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ABSTRACT
Containerization is becoming increasingly popular, but un-

fortunately, containers often fail to deliver the anticipated

performance with the allocated resources. In this paper, we

first demonstrate the performance variance and degradation

are significant (by up to 5×) in a multi-tenant environment

where containers are co-located. We then investigate the

root cause of such performance degradation. Contrary to

the common belief that such degradation is caused by re-

source contention and interference, we find that there is a

gap between the amount of CPU a container reserves and

actually gets. The root cause lies in the design choices of

today’s Linux scheduling mechanism, which we call Forced

Runqueue Sharing and Phantom CPU Time. In fact, there

are fundamental conflicts between the need to reserve CPU

resources and Completely Fair Scheduler’s work-conserving

nature, and this contradiction prevents a container from fully

utilizing its requested CPU resources. As a proof-of-concept,

we implement a new resource configuration mechanism atop

the widely used Kubernetes and Linux to demonstrate its po-

tential benefits and shed light on future scheduler redesign.

Our proof-of-concept, compared to the existing scheduler,

improves the performance of both batch and interactive con-

tainerized apps by up to 5.6× and 13.7×.
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1 INTRODUCTION
Containers are becoming increasingly popular for software

development and operations (DevOps) because container

tooling (e.g., the widely used Docker [51]) greatly simplifies

the deployment and testing procedures. Containers can be

managed by an orchestration system such as Kubernetes [2,

16, 24]. Developers specify the amount of resources for con-

tainers and deploy them through the orchestration system,

which then places containers onto the host machines based

on the specified resource configuration [10, 18].

Container resources are often configured empirically—

typically based on developers’ estimation of workload de-

mands and expectations of performance. It has been observed

that the performance of containers running in multi-tenant

clouds varies significantly and is difficult to predict [8, 11–

13, 15, 41–43]. For example, [13] reported that container

co-location might lead to more than 66× higher tail latency.

Such performance degradation can cause severe bottlenecks

such as stragglers for batch workloads [38] and violation of
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end-to-end Quality-of-Service (QoS) guarantees for latency-

sensitive, interactive applications [47].

It is well-known that performance variations and degrada-

tions often come from noisy neighbors in multi-tenant cloud

environments. However, the specific sources and mecha-

nisms that cause variations remain unclear. Context switch-

ing overhead and contention at the hardware level, such as

cache, bus, I/O devices, are among the commonly believed

causes. Nevertheless, here we argue that the primary source

in a container environment lies in the OS and specifically its

CPU scheduling mechanism, whose design goal fundamen-

tally conflicts with that of a container environment.

Our investigation started with a series of experiments

to reproduce the performance variations of containers run-

ning in a multi-tenant environment. We discovered that the

container’s actual CPU usage is significantly less than the re-

quested, even though there was enough workload to saturate

all its requested CPUs. Motivated by the observations, we fur-

ther investigated Linux’s CPU scheduling scheme and discov-

ered that, despite promises to users, CPU resource reserva-

tions cannot always be fully honored in a multi-tenant cloud.

Also, such an issue is persistent through the latest LTS Linux

kernel (v5.10). Our investigation yields two root causeswhich

we call Forced Runqueue Sharing, where threads from one

container are forced to share the same CPU with others re-

gardless its CPU reservation; and Phantom CPU Time, where
containers with less threads cannot utilize seemingly avail-

able CPU time which is fragmented across multiple cores.

Those two causes are the result of trying to keep CPUs busy,

i.e., the work-conserving nature [7, 30, 49], regardless of

the reservation from containers via cgroups, which directly

contradicts a container’s requirement and user expectations.

Although task scheduling and particularly Completely-

Fair-Scheduling (CFS) have been studied extensively and a

few related issues have been discovered [33, 40, 46, 49, 52],

the need to keep CPU resource promises makes the prob-

lem unique in the context of containers. Many-core CPUs

are common in modern data centers, where a commodity

server can easily host many containerized applications. This

exacerbates the problem of performance variation and degra-

dation caused by neighbor interference. Furthermore, this

issue leads to violations of the service level agreement (SLA)

between users and cloud providers who charge users based

on resources they requested rather than consumed [3].

