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Abstract— This article studies rational and persistent deception
among intelligent robots to enhance security and operational effi-
ciency. We present an N-player K-stage game with an asymmet-
ric information structure where each robot’s private information
is modeled as a random variable or its type. The deception is
persistent as each robot’s private type remains unknown to other
robots for all stages. The deception is rational as robots aim
to achieve their deception goals at minimum cost. Each robot
forms a dynamic belief of others’ types based on intrinsic or
extrinsic information. Perfect Bayesian Nash equilibrium (PBNE)
is a natural solution concept for dynamic games of incomplete
information. Due to its requirements of sequential rationality and
belief consistency, PBNE provides a reliable prediction of players’
actions, beliefs, and expected cumulative costs over the entire K
stages. The contribution of this work is fourfold. First, we identify
the PBNE computation as a nonlinear stochastic control problem
and characterize the structures of players’ actions and costs
under PBNE. We further derive a set of extended Riccati equa-
tions with cognitive coupling under the linear-quadratic (LQ)
setting and extrinsic belief dynamics. Second, we develop a
receding-horizon algorithm with low temporal and spatial com-
plexity to compute PBNE under intrinsic belief dynamics. Third,
we investigate a deceptive pursuit-evasion game as a case study
and use numerical experiments to corroborate the results. Finally,
we propose metrics, such as deceivability, reachability, and the
price of deception (PoD), to evaluate the strategy design and the
system performance under deception.

Note to Practitioners—Recent advances in automation and
adaptive control in multi-agent systems enable robots to use
deception to accomplish their objectives. Deception involves
intentional information hiding to compromise the security and
operational efficiency of the robotic systems. This work proposes
a dynamic game framework to quantify the impact of deception,
understand the robots’ behaviors and intentions, and design
cost-efficient strategies under the deception that persists over
stages. Existing research studies on robot deception have relied on
experiments while this work aims to lay a theoretical foundation
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of deception with quantitative metrics, such as deceivability and
the PoD. The proposed model has wide applications, includ-
ing cooperative robots, pursuit and evasion, and human-robot
teaming. The pursuit-evasion games are used as case studies
to show how the deceiver can amplify the deception by belief
manipulation and how the deceived robots can reduce the
negative impact of deception by enhanced maneuverability and
Bayesian learning. The future work would focus on designing
cooperative deception among swarm robotics and robotic systems
that are robust to or further benefit from the deception.

Index Terms—Discrete-time Riccati equations, linear-
quadratic (LQ) games, perfect Bayesian equilibrium, pursuit-
evasion, robot deception.

NOMENCLATURE

Variable & Meaning

A =A{1,2,..., N} Set of N players in the dynamic
game.
Set of K discrete stages in the

dynamic game.

#=10,1,2,..., K}

Q; = {9},(9? ...,6’,.N"} Set of N; possible types for
player i € A.

0; € O; Type of playeri € 4.

0 :=161,...,05] N players’ joint type.

O :=[ljcs @, Set of types of all players except
for player i.

0_;i :=10;]jeiy € ®—; Types of all players except for

player i.

A(®_;) Set of probability distributions
over set ®_;.

i) Probability distribution of player
i’s type.

E=[Elies Probability distribution of the
joint type 6.

Eu() Probability distribution of noise
wk, Yk € H .

xk e R*<1 System state of dimension n at
stage k.

xf‘ e Rmx1 Player i’s state of dimension n;
at stage k.

[fcf‘ @) ke Reference trajectory for player i
of type 6;.

'glk e A; C [0, 1]@-iIxI6il
BE = 1B liew € A

Player i’s belief state at stage k.
N players’ joint belief state at
stage k.
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h* = [x° ..., x*] € 2% State history.

A State transition function at
stage k.

Ff Player i’s belief transition func-
tion at stage k.

gf Player i’s cost function at stage
k.

VB, ¥, 6)) Player i’s PBNE cost.

Vi@, 0) Player i’s PBNE cost when
all players’ types are common
knowledge.

uk e Rmix1 Player i’s action of dimension m;
at stage k.

ko= [u’{, cee u’,‘v N players’ joint action at stage k.
f":K = [uf”, ,uiK ]. Player i’s action sequence from

ko to K.
Player i’s and all other play-
ers’ control sequences from stage
ko to K.
Player i’s belief at stage k,
i.e., the probability of other play-
ers’ types being #_; based on
player i’s available information
of hk, 0,'.

150 |h*, 6;)

I. INTRODUCTION

ECEPTION is a ubiquitous phenomenon in biology [1],

military [2], politics and media [3], and cyberspace [4].
In particular, deception plays an increasingly significant role
in cyber—physical systems, including autonomous vehicles and
robots driven by artificial intelligence (AI). Recent advances in
these Al-enabled technologies have not only allowed robots to
adapt to the dynamic environment via real-time observations,
but also made them deceivable. A deceiver can intentionally
hide or reveal selected information to alter the beliefs and
behaviors of the target robots for a higher reward. Since
deception has many forms and delivery methods, understand-
ing deception in a unified and quantitative framework is an
indispensable step toward assessing the outcomes, measuring
the impact, and designing strategies. This work aims to design
robots that can interact with others efficiently under deceptive
environments.

We identify the following challenges and features of robot
deception. First, by definition, deception involves at least two
participants interacting with each other. An intelligent robot
should further consider other participants’ rationality, predict
their potential deceptive behaviors, and adjust its actions
accordingly to alleviate the negative effect of deception. Sec-
ond, due to the robots’ dynamic nature, one-shot deception can
exert a subsequent influence. The participating robots need
to form long-term objectives to deceive or counter-deceive
other robots. The multistage interactions also make it possible
for the deceiver to apply deception at different stages. Third,
each robot contains heterogeneous private information, which
results in an asymmetric cognition structure; i.e., robots can
form different beliefs over the same piece of unknown infor-
mation. Thus, besides the couplings of state dynamics and
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costs, the multi-agent system further has cognitive coupling;
i.e., each robot’s behaviors are not only affected by its own
belief but also the beliefs of the others.

To capture these features, we model the deceptive inter-
action between N strategic robots as a dynamic game of
incomplete information. During the finite K stages of inter-
action, N robots accomplish non-cooperative tasks such as
pursuit-evasion in the battlefield [5] or cooperative tasks such
as collective towing [6]. Robots introduce deception in the
above interacting scenarios due to antagonism, selfishness, and
privacy concerns. Following Harsanyi’s approach [7], we cap-
ture each robot’s private information by a random variable. The
realization of the random variable, which is called the robot’s
type, is known only to itself, while the support of the random
variable, which contains all its possible types, is known to all
robots. Take the pursuit-evasion scenario as an example, due
to the constraints of weather, terrain, and weapon, both the
evading and the pursuing robots know the feasible beachheads
for the evader to land on. However, the evader chooses only
one beachhead as his true target and the evader’s choice,
i.e., his type is unknown to the pursuer. The pursuer in the
battlefield knows the existence of the deception and learns
to counter the deception by forming and updating her belief
based on real-time observations. Since these tasks are usually
time-constrained, robots cannot wait and freeze until they have
learned the true type. Instead, they have to take concurrent
actions while the deceiver’s type remains uncertain.

We consider two classes of belief dynamics based on
whether robots exploit the intrinsic information such as the
prediction of other robots’ actions, or the extrinsic information
to update their beliefs. Each robot aims to minimize its
expected cumulative cost over K stages. Since the expectation
involves its K-stage belief sequence of other players’ private
types, its actions should be sequentially rational under its
belief sequence and the belief sequence should be consistent
with the belief dynamics as well. These two requirements
lead to the solution concept of perfect Bayesian Nash equi-
librium (PBNE) where a player’s unilateral deviation from
the equilibrium increases his long-run cost. By appending the
belief state (i.e., all players’ beliefs under all possible types)
to the system state, the PBNE computation is equivalent to
a multi-agent nonlinear stochastic control problem and the
method of dynamic programming applies. Without loss of
generality, we characterize the structure of the action and
the cost under PBNE as a feedback function of the belief
state and the system state at the current stage. To provide
an offline evaluation metric of the equilibrium cost under
incomplete information, we use the expected equilibrium cost
under complete information as a benchmark and define the
price of deception (PoD).

Due to their tractability and generality, we focus on
incomplete-information linear-quadratic (LQ) games with
extrinsic belief dynamics to obtain the PBNE action that
is unique and affine to the system state. We obtain a set
of extended Riccati equations, which explicitly characterizes
the coupling in the state dynamics, costs, and cognition of
all robots. Under proper decoupling structures, the extended
Riccati equations degenerate to the classical Riccati equations
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for the problems of optimal control or complete-information
LQ games. Under the incomplete-information LQ games with
intrinsic belief dynamics, the equilibrium action is in general
not affine feedback of the system state. Thus, we adopt a
receding-horizon approach to provide a reasonable approxima-
tion of PBNE; i.e., instead of offline planning of all K-stage
actions before the game starts, players recompute their actions
based on the real-time observations and their updated beliefs
at each new stage during the interaction.

