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Abstract—This work provides a novel interpretation of Markov
Decision Processes (MDP) from the online optimization view-
point. In such an online optimization context, the policy of the
MDP is viewed as the decision variable while the corresponding
value function is treated as payoff feedback from the environ-
ment. Based on this interpretation, we construct a Blackwell
game induced by MDP, which bridges the gap among regret
minimization, Blackwell approachability theory, and learning
theory for MDP. Specifically, Based on the approachability theory,
we propose 1) Blackwell value iteration for offline planning and 2)
Blackwell Q-learning for online learning in MDP, both of which
are shown to converge to the optimal solution. Our theoretical
guarantees are corroborated by numerical experiments.

Index Terms—Blackwell approachability, no-regret learning,
reinforcement learning, online optimization

I. INTRODUCTION

Sequential decision making under uncertainty lies in the
heart of many real world problems, ranging from portfolio
management to robotic control. Many models and methods
have been proposed to study the dynamic decision-making
process, among which Markov decision process (MDP) [1]
and online optimization [2], together with their variants, are
most popular and well studied ones. Based on Bellman prin-
ciple [3], solving an MDP problem relies on the backward
induction using dynamic programming, where the future is
considered when making decisions. For online settings, where
the transition kernel and/or the reward function are unknown,
reinforcement learning (RL) algorithms [4] come into play,
which more or less are based on dynamic programming idea.
Combined with linear or nonlinear function approximators
[51, [6], [7], dynamic programming-based RL methods such
as Q-learning [8], actor-critic [9] have brought about many
empirical successes.

On the other hand, online optimization operates in a forward
fashion, where decisions are made based on history, and
no information regarding the future is revealed during the
process. In online optimization, the solution concept rests on
the optimality in hindsight, widely referred to as no-regret
property, as we shall introduce in the background. Closely
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related to the no-regret idea, Blackwell approachability [10]
gives a geometric interpretation of how regret vanishes over
time in online decision making. As pointed out in [11], [12],
approachcability and no regret are equivalent, and we can
develop no-regret algorithms based on the geometric intuition
of approachability. As we will show in this paper, such
connection can be made explicitly by considering a Blackwell
game with vector-valued payoffs measuring the regret.

Instead of studying MDP from an online optimization
perspective, most prior works focus on online version of MDP,
where transition and/or reward are time-varying, referred to as
online MDP [13], [14] or non-stationary RL [15], [16]. Under
this setting, the no-regret idea plays an important role, and we
see no difficulty in extending our approachbility framework to
these problems as we adopt the online learning viewpoint.
Related to our work, [17] also applies the no-regret idea
to MDP problems, which provides theoretical guarantees for
offline settings. As shown in the paper, the convergence of the
proposed method relies on no-absolute-regret algorithms, such
as follow-the-regularized-leader (FTRL) with the linear cost.
We argue that such no-regret method is a special case of our
Blackwell approachability based framework.

In this paper, we take a step toward understanding MDP
from the perspective of online optimization. We construct an
auxiliary Blackwell game for MDP, so that we can leverage
online optimization methods based on regret minimization.
Our main contributions include: 1) we give a no-regret value
iteration algorithm, based on Blackwell approachability, which
we term Blackwell value iteration. We show that this method
provides an asymptotic convergence guarantee as classical
value iteration in discounted MDP; 2) We extend this idea
to RL domain with unknown transition and reward, which ac-
counts for online learning problems. Similar to Q-learning, our
proposed method, Blackwell Q-learning, does not require any
prior information nor any access to state sampling distribution.
Hence, instead of an asynchronous version of value iteration
[18], our Blackwell Q-learning is indeed a RL algorithm based
approachability idea. To the best of our knowledge, this is the
first work that interprets an MDP as a Blackwell game, which
leads to provably convergent learning algorithms.

The rest of the paper is organized as follows. We first
introduce some preliminaries, including Blackwell approach-
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ability and no-regret idea in Section II. We then move to
our proposed methods based on Blackwell approachability in
Section III, where we give both value iteration like and Q-
learning like algorithms for both offline planning and online
learning problems. Our theoretical analysis is supported by nu-
merical examples presented in Section IV. Finally, Section V
concludes the paper. Due to the limit of space, we suppress all
proofs in the paper and they can be found in the supplementary
[19].

II. BACKGROUND

A. Markov Decision Process

An infinite-horizon discounted MDP can be characterized
by a tuple, (S, A,P,r,~), where S is the finite state set; .4
is the finite action set; P : S x A — A(S) is the transition
probability, and A(S) C RIS denotes the simplex over S;
r: S x A — Ris the reward function; and v € (0,1) is the
discounting factor.

