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Abstract. This work proposes a new class of proactive attacks called the Infor-
mational Denial-of-Service (IDoS) attacks that exploit the attentional human vul-
nerability. By generating a large volume of feints, IDoS attacks deplete the cog-
nitive resources of human operators to prevent humans from identifying the real
attacks hidden among feints. This work aims to formally define IDoS attacks,
quantify their consequences, and develop human-assistive security technologies
to mitigate the severity level and risks of IDoS attacks. To this end, we use the
semi-Markov process to model the sequential arrivals of feints and real attacks
with category labels attached in the associated alerts. The assistive technology
strategically manages human attention by highlighting selective alerts periodi-
cally to prevent the distraction of other alerts. A data-driven approach is applied to
evaluate human performance under different Attention Management (AM) strate-
gies. Under a representative special case, we establish the computational equiva-
lency between two dynamic programming representations to reduce the computa-
tion complexity and enable online learning with samples of reduced size and zero
delays. A case study corroborates the effectiveness of the learning framework.
The numerical results illustrate how AM strategies can alleviate the severity level
and the risk of IDoS attacks. Furthermore, the results show that the minimum risk
is achieved with a proper level of intentional inattention to alerts, which we refer
to as the law of rational risk-reduction inattention.

Keywords: Human vulnerability · Alert fatigue · Cyber feint attack ·
Temporal-difference learning · Risk analysis · Attention management ·
Cognitive load

1 Introduction

Human is the weakest link in cybersecurity due to their innate vulnerabilities, includ-
ing bounded rationality and limited attention. These human vulnerabilities are difficult
to mitigate through short-term training, rules, and incentives. As a result, sophisticated
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attacks, such as Advanced Persistent Threats (APTs) and supply-chain attacks, com-
monly exploit them to breach data and damage critical infrastructures. Attentional vul-
nerabilities have been exploited by adversaries to create visual blindspots or misper-
ceptions that can lead to erroneous outcomes. One way to exploit the attentional vul-
nerabilities is to stealthily evade the attention of human users or operators as we have
seen in many cases of social engineering and phishing attacks. It is a passive approach
where the attacker does not change the attention patterns of the human operators and
intends to exploit the inattention to evade the detection. In contrast, a proactive attacker
can strategically influence attention patterns. For example, an attacker can overload the
attention of human operators with a large volume of feints and hide real attacks among
them [1]. This class of proactive attacks aims to increase the perceptual and cognitive
load of human operators to delay defensive responses and reduce detection accuracy.
We refer to this class of attacks as the Informational Denial-of-Service (IDoS) attacks.

IDoS is no stranger to us in this age of information explosion. We are commonly
overloaded with terabytes of unprocessed data or manipulated information on online
media. However, the targeted IDoS attacks on specific groups of people, e.g., secu-
rity guards, operators at the nuclear power plant, and network administrators, can pose
serious threats to lifeline infrastructures and systems. The attacker customizes attack
strategies to targeted individuals or organizations to quickly and maximally deplete
their human cognitive resources. As a result, common methods (e.g., set tiered alert
priorities) to mitigate alert fatigue are insufficient under these targeted and intelligent
attacks that generate massive feints strategically. There is a need to understand this phe-
nomenon, quantify its consequence and risks, and develop new mitigation methods. In
this work, we establish a probabilistic model to formalize the definition of IDoS attacks,
evaluate their severity levels, and assess the induced cyber risks. The model captures the
interaction among attackers, human operators, and assistive technologies as highlighted
by the orange, green, and blue backgrounds, respectively, in Fig. 1.

Fig. 1. Interaction among IDoS attacks, human operators, and assistive technologies.

Attackers generate feints and real attacks that trigger alerts of detection systems.
Due to the detection imperfectness, human operators need to inspect these alerts in
detail to determine the attacks’ types, i.e., feint or real, and take responsive security
decisions. The accuracy of the security decisions depends on the inspection time and
the operator’s sustained attention without distractions. The large volume of feints exerts
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an additional cognitive load on each human operator and makes it hard to focus on
each alert, which can significantly decrease the accuracy of his security decisions and
increase cyber risks. Accepting the innate human vulnerability, we aim to develop assis-
tive technologies to compensate for the human attention limitation. Evidence from
the cognitive load theory [2] has shown that divided attention to multiple stimuli
can degrade the performance and cost more time than responding to these stimuli in
sequence. Hence, we design the Attention Management (AM) strategies to intention-
ally make some alerts inconspicuous so that the human operator can focus on the other
alerts and finish the inspection with less time and higher accuracy. We further define
risk measures to evaluate the inspection results, which serves as the stepping stone to
designing adaptive AM strategies to mitigate attacks induced by human vulnerabilities.

Due to the unpredictability and complexity of human behaviors, cognition, and rea-
soning, it is challenging to create an exact human model of the IDoS attack response.
Therefore, we provide a probabilistic characterization of human decisions concerning
AM strategies and other observable features from the alerts. By assuming a sequential
arrival of attacks with semi-Markov state transitions, we conduct a data-driven app-
roach to evaluate the inspection results in real-time. Under a mild assumption, we prove
the computational equivalency between two Dynamic Programming (DP) representa-
tions to simplify the value iteration and the Temporal-Difference (TD) learning process.
Numerical results corroborate the effectiveness of learning by showing the convergence
of the estimated value to the theoretical value. Without an AM strategy, we show that
both the severity level and the risk of IDoS attacks increase with the product of the
arrival rate and the detection threshold. With the assistance of AM strategies, we illus-
trate how different AM strategies can alleviate the severity level of IDoS attacks. Con-
cerning the IDoS risks, we illustrate the tradeoff between the quantity and quality of
the inspection, which leads to a meta-principle referred to as the law of rational risk-
reduction inattention.

