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Abstract. The recent surge in ransomware attacks has threatened many
critical infrastructures such as oil pipeline systems, hospitals, and indus-
trial Internet of Things (IoT). Ransomware is a cryptoviral extortion
attack that involves two phases: the cyber infection of the malware and
the financial transaction of the ransom payment. As the ransomware
attackers are financially motivated, the protection of the infrastructure
networked systems requires a cross-layer risk analysis that not only exam-
ines the vulnerability of the cyber system but also consolidates the eco-
nomics of ransom payment. To this end, this paper establishes a two-
player multi-phase and multi-stage game framework to model cyber and
economic phases of a ransomware attack. We use a zero-sum Markov
game to capture the multi-stage penetration of ransomware in the lat-
eral movement. A sequential-move game is proposed to model the ran-
som payment interactions at the second phase. Two games are com-
posed to form a multi-phase and multi-stage game-in-games (MPMS-
GiG) that enables a holistic risk assessment of ransomware in networks
and a cross-layer design of cyber defense and investment strategies to
mitigate the attack. We provide a complete equilibrium characterization
of ransomware game and design interdependent optimal strategies for
cyber protection and ransom payment. We use prospect theory to ana-
lyze the impact of human factors on equilibrium strategies. Finally, we
use a prototypical industrial IoT network as a case study to corroborate
the results.

Keywords: Ransomware · Cybersecurity · Game theory · Security
economics · Risk assessment · Prospect theory · Internet of Things

1 Introduction

Ransomware is a type of malware that infects particular network entities to
demand ransom. It is in general classified into two categories: the locker ran-
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somware and the crypto ransomware [23]. Once infected, the ransomware either
locks the target device to deny any access or encrypts the target device data
to disrupt normal functionality. [12,18]. Emerged in 1989 as a floppy disk Tro-
jan, the ransomware has developed dramatically with time and has evolved into
different families such as CryptoLocker [21], Petya [2], etc. It is becoming more
prevalent nowadays with the fast advance of the Internet of Things (IoT) in var-
ious fields such as manufacturing and transportation [20,22]. The broad connec-
tions for IoT devices provide more security threats and vulnerabilities. Besides,
the massive number of IoT devices increases the risk of getting infected by ran-
somware since any device could be the target. The consequence can be severe
if critical devices such as medical equipment and generators are compromised.
Indeed, the ransomware attack has caused significant economic losses in indus-
trial domains. It is reported that there have been at least 150 ransomware attacks
in manufacturing and 37 attacks in transportation industries in the third quarter
of 2020 [7]. The estimated global damage from ransomware reaches $20 billion
in 2021 [3]. A recent ransomware attack on the energy infrastructure company
Colonial Pipeline this May alone has caused more than $2 million loss for the
company [1]. The detriment of ransomware is no longer negligible.

A ransomware attack in general contains four stages: “code”, “spread”,
“extract”, and “monetize” [14], which can be summarized into cyber and eco-
nomic phases. The cyber phase focuses on the multi-stage intrusion kill chain.
An attacker first assembles the ransomware code and finds the initial entry
point to deploy ransomware. Once entered, the ransomware penetrates over the
network to compromise the target. After infecting the target, the ransomware
extracts and processes the target’s data to either lock it or encrypt important
files. The economic phase refers to preliminary precautions and the “monetize”
stage, which models the ransom payment interactions between the attacker and
the victim.

As two indispensable components in the ransomware attack, the cyber and
economic phases are naturally interdependent. A network defender can design
effective cyber defense schemes by taking into account the risk of ransom pay-
ment. The defender’s security investment and ransom payment strategy can
benefit from the properly designed defense system. Therefore, a holistic and
cross-layer defense-payment design framework can cost-effectively mitigate the
cyber risks as well as reduce monetary losses. Traditional studies in ransomware
treat the cyber and the economic phases separately. For the cyber phase, Intru-
sion Detection Systems (IDS) [6] have been widely studied in networks to detect
malicious behaviors in cyberspace. However, they only provide monitoring infor-
mation but no defense actions to mitigate the attack. Intrusion Response Sys-
tems (IRS) outperform IDS as they can conduct necessary actions to respond
to malicious attacks [11], but the limited predefined actions confine their capa-
bility to cope with sophisticated attacks such as ransomware attacks. Practical
methods, such as constantly updating the software and running network scans
[24], fail to capture the complex behavior of the ransomware. Once compromised
by ransomware, we may be discouraged by the fact that victims simply pay the
ransom in many cases, and even the FBI once inadvertently mentioned paying
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the ransom if the network device is infected [5]. It is not until recently that sev-
eral studies have been conducted to understand the economics of ransomware
[4,9,15]. These works mainly focus on the mitigation strategy after the target is
compromised. A cost-effective strategy to combat ransomware requires not only
a post-infection solution but also a proper cyber defense and security investment
strategy to minimize the ransomware risk across multiple phases.

To this end, in this work, we propose a two-player multi-phase multi-stage
ransomware game to capture both the cyber and economic phases of a ran-
somware attack and provide a holistic consideration and design for cyber defense
and ransom payment. In the cyber phase, we use a zero-sum Markov game to
characterize the sophisticated and dynamic features of ransomware. The attacker
(i.e., the ransomware) explores the network edge vulnerabilities and moves lat-
erally to infect the target, while the defender aims to prevent the penetration
by hardening specific connection links. The cyber Markov game serves as a risk
assessment measure to help make security decisions in the sequel. The economic
phase depicts the ransom payment interactions between two players. Once the
target is infected, we use a sequential-move ransom-payment game to analyze
the defender’s optimal payment strategy and the optimal ransom demanded by
the attacker. The cyber Markov game is composed with the ransom-payment
game to form a multi-phase multi-stage games-in-games (MPMS-GiG) frame-
work that enables a holistic risk assessment of the ransomware in IoT networks
and a cross-layer design of cyber defense and ransom payment strategies to
mitigate the attack. The interdependency between the two phases is captured
by ransom demand, security investment, and security budget. Specifically, the
defender invests in IoT network security to better deter the penetration of ran-
somware, resulting in a lower infection probability. The infection probability and
the remaining budget then influence the following ransom payment interactions.
By considering the interdependency between the two phases, we analyze and
provide a cross-layer defense-payment strategy to better combat ransomware
and protect IoT network security.