For a given policy 7 : § — A(A), the total expected reward
starting from an initial state s € S is defined as V™ (s) =
Ep[> pe ) V"7 (sk, ax)]. If we denote 7(s,a) the probability
of choosing a at state s, then with Bellman principle [3], V™
can also be written as

Vi = Sata|rsa r 3 V).

aeS s’ ~P(s,a)

where we denote Q™(s,a) =1(s,a) + 73 . p((s.a) V" (5),
known as the Q function or Q table. The goal is to find an
optimal policy 7* such that V™ (s) > V™ (s) for all s € S.

Since we focus on finite-dimension problems throughout
this paper, all functions introduced above are of finite di-
mensions. To better present our work, we use the following
notations. For Q € RIS Q(s) := [Q(s,a)]aca denotes the
vector in RI4l. Similarly, for 7 € RISl 7(s) denotes the
a vector in A(A). Finally, we assume that for every s € S
there exists an action a € A such that the Markov chain is
aperiodic and irreducible, which is a common assumption in
reinforcement learning [4].

B. Blackwell Approachability

Blackwell approachability theory [10] was developed for
studying repeated game play between two players with vector-
valued payoffs. In such a repeated game, which we refer to as
Blackwell game, at the k-th round, both Player 1 and Player
2 select their actions x; € X and y; € ), and then Player
1 incurs the vector-valued payoff given by u(xy,yr) € R™,
where u : X x ) — R™ is a bi-affine function. We assume
that action sets X', ) are compact and convex. The objective
of Player 1 is to guarantee that the average payoff converges to
a desired closed convex target set D € R™. We let d(z, D) :=
infgep ||z — d|| denote the distance between a point z € R™
and the set D under norm || - ||. If we consider the Blackwell
game (X, Y, u,D), then we can define an approachable set
for Player 1 as follows.

U(Xpr1, Yie1)

Fig. 1. Blackwell strategy ensures that the next iterate u(x g1, Yr+1) always
falls within the halfspace H, no matter what y,1 is.

Definition 1 (Approachable Set [10]). A set D is said to be
approachable for Player 1, if there exists an algorithm oy(+) :
X* x Y& 5 X which chooses an action at each round based
on the history of play: xy, = ok (x1.x, Y1), such that for any
sequence of {yi }1_, limg o0 d( Zszl u(zk, yr), D) = 0.

A key concept in Blackwell approachability theory is the
approachable halfspace, defined as below.

Definition 2 (Approachable Halfspace [10]). A halfspace H :
{z € R™|aTz < b} for some a € R™ b € R is approachable
for Player 1 if there exists x* € X such that for all y € ),
u(z*,y) € H.

Blackwell’s approachability theorem states that D is ap-
proachable if and only if all halfspaces 7{ that contain D
are approachable. Based on this theorem, we can construct
a Blackwell strategy that guarantees the approachability, as
shown in [10].

We denote the average payoff up to time k by up :=
Zle u(x;,y;)/k and the projection operator regarding the
set D by Pp(z) == {d € D : ||z —d| = d(zD)}
Since D is a convex set, Pp(z) returns a singleton. If D is
approachable, then the halfspace H defined by H := {z :
(z,ur, — Pp(ux)) < 0} is approachable. Therefore, there
exists * € X such that for all y, u(z*,y) € H, and hence, if
we let zi11 = «*, u(xp41, Yr+1) falls into the same halfspace
as the set D does. By doing so, we make 441 closer to the
set, as shown in Fig. 1, and repeating the same procedure at
each round, the average payoff converges to D.

To better present our idea of leveraging Blackwell ap-
proachability and no-regret idea to solve RL problems, we
first consider an example of online learning, which is a
repeated play between an agent and the nature. We show in
the following that this online learning problem can be solved
using Blackwell approachability theory. In the online learning
process, at each time k, the player chooses an action from the
simplex in R™, that is x; € A™, while the nature chooses a
payoff vector y, € R™. The performance of the agent’s action
2y, is evaluated according to the revealed payoff (zy,yx), the
inner product of x; and yi. Then, the regret for not having
played action e; € A™, the unit vector, at time k is given by
yr (i) — (zk,yr), measuring the difference of counterfactual
outcomes of e; and the received payoff, where yy (i) is the
i-th element of the vector y;. The objective of the agent is to
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have a sequence {xj}) that achieves the best possible result:

K
m oo max k_l(@, Yk) — (T, yx)) = 0, (1)
showing that the sequence yields the same average perfor-
mance as the best action in hindsight, and a sequence is said to
achieve no regret if it satisfies (1). One way to construct such
no-regret sequences is to leverage Blackwell approachability
as we show in the following.
We consider a Blackwell game between the agent and the
nature (A™ R™, u,R™), where u : A™ x R™ — R™ is

(T yi) = Yo — (T, Yk) Lim
= (yk(l) - <-’L'k,yk> P ,yk(m) - <xkvyk>) )

where 1,,, € R™ is an all-ones vector. We note that . measures
the regret incurred at time k. If we adopt Blackwell strategy,
we aim to find z € A™ such that for all y,

<“(x»y)vﬂk — Pgm (@k)> = (ul(z,y), [m]*) <0,
where ([u]™); := max{u;, 0}. If we let

(@] ™ /N[@R) i @]t #0

e A . (RM)
any point in A" otherwise

RM(x1:1,Y1:1) = {

then we obtain that, for 21 = RM(z1.k,Y1:%)>

(u(@rg1,9), [WR]*) = (= (@rg1, ) Lo, [U] )
= (v, [un]™) — lar] Il (@rg1, ) =0,

showing that (RM) is indeed a Blackwell strategy. Intuitively,
this strategy outputs the next action zj; that is proportional
to current cumulative positive regret [i] T actions with larger
regret shall be played more frequently, as they bring up better
payoffs. Hence, it is also referred to as regret matching (RM),
and has been studied in various contexts, including game
theory [20], [21] and online optimization [11].

III. BLACKWELL Q-LEARNING

In this section, we present how to incorporate Blackwell
approachability framework into MDP problems through the
Blackwell game we introduced above.

A. Blackwell Value Iteration: Offline Planing

We first address the planing problem in the infinite-horizon
discounted MDP, where the transition kernel and the reward
function is known. From the dynamic programming perspec-
tive, to solve such a MDP problem, we either resort to value
iteration or policy iteration, both of which rely on Bellman
optimality principle [3]. In this subsection, we show that under
stationary environments, online learning methods, operating
in a forward fashion, also guarantee the optimality of the
solutions.

As for implementation, we first initialize a Q value table,
@1, and an initial policy 71 (s) for each s € S. We run |S
copies of the algorithm; i.e., one for each state s € S, and
the rewards r (s, a) are revealed for all a € A, which further

translates to the payoffs in the online learning problem induced
by the MDP. In this algorithm, for each state s € S, we view
the policy 7 (s) € A(A) as the decision variable and Q(s) =
(Qi(s,a))aca as the payoff vectors, which is obtained by

Qk(su a) = 7’(8, (l) + ’}/ES/NP(-‘S,Q),G/Nﬂ'kfl [Qk*l(sla al)]-
2

In this case, the payoff of the decision 7 (s) is given by
(mi(s), Qr(s))-

Similar to the Blackwell game in Section II, we can
also construct an approachability game for the MDP. For
the decision 7(s) and the feedback Q(s), we define cost
R : A(A) x R4 - RIAI ag

(71(5), Qi (8)) = Qi(s) — (mr(s), Qr(s)) 114)-

We note that for a given =, @, the i-th entry of R(w(s), Q(s))
measures the regret for not having played e,, € A(A), i.e.,
simply choosing a;. Intuitively, larger R; implies that e,,
could have given a better payoff, had it been implemented.

It is not surprising that when using the Blackwell strat-
egy such as (RM): mgyr1 = RM(m1.k, Q1:1), We drive the
averaged regret R, = = > ' | R(mi(s), Qx(s)) to the non-
positive orthant R in the limit, which implies that no action
can produce a positive regret and the limiting point achieves
optimality. Since we consider the average regret under the
Blackwell framework, our convergence result in proposition 1
is also about the average Q tables.

Proposition 1. Ler Q, = 1/n)Y,_, Qy and Q* be the Q
table under the optimal policy, then lim, ., Q, = Q*.

Similar result has also been shown in [17], where FTRL
is utilized. Compared with their approach, our Blackwell
approachability-based method is in fact more generic. We
argue that for the linear cost considered in that paper i.e.,
(m(s),Q(s)), it can be shown that FTRL is equivalent to RM
proposed here. The details are included in the supplementary,
which is mainly based on the connection between Blackwell
approachability and online linear optimization studied in [12].
On the other hand, though RM is probably the most natural
Blackwell strategy, it is definitely not the only one. In the
supplementary, we claim that various online linear optimizers,
including online gradient descent and mirror descent algo-
rithms, all can be leveraged to construct Blackwell strategies,
offering much freedom in designing algorithms.