Finally, we investigate a target protection problem where an
evader aims to deceptively reach one of the possible targets and
simultaneously evade the pursuer. The game has doubled-sided
asymmetric information. The evader’s private or hidden infor-
mation is his true target while the pursuer’s private information
is her capability to maneuver or the maneuverability. We
propose multi-dimensional metrics, including the stage of truth
revelation and the endpoint distance, to assess the deception
impact. We define the concept of deceivability to characterize
the fundamental limits of deception and investigate how it
is affected by the distinguishability of private information.
We compare the proposed control policy with two heuristic
policies to demonstrate its efficacy to counter deception at
a much lower cost. We show that Bayesian learning can
significantly reduce the impact of initial belief manipulation
and result in a win—win situation for some cases. The increase
of the pursuer’s maneuverability improves her control perfor-
mance under deception yet has a marginal effect. We also find
that applying deception to counter deception is not always
effective; e.g., it can be beneficial for a less maneuverable
pursuer to disguise as a more maneuverable pursuer but not
vice versa. The numerical results corroborate that PoD can
exceed 1; i.e., deception among players may not only benefit
the deceiver but also the deceivee.

A. Related Works

The secure and efficient operation of robots, autonomous
vehicles, and industrial control systems is vital for recent
advances in technologies. Many works [8]-[10] have inves-
tigated how to protect these systems from various attacks
on sensor measurements [11], communication channels [12],
and control signals [13], [14]. Deception is a key feature of
sophisticated attacks with a focus on intentionally hiding pri-
vate information [15], [16], introducing randomness [17], and
manipulating other players’ beliefs [18], [19]. Deception in
robotic systems can be conducted through visual displays [20],
facial expressions and body gestures [21], and trajectories [15],
[22]. Existing works on robot deception are largely based on
experimental approaches [15], [23], [24]. There is a need for
a formal and quantitative framework to assess the deception
impact, understand the fundamental limit and tradeoff of
deception, and determine real-time strategies. Compared to
the theoretical works of deceptive path planning and goal
recognition [25], [26], which focus on identifying the true
target behind deception, our work further determines optimal
and cost-effective control policies to counteract deception and
physically protect the true target; e.g., the pursuer adopts the
action sequence of the minimum cost to reach and protect
the true beachhead selected by the evader. Compared to

control-theoretic deception frameworks based on Markov deci-
sion processes [17], [18] and stochastic games [27], we adopt
a state—space representation to better characterize the physical
dynamics of robots and autonomous vehicles.

Game models such as hypergames [28], dynamic Bayesian
games [16], partially observable stochastic games [19], [29],
and games that involve signaling mechanisms [30], [31]
have been adopted as natural analytic paradigms to under-
stand deception between intelligent players. The computation
of equilibrium solutions for dynamic games of incomplete
information, especially ones with non-classical information
structure [32], is often a challenging task. Previous works
have adopted conjugate prior assumptions to simplify Bayesian
update and decouple the forward type estimation and backward
action optimization under a finite state space and a continuous
type space [33], [34]. To solve the coupling between players’
belief dynamics and the multi-agent optimal control problem
in the context of robotic systems where states are continuous
and constrained by physical dynamics with noises, we adopt a
receding-horizon approach to compute PBNE, which yields
computationally tractable online strategies for the players.
Similar receding-horizon approaches have been used in other
contexts, including cyber-physical systems [35], military air
operation [36], and autonomous racing [37].

B. Notations and Organization of the Article

Calligraphic letter <7 defines a set and |.<7| represents its
cardinality. Define % \ &/ as the set of elements in % but
not in 7. The Euclidean norm of a vector x is represented
by [|x|]2. Let E,~4[ f (a)] denote the expectation of f(a) over
random variable a whose probability distribution is A. Let
" represent matrix transpose and Diag[ay, ..., ay] represent
a block diagonal matrix with possibly non-square matrices
a;,i € A, on its diagonal. Define {a;}icv = {ai,...,an}
as a set of N elements, [a;];cs := [ai,...,ay] as N block
matrices of the same number of rows arranged in one row
vector, and [ay; --- ; any] = [a1, ..., ay] as N block matrices
of the same number of columns arranged in one column vector.
Let I,,0,,, be the r x r identity matrix and the m x n zero
matrix, respectively. The superscript k& € J# is the stage
index and the subscript i € .4 is the player index. We
omit a function’s arguments when there is no ambiguity, e.g.,
Sk = SK(BX,0,). A piece of information for a group of
players is called common knowledge if all players know it, all
players know that all players know it, and so on ad infinitum.
We summarize main notations in Nomenclature.

The rest of the article is organized as follows. Section II
introduces the dynamic game of incomplete information and
the solution concept of PBNE. To obtain explicit and practical
solutions, we consider a class of a LQ problems in Section III
and obtain a set of extended Riccati equations. We present
a case study of deceptive pursuit-evasion in Section IV and
Section V concludes this article.

II. DYNAMIC GAME WITH PRIVATE TYPES

We model deception as a K-stage game consisting of N
robots as players and each robot has asymmetric informa-
tion. Let .4 := {1,..., N} be the set of N players and
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H :=1{0,1,2,..., K} be the set of K discrete stages. Private
information of playeri € .4, i.e., his type 6;, is modeled as the
realization of a discrete random variable with a finite support
Q; = {6’,.1, 6‘,2, .. ,HiNi} and a prior probability distribution
E;(-). Hence, N; is the number of possible types for player i
and Z;(6;) is the probability that player i’s type is 6;. Define
shorthand notation E := [E;];c_4 and let O_; := Hjeﬂ\{i} 0;
be the set of types of all players except for playeri € .#". Each
player i knows the value of his own type 6;, but does not know
the values of other players’ types 0_; := [0;]jes\ii} € O,
throughout K stages of the game. The system state dynamics
under N players’ joint action u* := [u%, ..., uk ], joint type
6 :=16,,...,0y], and an additive external noise w* e R"*!
are shown in the following equation:

PR A CUNT. LOn) + w0, ke N\ (K}

ey

The dynamics in (1) can have different interpretations based
on applications. In the pursuit-evasion scenario as in [5],
x{‘ € R"*! represents robot i’s local states such as its location
and speed. The system state x* € R"*! can be explicitly repre-
sented by N robots” joint state [x£, ..., x5 withn = >N n;.
In the application where N robots cooperatively transport a
payload, e.g., [6], [38], system state x* € R"*! represents the
payload’s location and posture, which does not explicitly relate
to robots’ local states. The noise sequence [ ke assumed
to be independent with probability density function =, (-),
ie., Eyiping, [Ww")] = 0,Yk € #,h € 2 \ {k}. The
noise is not necessarily Gaussian distributed but is assumed
to have a zero mean, i.e., Ewkwgm[wk] = 0,Vk € #. We
assume that system dynamics (1) are multi-agent controllable
as defined in Definition 1 so that players can design their
deceptive actions to reach the entire state space in finite stages.

Definition 1 (Multi-Agent Controllability): System dynam-
ics (1) are called multi-agent controllable if for any target state
xk e R at stage k € 7 \ {0}, initial state x9 e R"™! and
joint type 8 € O, there exists a sequence of finite joint actions
u% that drive the system state from x° to x* in expectation.

k
.,MN,Hl,...

A. Forward Belief Dynamics

At each stage k € 7, the information available to player i
compromises all players’ state history h* := [x°,...,x*] €
A% as well as his own type value 6;. Define A(®_;) as
the set of probability distributions over set ®_;. Each player
i at stage k forms a belief If : J#* x ©; > AO_
based on his available information. Thus, lf‘(~|h",6,-) is a
probability measure of other players’ types, ie., >, ¢

lf(e,,»mk, 0;) = 1,VYh* € A%, 6; € ®;. Define a vector

At M),

as player i’s belief state at stage k € .#. We assume
that the set of belief states is independent of stages, i.e.,
BE € A; € [0, 1]19-1XI91 Then, we can represent player i’s
belief dynamics as

BLi= Ik 0=, 01), 1k O-i1*, 7). ..

l

B =TH(BE u* 0, 60,) Ykefo,....,K—1}. (2
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Note that the belief transition function Fff can be different
for each i and k, i.e., players’ belief updates can be hetero-
geneous and time-varying. Define g* := [,b)ik]ieﬂ e A =
]_L.Ek 4 Ai. In this work, we assume that the initial beliefs
of all players of all types f° and the belief update rules
Ff, Vi e A/ ,Vk €{0,..., K—1}, are common knowledge. In
Sections II-A1 and II-A2, we provide two specific forms of Ff
that rely on intrinsic and extrinsic information, respectively.

1) Bayesian Belief Dynamics: The most common belief
update rule T’ f‘ in (2) for player i at stage k + 1 uses
Bayesian inference. Given the knowledge of the sequential
state observations x*, x**! and all players’ actions u*, each
player i of type ; € ©; at stage k + 1 can update his belief
as follows: VO_; € ®_;,

ll{ﬁLl (e—i Ihk+l , 91)
_ LE(0-ilh 0) Pr(x* 0, 1%, )
 Sico, [H(OIF,0) Pr(xHO, F,6)

In 3), we use Markov property,
i.e., Pr(x"+'|6_,~,h",9,~) = Pr(xk+1 |9_i,xk,6,-) =
2, (1 — Xk, uk,0)). The denominator is positive
as wk e R"™1,

Remark 1 (Actions Reveal Type Information): Even if the
state dynamics f* in (1) are independent of 0;,Vj € A"\ {i},
player i € .4 can still learn player j’ type via (3) as player
J’s action u’; is a function! of his type 0.

