h(SG, αB , 1) > 0

and h(SB , αG , 1) > 0, which indicates that π∗
R=1 = 	L L .

Moreover, if the user has π∗
R̂

= 	L L for a coverage level of
R̂ ∈ [0, 1], we have h(SG , AL , R̂) ≥ 0 and h(SB , AL , R̂) ≥ 0
from Proposition 2. Since h(s, αsc , R) is linearly increasing on
R as shown in Proposition 3, we have h(SG , AL , R) ≥ 0 and
h(SB , AL , R) ≥ 0 for R ≥ R̂, which indicates that π∗

R = 	L L

for R ≥ R̂. Thus, we can conclude that π∗
R = 	L L when R

is sufficiently large and the user chooses not to change his
policy with the increase of R once he achieves π∗

R = 	L L for
all cases.
To prove Cases 2–4, recall the value of transition prob-

abilities ρ from (22). If ρ < 0, we have h(SG , AH , R) <
h(SB , AL , R) from (37). However, when π∗

R = 	L H , we have
h(SG, AH , R) ≥ 0 and h(SB , AL , R) < 0 from Proposition 2,
which violates h(SG, AH , R) < h(SB , AL , R). Thus, we have
π∗

R �= 	L H if ρ < 0. As a result, Cases 2 and 4(a)
have ρ < 0 and the user has π∗

R �= 	L H in these cases.
Since h(SB , AH , 0) ≥ 0 when π∗

0 = 	H L in Case 2 and
h(SB , AH , R) is linearly increasing on R, h(SB , AH , R) ≥ 0
for R ∈ [0, 1]. Thus, the user has π∗

R �= πH H in Case 2,
and Case 2 holds. The threshold RG is achieved by solving
h(SG, AL , R) = 0. Case 4(a) holds from Case 2, and the
thresholds RG and RB are achieved by solving h(SG , AL , R) =
0 and h(SB , AH , R) = 0, respectively.
If ρ > 0 and π∗

R = 	H L , we have
h(SG, AL , R) < 0 and h(SB , AH , R) ≥ 0 from
Proposition 2, and thus, h(SB , AH , R) − h(SG , AL , R) =
ρδ((CH − CL) − (1 − R)(X B − XG)) > 0 from (38), which
indicates that (CH − CL ) − (1− R)(X B − XG) > 0. However,
we could obtain that h(SG , AL , R) > 0 following similar
arguments as in (39), which violates h(SG , AL , R) < 0. Thus,
we have π∗

R �= 	H L if ρ > 0. As a result, Cases 3 and 4(b)
have ρ > 0 and the user has π∗

R �= 	H L in these cases.
Since h(SG , AH , R) ≥ 0 when π∗

0 = 	L H in Case 3 and
h(SG, AH , R) is linearly increasing on R, h(SG , AH , R) ≥ 0
for R ∈ [0, 1]. Thus, the user has π∗

R �= πH H in Case 3,
and Case 3 holds. The threshold RB is achieved by

Authorized licensed use limited to: New York University. Downloaded on January 02,2022 at 23:18:47 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND ZHU: OPTIMAL CYBER-INSURANCE CONTRACT DESIGN 13

solving h(SB , AL , R) = 0. Case 4(b) holds from Case 3,
and the thresholds RB and RG are achieved by solving
h(SB , AL , R) = 0 and h(SG , AH , R) = 0, respectively.
If ρ = 0, we have h(SG , AH , R) = h(SG , AL , R) =

h(SB , AH , R) = h(SB , AL , R) from (35) to (38). How-
ever, 	L H and 	H L indicate that h(SG, AH , R) ≥ 0 >
h(SB , AL , R) and h(SG, AL , R) < 0 ≤ h(SB , AH , R), respec-
tively. Thus, we have π∗

R �= 	H H and π∗
R �= 	L L if ρ = 0.

As a result, Case 4(c) has ρ = 0 and the user has π∗
R �= 	H L

and π∗
R �= 	L H . Thus, Case 4(c) holds, and the thresholds

RG and RB are achieved by solving h(SG, AH , R) = 0 and
h(SB , AH , R) = 0, respectively.
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