B. Blackwell Q-learning: Online Learning

Though intuitive and provably convergent, Blackwell value
iteration only applies to the offline setting where full infor-
mation regarding the MDP is known. However, in standard
RL problems, the agent is required to find the optimal pol-
icy without any access to the transition probability and the
reward function. Hence, we need an online version of this
approachability-based algorithm.

As pointed out in [17], developing such online learning
schemes is not straightforward, and there are two major
challenges. The first one is about rewards revelation: in the
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Blackwell value iteration, we require that at each iteration,
rewards r(s,a) for all actions a € A at a certain state s € S
are revealed for updating the Q table according to (2). How-
ever, in RL, since the reward function is unknown, we only
have access to the feedback corresponding to the actual action
executed at each iteration. Apparently, such a bandit feed-
back cannot produce the regret vector Rj. One workaround
proposed in [17] is to use importance sampling technique
in multi-arm bandit problems [22]. The update rule becomes
Qus1(s,a) = (r(s,0) + 1Eqr, [Qu(s',a)]) /7e(s, ) if a is an
action sampled from 7 (s) for state s, and Qp4+1(s,a) = 0
otherwise. Unfortunately, as in bandit problems, the incorpo-
ration of importance sampling can only ensure expectation
convergence, a weaker guarantee than almost sure convergence
in Q-learning, which is less desirable in practice.

The other challenge is that the asynchronous update in
online learning is more involved than the synchronous one.
In Blackwell value iteration, every state is updated at every
iteration, whereas in an online setting, this synchronous update
is impossible, which introduces additional complexity to the
convergence analysis. Different from the synchronous update,
in the online setting, it is highly likely that some states
are visited more frequently than others. One straightforward
remedy is to require all states to be visited with the same
frequency, i.e., the state to be updated at each iteration is
chosen uniformly from S. With this additional condition, the
asynchronous version of value iteration still guarantees the
convergence as shown in [17], though it still falls within the
realm of offline planning as the state transition, instead of
fixed, is influenced by the chosen actions in online settings.

In this subsection, we propose an online learning scheme
based on the Blackwell approachability. We address these
issues by the two-time scale asynchronous stochastic approx-
imation [23]. By leveraging the Lyapunov stability theory
of differential inclusion developed in [24], [25], we show
that adopting the Blackwell strategy in the asynchronous
update gives a provably convergent online learning scheme
for tackling RL problems.

As we have discussed above, in the online setting, the state
transition is influenced by executed actions, sampled from the
current policy, which further influences the update of the Q
table. This coupled dynamics of the policy update and the Q
table update makes it difficult to directly extend value iteration
to online learning. One way to decouple the two dynamics is
to adjust the timescales of the two. Simply put, we update
the Q table in a faster timescale while the policy in a slower
one, where the faster timescale sees the slower as quasi-static,
while the slower timescale sees the faster as equilibrated.
Specifically, we consider the following learning scheme based
on the regret matching we have introduced.

Let spy1 € S and apy; € A be the state and
the action visited at time k£ + 1, and the agent receives
a noised reward Rjyy; from the environment. We as-
sume that Ry, is unbiased in the sense that for the o
fields Fry1 = o0{a1:k+1, S1:641, Ri:kt1}s B[Ry Frg1] =
r(Sg+1,ax+1). Since states and actions are visited asyn-

chronously, the agent need the asynchronous counters
6u(s,0) = S L(oan=(sa)ys Yi() = 30y L=y,
together with the step sizes {a(k)}ren, {8(k)}ren, to deter-
mine the learning rates. Based on all the above, the agent
estimates the Q function by (3), and then updates its policy
by (4). Finally, the agent chooses an action based on regret
matching idea in (RM), i.e, sampling an action from the
probability proportional to [R(mx(s), Qk(s))]", which we
denote by RM (m(s), Qr(s)) with abuse of notations. We
summarize the scheme in the following: for every s € S and

a€ A,

Qk-i—l(sa a) = Qk(57 a’) + a(¢k+1(57 a’))
L (s,a)=(snr1,anra)} [Brr1 + YVi(Skr2) — Qr(s, a)],

(3)
7Tk+1(5) = 7716(8) + ﬁ(wk+1(s))1{325k+1}[eak+1 - Wk(s)]v

4)
ak+1 ~ RM(mr(s), Qx(s)), (5)

where Vi(s) = >, c 4 Tk(5,a)Qk(s,a), and g, is the unit
vector in RII. We note that different from Blackwell value
iteration, we here do not rely on all historical 73, and Q) as our
stochastic approximation schemes (3) and (4) already return
averaged results.