2) Markov-Chain Belief Dynamics: In Section II-Al,
we assume that players can exploit the intrinsic information
of state dynamics f*, state observations x*,x**!  and the
prediction of all players’ actions u¥. Since the above intrinsic
information may not be available in practice, we consider
the belief dynamics with extrinsic information in this section.
In particular, we assume that each player i’s belief dynam-
ics prt! T(BE, w*,0,),Yk € {0,...,K — 1} are a
discrete-time Markov chain where the extrinsic information at
stage k is characterized by the transition function Ff‘ (-, wk, 6).
Note that the transition function only characterizes how players
update their beliefs at each stage yet does not guarantee that
a player can learn the true types of others. The following
example illustrates a class of players whose belief dynamics
exhibit the confirmation bias [39] where players tend to ignore
intrinsic evidence such as u* and preserve their belief update
rules Ff at each stage k.

Example 1: Consider a two-person game N = 2 where the
first player has two types N; = 2,0, = {0,0?} and the
second player only has one type Ny = 1,0, = {621}.
The second player’s belief state p5 = [15(0)16)), 15(6%105)]
toward the first player’s type belongs to a finite set A, =
{[0.2,0.8], [0.5,0.5], [0.8, 0.2]}. The transition function 1"’2‘ is
independent of k: if the current belief state is [0.5, 0.5], then
the belief at the next stage is [0.2, 0.8], [0.5, 0.5], or [0.8, 0.2]
with probability 0.4, 0.2, 0.4, respectively. If the current belief
state is [0.8, 0.2] (resp. [0.2, 0.8]), then the belief at the next
stage is [0.8, 0.2] (resp. [0.2, 0.8]) or [0.5, 0.5] with probabil-
ity 0.9 and 0.1, respectively. The above transition function 1"’2‘

3)

the

"Each player’s action is a function of his type as his cost is related to his
type and the action aims to minimize his cost.
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means that the second player tends to interpret the extrinsic
information of the first player’s type based on his current
belief. If the second player already believes that the first
player is of type ! with a high probability of 0.8 at stage k,
i.e., f5 =[0.8,0.2], then the second player is more inclined to
enhance his current belief, i.e., his belief state at the next stage,
ie., p51, will remain to be [0.8,0.2] with a high probability
of 0.9. The above transition function represents the phenomena
of attitude polarization and confirmation bias where players
preserve their existing beliefs and the disagreement becomes
more extreme at each stage even when players are exposed to
the same evidence.

B. Nonzero-Sum Cost Function and Equilibrium Concept

At nonterminal stage k € JZ \ {K}, player i’s cost function
is g,’f s R x H?/:1 R™*! x @; +> R. The final stage cost
is g& : R™! x ©; — R. Define ufOZK_l = [uf”,...,uik_l]
as player i’s action sequence from stage ko to K — 1 and
ykork=1 . — [uf":Kfl,ulﬁ‘lfol] as player i’s and all other
players’ action sequences from stage ko to K — 1. Player i’s
expected cumulative cost from arbitrary initial stage ko € &

to the terminal stage K is defined as
‘]iko (lfoik—l, ukg:Kfl, )Cko, 91>

= EwK_INE,U [glK (XK’ (9’)]

K—1
+ D Bz, [Bo gl (5 0k 0)]] @

k=ko

The expectations are taken first over the external noise
sequence w* and then over other players’ internal type uncer-
tainty. We cannot exchange the order of these two expectations
as If is a function of w*~!. Each player i at stage ko € %
aims to minimize Jl.k‘) by choosing only his action sequence
ul* =" but not other players’ action sequence u'*~'. The
following definition of sequential rationality in Definition 2
guarantees that each player i has no motivation to deviate from
the sequentially rational action at any stage k € {ko, ..., K—1}
during the interaction if all other players adopt the sequentially
rational actions.

Definition 2 (Sequential Rationality): An action sequence
wHko K=l — (koK1 koK =l g called sequentially ratio-
nal for player i under the belief sequence lf":Kfl, state x%o,
and type 0;, if for any state x* at stage k € {ko,..., K — 1},
player i does not benefit from taking any other action
sequence u¥K=1 e, JEQRETL yRETl BRIk g <
Jik(ll{c:l(fl, uff:Kfl, u:{c:K—l , )Ck, 9[), Vqu“K*l.

Since players’ actions may affect their future beliefs as
captured by the belief dynamics I f‘ in (2), we further require
the equilibrium action u***K=1 in Definition 2 to be consis-
tent with the belief dynamics, which leads to the following
definition of PBNE.

Definition 3: (Perfect Bayesian Nash Equilibrium): Con-
sider the N-player dynamic game of private types and asym-
metric information defined by the state dynamics (1) and the
expected cumulative cost (4). The action sequence u*"K~1 :=

:K—1 :K—1 :
(ur u* =1 of N players over K stages compromises

i > =i

the PBNE if, regardless of each player i’s type 6; € ®;, the
following statements hold.
1) Sequential Rationality: u*%%~1
each player i € .4 under his belief sequence [ -0
2) Belief  Consistency:  Each  player i’s
sequence [} O:K=1 s consistent with (2) under u

is sequential rational for
K —1

belief
*,O:Kfl.

Proposition 1: Tt is sufficient to represent player i’s equilib-
rium cost JK (K kK =1 xk 6} under the PBNE action
wekK=1 a¢ stage k € J as a function of ,Bk, x* and 6;, which
is defined as Vi" (6%, x*,6;). Under the boundary condition
VEBE, xK,0,) = gF(xX,0,), the following holds for all
ke{0,...,K — 1} and all x¥ e R**!, gk € A, that is:

V(B x5, 6)
— ugn;lf(e,ilhk,Hi){gf(xk,uk,<9i)
+Ewk~5w[vik+1 (ﬁk+1,xk+l,<9i)]} V@, (S @,’ Vie N

(%)
where %1 and x**! satisfy (2) and (1), respectively.

Proof: According to the definition of PBNE, at the second
last stage k = K — 1, each player i’s equilibrium action
upt = argmin,s By e [gF (65, u¥, 0)] + Eyinz, [gf (K, 0)]

& -
: ) **. Due to the coupling
between u;" and u”

~;» we need to solve a set of system
equations for all i € .4 and ¢; € ©;. Then, ul’."k will be a
function of ¥, x*, 6; and we obtain (5) at stage k = K — 1.
We can repeat the above procedure from k = K —2 to k =0
to obtain the recursive form in (5). O
Proposition 1 characterizes the structure of the equilibrium
action u* and the equilibrium cost V/(5*, x*, 6;) for each
player i of type #; under the solution concept of PBNE;
i.e., both terms are feedback functions of the belief state ﬂk,
the physical state x*, and the player’ type 6;. Although Ji"
is a function of beliefs lf‘:K ~! over all the remaining stages,
VK (B, x*,6;) only depends on the belief state at the current
stage k. If all players’ types are common knowledge, PBNE
still applies and we can define a new function V*(x*, ) to
represent the resulting equilibrium cost VX (8%, xX, 6;) for all
k € ¢ without loss of generality.

L : k
is in general a function of 6;, x*, ", u

C. Offline Evaluation of Equilibrium Cost

If each player i’s initial belief confirms to the prior dis-
tribution of other players’ types, i.e., [°(0;|x°,6;) = E;(0;),
VO, € ©;, j € N,0; € O, Vx0, then each player i at system
state x° with belief state ° can use his expected equilibrium
cost Ey=,[VP(B°, x°,6,)] over his type uncertainty Z; as
an offline performance measure of the equilibrium action
u*%K As a comparison, player i’s expected equilibrium
cost ngg[\_/io(xo, 6)] under the complete information game
serves as a benchmark. Note that player i does not need
to know the realization of the joint type 6 to compute
Ep~=z[V (x%, 0)]. Due to the coupling in dynamics, costs, and
cognition among N players, obtaining more information and
knowing the type of another player j € .4"\{i} may not always
improve player i’s performance; i.e., there is no guarantee
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that Eg~=,[V2(B°, x°,6)] > Ep~=z[V (x",0)]. Besides the
above performance evaluation for an individual player i € .4
under deception, we may also aim to evaluate the overall
performance of multiple players or all N players. We define
the PoD in Definition 4 with a set of coefficients 7; € [0, 1],
Vi e N,> .. ni = 1. Since the equilibrium cost can be neg-
ative, we let 70(E) := — min(0, {Eg~z, [V(B%, x°, 0)ic.s
{E()NE[‘_/I»O(XO,H)]}I‘Q _v) be the normalizing constant to guar-
antee that p’(Z) is non-negative for all chosen coefficients
7’]i,i cN.

Definition 4 (Price of Deception) For a given set of coef-
ficients # := {n;}ic.4uj0}, the PoD of the N-player K-stage
game defined by (1), (4) and (2) under the prior probability
distribution & = [E;];c_s 1S

Sicy NiBo~z[V2(x°,0)] + no(E)
Zie(/V ’IIEG,an[‘/iO(:BO’x(), 91’)] + n0(E)

The PoD is a crucial evaluation and design metric. We can
endow PoD with different meanings by properly choosing the
weighting coefficients #;,i € 4. For example, if besides N
players, there is a central planner who aims to minimize the
total cost of all N players under their deceptive interaction.
Then, we can pick #; = 1/N,i € ./, to represent the overall
system performance. Although the central planner cannot
control players’ state dynamics, costs, and belief dynamics
directly, he can still affect their deceptive interaction if he
can design the prior probability distribution = of the joint
type 6. If the central planner instead only aims to reduce the
cost of one player j € ./, then we can pick #; = 1 and
ny = 0,Vh € A\ {j}. With a given weighting parameters 7,
a larger value of p,(Z) indicates a better accomplishment of
the above goals. Note that individual deception may improve
the system performance, i.e., p"(Z) > 1.

pI(E) = € [0, 00).