1.1 Related Works

Human Vulnerability in Cyber Space. Attacks that exploit human vulnerabilities,
e.g., insider threats and social engineering, have raised increasing concerns in cyberse-
curity. Previous works have focused to design security rules [3] and incentives [4] to
increase human employees’ compliance and elicit desirable behaviors. However, com-
pared to the lack of security awareness and incentives, some human vulnerabilities (e.g.,
attention limitation and bounded rationality) cannot be altered or controlled. Thus, we
need to design assistive technologies to compensate for the ‘unpatchable’ human vul-
nerabilities. In [5], adaptive attention enhancement strategies have been developed to
engage users’ attention and maximize the rate of phishing recognition. Compared to
[5] that defends against stealthy attacks and the exploitation of inattention, this work
combats proactive attackers that overload human attention.

Data-Driven Approach for Security and Resilience. As more data becomes avail-
able, data-driven approaches have been widely used to create cyber situational aware-
ness and enhance network security and resilience [6], e.g., Bayesian learning for param-
eter uncertainty [7,8] and Q-learning for honeypot engagement [9]. The authors in
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[10] have studied the detection of feint attacks by a few-shot deep learning algorithm.
However, they have modeled feints as multi-stage attacks and focused on detecting the
revised causal relationship. Here, we focus on how feints affect human operators’ cog-
nitive resources and the consequent security decisions. The TD learning method helps
address the long-standing challenge of human modeling and further enables us to eval-
uate human performance efficiently and robustly.

1.2 Notations and Organization of the Paper

We summarize notations in Table 1. The rest of the paper is organized as follows.
Section 2 introduces the system modeling for IDoS attacks, alert generations, and the
inspections of human operators. Based on the system model, we present a Semi-Markov
Process (SMP) model in Sect. 3 to evaluate human performance, the severity level, and
the risks of IDoS attacks. We present a case study in Sect. 4 to corroborate our results
and Sect. 5 concludes the paper.

Table 1. Summary of variables and their meanings.

Variable Meaning

tk ∈ [0,∞) Arrival time of the k-th attack

τk = tk+1 − tk ∈ [0,∞) Time duration between k-th and (k+1)-th attack

τh,m
IN := ∑hm+m−1

k′=hm τk′
Inspection time at inspection stage h ∈ Z

0+

wk ∈ W := {wFE ,wRE ,wUN} Security decision at attack stages k ∈ Z
0+

am ∈ A Attention management strategy of period m ∈ Z
+

θ k ∈ Θ := {θFE ,θRE} Attack’s type at attack stages k ∈ Z
0+

θ̄ h := [θ hm, · · · ,θ hm+m−1] Consolidated type at inspection stage h ∈ Z
0+

sk ∈ S Alert’s category label at attack stages k ∈ Z
0+

xh := [shm, · · · ,shm+m−1] Consolidated state at inspection stage h ∈ Z
0+

Tr(sk+1|sk;θ k) Transition probability from sk to sk+1 under attack type θ k

T̄ r(xh+1|xh; θ̄ h) Transition function of the consolidated state

2 System Modeling of Informational Denial-of-Service Attacks

In Sect. 2.1, we present a high-level structure of the Informational Denial-of-Service
(IDoS) attacks and use a motivating example to illustrate their causes, consequences,
and mitigation methods. Then, we introduce the system modeling of sequential arrivals
of alerts that are triggered by feints and real attacks in Sect. 2.2. The manual inspec-
tion and the attention management strategies are introduced in Sect. 2.3. Human oper-
ators inspect each alert in real-time to determine the associated attack’s hidden type.
Meanwhile, the assistive technology automatically designs and implements the optimal
attention management strategy to compensate for human attention limitations.
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2.1 High-Level Abstraction and Motivating Example

As shown in Fig. 2, there is an analogy between the Denial-of-Service (DoS) attacks
in communication networks and the Informational Denial-of-Service (IDoS) attacks in
the human-in-the-loop systems. Both of them achieve their attack goals by exhausting
the limited resources. DoS attacks happen when the attacker generates a large number
of superfluous requests to deplete the computing resource of the targeted machine and
prevent the fulfillment of legitimate services. Analogously, IDoS attacks create a large
amount of unprocessed information to deplete cognitive resources of human operators
and prevent them from acquiring the knowledge contained in the information. We list

Fig. 2. The service request fulfillment process under DoS attacks and the information processing
flows under IDoS attacks in green and blue backgrounds, respectively.

several assailable cognitive resources under IDoS attacks as follows.

– Attention: Paying sustained attention to acquire proper information is costly. From
an economic perspective, inattention occurs when the cost of information acquisition
is lower than the attention cost measured by the information entropy [11]. IDoS
attacks generate feints to distract the human from the right information. An excessive
number of feints prohibit the human from process any information.

– Memory and Learning Capacity: Humans have limited memory and learning
capacity. Humans cannot remember the details or learn new things if there is an
information overload [2].

– Reasoning: Human decision-making consumes a large amount of energy, which is
one of the reasons why we have two modes of thought [12] (‘system 1’ thinking
is fast, instinctive, and emotional; while ‘system 2’ thinking is slower and more
logical). IDoS attacks can exert a heavy cognitive load to prevent humans from
deliberative decisions that use the ‘system 2’ thinking. Moreover, evidence shows
the paradox of choice [13]; i.e., rich choices can bring anxiety and prevent humans
from making any decisions.

When these cognitive resources are exhausted, the information cannot be processed
correctly and timely and serves as noise that leads to alert fatigue [14]. We use oper-
ators in the control room of nuclear power plants as a stylized example to illustrate



IDoS Attacks: Modeling and Mitigation of Attentional Human Vulnerability 319

Fig. 3. A stylized example of the monitor screen for operators in the control room of nuclear
power plants. The red triangles represent warnings and security messages.

the consequences of IDoS attacks and motivate the need for the security technology to
assist human operators against IDoS attacks. In Fig. 3, a monitor screen contains meters
that show the real-time readings of the temperature, pressure, and flow rate in a nuclear
power plant. Based on the pre-defined generation rules, warnings and messages pop up
at different locations. Due to the complexity of the nuclear control system, the inspec-
tion of these alerts consumes the operator’s time and cognitive resources. The attempt
to inspect all alerts and the constant switching among them can lead to missed detection
and erroneous behaviors. If the alerts are generated strategically by attacks, they may
further mislead humans to take actions in the attacker’s favor; e.g., focusing on feints
and ignoring the real attacks that hide among feints.