We use these findings to further explore various options

in Linux kernel scheduling. Due to the conflict of the work-

conserving scheduler and the resource reservation require-

ment, a redesign of the scheduling mechanism is mandated.

Given the complexity and the broad impact of a redesign, in

this paper, we instead implement rKube, a proof-of-concept
that augments the scheduling mechanism of Kubernetes [16]

and Linux as a quick remediation. rKube utilizes cpuset which

enables allocations of actual CPUs instead of CPU time shares

to improve isolation of container workloads. The prototype,

albeit simple, shows promising performance improvements

that bridge the gap between the CPU resource promise and

the resource and performance one can actually obtain, and at

the same time, sheds light on future scheduler developments.

In summary, this paper makes the following contributions.

• We discovered significant performance variations in

container-based multi-tenant environments with im-

pacted CPU utilization, causing SLA violations.

• We investigated the root causes and revealed that

Linux’s CFS often does not comply with Linux cgroups’

CPU resource promise. We explored various options

in the current scheduler design and concluded that a

redesign of CFS is mandated to fully solve this problem.

• Alternatively, as a proof-of-concept, we designed and

implemented a prototype called rKube, demonstrating

one potential isolation solution. Evaluation using both

benchmarks running in containers and Alibaba data

center traces shows that: compared to the Kubernetes,

1) rKube can deliver a 2.1×–5.6× speedup for batch

tasks, and 1.2×–1.7× higher throughput and 12.9×
and 13.7× lower tail latency for interactive tasks, and

2) rKube can reduce the tail latency of high-priority,

interactive tasks by as much as 10×.
The rest of the paper is organized as follows. Sec. 2 presents

the background on the container orchestration systems. Sec. 3

shows the experimental results demonstrating the significant

performance degradation observed, which motivates us to

investigate the underlying reasons in Sec. 4. We present our

solution in Sec. 5, followed by its evaluation in Sec. 6. We

discuss related work in Sec. 7 and conclude in Sec. 8.

2 BACKGROUND

Container orchestration systems. Modern container or-

chestration systems, such as Borg [55], Kubernetes (k8s) [24],

and Docker Swarm [29], automate the deployment, manage-

ment, and scaling of containers. When deploying a container-

ized application, users typically submit a spec file to the or-

chestration system, which takes care of the entire life cycle

including application placement (on which hosts), resource

allocation, and scaling. Take k8s as an example, the basic de-

ployment unit of a k8s application is called a pod [23]. A pod

can host one or multiple containers. A user can configure

the resource requirements, such as CPU and memory, for the

containers of a pod via k8s’ specification file. K8s schedules

and places the application’s pod(s) on one (or multiple) hosts.

Container runtime. When a pod’s container starts on a

host, the CPU requests and CPU limits are passed to the con-

tainer runtime (e.g., Docker) and will be enforced by the host
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OS. The container runtime is responsible for local container

management, including setting up the cgroups, namespace

isolation, and starting the containerized processes. In a multi-

tenant environment, multiple containers are co-located on

the same host and share the same resources of the host.

Linux uses cgroups for container resource allocation and

isolation. Cgroups limit the resource consumption of the con-

tainers and control how different containers share resources.

Specifically, the CPU requests and limits for a container are

enforced by the cgroup values of cpu.shares, cpu.cfs_period_-
us and cpu.cfs_quota_us.

Container CPU Allocation. The user specifies the value
of ci .requests .cpu for the container ci . When Kubernetes

deploys the container to a host machine, at least a requested

amount (ci .requests .cpu) of CPU should be reserved for the

container ci [18]. Upon receiving the CPU requests from the

user, Kubernetes performs the following two tasks in order

to fulfill the requested CPU resources:

• Kubernetes chooses one (assuming the application is

deployed on a single host) host node nk in the data

center where there are enough CPU resources avail-

able. In other words, the following constraint needs to

hold when the new container is deployed in the host:∑
ci ∈Ck

ci .requests .cpu ≤ nk .allocatable, (1)

whereCk is the set of containers innk , andnk .allocatable
is the total amount of CPUs that is allocatable to con-

tainers in that host.