III. LQ SPECIFICATION

LQ game is an important class of dynamic games. They can
also be applied iteratively to approximate nonlinear stochastic
systems with general cost functions and obtain equilibrium
actions [40]. In Sections III and IV, we consider linear state
dynamics:

N
FEEE U, 0) = AR O + D Bl O:uf

i=1

(6)

with stage-varying matrices AX(0) € R"*", B{‘ @) e R™mi,
Remark 2: System (6) is multi-agent controllable if and

only if matrices H(9) := [BX' (@), ..., 1}, A"(0)B} ),
'L AM@)BYO)], Vi € N, VO € ©,Vk € K, are of full

rank as noise w* has zero mean and we can obtain E[x¥] =
ﬁ;(l) AMO)x° + 3N HFO) [ - 5 u®] by induction.
Each player i’s cost is quadratic in both x* and u*; that is

gf‘(xk,uk,ﬁi) = (x —xk(ﬁ)) Dk(ﬁ)(x —xk((?))

Z

“(&F0)) + ) FL @ Yk e

N
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where [iik (@)]keor is a known type-dependent reference tra-
jectory for player i € .4 and fi" is a known function of
)Acf‘(@i). The cost matrices D¥(0;) € R"™", E’}(@i) e Rmixmi
Vi,j € N,k € J, are symmetric. At the final stage,
Fif(ﬁi) = 0,,m,Vi,j € A,¥0; € ©,. We introduce
the following three sets of notations for the belief matrix,
the extended Riccati equations, and the matrix-form equilib-
rium action, respectively.

A. Belief Matrix
With a little abuse of notation, we can define the marginal
probability 1X(0;|h*,0;) = 24c0,.re i) 15(0_;|h*, 6,),
Vj e A4\ {i}, as the player i’s belief toward the player
J’s type at stage k. Define the belief matrix for all i € .4,
jeN\{i},kef0,...,K —1}, as
Lk (eijmk, 0,.1) ]

i L{f(e}mk,e}),
Li (010, 02), - L5 (010, 6?)

i : .. : ®)

Li (010,01 |

where each block element L" ((9’ |h¥, ih) = Diag[lf‘ (9;|hk, <9ih),

(9’|hk )] € R"X" Vr € {L,....N;},
Vh e {1,...,N}. Since all its elements are positive
and all rows sum to one, the belief matrix Lf?j is a right
stochastic matrix.

Lf“ (6! IRk, HiNi)’

B. Extended Riccati Equations

Let a sequence of symmetric matrices S¥ (8%, 6;) € R"™",
vectors N¥(B*, 6;) € R™*!, and scalars g (8%, 6;) € R satisfy
the following extended Riccati equations for all ¢ € A,
i EJV,Q,‘ €0,;,ke {0,,K—1}

!

Slk = le + EéL,-le‘ Ak + Z B; \Pl . Ew '\‘Lm[SkJrl]
j=1
N N ,
k kg Lk L\ kg Lk
A+ DB+ Z(‘P; ) Fi;Y; ©)
j=1 j=1
N !
W = 2Dt | (3 B At (B, [

j=1

N
/
+ 2Bz, [S5] § B 420 (W) Fhwt
j=1 j=1

(10)
af = (&) DERE + FH(5) + Bz, [ (01) SE 0t + /]

/
v N
+ E(L,N/f Z B.]/?sz‘,k Ew"N* Sk+1 Z ‘{’2 '
N , N
ok il 2,k 2,k
+ Z Bj‘{lj Ew"NEw [Ni " ]+Z(T1 ) lP
J=1 =

Y
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where functions ‘I’il’k, ‘I’iz’k, Vi € ./, are defined below. The
boundary conditions of the extended Riccati equations are
/ A r A
£) DE&S + i (55).
(12)

sk =Df; NN =-2Df2f; ¢f = (2

l

C. Equilibrium Action in Matrix Form

We need to represent the equilibrium action of all players
under all types in matrix form as each player’s action is
coupled with other players’ actions under PBNE. Since each
player i has different equilibrium actions under different types,
with a little abuse of notation, we write each player i’s
action as a function of his type #; and define two action

vectors u¥ = [uk@)),...,ut @) € R™Nx! and w* =

Wi, ub ... k] e RELimNx1 For all i e N0, €
®;,k €{0,..., K —1}, define a series of (m;)-by-(m;) square
matrices
RE(BY,60) := FEO) + (BE@)) S (B, 0,) BE6)).
Let B = Diag[B*(4})..., BK0))]  be

(N;n)-by-(N;m;) block matrices and SF(B%) =
Diag[SF(B%,0}), ..., S5(B,0")]  be  (Nin)-by-(Nin)
block matrices. Finally, define parameter matrices
WHERR) = W W] e RE e,
W2E(BY = [WPR(BY: s WK (Y] e REmmNx]
and W°°"(,[)”‘) — VV,(}’k(ﬁk) c RmemN] jen for
any B¢ € A. Their elements are given as follows,
ie,Vie /', Vke{0,...,K —1}:

W) = [(BHOD) S (B 0B [0 0

(31 ) 5t (8.0 %o o o (0.

[( (911))Nk+1(ﬁk 1).

(B o)) ()
Wi(;jk (B = Diag[Rzk(ﬁk"g‘l)’ LR (ﬁk’ eiNi)]
Wit () = (BE)'SE* (B)LEBY Vje 4\ ).

i

Let matrix MK(BK,0) € Rm>Zoom | ¢ (1,2,...,
Ni},i € A,k € {0,...,K — 1}, be the truncated row
block, i.e., from row Z'r;ll m.N, +m;(l—1) to Z’r 11 m, N, +
m;l, of matrix (—W%¥(8%))~!. Define shorthand notations
WIEBE, 0) = ME(BE0)WH(BY) and WPE(B*,6) =
M (X, 6;) WK ().

D. Extrinsic Belief Dynamics and Extended
Riccati Equations

In this section, we focus on the extrinsic belief dynam-
ics where Ff‘ is independent of players’ actions u* for all
i€ N, ke{0,..., K —1}. The proof of Theorem 1 gener-
alizes the one of classical LQ games (e.g., [41, Ch. 5.5 and
6.2]) where we further incorporate players’ asymmetric belief
dynamics into their objective functions to minimize their

expected costs under deception. We apply dynamic program-
ming from stage K — 1 backward to stage O to obtain a
closed-form solution of PBNE.

Theorem 1: An N-player K-stage LQ game of incomplete
information defined by (6) and (7), and extrinsic belief dynam-
ics pit = TEBE, wk,0,),¥i € N, ¥k € {0,...,K — 1},
admits a unique state-feedback PBNE

Wit (B x*, 0) = PR 05 + W (B4 6)  (13)
if and only if R¥(BX,6;) is positive definite and WOk (B%) is

non-singular for all g € A,i € 4,0, € ©;,k € {0,...,
K — 1}. The equilibrium cost V/ is quadratic in x*, that is

VE(BE, x5, 0) =g (B*, 0,) + (x) NF (B, 6)
+ (x¥)'SK(B5, 0)x* Vien, kex.

Proof: 'We use backward induction to prove the result.
At the final stage K, the value function VX(BX, xX, 6,) =
(K —2K(0,)) DK 0)(x¥ —2K )+ f¥ G (0)) is quadratic
in xX and we obtain the boundary conditions for SX, NX, gX
in (12) by matching the right-hand side (RHS) of (14). At any
stage k € {0, . — 1}, if (14) is true at stage k + 1, we
can expand Ewm;m V"’Ll(ﬁk+1 x**1.6,)] by plugging in the
state dynamics x 1 = A¥(@)x* —+—va:1 BX(6;)u* +w* and the
belief dynamics i+ = T¥(B¥, w*, 6;). Then, the RHS of (5)
is quadratic in uf‘ for each player i. If the coefficient matrix
RY of the quadratic form (u¥)'R¥u* is positive definite, then
the first-order necessary conditions for minimization are also
sufficient and we obtain the following unique set of equations
for the equilibrium action u** by differentiating the RHS of

(5) and setting it to zero, i.e., V0, € ©;:
—Rbu  (0r)
1
= (BY)'SB, g [ATt + (BN

SIS By [ BEOT0))] vie . as)
J#

Due to the coupling in players’ actions and beliefs,
we rewrite (15) in matrix form, ie., —WOo(fhuc =
WLE(BR)xk 4 WK (BK), to solve the set of equations. Given
the existence of (—W%K(5%))~!, each player i’s equilibrium
action is an affine function in x*, i *k(,b’k ko) =
‘I’lk(ﬁk 0)x* + ‘I’Zk(ﬁk 6;). Note that the coefficients
‘I’l * ‘I’2 * for player i are functions of g, i.e., the beliefs of
all players under all types at stage k. Finally, after substituting
the equilibrium action u}* (%, x*,60,) = W (B, O)x* +
‘I’lz ’k(,b’k,é'i) into the RHS of (5) and representing Vik in
the left-hand side (LHS) in its quadratic form of x*, we
can match the coefficients of quadratic, linear, and constant
terms in the LHS and RHS to obtain the extended Riccati
equations (9)—(11). O

Remark 3 (Positive Definiteness): If Dk(<9) and F (6')
Vj € ., are positive definite for all k € ¢, then Rf (,B" 0;)
is positive definite for all k € 7, p* € A, because the
linear combination of positive definite matrices in (9) preserves
positive definiteness. Note that the above condition is only a
necessary condition; i.e., D" and F; k do not need to be positive
definite to make Rk positive deﬁnlte as shown in Section IV.