It is clear that (3) and (4) are coupled as Vj involves
both 7, and Q. Technically speaking, in order to analyze
the limiting behavior of the coupled dynamics, we must
“decouple” them, and one possible approach as proposed in
[23], [9] is to adjust the timescales. Specifically, we require
that S(k) = o(«(k)), meaning that the Q update (3) operates at
a faster timescale than the policy one (4). Intuitively speaking,
when synchronous update (2) becomes impossible in the
online setting, in order to produce a feedback (Qj that can
approximately evaluate the current policy 7, we must wait
until @, stabilizes before we update the policy. By running
the policy update at a slow timescale, () updates see 7y as
quasi-static, and hence (3) can be viewed as expected SARSA
[26], while policy update sees (Qj as stabilized, serving as an
approximation to Q™*. In the subsequent, we show that the
two timescale stochastic approximation indeed converges.

1) Convergence of the fast timescale: Following the multi-
ple timescale stochastic approximation framework developed
in [27], [23], we first show that under a fixed policy, (3)
converges. Let 7 : RISIAL x RISIAL — RISIAl be an
operator, whose (s,a) entry is given by T, . (7, Q) =
7(8,a) +7 > ,ca™(s,a)Q(s,a), and then we define a vector
[y € RISIAL whose (s,a) entry is

Fk-i-l (Sa Cl)

= Vomspira=aria [ B+1 YV (Sk42) = Tisrrr,ansn) (T, Qr)]-

Note that (3) is equivalent to

Qk+1(37 a) - Qk(37 a) = a(¢k+1(87 a))l{(sya):(5k+1,ak+1)}
[Tis,a) (Th, Qr) — Qr(5,a) + Tryi(s, a)].
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We further define the asynchronous step sizes &y and the
relative step sizes py(s,a) as

ay = r(r;e}l)§a(¢k(s, a)), i (s,a) = a(dr(s,a))/a.
By letting M), be the |S||A| x |S||A| diagonal matrix whose
(s,a) entry is given by pux(s,a), we can rewrite the asyn-
chronous update (3) as

Qr+1 — Qr = 1t My 1 [T (11, Qi) — Qi + T

Given a sequence {Qy}ren, produced by (3), based on
the linear interpolation of the sequence, we can construct
a continuous time process {Q:}ter +» Where the subscript ¢
denotes the time variable. Let 7o = 0 and 73, = Zle a;, wWe
define

Qi :=Qr+(t— Tk)M,

Tk+1 — Tk

te [Tk77k+1)~ (6)

This continuous time process enjoys the same asymptotic
properties as {Q}ren, does, and hence, the convergence
result of (3) can be studied by analyzing @);. As shown in the
following proposition, Q; is an asymptotic pseudo-trajectory
of a differential inclusion (see [24, Proposition 1.3 ]), and its
limiting behavior can be studied by Lyapunov stability theory.

Proposition 2. [27, Theorem 3.1] There exists 0 < n < 1
such that almost surely, the linear interpolation {Q¢(s)}rer,
in (6) is an asymptotic pseudo-trajectory to the differential
inclusion,

dQq(s)/dt € Q[T (me, Q) — Q¢l, @)

where
Q" = {diag({w(s) }ses) : w(s) € [n, 1],V s € S}.  (8)

Proposition 3. When 7 is fixed, Q™ is the unique global
attractor of (7).

2) Convergence of the slow timescale: From the discussions
above, the sequence of Q tables {Qj}; converges to the
@™ when 7 is fixed, and it is Lipschitz continuous in 7
[27]. Therefore, we can study the limiting behavior of (4) by
analyzing its continuous counterpart in (9). We here replace the
Q table in (5) with the attractor Q™ under the current policy
m¢, as the slow timescale views the Q updates as stabilized.

dri(s)/dt € Q7 [RM(my, Q™) — mi(s)], 9

where Q7" is defined similarly as (8). It remains to show that
the differential inclusion (9) has a global attractor, which we
prove by standard Lyapunov argument. Moreover, we shall
present that such a global attractor is indeed the set of optimal
policy. In the following lemma, we identify the Lyapunov
function associated with (9)

Lemma 1. For every s € S and any fixed w(s)
in Q7. et dmi(s)/dt = w(s)[ri(s) — m(s)], Fe(s) =
RM(m(s), Q™ (s)), then (V, V™t (s),dm(s)/dty > 0.