• Kubernetes translates the CPU requests ci .requests .cpu
to a value that can be understood and enforced by the

host OS. Cgroups uses an integer value дi .cpu .shares
to indicate the amount of CPU resources that a group

дi can consume. Kubernetes then maps each container

ci to its associated control group дi in nk . Converting
ci .requests .cpu to cpu .shares goes as follows:

дi .cpu .shares = ci .requests .cpu × 1024.

Note that the value of cpu .shares used by cgroups is a rela-
tive weight for allocating CPUs [9], as opposed to an absolute

amount of CPU cores. Such discrepancy may cause a host

to break its resource promises if it becomes over-committed.

Therefore, to keep its promise to the user application, Kuber-

netes imposes Eq. 1 to each host so that intuitively such a case

would never happen [18, 25]. As will be shown in Section 3.4,

despite such effort, a co-located container still cannot fully

utilize all its requested (allocated) CPU resources.

3 MOTIVATION
This section demonstrates that significant performance degra-

dation exists in a multi-tenant containerized environment. In

a nutshell, our motivational study shows that: 1) the signifi-

cant performance degradation is due to neighbor activities,

2) hardware contention may not be the main contributing

factor of the degradation, and 3) a surprisingly low CPU

allocation is a clear cause of the performance degradation.

3.1 Experiment setup and methodology
3.1.1 Environment. Weuse Dell PowerEdge R420s, equipped

with 2 Intel Xeon E5-2420 CPUs (6C12T) and 24GB RAM, as

the hosting machines. We experimented mainly in Debian

9.12 with Linux kernel v4.9 but also verified the problem per-

sists in the latest LTS Linux kernel v5.10. Docker 18.09.7 is

used as the container runtime at each host machine, and Ku-

bernetes 1.17.3 is used as the container orchestration system.

We reserve 2 CPUs for Kubernetes and OS system services on

each host and leave 22 available CPUs for hosting containers.

For simplicity, we configure one container per pod. Hence,

we will use container and pod interchangeably hereafter.

3.1.2 Workload. Our study focuses on two major types of

data center applications: batch and interactive [55].

Batch application. We use PARSEC (Princeton Applica-

tion Repository for Shared-Memory Computers) benchmark

suite [32] and SPLASH-2 (Stanford ParalleL Applications for

SHared memory) [56] as our batch workload, including data

analytics, computer vision, and scientific simulation. PAR-

SEC contains implementations of several threading models

including pthread, OpenMP and TBB with different behav-

iors e.g., dynamic task handling vs. static. Here, we choose

the default one for each application. We use the application

completion time and CPU utilization as the major evaluation

metrics for batch applications.

Interactive application.We use Memcached [19] as an ex-

ample of interactive applications. Memcached is a high perfor-
mance, networked in-memory key-value (KV) cache system.

We use YCSB (Yahoo Cloud Serving Benchmark) [37] to eval-

uate Memcached’s performance in terms of throughput and
latency. We use an update-heavy YCSB workload with 50%

reads and 50% updates for 1 million KV records. Read-heavy

workloads show a similar trend and thus are omitted.

Neighboring application. stress-ng [45] is a tool to gen-
erate synthetic workloads that stress test various subsys-

tems and kernel interfaces. We use it as the neighboring

application to generate CPU-intensive or memory-intensive

workloads (Table 1). Both run with 32 worker threads.

Burstable and capped neighbors. Kubernetes allows de-
velopers to configure an application’s CPU resources using

CPU requests and limits. Not setting a limit or setting a limit

larger than the CPU requests enables burst mode, where a
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Table 1: Summary of containerized target and neighbor applications. R denotes the value of CPU requests (and
CPU limits) for the target applications. 22−R cores are then allocated to neighbor applications as in total 22 CPU
cores are available for all containers. “-” means the neighbor application’s CPU limits is not set (i.e., burstable).