(14)

+ (Bf
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Remark 4 (Cognitive Coupling): Compared with the clas-
sical LQ games (e.g., [41, Ch. 6]), the deception of players’
types results in a unique feature of cognitive coupling repre-
sented by the belief matrix in (8); i.e., each player’s action
hinges on not only his own belief but also all other players’
beliefs as these beliefs can affect their actions and further the
outcome of the interaction. Thus, player i can change other
players’ actions by manipulating their beliefs of his type 6;,
ie., ljf, Vj € A4\ {i}, or making them believe that his belief
lf‘ on their types 6_; has changed.

We introduce matrix block partitions as follows. For each
type 6; € O;, we divide A*(©@), D}(6)), S¥(0;) into N-by-
N blocks where the (i, i) block is A¥(@), D¥(6)), Sk, €
R™>m - respectively. The ith row block of Ni" ), £5 () is
Ni" (0:), %5 (0;) € R"*!, respectively. The i-th row block of
Bf‘(@i) is Bf(@i) € R">™_ When the system state x can be
represented by players’ joint states [xik]ie v, Corollary 1 shows
that the LQ game of asymmetric information degenerates to an
LQ control problem if players have decoupled cost and state
dynamics defined as follows.

Definition 5 (Decoupled Dynamics and Cost): Player i €
A has decoupled dynamics if for all k € 7, Af(@) =
Af? (#;), V0 € ®, while all other elements in the ith row block
and the ith column block of A¥(#) are 0. Besides, all elements
of B{‘ (@;) except for the row block B{‘ (¢;) are required to be 0.
Player i € .4 has a decoupled cost if for all stage k € 7,
Fl-’? @) = 0p,.m;, V0, € O;, j € A\ {i}, and all elements of
D’ (6;) equal 0 except for Df(6;).

Corollary 1 (Degeneration to LQ Control): If x* = [.xik]ieﬂ
for all stage k € % and player i has both decoupled
cost and state dynamics, then his action under PBNE is
independent of other players’ actions, types, and beliefs, i.e.,
uf’k = — (RN (BlySF Akxk — %(Rf)_l(éik)/l\_/ik“, where
R = £+ BSBL (GlY =1 STB R (B
55 = (AY(GYHYSIT'AL + D, and Nf = (A)(GlY
NEE 2Dk gk,

Proof: We show by induction that Sf‘ ,Ni" Vk € A,
satisfy the sparsity condition that only the (i,i) block of
S¥ and the i-th row block of N¥ are nonzero. At stage K,
SK = Df and N¥ = —2DX %[ satisfy the above condition.
Atstage k € {0, ..., K —1},if S/*', N**! satisfy the sparsity
condition, W% (%) becomes a diagonal block matrix where
WOK(BX) = Oy, and MEGBY, 6) = —(RE(BY, 6,)) " for
all p* € A. Then, S{‘, Nik satisfy the condition based on (9)
and (10). U

E. Intrinsic Belief Dynamics and Receding-Horizon Control

If there exists a player i € ./ whose belief dynam-
ics Fff depend on intrinsic information at some stage
k € {0,..., K — 1} as shown in (2), then the equilibrium
action u}"’k is in general a nonlinear function of x* and the
equilibrium cost V} is not quadratic in x* even under the LQ
setting of (6) and (7). Besides the static cognitive coupling
among N players in Remark 4, the intrinsic information of
u* in the belief update introduces another dynamic cognitive
coupling between the forward belief dynamics via (2) and the
backward equilibrium computation via (5), which makes it
challenging to compute PBNE. To reduce the computational
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complexity and further obtain implementable actions, we adopt
a receding-horizon approach that computes the sequentially
rational action sequence of all the future stages u*FK-!
at current stage k € {0,..., K — 1} assuming p* = p*,
Vk € {k,..., K — 1}, yet only implements the current-stage
action u**. Then, at the new stage k + 1, each player observes
the new system state x**! and updates the belief to S**!
and recomputes the entire action sequence u***1 K= under
assumption of g* = ¥ Vk e {k+1,..., K — 1}, yet still
only implements the new current-stage action u***!. Players
repeat the above procedure until they reach the final stage of
the interaction.

Compared with PBNE, which produces an offline plan-
ning for all future stages under all possible scenarios before
the game has taken place, the receding-horizon approach
enables an online replanning of their actions repeatedly at
the beginning of each new stage as the interaction con-
tinues. Although we assume that players’ beliefs at the
future stages are the same as the current beliefs during
the phase of equilibrium computation, players can correct
and update their beliefs and actions based on the online
observation of x* during each replanning phase. Thus,
the receding-horizon approach provides a reasonable approxi-
mation of the PBNE action and is more adaptive to unexpected
environmental changes of the state dynamics f* and cost
structure gf, Vie .

Under the LQ specification in (6) and (7) and Bayesian
belief dynamics in (3), we summarize the computation phase
and online implementation phase in Algorithm 1 and 2, respec-
tively. To investigate the scalability of our algorithms, we ana-
lyze the temporal and spatial complexity concerning N, K, and
N;. To simplify the notation and enhance readability, we focus
on the symmetric setting where N; = Ny € Z*,Vi € .4 . For
each player i € .4 of type 0; € ©; at the beginning of the
interaction, i.e., k = 0, he needs to store the game parameters
A°, BP(@,.), D9 @), Froh 6,),V0, € ©,, and the belief matrix
LY, for all r,h € .4, which are common knowledge. The
spatial complexity to store the game parameters and the belief
matrix is O(N? Ny) and O(N? Ng), respectively. Note that in
general, player i has coupled cognition as shown in Remark 4
and has to keep track of not only his belief Lﬁ pYjeN,
but also other players’ beliefs L’r‘,h,Vr e N\ {i},h € N,
to decide his equilibrium action under deception at each stage
k. During the K-stage interaction, each player i € .4 of
type 6, € ©; observes the system state x* and computes
his equilibrium action uf’k(ﬁk,xk,ei) at stage k based on
Algorithm 1. After all players implement their equilibrium
actions at stage k, the system state evolves to x**!'. Based
on the new state observation x**!, each player i updates the
belief matrix in (8) via (3). Since player i can delete the
game parameters and the belief matrices of previous stages,
the spatial complexity remains the same as the real-time
stage index k increases. Thus, our algorithm can handle the
interaction of long duration. All players repeat the above
procedure stated in lines 14—17 of Algorithm 2 until reaching
the terminal stage k = K.

The computational complexity of the belief matrix update
in the line 15 of Algorithm 2 is O(NJ'N). For any gF,
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Algorithm 1 PBNE Computation With gf = g% Vk €
{k,...,K — 1} at Stage k € {0,..., K — 1} for Player
i € 4 of Type 6; € ©;

1 Load game parameters A*, B¥(@,), D*(,),
V0, € ©, and the belief matrix Lj ,

2 Input state observation x*;

sfor k < K —1tok do

4 | for j < 1to N do

FL0,),
forall r,h € N,

5 for 6; < 6] to GJN’ do

6 Compute S5, N¥ via (9), (10) with g* = g*;
7 end

8 | end

9 end

10 Return his equilibrium action u}* (I¥, x*, 6,) via (13);

Algorithm 2 K-Stage Receding-Horizon Control for
Player i € .4 of Type 6; € ©;

11 Initialize £ = 0;

12 Store game parameters A, BX(0,), D¥(0,),
V0, € ©, and the belief matrix L,

13 while k < K do !

14 | Call Algorithm 1 to implement u™* (I, x*, 6,);

15 | Observe state x**! and update all elements of the

belief matrix via (3) to obtain Lk’;l ,Vroh € N,

16 | Delete AX, BX(,), D*(9,), F¥, (9,), ¥, and Store

AR, Bf+1(9 ), DK@, Ff“(@) L’;;1 for all

O, € ®, and for all r,h € N

17 | Update stage index k < k + 1;

18 end

FL0),
forall r,h € N,

the term W% (B%) has computational complexity O (N N) +
O(N0 N?), which is determined by the belief matrix update
and the matrix chain multiplication of WO k(,b’k) respectively.
Then, the computational complexity of (WOk(g*)~1 and
WEE(BRY is O(N) N)+O(Ng N3) and O(NY N)+O(N; N?),
respectively. Given % and 6;, the computational complexity
of SK(BX,6;) in (9) is O(NYN) + O(N3N®) + O(N3N?) +
O(NoN) = O(max (NN, N;N?)), which hinges on the
computational complexity of MF(A%,6;) (or (WO (B5)~1),
WA (BK), and the matrix chain multiplication in (9). Similarly,
NK(B*, 6;) and W>*(B¥) both have computational complexity
of O(N)'N) + O(NyN). Therefore, player i’s temporal com-
plexity at each stage k € {0, 1,..., K — 1} is

O((K —k) - NoN - max (N N, Ny N?)).