Another special feature of ransomware attack is human factors. In ran-
somware attacks, the victims are humans, who hold biased recognition concern-
ing losses and risks, which can lead to different defense strategies compared with
the perfectly rational one. This phenomenon is explained by prospect theory, and
it is necessary to investigate its impact on the decision-making within the ran-
somware attack. Our framework also provides an analysis of how human factors
affect the optimal attack/defense strategies.

The contribution of this paper is as follows. First, we propose an MPMS-GiG
framework to capture both the cyber and economic phases in the ransomware
attack. Second, we provide a complete characterization and analysis of the equi-
librium solution of the ransomware game and design interdependent optimal
cyber protection and ransom payment strategies. Third, we use sensitivity anal-
ysis and prospect theory to investigate how human factors play a role in com-
bating ransomware attacks. Finally, we use a case study with a prototypical
industrial Internet of Things (IoT) network to corroborate the results.
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1.1 Related Work

The penetration process of ransomware in the cyber phase is commonly mod-
eled by the lateral movement in Advanced Persistent Threats (APTs). Some
works have adopted game theory to study the defense against lateral move-
ment. Noureddine et al. in [17] have used a zero-sum game to model the lateral
movement over enterprise networks, where the attacker seeks the shortest path
to compromise the target and the defender responds by disconnecting available
services of a potential victim node. Huang and Zhu in [10] have adopted a multi-
stage Bayesian game to characterize the lateral movement with uncertainty in
the infrastructure network. The equilibrium strategies are derived for network
security enhancement. Although these works do not focus on ransomware, they
share a similar penetration process as the cyber phase in ransomware attacks.

From the economic perspective, game theory has not been adopted to analyze
ransomware until recently. Hernandez-Castro et al. in [9] provide an economic
analysis of ransomware including the optimal pricing and bargaining strategies.
They have also discussed several determinants of the victim’s willingness to pay.
Caporusso et al. in [4] have proposed a two-stage game to characterize the ran-
somware behavior after the target is compromised. Several cases are discussed
based on the different parameters such as the attacker’s cost. Laszka et al. in
[15] have built a two-stage game-theoretic framework to study the ransomware
ecosystem. They have studied the behavior of two target groups with differ-
ent infection probabilities, including their optimal payment strategies and the
attacker’s optimal attack plan. Additionally, a backup strategy as a precau-
tion to alleviate the ransomware attack has also been considered in their model.
Cartwright et al. [5] have adapted two kidnapping game models and have applied
them to the ransomware context. Theoretical results are discussed to understand
the behavior of the attacker and the victim.

1.2 Organization of the Paper

The rest of the paper is organized as follows. Section 2 discusses the basic settings
and formulates the ransomware problem. Section 3 analyzes the risk assessment
outcome of the cyber Markov game and the equilibrium of the ransomware game.
Section 4 studies the impact of the security budget and human factors on the
equilibrium strategy with prospect theory. We use a case study in Sect. 5 to
demonstrate the results and conclude the paper in Sect. 6.

2 Problem Formulation

In this section, we formulate the ransomware game as a two-player multi-phase
multi-stage security game. The notations1 are summarized in Table 1.

1 The notations of the cyber Markov game are listed in Sect. 2.3 separately.
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Table 1. List of notations in the ransomware game.

Symbol Description

rd, qd security investment and payment action

ra, qa demanded ransom and attack action

Ud, Ua defender’s/attacker’s payoff

cf , cs, δ attack cost, overall and additional attack cost

θ successful defense probability

λ defender’s untrusted level to the attacker

w value of the target (defender’s willingness to pay)

μ defender’s expected willingness to pay

B defender’s total security budget

r̂d threshold investment to prevent the ransomware attack

2.1 Basic Settings

The ransomware game (RG) captures both cyber and economic phases in a
ransomware attack and consists of two players, a defender (she) and an attacker
(he). The defender operates a network with multiple connected entities and has
a total security budget of B > 0. Her objective is to protect the target asset and
to maximize the payoff by (a) investing the network security and (b) determining
the payment strategy if the target is infected.

Let w ∈ R be the value of the target, which can also be interpreted as the
defender’s willingness to pay. We denote λ ∈ [0, 1] as the defender’s untrusted
level to the attacker, which can be measured by the portion of people who choose
not to pay the ransom in practice. Because of λ, we define the defender’s expected
willingness to pay as μ = (1 − λ)w. We assume that B > μ so that the budget
can cover the ransom if the target is infected by ransomware. Let rd ∈ [0, B] be
the network security investment and qd ∈ {0, 1} be the defender’s decision to
pay (qd = 1) or not to pay (qd = 0) the ransom after infection. The objective of
the attacker is to maximize the payoff using ransomware. He can either deploy
ransomware (qa = 1) or abandon the attack (qa = 0). If the attacker decides
to attack, he compromises some initial entry points to penetrate the network
and searches for the target. The penetration process is modeled by the cyber
Markov game in Sect. 2.3. Once the target is compromised, the attacker locks
the target and determines the amount of ransom ra ∈ R+. Note that the sum of
the security investment and the ransom payment should not exceed the budget
B, which we refer to as the budget constraint:

rd + ra ≤ B. (1)

2.2 Multi-phase Multi-stage Game Formulation

We formulate the RG as a two-phase three-stage game to capture the sequential
interactions between the defender and the attacker, illustrated as follows.
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Stage 1 Initial Investment : Defender invests rd to improve the network security.
Stage 2 Cyber Defense: Two sub-stages due to attacker’s binary action qa.