Target Application Threads CPU Requests (R) CPU Limits Description

bodytrack 6 6 6 Tracks a human body through space

fluidanimate 8 8 8 Physical simulation of a fluid

streamcluster 12 12 12 Online clustering of an input stream

ocean_cp 8 8 8 Computes the cholesky factorization of a sparse matrix

volrend 4 4 4 Computes the cholesky factorization of a sparse matrix

Memcached 4 4 4 High-performance, distributed memory object caching system

Neighboring Application

Capped & CPU-Intensive 32 22-R 22-R CPU-intensive stress-ng w/ CPU limits set to CPU requests (capped)

Burstable & CPU-Intensive 32 22-R - CPU-intensive stress-ng w/o CPU limits set (burstable)

Capped & Memory-Intensive 32 22-R 22-R Memory-intensive stress-ng w/ CPU limits set to CPU requests (capped)

Burstable & Memory-Intensive 32 22-R - Memory-intensive stress-ng w/o CPU limits set (burstable)

container is allowed to use more CPU resources than its re-

quested CPU resources [4] when idle CPUs become available.

We call a container under burst mode a burstable container.
Otherwise, when a container’s CPU limits is the same as its

CPU requests, We call it a capped container.

We use the publicly available Docker images [1, 5, 28] to

run the applications mentioned above. Table 1 summarizes

the batch and interactive applications that we use.

3.1.3 Methodology. A host that deploys multiple containers

is called a multi-tenant host, where we have a target con-
tainer and neighbor containers. We measure the performance

metrics achieved by the target container’s under interference

from its neighboring containers.

Table 1 specifies the CPU configurations of target contain-

ers. For neighbor containers, we set their CPU requests to be

the remaining CPUs available in the host, i.e., 22−CPUtarдet .

Depending on whether the neighbor is burstable or capped,

its CPU limits will be set to default (empty) or the same

requested value. We vary the number of threads for each

application so that they take a similar amount of time (60s) to

complete. For Memcached, we gradually increase the through-
put (requests per second or rps) by 1000 until it is fully satu-

rated; each Memcached test runs for 300s. Each experiment

is repeated 10 times. The variance of the result among the

repeated runs is small and thus omitted in the figures.

3.2 Impact of neighbors
We first quantify the impact of neighbor applications in a

multi-tenant environment. Figure 1a plots the completion

time of batch applications which is normalized against the

completion time measured in a single-tenant environment.

We observe that the performance degradation is severe under

multi-tenancy— e.g., bodytrack and streamcluster take

nearly 3× and 5× longer to complete in a multi-tenant host.
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Figure 1: Performance comparison: single-
tenancy vs. multi-tenancy.

Similar performance degradation can also be observed for

Memcached. As shown in Figure 1b, the 99
th
-percentile (99%-

ile) latency is much higher when Memcached is co-located

with other apps, compared with running alone. Similar trend

holds for the throughput metric: 1) the maximum throughput
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Figure 2: Performance and CPU utilization of target container when running alone vs. with neighboring apps.

drops from 85k (single-tenant) to 37k rps (multi-tenant), as

depicted by the vertical dashed lines, and 2) under the same

throughput (e.g., 37k rps), the 99%-ile tail latency increases

from 383 to 8479 µs , an increase of more than 22×!
Implication. Severe performance variation makes it ex-

tremely difficult to predict application performance and ac-

curately estimate application resource requirements.

3.3 Hardware contention is not the sole cause
One might wonder if hardware contention is the culprit.

To verify that, we quantify the performance degradation

of the target applications by varying the neighbor applica-

tion behaviors. We experiment with four configurations of

the neighboring stress-ng, namely, capped & CPU-intensive,

capped & memory-intensive, burstable & CPU-intensive,

and burstable & memory-intensive. We intentionally cre-

ate contention on two shared hardware resources—CPU and

memory. A burstable (with no CPU limits set) stress-ng poses

pressure on CPUs, while a memory-intensive stress-ng poses

pressure on the shared memory subsystem of the host.