The temporal complexity has the maximum value of O (K -
max {NY "' N2, NIN*}) at the initial stage k = O where
each player has to predict the entire K future stages to act
optimally under the deception. Since the temporal complexity
decreases as the real-time stage index k increases, a player
who can compute the equilibrium action within the required
time at the initial stage k = 0 is guaranteed to meet the
real-time requirement in the following stages of interaction.
If the number of types and agents are on the same scale, e.g.,
Ny = N, then limN%oo(NévHNz)/(NéN“) — 00 and the

computation of belief matrix update plays a dominant role
as each player keeps track of all players’ beliefs to obtain
the equilibrium action under deception. If Ny <« N, e.g.,
No = NYN_ then limy_, o(Ny T'N?)/(NfN*) — 0 and the
inverse of W%* (%) becomes the most time-consuming oper-
ation due to the coupling in dynamics, costs, and cognition.

Effective deception can prevent or delay other players from
learning the deceiver’s private type. We define the criterion of
successful learning of the deceiver’s type in Definition 6 and
e-deceviability and e-learnability in Definition 7.

Definition 6 (Stage of Truth Revelation): Consider two
players i, j € .4 with type §; and 0;, respectively. Stage
kffj € J U{K + 1} is said to be player i’s truth-revealing
stage with accuracy ¢ € (0, 117 if it satisfies the following two

conditions.
1) The Bounded Mismatch Condition: Player i’s belief

mismatch remains less than J after stage kffj e X,
that is
1—I5(61h*,6) <6 Vk = kI',. (16)
2) The First-Hitting-Time Condition: k;'; € ¢ is the first
stage satisfying (16), ie., 1 — lfi"71(0j|hk5ff‘1,6',») >
5 k”~
If there does not exist k"J € & that satisfies (16), we define
k”J := K + 1. If there are only two players N = 2, we write
ki'; as k" without ambiguity.

Due to deceivers’ deceptive actions and the external noises,
the belief sequence may be fluctuant; i.e., there can exist
k < ki, such that 1 — 15(0;h*,6;) < 6. Thus, as shown in
Definition 6, a player should only claim successful learning
of other players’ types if his belief mismatch remains less than
o0 for the remaining stages.

Definition 7 (Deceviability and Learnability):  Consider
players i, j € .4 with type §; and 0;, thresholds ¢ € (0, 1],
€ €10, 1], and a given stage index k € .# U {K + 1}. Player
i is k-stage e-deceivable if the probability Pr(k” < k), or
equivalently Pr(l" (@ |x" 6;) > 1—0), is not greater than € for
all I € (0, 1). If the above does not hold, player j’s type is
said to be k-stage e-learnable by player i.

Since robot deception involves only a finite number of
stages, it is essential that the deceived robot can learn the
deceiver’s type as quickly as possible so that he has sufficient
stages to plan on and mitigate the deception impact from
the previous stages. Therefore, the definition of learnability,
i.e., non-deceviability in Definition 7, not only requires the
deceived player to be capable of learning the deceiver’s private
information, but also learning it in a desirable rate, i.e., within
k stage. Due to the external noise, kffj is a random variable.
Thus, the definition of learnability requires Pr(kffj <k)>e€
i.e., player i has a large probability to correctly learn the type
of player j before stage k.

IV. DYNAMIC TARGET PROTECTION UNDER DECEPTION
We investigate a pursuit-evasion scenario that contains two
UAVs with the decoupled linear time-invariant state dynamics,

2Since the belief mismatch does not reduce to 0 in finite stages with initial
belief I? € (0, 1), the accuracy threshold & # 0.
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ie, AYO) = L,Bf®) = [Bi(6),0;0,B:(6)] € R?,
Vk € . We use “she” for UAV 1, the pursuer, and “he”
for UAV 2, the evader. UAV i’s state xf‘ = [xf"x,xf"v]/ S
R?*! represents i’s location (xf‘,x,xf"v) in the 2-D space, and
action uf‘ = [uf."x,uff’v] e R>! affects i’s speed in x- and
y-directions. ’

UAV 2 as the evader selects either the harbor in “Normandy”
or “Calais” as his final location based on his type 6 € {05, 62}.
He aims to reach “Normandy” located at y (65) = (x%, y®%)
in K = 40 stages if his type is 05, otherwise “Calais” located
at y (62) := (x’, y?) if his type is 62. UAV 1 as the pursuer
can make interfering signals and aims to be close to UAV 2
at the final stage to protect the harbor targeted by the evader,
ie., gh(xk, uk, 0)) = d{‘z(ﬁl)((xé‘,y - x’f’y)2 + (x5, — x’l‘,x)z) +
FEON )+ Wk YD) = F5 O (b )2+ (W) VK € A,
where df,(01) € Rso penalizes her distance from the evader
at stage k € A, fl(61) € Roo prevents her from a high
action cost, and f{‘z(ﬁl) € R incites her opponent, i.e., the
evader, to take costly actions. We classify UAV 1 into two
types, i.e., ® = {HIH,GIL}, based on her maneuverability
represented by the value of B;(#)). Given higher maneuver-
ability B1(0) > B (0}), the pursuer of type O can obtain a
higher speed under the same action u% and thus cover a longer
distance.

The evader’s goals of deceptive target reaching and
pursuit evasion are incorporated into the cost structure
gk uk, 00) = d5,0)((x5, — ¥ + (5, — xD)D) +
di 0 ((xh, — ¥y 4+ (b, — x)) — d§,O)((xf, —
X5 )74 (= x5 0D + [0 (W5 ) + (5 ,)?) — f51(62)
((u’l‘,x)2 + (u’l‘,y)z),Vk € . Similar to the pursuer’s cost
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In this case study, we suppose that the evader’s true target
is Calais and let 62 be his true type and 6 be the mis-
leading type. The following two ratios capture the evader’s
tradeoff of being deceptive, effective, and evasive. On one
hand, the ratio dé‘,b(é’zb) /dfh(eé’), k # K, reflects the evader’s
tradeoff between applying deception along the trajectory and
staying close to the true target at the final stage. Fig. 1(b)
shows that as the evader focuses more on a deceptive trajectory
represented by a larger value of dé‘,b(é'é’) /dzlfb 02),k # K, his
trajectory remains ambiguous for longer stages while his final
location is farther away from the true target. On the other
hand, the ratio dj,(03)/d5,(67),k # K, reflects the evader’s
tradeoff between evasion and target-reaching. As the evader
focuses more on keeping a distance from the pursuer along
the trajectory, he takes a bigger detour and stays farther away
from his true target at the final stage as shown in Fig. 1(c).

Finally, we transform UAV i’s coupled cost gf‘ into the
matrix form given in Section III, ie., £{(6)) = 04,
GO = 0, FLO) = fi©) - L. F50) = —f50) -
L,j # i, DYO) = d&s@)) - [1,0,-1,0;0,1,0,—1; —1,0,
1,0;0,—1,0,1]

i 0 dh 0
0 —d 0 d
k _ 21 21
DO)=1 a0 at, b, —db, 0
0 dk 0 d§,b + dfjg —d%

56y = (/di,+dj,) - [df,x" + dg,gng; ds,yb +
dgfyg D ods P+ d s s ds Y+ db el fE(RE0)) =
(dh b (P = x)2 + (00 — y)?)/dE , + db ).

parameters, dX,(6,) € Rsq represents the evader’s level of A. Deceptive Evader With Decoupled Cost Structure

evasion determination to keep a distance from the pursuer
along the trajectory. The action costs of the evader and the
pursuer are regulated by f5,(62) € Roo and f5,(62) € Rx,
respectively. The parameters dé" »(0>) and df, ¢ (02) represent the
evader’s attempt to head toward ‘“Normandy” and “Calais,”
respectively, at stage k € J# under type 6, € ©,. We use
the ratio dj ,(62)/d5 ,(62) to represent the evader’s level of
trajectory deception. Since the pursuer can learn the evader’s
type based on the real-time observations of state x5, the evader
attempts to make his target €p-ambiguous at all previous
stages, i.e., |dy,(62)/d5 ,(6h) — 1| < €0, V62, Vk # K, and
reveal his true target only at the final stage, i.e., d{fg 05 =0
and dfb((?f) = 0. The evader chooses a small ¢¢ > 0
and achieves the maximum ambiguity when ¢y = 0. Two
blue lines in Fig. 1(a) illustrate how the evader manages
to remain ambiguous in a cost-effective manner from two
different initial locations. Instead of keeping an equal distance
to both potential targets, the evader heads toward the midpoint
((x2 +xb)/2, (y8 + y?)/2) at the early stages to confuse the
pursuer. However, the evader starts to head toward the true
target at around half of K stages rather than the last few stages
so that he can reach the target with a moderate control cost
(ub) FX,(62)uk. Fig. 1(a) also shows that for a given initial
location, the evader who adopts a higher level of trajectory
deception heads more toward the misleading target at the early
stages.