One way to mitigate IDoS attacks is to train the operators or human users to deal
with the information overload and remain vigilant and productive under a heavy cog-
nitive load. However, attentional training can be time-consuming and the effectiveness
is not guaranteed. The second method is to recruit more human operators to share the
information load. It would require the coordination of the operator team and can incur
additional costs of human resources. The third method is to develop assistive technolo-
gies to rank and filter the information to alleviate the cognitive load of human operators.
It would leverage past experiences and data analytics to pinpoint and prioritize critical
alerts for human operators to process. The first two methods aim to increase the capacity
or the volume of the cognitive resources in Fig. 2. The third method pre-processes the
information so that it adapts to the capacity and characteristics of cognitive resources.

2.2 Sequential Arrivals of Alerts Triggered by Feints and Real Attacks

In this work, we focus on the temporal aspect of the alerts (i.e., the frequency and
duration of their arrivals). The future work will incorporate their spatial locations on the
monitor screen as shown in Fig. 3. As highlighted by the orange background in Fig. 4,
attacks arrive sequentially at time tk,k ∈ Z

0+ where t0 = 0. Let τk := tk+1 − tk ∈ [0,∞)
be the inter-arrival time between the (k+1)-th attack and the k-th attack for all k ∈Z

0+.
We refer to the k-th attack equivalently as the one at attack stage k ∈ Z

0+.
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Fig. 4. The sequential arrival of alerts at attack stage k ∈Z
0+ and the periodic manual inspections

at inspection stage h ∈ Z
0+ under AM strategy am ∈ A where m = 2.

Each attack can be either a feint (denoted by θFE ) or a real attack (denoted by θRE )
with probability bFE ∈ [0,1] and bRE ∈ [0,1], respectively, where bFE + bRE = 1. We
assume that both types of attacks trigger alerts with the same time delay. Thus, there is
a one-to-one mapping between the sequence of attacks and alerts, and we can consider
the zero delay time without loss of generality. The alerts cannot reflect the attack’s type
denoted by θ k ∈ Θ := {θFE ,θRE} at all attack stages k ∈ Z

0+. However, the alerts can
provide human operators with a category label from a finite setS based on observable
features or traces of the associated attacks, e.g., the attack locations as shown in Sect. 4.
We denote the alert’s category label at attack stage k ∈ Z

0+ as sk ∈ S .

2.3 Manual Inspection and Attention Management

Since an alert does not directly reflect whether the attack is feint or real, human opera-
tors need to inspect the alert to determine the hidden type, which leads to three security
decisions: the attack is feint (denoted by wFE ), the attack is real (denoted by wRE ), or
the attack’s type is unknown (denoted by wUN). We use wk ∈ W := {wFE ,wRE ,wUN}
to denote the human operator’s security decision of the k-th alert. Each human operator
has limited attention and cannot inspect multiple alerts simultaneously. Moreover, the
human operator requires sustained attention on an alert to make an accurate security
decision. Frequent alert pop-ups can distract humans from the current alert inspection
and result in alert fatigue and the paradox of choice as illustrated in Sect. 2.1. To com-
pensate for the human’s attention limitation, we can intentionally make some alerts
less noticeable, e.g., without sounds or in a light color. Then, the human can pay sus-
tained attention to the alert currently under inspection. These inconspicuous alerts can
be assigned to other available inspectors with an additional cost of human resources.
If these alerts are time-insensitive, they can also be queued and inspected later by the
same operator at his convenience. However, in practice, the number of alerts usually far
exceeds the number of available inspectors, and the alerts cannot tolerate delay. Then,
these alerts are dismissed as a tradeoff for the timely and accurate inspection of the
other highlighted alerts. In this case, these inconspicuous alerts are not inspected and
automatically assigned the security decision wUN .
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In this paper, we focus on the class of Attention Management (AM) strategies,
denoted by A := {am}m∈Z+ , that highlight alerts periodically to engage operators in
the alert inspection. We assume that the human operator can only notice and inspect an
alert when it is highlighted. Then, AM strategy am ∈ A means that the human operator
inspects the alerts at attack stages k = hm,h ∈ Z

0+. We refer to the attack stages during
the h-th inspection as the inspection stage h ∈ Z

0+. Then, under AM strategy am ∈ A ,
each inspection stage contains m attack stages as shown in the blue background of
Fig. 4. The h-th inspection has a duration of τh,m

IN := ∑hm+m−1
k′=hm τk′

for all h ∈ Z
0+.

Decision Probability with N Thresholds. The human operator’s security decision
depends on the attack’s type, the category label, and the AM strategy. We refer to
Pr(wk|sk,am;θ k) as the decision probability; i.e., the probability of human making deci-
sion wk ∈ W when the attack’s type is θ k ∈ Θ , the category label is sk ∈ S , and the
AM strategy is am ∈ A . As a probability measure, the decision probability satisfies
∑wk∈W Pr(wk|sk,am;θ k) = 1,∀θ k ∈ Θ ,∀sk ∈ S ,∀am ∈ A .

At attack stages where alerts are inconspicuous, i.e., for all k �= hm,h ∈ Z
0+, the

security decision wk is wUN with probability 1; i.e., for any given inspection policy
am ∈ A , we have Pr(wk|sk,am;θ k) = 1{wk=wUN},∀sk ∈ S ,∀wk ∈ W ,∀θ k ∈ Θ ,∀k �=
hm,h ∈ Z

0+. At attack stages of highlighted alerts, i.e., for all k = hm,h ∈ Z
0+, the

human operator inspects the h-th alert for a duration of τh,m
IN . At each inspection stage

h, a longer period length m induces a longer inspection time τh,m
IN = ∑hm+m−1

k′=hm τk′
. Based

on the IDoS model in Sect. 2, different AM strategies only affect the inspection time.
Thus, we can rewrite the decision probability Pr(wk|sk,am;θ k) as Pr(wk|sk,τh,m