Stage 2a The attacker decides whether to attack qa = 1 or not qa = 0. He
receives a zero payoff if he abandons the attack and the game terminates.
Otherwise, he enters Stage 2b.

Stage 2b The attacker deploys ransomware and starts the penetration, which
is captured by the cyber Markov game. With probability θ, he fails to
infect the target and receives a cost cf ∈ R+; with probability 1 − θ, he
compromises the target and demands the ransom ra. The overall cost for
a successful attack is cs = cf + δ.

Stage 3 Ransom Payment : Two sub-stages due to defender’s binary action qd.

Stage 3a The defender decides whether to pay qd = 1 or not qd = 0. She
receives a loss of w + rd if she does not pay and the game terminates.
Otherwise, she enters Stage 3b. Note that the defender will not pay if the
remaining budget is not sufficient to cover the ransom (B − rd < ra).

Stage 3b The defender pays the ransom but still faces the risk of target
recovery failure: with probability λ, the attacker keeps locking the target
and the defender loses both ransom and the target; with probability 1−λ,
the attacker releases the target.

Fig. 1. Structure of the multi-phase and multi-stage game: A cyber Markov game is
embedded in the ransom game.

2.3 Cyber Markov Game for Ransomware Penetration

In the cyber phase of the ransomware attack, the attacker penetrates the net-
work and searches for attack paths to infect the target. The defender’s security
investment can increase the difficulty of ransomware penetration. We assume
that after a maximum of K rounds search, if the attacker still cannot reach
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the target, a security update will be applied to the system and the attack fails.
We model the attack-defense interactions in the penetration process under the
security investment rd as a finite horizon zero-sum Markov game (MG).

We consider a network (represented by a graph) G = (V, E), where V is the
node set and E = {(u, v)|u, v ∈ V, u �= v} represents the edge set. Each node in
V represents an entity such as a controller, database, etc. An edge in E means
that two entities are connected and can perform service exchange. We attach a
label function Lk: V �→ {0, 1} to each node in V at time k, representing their
operation status. For all v ∈ V at time k,

Lk(v) =

{
1 if v is compromised,

0 if v is normal.

At time k = 0, the attacker compromises the initial node v0 and searches for the
target v̂. Hence L0(v) = 0, ∀v ∈ V\v0 and L0(v0) = 1. We define the cyber MG
by the tuple 〈S,AM,DM, P, C,K〉. Each component is discussed as follows.

– State space S: The finite set S constitutes all possible labeled graph in K
steps, i.e., S = {(G, Lk)}K

k=0, where G is the underlying network and Lk

contains all possible labels for all nodes v ∈ V at time k. We denote Sk as
the subset of S at time k and write sk ∈ Sk as a specific state.

– Attacker’s action space AM: The attacker (minimizer) attempts to attack a
normal node through edge vulnerabilities for the next step penetration. Given
the game state sk, the attacker’s action set is defined as

AM(sk) = {(u, v)|(u, v) ∈ E , Lk(u) = 1, Lk(v) = 0}.

We write ak ∈ AM(sk) as a specific attacker’s action at time k. In Fig. 1, the
edges {(1, 3), (2, 3), (2, 4)} form the attacker’s action set AM in this example.

– Defender’s action space DM: The defender (maximizer) aims to mitigate the
attack by hardening the service security over the selected edge. Thus, she
shares the same action set as the attacker at time k, i.e., DM(sk) = AM(sk).

– Transition probability P : We write the transition probability as Pr(s′ | s, a, d)
where s′, s are current and future states and a, d are attacker’s and defender’s
actions. If the attack ak = (u, v) succeeds, the label for node v is set to
Lk+1(v) = 1 and the game state is updated accordingly. In our model, the
defender combats the attacker by investing the edge security and increasing
the attack cost of edge dk. Thus, the defender’s action will not influence the
transition probability. Given sk and ak, we have

Pr(sk+1 | sk, ak, dk) = Pr(sk+1 | sk, ak) =

{
γ(rd, a

k) sk+1 �= sk,
1 − γ(rd, a

k) sk+1 = sk,

where γ(rd, e) ∈ [0, 1], ∀e ∈ E is the attack success probability through edge
e, which captures the impact of the security investment rd on that edge.
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– Immediate utility C: Given the state sk and the action pair (ak, dk), we have

C(sk, ak, dk) =

{
Cd if ak = dk,
Ce(ak) − H(v) if ak �= dk,

where
• Cd ∈ R is cost for the attacker when the defender protect the same edge.
• Ce(ak) ∈ R is cost of attacking through the chosen edge ak without

defense. Note that Cd > Ce(e), ∀e ∈ E .
• H(v) ∈ R is the attractiveness of the next node v, which is given by

H(v) =
n

(distance to v̂)
+ q · (# of possible paths to v̂) ,

where n and q are positive weights.
The attacker receives an additional terminal reward −w when he compromises
the target v̂. Then, he stays in v̂ till the game terminates.

– Game horizon K: The horizon K represents the maximum time span for the
ransomware to exist in the network. A successful defense prevents the attacker
from reaching the target v̂ within K steps.