We first investigate the scenario where the evader
has a decoupled cost structure’ defined in Definition 5,
ie, df(@) = 0,¥0, € 0, Vk € . According to
Corollary 1, the evader’s trajectory is then independent of
the pursuer’s action, type, and belief. Fig. 2 visualizes the
pursuer’s trajectories. Although the pursuer only aims to be
close to the evader at the final stage, she also takes proactive
actions in the previous stages to be cost-efficient. If the pursuer
knows the evader’s type, then she can head toward the true
target directly and will not be misled by the evader’s trajectory
ambiguity at the early stages as illustrated by the black dashed
line in Fig. 2. If the evader’s type is private, then a larger
initial belief mismatch 1 — 19(62]x°, 0}') makes the pursuer
head more toward the misleading target at the early stages as
illustrated by the three solid lines in Fig. 2. However, due to the
pursuer’s online learning, which is compatible, efficient, and
robust as shown in Section IV-A1l, she manages to approach
the evader at the final stage regardless of her initial belief
mismatch. Fig. 3 shows the pursuer’s K -stage belief variation.
The evader’s ambiguous trajectory results in belief fluctuations
at the early stages, yet the pursuer can quickly reduce the belief
mismatch when the evader starts to head toward the true target.
After the pursuer has corrected her initial belief mismatch at

3This article has supplementary downloadable materials available at
http://ieeexplore.ieee.org, provided by the authors. This includes a video demo
of two UAVs’ trajectories and belief updates under the decoupled structure.
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Fig. 1. Evader’s trajectories from x%
represent the location of Calais (x?, y
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= [0, 0] and xg = [—5,2] in solid and the dashed lines, respectively. The black downward and upward triangles
) = (—10, 10) and Normandy (x¢, y¥) = (10, 10), respectively. The ratios capture the evader’s tradeoff of forming a

deceptive trajectory, reaching the true target, and evading the pursuit. (a) Ratio represents dzk’ g(ﬁé’ ) /dzk’ b(Hé’ ). (b) Ratio represents dé"b (Hé’ ) /dzlfb (05’ ). (c) Ratio

represents dé‘, (Hf )/ dZK b (9{’ ).

104 v
----- 1(68]2°,017) = 1

81 |—19(hb]20,0H) = 0.1
—10(85]2°, 61y = 0.5
— (632", 0f) = 0.9

Fig. 2. Pursuer’s trajectories under different initial beliefs.

around stage k = 16, she can head toward the true target in the
cost-efficient way; i.e., she attempts to keep a uniform linear
motion under the external noise as shown in the upper right
region of Fig. 2.

1) Finite-Horizon Analysis of Bayesian Update: In this
section, we illustrate the compatibility, efficiency, and robust-
ness of the finite-horizon Bayesian update in (3) to reduce the
initial belief mismatch. The pursuer is of high-maneuverability
and the evader’s true type is 02. Define the likelihood function
of 0% and 05 as a* = Pr(x**1102,x%,0H) and & =
Pr(x**1105, x¥, 01), respectively. As vk € R"™ !, g% and c*
are positive. With an initial belief /{ € (0,1) and a finite
likelihood ratio e* := ¢k /a* € (0, 00), we can represent (3) in
the following form with three properties:

5. gk 1
It = ! = € (0,1).
DT () T @1

1) Compatibility: For all If € (0, 1), the belief update at
stage k is compatible to the evidence represented by the
ratio e*. In particular, if ek < 1, then l’f+1 > Ik if ek > 1,
then I{*' < I¥; if ef = 1, then I{! = Ik,

2) Efficiency: If the evidence of state observation x**!
indicates that the type is more likely to be the true
type 02, ie., e < 1, then the function l’f“/l’l‘ =
1/(%4 (1 —1%)e*) at stage k is monotonically decreasing
over l’f. If the evidence indicates that the type is more
likely to be the misleading type 65, i.e., e > 1, then the
function /4! /1% is monotonically increasing over I¥.

3) Robustness: The order of the evidence sequence e,

k=0,...,k, has no impact on the belief /f{*'.
Property one shows that although the external noise can

result in the fluctuations of the belief update, the belief

1 P OB COPOPEEED
S| peel . el | AT T "
Q:. A
%08t 1
=
=
— 06 |
& 0.9
o 16 17 18 19 20 21 22
/@ 04r 1
b ——19(6%]°, 01") = 0.1
Q
2021 ——19(64]2°,01) = 0.5 |
3 ——19(65]2°,61) = 0.9
& ) . . . . ; ; ;

0 5 10 15 20 25 30 35 40

Stages

Fig. 3. Pursuer’s belief update over K stages under three different initial
beliefs and the same noise sequence [w"]ke ¢ . The inset black box magnifies
the selected area.

mismatch, i.e., | —/%, will decrease when e* < 1, regardless of
the prior belief /¥ € (0, 1). Property two shows the efficiency
of the belief update. The belief changes more under a larger
belief mismatch, which results in a quick correction. Property
three shows the robustness of the belief update. The erroneous
belief update caused by a heavy noise can be corrected in the
later stages when the noise fades.

2) Comparison With Heuristic Policies: We compare the
proposed pursuer’s control policy with two heuristic ones
to demonstrate its efficacy in counter-deception.* The first
heuristic policy is to repeat the attacker’s trajectory with a
one-stage delay; i.e., the pursuer applies the action so that
X = xk vk € o \ {K). The pursuer does not need to
apply Bayesian learning and we name this policy as direct
following. The second heuristic policy for the pursuer is to stay
at the initial location until her truth-revealing stage k|" and then
head toward the evader’s expected final-stage location in the
remaining stages. The second policy is conservative because
the pursuer does not take proactive actions until she identifies
the evader’s type.

Let player i’s ex-post cumulative cost \A/iO:k
ZLO gl Vk € ¢, be a real-time evaluation of the
online algorithm. Although a pursuer under both heuristic
policies manages to stay close to the evader at the final
stage, Fig. 4 shows that both heuristic policies are more
costly than the proposed equilibrium strategy in the long
run. The conservative policy avoids potential trajectory
deviations under deception but results in less planning stages
for the pursuer to achieve the capture goal. We visualize

“The supplementary materials include a video demo that compares the
proposed policy’s trajectory and performance with two heuristic policies.
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ViO:K versus different initial

beliefs. (b) K-stage cumulative cost \7[0"( versus ki under the conservative policy. (c) Accumulation of the pursuer’s cost \7i0‘k, Vk € ¢, along with stages.

the accumulation of the pursuer’s cost in Fig. 4(c). The red
lines show that the pursuer who adopts the conservative
policy spends no action costs before the truth-revealing stage

7, e, (u’{)’F{‘l(é’l)u’f = 0,Vk < k", but huge costs in
the remaining stages to fulfill her capture goal. The total
cumulative cost \A/iO:K at the final stage increases exponentially
with the value of k{" as shown in Fig. 4(b). The black line
in Fig. 4(c) illustrates the accumulation of V’* when the
pursuer direct follows the evader’s trajectory. Only under
extreme deception scenarios where ki" > 34, the direct
following policy results in a lower cost than the conservative
policy does. Since the initial belief ¥ affects both the
truth-revealing stage and the proposed policy, we plot ‘A/iO‘K
versus l? under the conservative policy and the proposed
policy in Fig. 4(a). When there is no belief mismatch
19021x°,0H) = 1, we have k" = 1 and the conservative
policy is equivalent to the proposed policy. As the belief
mismatch increases, the cost \%O‘K under the proposed policy
(resp. the conservative policy) increases due to the larger
deviation along the x-axis (resp. the larger k{"). The proposed
policy always results in a lower cost \A/iO:K than the conservative
policy does. The results in Fig. 4 lead to the following two
principles for the pursuer to behave under deception. First,
Bayesian learning is a more effective countermeasure than the
direct following of the evader’s deceptive trajectory. Second,
if learning the evader’s type takes a long time, the pursuer
is better to act proactively based on her current belief than to
delay actions until the truth-revealing stage.

B. Dynamic Game for Deception and Counter-Deception

In this section, the evader has a coupled cost® defined in
Definition 5 and the level of evasion determination increases
with a constant rate a« > 0; i.e., d§1 (6) = ak,V0, € O,
Vk € J#. The evader deceives the pursuer by hiding his
true target. The pursuer can adopt the following two coun-
termeasures to reduce her cost under the evader’s decep-
tion. Section IV-B1 investigates the effectiveness of adaptive
learning. We find that the pursuer manages to approach the
true target at the final stage by updating her belief and
taking actions accordingly based on the real-time trajectory
observation. Section I'V-B2 further allows the pursuer to intro-
duce additional deception, i.e., obfuscate her maneuverability,
to counteract the evader’s information advantage and his
deception impact.

3 A video demo of two UAVs’ real-time trajectories and belief updates under
the coupled structure is included in the supplementary materials.

15

104

Fig. 5.  K-stage trajectory of the evader and the pursuer in solid and
dashed lines, respectively. If the evader’s type is common knowledge and the
pursuer is of high-maneuverability, we represent their noise-free trajectories in
black. If the evader’s type is private and the pursuer’s initial belief mismatch
is 0.9, two UAVs’ trajectories are in red (resp. blue) when the pursuer’s
maneuverability is high (resp. low).

1) Pursuer With a Public Type: When the pursuer’s type is
common knowledge, we plot both UAVs’ trajectories under
two initial beliefs and two types of pursuers in Fig. 5.
The solid lines show that the evader with the coupled cost
detours to stay further from the pursuer. The initial belief
mismatch causes a deviation along the x-axis for both high-
and low-maneuverability pursuers as shown in red and blue,
respectively. However, the deviation has a smaller magnitude
and lasts shorter than the one represented by the red line
in Fig. 2 due to the coupled cost structure of the evader. The
pursuer with high maneuverability stays closer to the evader
at the final stage.