IN ;θ k) at
attack stages k = hm,h ∈ Z

0+.
Adequate inspection time τh,m

IN leads to an accurate security decision. In this work,
we assume that the probability of correct decision-making can be approximated by
an increasing step function of the inspection time as shown in Fig. 5. That is, N + 1
thresholds divide the support of the random variable τh,m

IN , i.e., [0,∞), into N regions
where the probability of correct security decisions increases. We can increase the
number of thresholds, i.e., the value of N, to improve the accuracy of the approxi-
mation. For each sk ∈ S and θ k ∈ Θ , we denote the corresponding N thresholds as
τ̄n(sk,θ k)∈N (sk,θ k),n ∈ {0,1, · · · ,N}, whereN (sk,θ k) is a finite set, τ̄0(sk,θ k) = 0,
τ̄N(sk,θ k) = ∞, and τ̄0(sk,θ k) < τ̄N(sk,θ k) < τ̄2(sk,θ k) < · · · < τ̄N(sk,θ k). If τh,m

IN

belongs to the region n ∈ {0,1, · · · ,N}, i.e., τ̄n−1(sk,θ k) < τh,m
IN < τ̄n(sk,θ k), then the

decision probabilities under θFE and θRE are represented as (1) and (2), respectively,

Pr(wk|sk,τh,m
IN ;θFE) =

⎧
⎪⎨

⎪⎩

p̄n−1
CD (sk,θFE) ∈ [0,1] if wk = wFE

p̄n−1
ID (sk,θFE) ∈ [0,1] if wk = wRE

1− p̄n−1
CD (sk,θFE)− p̄n−1

ID (sk,θFE) if wk = wUN

(1)

and

Pr(wk|sk,τh,m
IN ;θRE) =

⎧
⎪⎨

⎪⎩

p̄n−1
CD (sk,θRE) ∈ [0,1] if wk = wRE

p̄n−1
ID (sk,θRE) ∈ [0,1] if wk = wFE

1− p̄n−1
CD (sk,θRE)− p̄n−1

ID (sk,θRE) if wk = wUN

(2)
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Fig. 5. The probability of the human operator making correct security decisions, i.e.,
Pr(wFE |sk,τh,m

IN ;θFE) and Pr(wRE |sk,τh,m
IN ;θRE), is approximated as an increasing step function

of the inspection time τh,m
IN at inspection stage h ∈ Z

0+.

In both (1) and (2), the first and second cases represent the probability of making correct
and incorrect security decisions, respectively. The third case represents the probability
that the human operator is uncertain about the attack’s type and needs more time to
inspect. A longer inspection time has two impacts:

– Increases the probability of making correct security decisions, i.e., 0 =
p̄0CD(s

k,θ k)≤ p̄1CD(s
k,θ k)≤ ·· · ≤ p̄N

CD(s
k,θ k)≤ 1, for any given sk ∈S and θ k ∈Θ .

– Decreases the probability of incorrect security decisions, i.e., 0 ≤ p̄N
ID(s

k,θ k) ≤
p̄N−1

ID (sk,θ k) ≤ ·· · ≤ p̄0ID(s
k,θ k) ≤ 1, for any given sk ∈ S and θ k ∈ Θ .

3 Semi-Markov Process Model for Performance Evaluation

We assume that the category label of the sequential attacks follows a semi-Markov pro-
cess based on the attack’s type where Tr(sk+1|sk;θ k) represents the transition probabil-
ity from sk ∈ S to sk+1 ∈ S when the attack’s type is θ k ∈ Θ at attack stage k ∈ Z

0+.
As a probability measure, the transition probability satisfies ∑sk+1∈S Tr(sk+1|sk;θ k) =
1,∀sk ∈ S ,∀θ k ∈ Θ . The inter-arrival time τk is a continuous random variable with a
Probability Density Function (PDF) denoted by z(·|sk;θ k).

3.1 Consolidated State and Consolidated Cost

Since the inspection is made every m attack stages, we define the consolidated state
xh := [shm, · · · ,shm+m−1] ∈ X :=S m that consists of the category labels of m succes-
sive alerts at inspection stage h ∈ Z

0+. Analogously, we define the consolidated type
θ̄ h := [θ hm, · · · ,θ hm+m−1] ∈ Θ̄ := Θ m. Then, we denote the transition function of the
consolidated state as T̄ r(xh+1|xh; θ̄ h), which is also Markov as shown below.
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Pr(xh+1|xh, · · · ,x1; θ̄ h, · · · , θ̄ 1) =
Pr(xh+1,xh, · · · ,x1; θ̄ h, · · · , θ̄ 1)

Pr(xh, · · · ,x1; θ̄ h, · · · , θ̄ 1)

=
Pr(s(h+2)m−1|s(h+2)m−2;θ (h+2)m−2)Pr(s(h+2)m−2|s(h+2)m−3;θ (h+2)m−3) · · ·Pr(s1 s0;θ 0)
Pr(s(h+1)m−1|s(h+1)m−2;θ (h+1)m−2)Pr(s(h+1)m−2|s(h+1)m−3;θ (h+1)m−3) · · ·Pr(s1 s0;θ 0)

= Pr(s(h+2)m−1|s(h+2)m−2;θ (h+2)m−2) · · ·Pr(s(h+1)m−1|s(h+1)m−2;θ (h+1)m−2)

= T̄ r(xh+1|xh; θ̄ h).
(3)

The inspection time τh,m
IN = ∑hm+m−1

k′=hm τk′
at inspection stage h ∈ Z

0+ is a continuous
random variable with support [0,∞) whose PDF z̄(·|xh; θ̄ h) can be computed based on
the PDF z. Based on z̄ and Pr(whm|shm,τh,m

IN ;θ hm) in (1) and (2), we can compute the
probability of security decision whm at inspection stage h ∈ Z

0+ given xh and θ̄ h, i.e.,

Pr(whm|xh,am; θ̄ h) =
∫ ∞

0
Pr(whm,τh,m

IN |xh; θ̄ h)d(τh,m
IN )

=
∫ ∞

0
Pr(whm|shm,τh,m

IN ;θ hm)z̄(τh,m
IN |xh, θ̄ h)d(τh,m

IN ). (4)

Let Pr(whm|xh,am;θ hm) be the shorthand notation for Eθ l∼[bFE ,bRE ],l∈{hm+1,··· ,hm+m−1}
[Pr(whm|xh,am; θ̄ h)],∀θ hm ∈Θ . We define the probability of the human operator making
correct security decisions at inspection stage h ∈ Z

0+ as

p̂CD(xh,am) := bFEPr(wFE |xh,am;θFE)+bREPr(wRE |xh,am;θRE),∀xh ∈ X , (5)

which leads to the consolidated severity level of IDoS attacks in Definition 1.