2.4 Solution Concept

Ransomware can be viewed as a special case of APT attacks. In APT attacks,
the attacker usually acquires sufficient knowledge about the system with pre-
liminary reconnaissance. Therefore, we assume that both players have complete
information in the RG. We adopt sub-game perfect Nash equilibrium (SPNE) as
the solution concept in the RG. The cyber MG generates the successful defense
probability and the attack cost, which serve as risk assessment parameters to
develop the SPNE of the RG. The complete information assumption is crucial
to characterize the interdependency between cyber and economic phases.

3 Ransomware Game Analysis

In this section, we first discuss the risk assessment outcome of the cyber MG
and then provide a complete equilibrium analysis of the RG.

3.1 Risk Assessment Outcome of the Cyber Markov Game

In the cyber MG, at each state sk, we denote the strategy of player i ={Attacker,
Defender} as πi(sk). To find the optimal strategies, we adopt the finite value
iteration method [13] to solve the game computationally. Given the investment
rd, we denote the equilibria of the cyber MG π∗

i (rd). We mention that π∗(rd) =
{π∗

A(rd), π∗
D(rd)} captures the successful defense probability θ ∈ [0, 1] and the

attack cost cf ∈ R+ given the investment rd ∈ [0, B]. We define
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θ(rd) =
Nsucc(rd)

N
, cf (rd) = Eπ∗(rd)

[
K∑

k=1

Ck

]
,

where N is the total simulated attacks and Nsucc is the number of successful
attacks2, and Ck is the immediate utility he received at time k.

The average outcome in the cyber MG can serve as a risk assessment measure
for the future security decision making. Although it is difficult to characterize
θ(rd) and cf (rd) analytically, we can confirm their positive correlations with rd.
For the purpose of future analysis, we assume the differentiability and θ′(rd) ≥ 0,
c′
f (rd) ≥ 0. Indeed, these assumptions can be verified in our case study in Sect. 5.

We also define the attacker’s cost for a successful attack as cs(rd) = cf (rd) + δ,
where δ is the additional cost representing the cost of remote communication
and manipulation to the target. Without causing confusions, we write θ and cf

for θ(rd) and cf (rd) in the rest of the paper.

3.2 Equilibria of the Ransomware Game

We use backward induction to analyze the SPNE of the RG. We use the sub-
script and the superscript to denote the players’ payoffs under different actions
and different stages respectively. For example, Ud|3qd=1 represents the defender’s
payoff at stage 3 when she decides to pay the ransom.

At stage 3, the defender decides whether to pay (qd = 1) or not to pay
(qd = 0) the ransom. We have two possibilities: the remaining budget is either
sufficient (B − rd ≥ ra) for the ransom or not sufficient (B − rd < ra). In the
latter case, the defender’s only option is not to pay and her payoff is −w − rd.
In the former case, the defender can decide whether to pay or not to pay. The
payoff of not to pay is still −w − rd. Thus, we have Ud|3qd=0 = −w − rd. If the
defender decides to pay, then her expected payoff is

Ud|3qd=1 = λ(−w − ra − rd) + (1 − λ)(−ra − rd) = −ra − rd − λw.

Therefore, we conclude that the defender will choose to pay when the budget is
sufficient and Ud|3qd=1 ≥ Ud|3qd=0, which indicates the optimal payment action is

q∗
d =

{
1 B − rd ≥ ra, (1 − λ)w ≥ ra,

0 otherwise.
(2)

Similarly, the attacker’s payoffs at stage 3 for different cases are

Ua|3qd=0 = −cs, Ua|3qd=1 = ra − cs. (3)

At stage 2, the attacker first decides whether to attack (qa = 1) or not
(qa = 0) and then chooses the amount of ransom ra if the attack is successful.
The payoff of abandoning the attack is simply Ua|2qa=0 = 0. If the attacker decides

2 An attack is successful if the attacker compromises the target within K steps.
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to attack, his expected payoff is related to the successful defense probability θ
in the following cyber MG:

Ua|2qa=1 = θ(−cf ) + (1 − θ)Ua|2qa=1,succ.

Ua|2qa=1,succ either equals Ua|3qd=1 or Ua|3qd=0, depending on the defender’s pay-
ment action at stage 3. From (3) we always have Ua|3qd=1 ≥ Ua|3qd=0. In order
to maximize the payoff, the attacker would set the ransom value to encourage
ransom payment of the defender. Hence, by considering (1), we have

ra ≤ min{B − rd, (1 − λ)w} = min{B − rd, μ}. (4)

In this case, the payoff of the attacker choosing to attack is

Ua|2qa=1 = θ(−cf ) + (1 − θ)(ra − cs). (5)

In addition, to ensure that starting the attack is indeed a better strategy, the
attacker needs Ua|2qa=1 ≥ Ua|2qa=0 = 0, which yields

ra ≥ θcf + (1 − θ)cs

1 − θ
. (6)

We note that (4) and (6) form a closed set of ra, which we denote as Ω =
{ra | (4) and (6) hold} ⊆ R. As long as Ω is not empty, the optimal strategies
for the attacker and the defender are to start the ransomware attack and to pay
the ransom, respectively. The optimal amount of ransom is

r∗
a = arg max

ra∈Ω
Ua|2qa=1 = min{B − rd, μ} (7)

provided Ω �= ∅. Thus, the optimal attack strategy at stage 2 is

q∗
a =

{
1 Ω �= ∅,

0 otherwise.
(8)

The defender’s utility is simply the defense investment −rd if the attack aban-
dons the attack, i.e., Ud|2qa=0 = −rd. According to the aforementioned analysis,
if the attacker decides to attack, he sets the amount of ransom to encourage
ransom payment. Therefore, the defender pays the ransom and faces the risk
that the attacker does not release the target even after receiving the payment.
We can write the expected utility as

Ud|2qa=1 = θ(−rd) + (1 − θ)Ud|3qd=1 = −rd − (1 − θ)(ra + λw). (9)

At stage 1, the defender determines the security investment rd to maximize
her payoff. If the attacker implements the attack, the defender and the attacker
play the cyber MG under the enhanced network with defense investment rd.
Since the outcomes of the cyber MG (θ and cf ) depend on the rd, the set Ω
is also parameterized by rd and we denote it as Ω(rd). To further analyze the
optimal security investment, we first focus on the structure of Ω(rd) and arrive
at the following proposition.