2) Deception to Counteract Deception: When the pursuer’s
type is also private, Fig. 6 shows that she can manipulate
the evader’s initial belief [J to obtain a smaller k! and a
belief update with less fluctuation. The red line with stars
is the same as the one in Fig. 3. It shows that the pur-
suer’s belief learning is slower and fluctuates more when
she interacts with the evader who has a decoupled cost.
The reason is that her manipulation of the initial belief 9
does not affect the evader’s decision making as shown in
Corollary 1. A comparison between Fig. 6(a) and (b) shows
that it is beneficial for a low-maneuverability pursuer to
disguise as a high-maneuverability pursuer but not vice versa.
Thus, introducing additional deception to counteract existing
deception is not always effective.

C. Multi-Dimensional Deception Metrics

The impact of the evader’s deception can be measured
by metrics such as the endpoint distance x{ 4= [|xX —
y (62)]]> between the evader and the true target, the endpoint
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Fig. 6. Pursuer’s belief update over K stages with the same initial belief
I? (95’ |x0, 61) = 0.1. The inset black box magnifies the selected area. (a) Low-
maneuverability pursuer’s belief update. (b) High-maneuverability pursuer’s
belief update.

distance xlfd = ||x2K —xlkllg between two UAVs, both UAVs’
truth-revealing stages k", and their ex-post cumulative costs
VO Wk € . In this pursuit-evasion case study, we define
e-reachability and e-capturability in Definition 8. Although
xifd,‘v’i e {I,2}, is a random variable, we can obtain a
good estimate of the reachability and capturability due to the
negligible variance of xl:f ? as shown in Figs. 7(a) and 8(a).

Definition 8 (Reachability and Capturability): Consider
the proposed pursuit-evasion scenario with a given € > 0,
a threshold /¢ > 0, and all initial beliefs {° € (0, 1). The
target is said to be e-reachable if Pr(x{ d > 3/ d) < €. The
evader is said to be e-capturable if Pr(x{ > gfdy <.

In Section IV-C1, we investigate how the evader can manip-
ulate the pursuer’s initial belief 19(67]x°, /) to influence the
deception. In Section IV-C2, we investigate how the pursuer’s
maneuverability plays a role in the deception. In both sections,
the evader has a coupled cost structure. The pursuer either
applies the Bayesian update or not, which is denoted by
blue and red lines, respectively, in both Figs. 7 and 8. In
Section IV-C3, we study other metrics, such as deceivability,
distinguishability, and PoD.

1) Impact of the Evader’s Belief Manipulation: Both UAVs
determine their initial beliefs based on the intelligence col-
lected before their interactions. By falsifying the pursuer’s
intelligence, the evader can manipulate the pursuer’s initial
belief / and further influence the deception as shown in Fig. 7.
In the x-axis, an initial belief 19(65|x° 0/) closer to 1
indicates a smaller belief mismatch. Fig. 7(a) shows that the
pursuer’s distance to the evader at the final stage decreases
as the belief mismatch decreases regardless of the existence
of Bayesian learning. However, the initial belief manipulation
has a much less influence on the endpoint distance xlf ¢ when
Bayesian learning is applied. Fig. 7(b) shows that for each real-
ization of the noise sequence w*, the pursuer’s truth-revealing
stage steps down as the belief mismatch decreases when
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Bayesian update is applied. Fig. 7(c) illustrates the pursuer’s
ex-post cumulative cost VX and V*~! at the last and
the second last stage, respectively. Without Bayesian update,
the evader’s deception significantly increases the pursuer’s cost
at the second last stage due to the large endpoint distance xlf d
The red lines show that the cost increase is higher under a
larger belief mismatch. Fig. 7(d) illustrates the evader’s ex-post
cumulative cost at the last stage. If the pursuer does not apply
Bayesian learning, then the evader can decrease his cost by
increasing the pursuer’s belief mismatch. If the pursuer applies
Bayesian learning, then the evader’s cost increases slightly if
the pursuer’s belief mismatch is increased. When the belief
mismatch is small (i.e., 1 — l? € (0,0.35)), we observe a
win-win situation; i.e., Bayesian learning not only reduces the
pursuer’s ex-post cumulative cost, but also the evader’s.

2) Impact of the Pursuer’s Maneuverability: The pursuer’s
maneuverability can also affect deception as shown in Fig. 8.
The pursuer has an initial belief 19(02(x°,0/) = 0.5 and
the evader knows the pursuer’s type. Fig. 8(a) illustrates that
the pursuer can exponentially decrease her distance to the
evader at the final stage as her maneuverability increases.
Fig. 8(b) demonstrates that the maneuverability increase can
decrease and increase the pursuer’s and the evader’s ex-post
cumulative costs at the final stage, respectively. The variance
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Fig. 9. Plot of the deceived robot’s truth-revealing stage versus the
deceiver’s type distinguishability. Error bars represent their variances, which
are magnified by five times.

grows as maneuverability decreases because the pursuer’s
trajectory will become largely affected by the external noise.
In both figures, we observe the phenomenon of the marginal
effect; i.e., the change rates of both the endpoint distance xlf d
and the cost \A/iO:K decrease as the maneuverability increases.
Thus, we conclude that higher maneuverability can improve
the pursuer’s performance under the evader’s deception as
measured by the distance x{ ¢ and the cost VK. Moreover,
the improvement rate is higher with low maneuverability.

3) Deceivability, Distinguishability, and PoD: Deceivability
defined in Definition 7 is highly related to the distinguishabil-
ity among different types. In this case study, a larger distance
between targets, i.e., ||y (65) —y (62)|]2, makes it easier for the
pursuer to distinguish between evaders of type 95’ and type 6.
A larger maneuverability difference |B;(0{7) — B;(6F)| makes
it easier for the evader to distinguish between pursuers of type
Of and type OF. We visualize two UAVs’ truth-revealing stages
ki" versus the distance between targets and the maneuverability
difference in Fig. 9. The evader has a coupled cost and
both players’ initial belief mismatches are 0.5. The black
dashed line indicates B;(6F) = 0.3. When the maneuverability
difference is negligible B;(0/) € (0.26,0.36), the pursuer’s
type cannot be learned correctly in K stages; i.e., the pursuer
is (K + 1)-stage O-deceivable. When the maneuverability dif-
ference is small, i.e., 31(91") € (0.1, 0.5), yet not negligible,
ie., 31(9{1) ¢ (0.26, 0.36), the variance of k" is large.

Let # = 67 be common knowledge and assume that
the evader’s belief confirms to the prior distribution of the
pursuer’s type for all stages, i.e., I5(01|h%,0%) = Z(6)),
VO, € ©,,Vk € 2. Then, Fig. 10 illustrates how the prior
distribution of the pursuer’s type affects the value of PoD
under three scenarios.

1) n =1, i.e., the central planner only evaluates UAV 1’s

performance under deception.

2) 1 =0, i.e., the central planner only evaluates UAV 2’s

performance under deception.

3) n = 0.5, i.e., the central planner evaluates the average

performance of two UAVs under deception.
When the pursuer’s type is also common knowledge, i.e.,
E1(0f) = 0 (i.e., the pursuer has type 6f) and Z,(0) = 1
(i.e., the pursuer has type 6f'), the game is of complete
information and the value of PoD equals 1. Since PoD takes
continuous values over El(HIH ) € [0, 1] and has a value of 1 at
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Fig. 10. PoD versus prior type distribution for three values of #;.

two endpoints for all feasible #;, we refer to the plots in Fig. 10
as jump rope plots. They corroborate that the PoD can be
bigger than 1; i.e., deception among players may not only
benefit the deceiver but also the deceivee.

V. CONCLUSION AND FUTURE WORK

We have investigated a novel class of rational robot decep-
tion problems where intelligent robots hide their heteroge-
neous private information to achieve their objectives in finite
stages with minimum costs. We have proposed an N-player
dynamic game framework to quantify the impact of decep-
tion and design long-term optimal actions for deception and
counter-deception. Robots form their own initial beliefs on
others’ private information and update their beliefs at each
stage based on extrinsic or intrinsic information. Satisfying
the properties of sequential rationality and belief consistency,
PBNE can be used to predict N robots’ actions and costs over
the K stages. We have studied a class of games in the LQ
form with extrinsic belief dynamics to obtain a unique affine
state-feedback control policy and a set of extended Riccati
equations. The cognitive coupling resulted from the deception
of types demonstrates a distinct feature of rational deception
where each player’s action hinges on not only his own belief
but also all other players’ beliefs. The concepts of deceivabil-
ity, distinguishability, and reachability have been defined to
characterize the fundamental limits of deception. Meanwhile,
the PoD serves as a crucial evaluation and design metric.

We have investigated a target protection problem where
the evader aims to deceptively reach the true target and
the pursuer keeps her maneuverability as private informa-
tion. The pursuer achieves a lower ex-post cumulative cost
under the proposed policy than under the direct-following and
conservative policies. We have proposed multi-dimensional
metrics such as the stage of truth revelation and the end-
point distance to measure the deception impact throughout
stages. We have concluded that Bayesian learning can largely
reduce the impact of initial belief manipulation and sometimes
result in a win-win situation. The increase of the pursuer’s
maneuverability can also reduce the endpoint distance and her
ex-post cumulative cost yet has a marginal effect. A robot is
more deceivable, i.e., less learnable when its potential type is
less distinguishable. Finally, we have found that introducing
additional deception to counteract existing deception is not
always effective. Moreover, deception among multiple players
may not only benefit the deceiver but also the deceivee.
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