Definition 1 (Consolidated Severity Level). We define 1− p̂CD(xh,am) as the con-
solidated severity level of IDoS attacks under the consolidated state xh ∈ X and AM
strategy am ∈ A .

We denote c(wk,sk;θ k) as the operator’s cost at attack stage k ∈ Z
0+ when the

alert’s category label is sk ∈ S , the attack’s type is θ k ∈ Θ , and the security decision is
wk ∈ W . At attack stages where alerts are inconspicuous, i.e., for all k �= hm,h ∈ Z

0+,
the security decision is wUN without manual inspection, which incurs an uncertainty
cost cUN > 0. At attack stages of highlighted alerts, i.e., for all k = hm,h ∈ Z

0+,
the human operator obtains a reward (resp. cost), denoted by cCD(sk;θ k) < 0 (resp.
cID(sk;θ k) > 0), for correct (resp. incorrect) security decisions. If the human operator
remains uncertain about the attack’s type after the inspection time τh,m

IN , i.e., whm =wUN ,
there is the uncertainty cost cUN . We define the human operator’s consolidated cost at
inspection stage h ∈ Z

0+ as

c̄(xh,am; θ̄ h) := (m−1)cUN + ∑
whm∈W

Pr(whm|xh,am; θ̄ h)c(whm,shm;θ hm). (6)

3.2 Long-Term Risk Measures for IDoS Attacks

In this section, we define four long-term risk measures whose relations are shown in
Fig. 6. The Cumulative Cost (CC) and Expected Cumulative Cost (ECC) on the left
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directly follow from the discounted summation of the consolidated cost c̄ in (6). Since
CC and ECC depend on the consolidated state xh and the consolidated type θ̄ h, it is of
high dimension and thus difficult to store and compute. By taking an expectation over
shm+1, · · · ,shm+m−1 ∈ S , we reduce the dimension and obtain the Aggregated Cumu-
lative Cost (ACC) and Expected Aggregated Cumulative Cost (EACC) on the right of
the figure. The DP representations for CC (resp. ECC) and ACC (resp. EACC) are gen-
erally not equivalent. We identify the condition under which two DP representations
are equivalent in Sect. 3.3. The two risk learning schemes are introduced in Sect. 3.4.
Since the consolidated risk learning is based on ECC, it has to wait for the realization of
the consolidated state xh := [shm, · · · ,shm+m−1] to evaluate the inspection performance.
On the contrary, the EACC-based aggregated risk learning just needs shm to evaluate
the inspection performance, which reduces the dimension of the samples and enables
evaluations with no delay.

Fig. 6. Relations among four long-term risk measures, their DP representations, and two risk
learning schemes.

Cumulative Cost and Expected Cumulative Cost. With discounted factor γ ∈ (0,1),
we define the Cumulative Cost (CC) under xh0 , θ̄ h0 , and action am as u(xh0 ,am; θ̄ h0) :=
E[∑∞

h=h0
(γ)h · c̄(xh,am; θ̄ h)], where the expectation is taken over xh0+n and θ h0m+n for

all n ∈ {1,2, · · · ,∞}. By Dynamic Programming (DP), we represent u in the following
iterative form, i.e., for all xh ∈ X , θ̄ h ∈ Θ̄ , and h ∈ Z

0+,

u(xh,am; θ̄ h) = c̄(xh,am; θ̄ h)+ γ ∑
xh+1∈X

T̄ r(xh+1|xh; θ̄ h)Eθ̄ h+1 [u(xh+1,am; θ̄ h+1)]. (7)

Denote ul(xh,am; θ̄ h), l ∈ Z
0+, as the estimated value of u(xh,am; θ̄ h) at the l-th itera-

tion, we can compute (7) by the following value iteration algorithm in Algorithm 1. It
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can be shown that u∞(xh,am; θ̄ h) converges to u(xh,am; θ̄ h) and the following lemma
holds [15].

Algorithm 1: Value Iteration

1 Initialize a stopping threshold ε > 0, l = 0, and u0(xh,am; θ̄ h) = 0,∀xh ∈ X , θ̄ h ∈ Θ̄ ;
2 while maxxh∈X ,θ̄ h∈Θ̄ [ul+1(xh,am; θ̄ h)−ul(xh,am; θ̄ h)] ≥ ε do
3 for xh ∈ X and θ̄ h ∈ Θ̄ do
4 Update estimated value ul+1(xh,am; θ̄ h) =

c̄(xh,am; θ̄ h)+ γ ∑xh+1∈X T̄ r(xh+1|xh; θ̄ h)Eθ̄ h+1 [ul(xh+1,am; θ̄ h+1)];
5 end
6 l ← l +1 ;
7 end
8 Return ul+1(xh,am; θ̄ h) ;

Lemma 1 (Monotonicity Lemma). Let u′(xh0 ,am; θ̄ h0) := E[∑∞
h=h0

(γ)h · c̄′(xh,am;

θ̄ h)]. If c̄(xh,am; θ̄ h) > c̄′(xh,am; θ̄ h),∀xh ∈ X , θ̄ h ∈ Θ̄ , then u(xh,am; θ̄ h) > u′(xh,
am; θ̄ h) for all xh ∈ X , θ̄ h ∈ Θ̄ .

We define the Expected Cumulative Cost (ECC) as û(xh,am) := Eθ̄ h [u(xh,am; θ̄ h)],
∀xh ∈ X , and write the DP representation of û in (8) by taking expectation over θ̄ h

in (7).