218 Y. Zhao et al.

Proposition 1. There exists rd ≥ 0 such that Ω(rd) �= ∅ if cs < μ. Further-
more, there exists a unique threshold r̂d ∈ [0, B] such that Ω(rd) = ∅ when
rd > r̂d.

Proof. Let f(rd) = θcf+(1−θ)cs
1−θ . Further let g(rd) = min{B−rd, μ}−f(rd). Then,

g(rd) denotes the length of Ω(rd) when it is positive. Using the assumptions
in Sect. 3.1, we show that f ′(rd) > 0. Therefore, g′(rd) < 0 except for the
point rd = B − μ, which does not affects the monotonicity of g(rd). So g(rd)
is decreasing in rd ≥ 0. Since B > w and cs < μ, we have g(0) = μ − cs > 0.
Therefore, there exists rd ≥ 0 such that Ω(rd) �= ∅. It is clear that f(0) > 0 and
g(B) < 0. With the continuity assumption of θ and cf , there exists a unique r̂d

such that g(r̂d) = 0 and g(rd) < 0 when rd > r̂d.

Remark 1. The condition cs < μ implies that the attacker always has the incen-
tive to attack. We assume the condition always holds in the sequel.

Remark 2. f(rd) and r̂d have straightforward but critical interpretations. From
(6), f(rd) is the minimum ransom that the attacker has to demand if he decides to
attack. Otherwise, he receives a negative payoff, which is worse than abandoning
the attack. The monotonic property f ′(rd) > 0 indicates that the minimum
ransom increases along with the improvement of network security level. r̂d is the
threshold investment such that the attacker cannot make any profit by attacking.
It refers to the scenario where the maximum possible ransom is not sufficient to
offset the attack cost. Note that r̂d is a critical value in the sense of economics,
which does not indicate the network is fully secured with θ(r̂d) = 1. In practice,
rational attackers will not attack in the first place if they cannot profit from it.

Proposition 1 indicates a threshold strategy for investing the network security.
If the defender invests any amount larger than r̂d, we have Ω = ∅ and the
attacker’s optimal strategy is to abandon the attack and receives a zero payoff,
i.e., Ua|1rd≥r̂d

= 0. Then the defender successfully secure the target with this
investment. However, we note that the defender has no incentive to invest more
than r̂d because the attacker will not attack anyway. Therefore, in this case,
r∗
d = r̂d and the optimal payoff U∗

d |1rd≥r̂d
= −r̂d. On the other hand, if the

defender invests r̃d < r̂d, the attacker has the incentive to attack. In this case,
the defender’s payoff is

Ud|1rd<r̂d
= Ud|2qa=1 = −rd − (1 − θ)(r∗

a + λw)

=

{
−rd − (1 − θ)w 0 ≤ rd < B − μ,

−θrd − (1 − θ)(B + λw) B − μ ≤ rd < r̂d,

(10)

and the corresponding optimal security investment is

r̃∗
d = arg max

0≤rd<r̂d

Ud|1rd<r̂d
, (11)
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which is related to the property of the successful defense probability θ(rd). We
summarize the optimal investment strategy as follows:

r∗
d =

{
r̂d Ud|1rd<r̂d

(r̃∗
d) < −r̂d,

r̃∗
d Ud|1rd<r̂d

(r̃∗
d) ≥ −r̂d.

(12)

Proposition 2. The RG possesses one of the equilibrium solutions below based
on the relationship between −r̂d and Ud|1rd<r̂d

(r̃∗
d), where r̃∗

d is defined in (11):

(Eq1) If −r̂d ≥ Ud|1rd<r̂d
(r̃∗

d): 〈r∗
d = r̂d, q

∗
d = 1, r∗

a = min{B − r̂d, μ}, q∗
a = 0〉.

Optimal payoffs are U∗
d = −r̂d, U∗

a = 0.
(Eq2) If −r̂d < Ud|1rd<r̂d

(r̃∗
d): 〈r∗

d = r̃∗
d, q∗

d = 1, r∗
a = min{B − r∗

d, μ}, q∗
a = 1〉.

Optimal payoffs are U∗
d = Ud|1rd<r̂d

(r̃∗
d), U∗

a = (1− θ)r∗
a − θcf − (1− θ)cs.

4 Sensitivity Analysis and Impact of Human Factors

In this section, we study the impact of the security budget and human fac-
tors on the equilibrium attack/defense strategy by using sensitivity analysis and
prospect theory. As shown in Sect. 3.2, the equilibrium is closely related to the
structure of the set Ω, which can vary for different cases shown in Fig. 2. These
cases can be distinguished by the relationship between r̄d = B − μ and r̂d. We
split the region rd ≥ 0 into three sub-regions: sub-region I refers to the interval
[0, r̄d); sub-region II is equal to [r̄d, r̂d); sub-region III refers to [r̂d,∞). Three
sub-regions coexist in Fig. 2a, and sub-region II vanishes in Fig. 2b.