With this lemma, we now construct the Lyapunov function
for (9), which further leads to the global convergence of the

algorithm. First, given 7*, an optimal policy, we define L(7) =
Sses [V™ (s)—V™(s)]. Apparently L(r) is a positive semi-
definite function, since the optimality gives V™ (s)—V™(s) >
0 for all s € S, and L(w) = 0 only if 7 is an optimal policy.
Then with lemma 1, for any ¢ > 0, we have

(Vo L(me), dmy fdt) = = > (Vi V™ (5), dmy(s)/dt) < 0.

sES

This implies that L(7) is a Lyapunov function for the dif-
ferential inclusion (9), with a global attractor II = {7 :
7 is an optimal strategy}, showing that 7; given by (9) con-
verges almost surely to the attractor. Therefore, from the
convergence result of the continuous dynamics, we claim the
convergence of the coupled dynamics (3), (4).

Proposition 4. The sequence {Qy, Ty} given by the coupled
recursive scheme (3) and (4) converges almost surely to
(Q™, ™), where ©* is an optimal policy and Q™ is the
associate optimal Q function.

IV. NUMERICAL EXPERIMENTS

In this section, we present experimental results when ap-
plying our Blackwell Q-learning to MDP problems. Since
our proposed method resembles expected SARSA [26], we
consider cliff walking task in that paper, where the agent has
to find its way from the start to the goal in a grid world. The
agent can take any of four-movement actions: up, down, left,
and right, each of which moves the agent one square in the
corresponding direction. Each step results in a reward of -1,
except when the agent steps into the cliff area, which results
in a reward of -100 and an immediate return to the start state.
The episode ends upon reaching the goal state.

We evaluate the performance of Q-learning, SARSA, ex-
pected SARSA, and our Blackwell Q-learning. It is noted that
our Blackwell Q-learning does not need any hyperparameter
for encouraging exploration, as (RM) always retains some
probabilities for actions that yield positive regret. Hence, our
method is less aggressive in terms of exploitation, compared
with the others. In our experiments, we adopt e-greedy policy
for the first three, where ¢ = 0.1 for Q-learning and SARSA,
and for expected SARSA, we run the algorithm with two
different exploration rates e = 0.1,0.5. We test these algo-
rithms with 2000 episodes and we average the results over
200 independent runs. The numerical results are shown in
Fig. 2. At first glance, both expected SARSA with € = 0.1
and our Blackwell Q-learning give the best performance in
the end, though the expected SARSA converges faster, due to
the greedy policy. However, we note that the success of the
expected SARSA relies on a carefully crafted exploration rate.
If we set € = 0.5, then the performance is even worse than that
of SARSA. This observation highlights one merit of Blackwell
Q-learning: it is hyperparameter free for exploration.

Though in our experiments, Blackwell Q-learning seems not
to outperform expected SARSA in terms of the convergence
rate, because of the difference in action selection, we argue
that such conservative action selection is actually more desired
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Fig. 2. Comparison between different learning methods in cliff walking
experiments: RM, Expected SARSA, SARSA and Q-learning.

for online learning problem, where the environment is non-
stationary. One prominent example is learning in games [28],
where the payoff is jointly determined by all players’ actions.
In this case, if one player only seeks the best response based
on his own Q function, he may not achieve any equilibrium
in the end, as observed in [29]. Due to the limited space, we
fully develop our arguments in the supplementary.

V. CONCLUSION

We have introduced a novel approach for tackling MDP
problems based on the Blackwell approachability theory.
By constructing an auxiliary Blackwell game, we use its
geometric interpretation to solve MDP problems by deriv-
ing no-regret learning from the Blackwell strategy, which
provides an alternative to dynamic programming for MDP.
Specifically, we have discussed one simple Blackwell strategy,
regret matching, and how it can be incorporated into both
offline planning methods (e.g., Blackwell value iteration) and
online learning schemes (e.g. Blackwell Q-learning). Both
are provably convergent. Related numerical results have been
used to corroborate our results. As for future work, we
would like to extend our Blackwell approachability-based idea
to online (adversarial) MDP [14] and multi-agent systems,
where the environment is not stationary from any player’s
perspective, hence imposing difficulties on applying dynamic
programming.
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