û(xh,am) = Eθ̄ h [c̄(xh,am; θ̄ h)]+ γ ∑
xh+1∈X

Eθ̄ h [T̄ r(xh+1|xh; θ̄ h)]û(xh+1,am). (8)

Aggregated Cumulative Cost and Expected Aggregated Cumulative Cost. We
define the Aggregated Cumulative Cost (ACC) as

ũ(shm,am; θ̄ h) := ∑
shm+1,··· ,shm+m−1∈S

[

Pr(shm+1, · · · ,shm+m−1|shm; θ̄ h)

·u([shm, · · · ,shm+m−1],am; θ̄ h)
]

, (9)

and the Expected Aggregated Cumulative Cost (EACC) as

ū(shm,am) := Eθ l∼[bFE ,bRE ],l∈{hm,··· ,hm+m−1}[ũ(s
hm,am; θ̄ h)],∀shm ∈ S . (10)

Both ECC û(x0,am) and EACC ū0(s0,am) evaluate the long-term performance of the
AM strategy am ∈ A on average as defined in Definition 2. However, EACC depends
on shm but not on shm+1, · · · ,shm+m−1.

Definition 2 (Consolidated and Aggregated IDoS risks). We define ECC û(xh,am)
(resp. EACC ū(shm,am)) as the consolidated (resp. aggregated) risk of the IDoS attack
under xh ∈ X (resp. shm ∈ S ) and attention strategy am ∈ A .
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3.3 Inter-arrival Time with Independent PDF

In Sect. 3.3, we consider the special case where PDF z is independent of sk and θ k,
which reduces the dependency of p̂CD and c̄ from xh to shm as shown in Lemma 2.
Moreover, we can obtain DP representations for ACC ũ and EACC ū as shown in Theo-
rem 1. Value iteration in Algorithm 1 can be revised accordingly to solve these two DP
representations.

Lemma 2. If PDF z is independent of sk and θ k, then p̂CD(xh,am) in (5) can be rewrit-
ten as p̂CD(shm,am) and the consolidated cost c̄(xh,am; θ̄ h) in (6) can be rewritten as
c̄(shm,am;θ hm) without loss of generality.

Proof. If z is independent of sk,θ k, then z̄ is independent of xh, θ̄ h, and
Pr(whm|xh,am; θ̄ h) in (4) only depends on shm and θ hm. Thus, p̂CD becomes a func-
tion of shm,am, and the consolidated cost c̄ in (6) becomes a function of shm, θ hm, and
am. 
�
Theorem 1. If PDF z is independent of sk and θ k, then we have the following DP
representation in (11) for the ACC

ũ(shm,am; θ̄ h) = c̄(shm,am;θ hm)

+γ ∑
s(h+1)m∈X

Pr(s(h+1)m|shm; θ̄ h)Eθ̄ h+1 [ũ(s(h+1)m,am; θ̄ h+1)], (11)

and the following DP representation in (12) for the EACC

ū(shm,am) = Eθ hm [c̄(shm,am;θ hm)]

+γ ∑
s(h+1)m∈X

Eθ̄ h [Pr(s(h+1)m|shm; θ̄ h)] · ū(s(h+1)m,am), (12)

where

Eθ̄ h [Pr(s(h+1)m|shm; θ̄ h)] = ∑
shm+1,··· ,shm+m−1∈S

(h+1)m

∏
l=hm

Eθ l∼[bFE ,bRE ][Tr(sl+1|sl ;θ l)]. (13)

Proof. First, for all θ̄ h ∈ Θ̄ , we have

∑
shm+1,··· ,shm+m−1∈S

Pr(shm+1, · · · ,shm+m−1|shm; θ̄ h) · c̄(shm,am;θ hm) ≡ c̄(shm,am;θ hm).

Second, since

T̄ r(xh+1|xh; θ̄ h) = Pr(s(h+1)m, · · · ,s(h+2)m−1|shm+m−1; θ̄ h)

= Pr(s(h+1)m+1, · · · ,s(h+2)m−1|s(h+1)m; θ̄ h)Tr(s(h+1)m|shm+m−1;θ hm+m−1)
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as shown in (3), we have

∑
shm+1,··· ,shm+m−1∈S

Pr(shm+1, · · · ,shm+m−1|shm; θ̄ h)

· ∑
xh+1∈X

T̄ r(xh+1|xh; θ̄ h)Eθ̄ h+1 [u(xh+1,am; θ̄ h+1)]

= ∑
shm+1,··· ,shm+m−1∈S

Pr(shm+1, · · · ,shm+m−1|shm; θ̄ h)

· ∑
s(h+1)m∈S

Tr(s(h+1)m|shm+m−1;θ hm+m−1) ·Eθ̄ h+1 [ũ(s(h+1)m,am; θ̄ h+1)].

Based on the Markov property, we have

∑
shm+1,··· ,shm+m−1∈S

Pr(shm+1, · · · ,shm+m−1|shm; θ̄ h)Tr(s(h+1)m|shm+m−1;θ hm+m−1)

= Pr(s(h+1)m|shm; θ̄ h).

Therefore, we obtain (11) by plugging (7) into the definition of ACC in (9). We obtain
(12) by taking expectation over θ̄ h and using the definition of EACC in (10). Based on
(13), we can compute Eθ̄ h [Pr(s(h+1)m|shm; θ̄ h)] directly from the transition probability
Tr by the forward Kolmogorov equation. 
�
Remark 1 (Computational Equivalency). To compute ũ, we generally need to first
compute u via (7) and then take expectation over shm+1, · · · ,shm+m−1. This computation
is of high temporal and spatial complexity as u depends on xh. However, for the special
case where z is independent of sk and θ k, we can compute ũ directly based on (11) and
reduce the computational complexity. Thus, Theorem 1 establishes a computational
equivalency between the two DP representations in (7) and (11), which contributes
to a lightweight computation scheme. Analogously, we also establish a computational
equivalency between the two DP representations in (8) and (12) by taking expectations
of (7) and (11) with respect to θ̄ h.