(a) Case 1: r̄d < r̂d. (b) Case 2: r̄d > r̂d.

Fig. 2. Ω in two cases. f(rd) is defined in Proposition 1. As r̄d increases, sub-region II
gradually vanishes till r̄d = r̂d. Sub-region I remains [0, r̂d) when r̄d > r̂d.

4.1 Impact of the Security Budget

The security budget B affects both on the optimal investment r∗
d and the

defender’s optimal utility U∗
d . We first note that large budget B barely affects

r∗
d and U∗

d as observed in Fig. 2b. This is because Ω is no longer determined by
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B and dUd|1rd<r̂d
/dB = 0. In this scenario, the defender compares Ud|1rd<r̂d

(r̃∗
d)

in sub-region I and −r̂d to determine which equilibrium strategy to use. To look
into r̃∗

d, since Ud|1rd<r̂d
= −rd − (1 − θ)w, we have

dUd|1rd<r̂d

drd
= 0 ⇒ θ′ =

1
w

.

We call this value 1
w the critical sensitivity threshold as it determines whether the

increment of security investment helps improve the defender’s payoff or not. If the
network defense is not sensitive enough to the security investment, i.e., θ′(rd) ≤
1
w , the defender will suffer more loss as she invests more. This is because the
investment in security cannot provide strong enough defense to suppress attack
threats. Conversely, if the investment can bring sufficient security improvement,
i.e., θ′(rd) > 1

w , the defender can benefit more from more investment.
If we lower the budget B, we arrive at the scenario shown in Fig. 2a. The

payoff Ud|1rd<r̂d
and the effective defense threshold in sub-region I remains

the same as in the cases of large budget B. While in sub-region II, we have
Ud|1r̂d≤rd<r̄d

= −θrd − (1 − θ)(B + λw), and

dUd|1r̂d≤rd<r̄d

drd
= 0 ⇒ θ′ =

θ

B + λw − rd
<

1
w

,

which implies that the critical sensitivity threshold is reduced. This result means
that the network defense becomes less sensitive to the investment. With the
assumption that θ grows slower as the investment increases (verified in Sect. 5),
the defender would spend more on the security investment.

The decrease in the critical sensitivity threshold reflects the interdependency
between cyber and economic phases. Since the attacker knows the defender’s
budget, when the budget is sufficient, the attacker can always demand μ as
the ransom. As the budget reduces, the attacker may not make any profit if he
keeps demanding μ, because the defender may not be able to afford it. The less
budget remains at stage 3 in the RG, the less the attacker can profit, and the less
incentive he has to start the attack. In short, as the defender’s budget reduces,
the network defense becomes less sensitive to the investment, which incentivizes
the defender to invest more rather than nothing to secure the target.

An interesting but counter-intuitive observation is that when the defender has
a small budget, we have dUd|1r̄d≤rd<r̂d

/dB = −(1 − θ) < 0 and d(−r̂d)/dB < 03

in sub-region II and III, which implies that increasing the budget does not help
improve the defender’s payoff. This phenomenon has two reasons: the complete-
information structure of the RG and the interdependency between the cyber and
economic phases. The defender cannot invest much if she has a small budget,
leading to a high probability of being compromised. Since the attacker knows the
budget, he can always demand the remaining budget to make the most profit.
For the defender, she either invests r̂d to avoid the attack or invests some value
less than r̂d while facing the risk of being compromised. Her utility will go down
3 See Appendix for the proof of d(−r̂d)/dB < 0.
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in both ways if she increases her budget a bit. We name this phenomenon as
the budget dilemma. We mention that the budget dilemma happens only when
the budget is small. It disappears when the defender has a sufficient budget
because her expected willingness to pay μ starts to dominate the attacker’s
ransom strategy.

To summarize, we arrive at the following insights. First, a sufficient budget
corresponds to a fixed critical sensitivity threshold 1

w . Conversely, a small budget
reduces the threshold, which incentivizes the defender to invest more in network
security. Second, the defender faces the budget dilemma for a small budget, but
the dilemma disappears as the budget increases.

4.2 Impact of Human Factors and Prospect Theory

Humans have different cognitive preferences. In general, people are more averse
to losses and less sensitive to gains; people inflate the belief for rare events and
deflate for high-probability ones. Prospect theory captures human factors by

V (x) =

{
xβ x ≥ 0
−α(−x)β x < 0

, h(p) =
pζ

pζ + (1 − p)ζ
, (13)

where V (x) and h(p) are biased utility and weighted probability, respectively,
and α, β, ζ are prospect parameters.

In the RG, we assume that the attacker is completely rational and the human
factors are embodied in the defender’s side (λ and w). Prospect theory provides
a way to understand the impact of these human factors on the game equilibrium.

We denote the biased untrusted level λ and willingness to pay w as λ̃ and w̃.
The biased expected willingness to pay becomes μ̃ = (1 − λ̃)w̃. Note that −w
describes the defender’s potential loss. From (13), the defender expects a larger
loss −w̃ < −w during decision-making. The biased μ̃ also depends on λ. For
large λ (the defender barely trust the attacker), λ̃ is deflated and thus μ̃ > μ.
For small λ (the defender trusts the attacker), λ̃ is inflated and 1− λ̃ is deflated.
The value of μ̃ depends on specific values of w̃ and λ̃.

We first look into how human factors influence the critical investment r̂d.
When the budget is sufficient (see Fig. 2b), an increased μ̃ leads to an increased
r̂d. This means that the defender has to invest more in network security to
eliminate the attack risk if she has a higher expected willingness to pay. When
the budget is small (see Fig. 2a), r̂d is no longer affected by μ̃ and thus remain
unchanged. Therefore, human factors affect the critical investment r̂d in a way
such that r̂d has a positive correlation in μ̃ for only for sufficient budget B.