As shown in Figure 2a and 2c, burstable & memory in-

tensive neighbors cause the most significant performance

degradation for target compared to the single-tenancy case.

We also observe notable performance degradation for capped

& CPU-intensive neighbors, where we have the least aggres-

sive contention for hardware since the application is only

CPU-intensive, and its CPU usage is being capped. It sug-

gests that hardware contention might be the only or even

the major cause of the significantly dropped performance.

Further reasoning based on the observed CPU utilization

will be provided in the next section.

Implication. The performance degradation is due to factors

other than the hardware contention from the experiments.

3.4 CPU capping and low CPU utilization
Next, we examine the impact of CPU capping on the perfor-

mance of target applications. One may expect that a capped

container would not be able to “steal” any CPU resources

from the target application. However, as shown in Figure 2a

and 2c, this is not the case—by switching from a burstable

neighbor to a capped one, interestingly, the performance

degradation does still exist, albeit mildly mitigated. The evi-

dence is, capped & CPU-intensive, though imposing a mini-

mum level of hardware contention as described earlier, still

sees up to 243% performance reduction.

To further investigate this counter-intuitive phenomenon,

we measure the CPU utilization of target applications. The

CPU utilization is calculated by the percentage of CPU time

the application consumes over the experiment period:

CPU _utilization = CPU _consumption/requests .cpu
As shown in the Figure 2b and 2c, for both batch and in-

teractive applications, the CPU utilization decreases as the

neighbor’s contention level and burstiness increase. This is

consistent with the performance degradation of the target

application shown in Figure 2a and 2c, indicating the resulted

performance degradation is highly correlated with the insuf-

ficient CPU consumed by the target application. Note that

such phenomenon should be distinguished with the perfor-

mance degradation caused by context switch overhead and

hardware contentions, in which case containers generally

have high CPU utilization but do less real work.

What remains unclear is why the container is getting in-

sufficient CPU, especially for the capped & CPU-intensive

case, given that: 1) no over-commitment on the host - each

container should theoretically get its requested CPU, 2) the

container CPU usage is capped - no containers can use more

than it requested, 3) minimal hardware contention, and 4)

there is clearly enough workload left to be done as indicated

by the single-tenant case.

Implication. The orchestration system, together with the

underlying host OS, fails to satisfy the container’s CPU re-

quests, which should have been able to use all its CPUs.

4 ROOT CAUSE ANALYSIS
In this section, we further investigate how a CPU request

is fulfilled in a multi-tenant containerized environment and

present the two root causes of the insufficient CPUs problem

showed in the previous section, namely, Forced Runqueue
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Sharing (FRS), and Phantom CPU Time (PCT). These two are

by no means an exhaustive analysis of all possible causes, but

we believe they have a major impact on the observed CPU

utilization issue and reflect a fundamental conflict between

modern scheduling design and the need from containerized

environment, which will be discussed in Section 4.3.

4.1 Forced Runqueue Sharing
CFS on a single-core system is reasonably straightforward.

However, when it comes to a multi-core system, the sched-

uling decision making becomes a much more complicated

optimization process. In a multi-core system, each physical

CPU core has its individual runqueue. The processes will

first be assigned to a runqueue and then be selected to run

on that CPU. Ideally, when a user requests X CPUs for the

container, all the processes spawned inside that container

should be scheduled exclusively onto the runqueues of those

X CPUs. However, due to CFS’s load balancing activities, it

may not be the case, and one container may be forced to

share the runqueue with one or more neighboring containers,

reducing its available CPU time and increasing the potential

interference. We call this such scenario as Forced Runqueue
Sharing, and we will show specifically how it happens.