3.4 Data-Driven Assessment

In practice, we do not know the parameters of the SMP model, including the transition
probability Tr, the PDF z, the threshold set N (sk,θ k), and the set of probability of
making correct (resp. incorrect) decisions p̄n

CD (resp. p̄n
ID), n ∈ {0,1 · · · ,N}. Therefore,

we use Temporal-Difference (TD) learning [15] to evaluate the performance of the AM
strategy am ∈ A based on the inspection results in real-time.

Consolidated IDoS Risk Learning. Letting vh(xh,am) be the estimated value of
û(xh,am) at the inspection stage h ∈ Z

0+, we have the following recursive update in
real-time as shown in (14).

vh+1(x̂h,am) = (1−αh(x̂h))vh(x̂h,am)+αh(x̂h)(ĉh + γvh(x̂h+1,am)), (14)

where x̂h (resp. x̂h+1) is the observed state value at the current inspection stage h (resp.
the next inspection stage h + 1), αh(x̂h) ∈ (0,1) is the learning rate, and ĉh is the
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observed cost at stage h ∈ Z
0+. To guarantee that v∞ convergences to û, we require

∑∞
h=0 αh(xh) = ∞ and ∑∞

h=0(αh(xh))2 < ∞ for all xh ∈ X .

Aggregated IDoS Risk Learning. For the special case where PDF z is independent of
sk and θ k, we can use TD learning to directly estimate EACC ū(shm,am) based on (12).
Letting v̄h(xh,am) be the estimated value of ū(shm,am) at the inspection stage h ∈ Z

0+,
we have the following recursive update in real-time as shown in (15).

v̄h+1(ŝhm,am) = (1− ᾱh(ŝhm))vh(ŝhm,am)+ ᾱh(ŝhm)(ĉh + γ v̄h(ŝ(h+1)m,am)), (15)

where ŝhm (resp. ŝ(h+1)m) is the observed state value at the current inspection stage h
(resp. the next inspection stage h+ 1), ᾱh(ŝhm) ∈ (0,1) is the learning rate, and ĉh is
the observed cost at stage h ∈ Z

0+. To guarantee that v̄∞ convergences to ū, we require
∑∞

h=0 ᾱh(shm) = ∞ and ∑∞
h=0(ᾱh(shm))2 < ∞ for all shm ∈ S .

4 Numerical Experiments and Analysis

We provide a numerical case study in this section to corroborate the results. Let the set
of category labelS = {sAL,sNL,sPL} be the location of the attacks where sAL, sNL, and
sPL represent the application layer, network layer, and physical layer, respectively. We
consider the special case where τk,∀k ∈ Z

0+, is an exponential random variable with
a constant rate β > 0, i.e., z(τ|sk,θ k) = βe−βτ ,∀sk ∈ S ,θ k ∈ Θ ,τ ∈ [0,∞). Figure 7
illustrates an exemplary sequential attack where the vertical dashed lines represent the
attack stages k ∈ Z

0+. The length of the rectangles between the k-th and (k + 1)-th
vertical dash lines represents the k-th attack’s duration τk. The height of each square
distinguishes the attack’s type; i.e., tall and short rectangles represent feints and real
attacks, respectively.

Fig. 7. The sequential arrival of feints and real attacks with different category labels.
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The inspection time τh,m
IN , as the summation of m i.i.d. exponential random vari-

ables, is an Erlang distribution with shape m and and rate β > 0, i.e., z̄(τ|xh; θ̄ h) =
β mτm−1e−βτ

(m−1)! ,∀xh ∈ X ,∀θ̄ h,τ ∈ [0,∞). Consider a single threshold N = 1 and N =
{τ̄0(sk,θ k), τ̄N(sk,θ k)}. Then, Pr(whm|xh,am; θ̄ h) in (4) has the following closed form
in (16) for correct decisions, i.e., θ hm = θFE ,whm = wFE or θ hm = θRE ,whm = wRE .

Pr(whm|shm,am;θ hm) =
∫ ∞

τ̄N(shm,θ hm) p̄N
CD(s

hm,θ hm)β mτm−1e−βτ

(m−1)! dτ

= p̄N
CD(s

hm,θ hm)(1−CDF(τ̄N(shm,θ hm))), (16)

where the Cumulative Distribution Function (CDF) of the random variable τh,m
IN is

CDF(τ̄N(shm,θ hm)) = 1−
m−1

∑
n=0

1
n!

e−β τ̄N(shm,θ hm)(β τ̄N(shm,θ hm))n. (17)

4.1 Value Iteration and TD Learning

Since PDF z is independent of sk and θ k, we can compute EACC in (12) by value itera-
tion. As shown in Fig. 8a, the estimated values of EACC under three different category
labels, i.e., ū(sAL,am), ū(sNL,am), and ū(sPL,am) in black, red, and blue, respectively, all
converge within 40 iterations. When the exact model is unknown, we use TD learning
in (15) to estimate EACC ū(shm,am). In particular, we choose ᾱh(shm) = kc

kT I(shm)−1+kc

as the learning rate where kc ∈ (0,∞) is a constant parameter and kT I(shm) ∈ Z
0+ is

the number of visits to shm ∈ S up to stage h ∈ Z
0+. We illustrate the convergence

of TD learning in Fig. 8b with kc = 6. Since the number of visits to sAL, sNL, and sPL

depends on the transition probability T̄ r, the learning stages for three category labels
are of different lengths.
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(a) Theoretical value by value iteration.
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(b) Simulated value by TD learning.

Fig. 8. Computation and learning of EACC.
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(a) Learning rate decreases too fast kc = 1.
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(b) Learning rate decreases too slow kc = 40.

Fig. 9. Improper values of kc lead to unsatisfactory learning performances in finite steps.

If kc is too small as shown in Fig. 9a, the learning rate decreases so fast that new
observed samples hardly update the estimated value. Then, it takes longer learning
stages to learn the correct value. On the contrary, if kc is too large as shown in Fig. 9b,
the learning rate decreases so slow that new samples contribute significantly to the cur-
rent estimated value, which causes a large variation and a slow convergence.