For the optimal investment r∗
d, the defender either takes r̂d or some value

between [0, r̂d) as r∗
d, depending on which strategy yields a larger payoff. Note

that w̃ reduces the critical sensitivity threshold, which implies that the defender’s
payoff can be further improved by more investment compared with the unbiased
case. We conclude that if the defender’s optimal investment r∗

d �= r̂d in the
unbiased case, human factors will enhance r∗

d; if the defender takes r∗
d = r̂d in

the unbiased case, human factors affect r∗
d by following the variation trend of μ̃.
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As for the defender’s optimal payoff U∗
d , we focus on the case where the

untrusted level λ is small (e.g., λ = 0.3). From (10) we see that the defender’s
payoff in sub-region I is always decreasing because w̃ > w. Besides, λ̃ is inflated,
causing a decrease in the defender’s payoff in sub-region II. In sub-region III, the
defender’s payoff becomes −r̂d, and it is influenced by μ̃. To conclude, for small
λ, if the defender’s optimal investment r∗

d �= r̂d in the unbiased case, her optimal
payoff is always worsened by the inflated w̃; if the defender takes r∗

d = r̂d in the
unbiased case, human factors affect U∗

d by following the variation trend of μ̃.
The rational attacker may profit from the defender’s bias. From (7), the

attacker demands ransom ra = min{B − r∗
d, μ}. Therefore, when the budget B

is sufficient while the security investment r∗
d is small such that B − r∗

d ≥ μ, the
attacker demands ra = μ and he can receive more profit if μ̃ > μ. However, as r∗

d

increases, the attacker can only demand ra = B−r∗
d. So human factors influence

his payoff in the exact opposite way as r∗
d. Specifically, if we have μ̃ > μ, the

attacker in fact receives a worse payoff compared with the unbiased case.

5 Case Studies and Discussion

In this section, we use a case study over a prototypical industrial IoT network to
analyze the impact of ransomware attacks. We conduct simulations to evaluate
the performance of the cyber MG defense mechanism, which serves as the cyber
risk assessment for future security decision-making. We analyze the equilibrium
strategy in the RG and discuss the influences of limited budget and prospect
theory on the equilibrium strategy.

5.1 Model Implementation

Typically, industrial networks are segregated into several interconnected sub-
level networks based on the usage [16,25]. We consider the following network
with four layers shown in Fig. 3, where the massively interconnected devices are
grouped by their functions for simplicity. Each entity can represent a set of agents
with similar functions. The target asset in our case is the production unit (e.g., a
robotic arm) which can generate profit. We consider a locker ransomware attack,
where the infected target will be locked and lose all its functionality. The target
value can be assessed by the real loss in production if the target is locked. Since
the value can vary dramatically for different applications, we use a normalized
value w = 10 to denote the target value. Other money-related values can be
converted to have the same magnitude as the w. We also set the untrusted level
λ = 0.3 based on empirical results of the ransomware attack.
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Fig. 3. A prototypical industrial IoT network consists of four network layers including
IT/enterprise network, area network, controller network and field network. The target
node of the attacker is Robot 2.

5.2 Outcome of Cyber Markov Game

In the cyber MG, we refer to the Common Vulnerability Scoring System (CVSS)
[19] to describe the cost Ce(e) of mounting an attack through edge e ∈ E . CVSS
provides a risk measurement of edge vulnerabilities. We convert the score into
the same magnitude as w and simulates the MG under this setting.

The attacker establishes the initial foothold at the cloud in the IT network
layer, penetrating through sub-level networks to infect the target. The defender
invests rd ∈ [0, B] to change the transition probability γ(rd, e) in the cyber
MG. In this case study, we assume that the influence of security investment is
equivalent on each edge, i.e., γ(rd, e) = γ̃(rd), ∀e ∈ E . In our case, we select

γ̃(rd) = 1 −
√

rd

ηw
,

where η is the scaling factor to measure the effectiveness of the investment. To
obtain the average results of the cyber MG, we choose η = 2 and sample 40
points of (rd/ηw) at equal intervals between 0 and 1. We simulate the cyber MG
for N = 5000 times under each rd to evaluate the empirical successful defense
probability θ(rd) and the attack cost cf (rd), which are shown in Fig. 4. The
additional attack cost for a successful attack is set to δ = 0.5.

(a) Empirical defense probability θ(rd). (b) Empirical attack cost cf (rd).

Fig. 4. Simulation outcome with variance and approximations of the cyber MG
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5.3 Impact of Budget

Under the parameter setting, we have μ = 7. Thus, we vary B from 9 to 16 to
study how the defense strategy changes under different budgets.

The derivative of approximated θ function in Fig. 5 shows that the network
defense is highly sensitive to the investment at the very beginning and gradually
losses its sensitivity as the investment increases. We observe that the critical
sensitivity threshold in Fig. 5 splits the investment rd ≥ 0 into two regions, and
the rd on the left-hand side is always above the critical sensitivity threshold.
This implies that the defender can always improve her payoff by investing some
value rather than nothing. Therefore, the zero investment strategy is ruled out.

Fig. 5. Sensitivity of the network defense.

The optimal investment strategy r∗
d and the defender’s optimal payoff in three

sub-regions are shown in Fig. 6a and Fig. 6b respectively. The variation of r̂d and
r̄d are also plotted in Fig. 6a. For a small budget of B, the length of sub-region
I is short. The entire sub-region can be above the threshold. So the defender
will not seek the optimal investment in this sub-region. For a better payoff, the
defender will invest more. Thus, the optimal investment is r̂d as shown in Fig. 6a.

As the budget improves, we see that the value of r̂d also increases as discussed
in Sect. 4.1. However, the network defense becomes less sensitive, which means
that the defender may not be better off if she keeps investing r̂d. So she would
consider the investment strategy in sub-region I and II instead of r̂d. As shown
in Fig. 6a, the defender no longer invests r̂d when the budget reaches B = 10.5.
She starts to take some value in sub-region II as the optimal investment. Note
that r∗

d is still not in sub-regions I because the size of sub-regions I is still small
and the entire region is still above the critical sensitivity threshold. As we keep
improving the budget, r̂d keeps increasing and sub-region II gradually vanishes.
As the budget reaches B = 11.8, the defender starts to take values in sub-region
I as the optimal investment.
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(a) Optimal investment strategy. Three

sub-regions are split by r̂d and r̄d.
(b) Defender’s optimal payoff. We can

also observe the udget dilemma.

Fig. 6. Defender’s optimal investment strategy and optimal payoff.

We can observe the budget dilemma in Fig. 6b, where the defender’s payoff is
decreasing as the budget goes up when the budget is small. The decrements stop
when B = 11.8 and remain unchanged with a larger budget, which coincides with
the analysis that the budget dilemma disappears for a large budget. Note that
in this case, we even do not need to arrive at the situation in Fig. 2b to suppress
the budget dilemma, as the budget after B = 11.8 already stops influencing the
optimal utility.

To conclude, when the defender has a small budget, she should invest r̂d to
eliminate the threat of attack. When the budget is sufficient, the defender can
choose some other investment less than r̂d to optimize her payoff. We note that
the large budget offsets the defender’s initiative to protect the target. This is
because (a) network defense becomes less sensitive to the security investment and
(b) paying the ransom becomes acceptable compared with the security expendi-
ture. Therefore, the budget reflects the trade-off between the security investment
and redeeming the target, which further implies the interdependency between
cyber and economic phases in the ransomware attack.

5.4 Prospect Theory

To study the impact of human factors on r̂d, r
∗
d, U∗

d , r∗
a, we discuss two cases

with small budget B = 14 and large budget B = 20 respectively. We apply
typical perspective parameters α = 2.25, β = 0.88, ζ = 0.69 in [8]. Under these
parameters, the biased willingness to pay μ̃ = 12.47 > μ, which implies human
factors increases the μ. We mention that B = 14 a small budget for the biased
case in this subsection, although it is large enough for the unbiased case. The
results are summarized in Table 2

Followed by the analysis in Sect. 4.2, we observe that r̂d remains unchanged
for small budget in Table 2a, but increases for large budget because of inflated
μ̃, shown in Table 2b. Meanwhile, the biased w̃ reduces the critical sensitivity
threshold regardless of the budget, which requires the defender to invest more
to be better off. Thus, the optimal investment r∗

d increases compared with the
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unbiased case both in Table 2a–2b. Likewise, the inflated w̃ and μ̃ can reduce the
defender’s optimal payoff U∗

d despite the budget. This shows that human factors
in this case in fact worsen the defender’s situation.

The attacker does not profit from the bias of the defender either. In both
cases we study here, the defender selects r∗

d such that B − r∗
d < μ. Therefore,

the defender can only demand ra = B − r∗
d. Since r∗

d is enlarged in both cases,
the ransom ra is also reduced, which is observed in Table 2a–2b.

Table 2. Impact of human factors under different budget scenarios.

r̂d r∗
d U∗

d r∗
a

unbiased 10 3.93 −8.48 10.08

biased 10 6.6 −9.84 7.4

(a) Small budget B = 14.

r̂d r∗
d U∗

d r∗
a

unbiased 11.9 3.93 −8.48 16.07

biased 12.3 6.55 −10.85 13.45

(b) Large B = 20.

6 Conclusion

In this paper, we have investigated the ransomware attack in networks by estab-
lishing an MPMS-GiG framework. The proposed framework captures both cyber
and economic phases of the ransomware attack and provides a holistic analysis of
the interdependency between them. The equilibrium characterizes the defense-
payment strategy with budget constraints. The sensitivity analysis suggests that
the network security investment is more effective to combat the ransomware
attack when the defender has a small budget. It is also recommended to increase
the investment to reduce the defender’s overall loss under a small budget. We also
observe the budget dilemma when the defender’s budget is insufficient, which
reflects the interdependency between cyber and economic phases in the ran-
somware attack. Human factors also contribute to the equilibrium attack/defense
strategy. Being risk-averse can drop the defender’s overall loss because she values
the target more. It is also worth noting that the attacker gains less from a biased
defender as she prefers to invest more in network security. Case studies show the
equilibrium attack/defense strategy over a prototypical industrial IoT network
and successfully corroborates the results in the paper.

For future work, we would consider the ransomware attack with incomplete
information. For example, the attacker may not know exactly the defender’s
willingness to pay except for a prior distribution. Another direction would be to
study cyber insurance and its impact on the equilibrium of ransomware attacks.

A Proof in the Budget Dilemma

Recall that r̂d is the root of g(rd, B) = B − rd − f(rd) for small B. Assume the
differentiability of θ and cf , it is easy to show that f ′(rd) > 0. Using the implicit
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function theorem, we can find a function r̂d = h(B) in the neighborhood of
(B, r̂d) where g(rd, B) = 0. Hence, we have dr̂d

dB = −(−1−f ′(r̂d))−1 = 1
1+f ′(r̂d)

>

0. The defender’s utility is −r̂d if she chooses to invest r̂d. Thus, d(−r̂d)
dB < 0.
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