4.2 Severity Level and Aggregated Risk Without Attention Management

When there are no AM strategies, i.e., m = 1, the human operator switches attention
whenever a new attack arrives. Then, (17) can be simplified as CDF(τ̄N(shm,θ hm)) =
1− e−β τ̄N(shm,θ hm),∀shm ∈ S ,θ hm ∈ Θ , which is an exponential function of the product
of the rate β > 0 and the threshold τ̄N(shm,θ hm)> 0. Thus, p̂CD(xh,am) in (5) decreases
monotonously as the value of the product β τ̄N(shm,θ hm) increases. Based on Lemma
2, we can write the consolidated severity level as 1− p̂CD(shm,am) without loss of gen-
erality. Let τ̄N(sAL,θ hm) ≥ τ̄N(sNL,θ hm) ≥ τ̄N(sPL,θ hm), we plot the severity level, i.e.,
1− p̂CD(shm,am), for different values of rate β ∈ (0,5) in Fig. 10a. We illustrate the
aggregated IDoS risk versus β ∈ (0,5) in Fig. 10b. As magnified by two insert boxes,
the aggregated IDoS risk under sAL, sNL, and sPL can change orders for different β .

4.3 Severity Level and Aggregated Risk with Attention Management

We illustrate how different AM strategies affect the severity level and the aggregated
risk of IDoS attacks in Fig. 11 and Fig. 12, respectively, where p̄N

CD(s
hm,θFE) = 1 and

p̄N
CD(s

hm,θRE) = 0.9 for all shm ∈ S , and bFE = 0.6. As shown in Fig. 11, the severity
level strictly decreases to 0.04 as m increases regardless of different values of β . We
choose a small arrival rate β = 1 in Fig. 11a and a large rate β = 3 in Fig. 11b. For a
given m ∈Z

+, a larger arrival rate results in a higher severity level, and more alerts need
to be made inconspicuous to reduce the severity level.

We choose β = 1 and observe the linear increase of the aggregated IDoS risk when
m is sufficiently large in Fig. 11. We investigate how high and low uncertainty costs
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(b) Aggregated risk vs.  .

Fig. 10. Severity level and aggregated risk of IDoS attacks under sAL, sNL, and sPL in black, red,
and blue, respectively. The insert boxes magnify the selected areas. (Color figure online)
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(a) Small arrival rate  = 1.
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(b) Large arrival rate  = 3.

Fig. 11. Severity levels of IDoS attacks under sAL, sNL, and sPL in black, red, and blue. (Color
figure online)

cUN affect the aggregated IDoS risk in Fig. 12a and Fig. 12b, respectively. If the uncer-
tainty cost is much higher than the expected reward of correct decision-making, then
the detailed inspection and correct security decisions are not of priority. As a result, the
‘spray and pray’ strategy should be adopted; i.e., let the operator inspect as many alerts
as possible and use the high quantity to compensate for the low quality of these inspec-
tions. Under this scenario, ū(shm,am) increases with m ∈ Z

+ for all shm ∈ S as shown
in Fig. 12a. If the uncertainty cost is of the same order as the inspection reward on aver-
age, then increasing m in a certain range (e.g., m ∈ {1,2,3,4,} in Fig. 12b) can increase
the probability of correct decision-making and reduce the aggregated IDoS risk. The
loss of alert omissions outweighs the gain of detailed inspection when m is beyond that
range.

Remark 2 (Rational Risk-Reduction Inattention). In Fig. 12b, a small m represents
a coarse inspection with a large number of alerts while a large m represents a fine
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(a) High cost cUN(shm, k) = 20,∀shm, hm.
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(b) Low cost cUN(shm, k) = 0.2,∀shm, hm.

Fig. 12. Aggregated IDoS risks under sAL, sNL, and sPL in black, red, and blue. (Color figure
online)

inspection of a small number of alerts. The U-shape curve reflects that the minimum
risk is achieved with a proper level of intentional inattention to alerts, which we refer
to as the law of rational risk-reduction inattention.

5 Conclusion

Attentional human vulnerability can be exploited by attackers and leads to a new class
of advanced attacks called the Informational Denial-of-Service (IDoS) attacks. IDoS
attacks intensify the shortage of human operators’ cognitive resources in this age of
information explosion by generating a large number of feint attacks. These feints dis-
tract operators from detailed inspections of the alerts, which significantly decrease the
accuracy of their security decisions and undermine cybersecurity. We have formally
introduced the IDoS attacks and established a quantitative framework that provides a
theoretic underpinning to the IDoS attacks under limited attention resources. We have
developed human-assistive security technologies that intentionally make selected alerts
inconspicuous so that human operators can pay sustained attention to critical alerts.

We have modeled the sequential arrival of IDoS attacks as a semi-Markov process
and the probability of correct decision-making as an increasing step function concern-
ing the inspection time. Dynamic Programming (DP) and Temporal-Difference (TD)
learning have been used to represent long-term costs and evaluate human performance
in real-time, respectively. We have established the computational equivalency between
the DP representation of the Cumulative Cost (CC) (resp. Expected Cumulative Cost
(ECC)) and the Aggregated Cumulative Cost (ACC) (resp. Expected Aggregated Cumu-
lative Cost (EACC)). This equivalency has reduced the dimension of the state space and
the computational complexity of the value iteration and online learning algorithms.

From the case study, we have validated that both the severity level and the aggre-
gated risk of IDoS attacks increase exponentially with the product of the attack’s arrival
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rate and the operator’s inspection efficiency. When Attention Management (AM) strate-
gies are applied, we have observed that the severity level strictly decreases with the
inspection time. We have arrived at the ‘less is more’ security principle in cases where
correctly identifying the real and feint attacks is of high priority. It has been shown
that inspecting a small number of selected alerts with sustained attention outperforms
dividing the limited attention to inspect all alerts.

The future work would focus on coordinating multiple human operators to share
the cognition load. Based on the literature of cognitive science and existing results of
human experiments, we would develop detailed models of human attention, reason-
ing, and risk-perceiving to better characterize human factors in cybersecurity. Finally,
we would extend the periodic AM strategies to adaptive ones that use the feedback of
the alerts’ category labels and the operator’s current cognition status reflected by bio-
sensors.
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