Load balancing between runqueues is key to the overall

system performance and CPU utilization. CFS periodically

balances the processes of each runqueue based on multiple

factors and metrics. One of these metrics is the load of a run-

queue, which is derived from the weight (share) and nature of

its tasks (i.e., processes and threads) [17]. The nature of a task

can be derived from its CPU usage history using a load track-

ing scheme called per-entity load tracking (PELT) [22]. For

example, a lower-weight CPU-bound task may contribute

more load to the runqueue than a higher-weight, I/O-bound

task due to different historical CPU usage. Hence, the pro-

cesses in a container with a large amount of requested CPUs

(hence a high CPU share) are not guaranteed to occupy a

runqueue exclusively. To make things even worse, there are

multiple other factors, including cache locality, the Non-

Uniform Memory Access (NUMA) topology, CPU affinity,

CPU bandwidth control, and CPU capacity in heterogeneous

platforms, which are not related to CPU shares but affects

how processes are allocated to the runqueues.

Once the processes are assigned to their runqueues, for

each CPU at every scheduling tick, the scheduler will pick

the next process in that runqueue to run on the associated

CPU core. In a consolidated multi-tenant environment, it

is likely that the processes of one container share the same

runqueuewith other containers. During a “scheduling period”

all processes in the runqueue would have a chance to run;

the amount of CPU time is proportionally divided into “time

slices” for all the processes in the runqueue based on their

Table 2: Containers’ requests .cpu and their correspond-
ing share and weight.

Container requests .cpu cpu .shares Task (thread) Task weight

Target (T) 1 1024 T 1024

Neighbor (N) 2 2048 N1, N2, N3 683, 683, 683

weights. For each process, the time slice is a time interval it

expects to run on a CPU core or its CPU timeshare during this

scheduling period. So a task weight only indicates a relative
CPU share, not an absolute CPU share that the users expect

their containers to get based on the reservations. Since the

weight is only relative, once a container shares the runqueue

with another container, its promised amount resources can

no longer be guaranteed, and hence the previously observed

insufficient CPU usage in Section 3.4

4.2 Phantom CPU Time
Currently, in Linux scheduler design, there is another de-

sign consideration to keep a “minimum granularity” for each

time slice, which determines the minimum amount of time

that a process needs to run before it can be preempted. It

is set to prevent the slices from becoming too short, call-

ing the scheduler too frequently, and increasing the over-

head. The minimum granularity is determined by several

scheduler parameters, including sched_min_дranularity_ns ,
sched_latency_ns and sched_wakeup_дranularity_ns , which
is to balance the interactivity and the overhead. However,

the interaction between them and the fact that processes

from multiple containers share the same runqueue can lead

to a phenomenon we call Phantom CPU Time - the available
CPU time that containers are seemingly able to utilize but

actually cannot, which further contributes to the previously

observed performance degradation.

We now examine the activities of each CPU during one

scheduling period with either batch or interactive applica-

tions. Assuming we have two containers and their configura-

tions are listed in Table 2. Here two containers T and N are

running on a host with three CPUs. Container T has only

one thread, while container N has three threads: N1 − N3.

The requested CPUs for T and N are 1 and 2, respectively.

Because of the nature of the applications, load balancing and

other reasons mentioned in the previous section, T and N1

are assigned to the same runqueue of CPU0. N 2 and N 3 are

assigned to CPU1 and CPU2, respectively.

Let us first look at the case when T is a batch application.

When the neighbors are burstable, as shown in Figure 3a,

CPU1 and CPU2 are fully consumed by the neighboring

threads N 2 and N 3. The container T only gets 60% of CPU0,

as its CPU weight from its cgroup is 1024, and the CPU

weight of N 1 is 683. This is only 60% of its requested CPUs.
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Figure 3: Illustration of a scheduling period where the
target container T is running batch applications.
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Figure 4: Illustration of a scheduling periodwhere the
target container T is running interactive applications.

Even if we cap the neighbors, as shown in Figure 3b, the situ-

ation does not get better forT . WhenN 1−N 3 consume all its

CPU quota (i.e., 2), all these three threads will be suspended

during the current scheduling period, and CPU0-CPU2 will

become available. If T were to utilize all the remaining time

of CPU1 and CPU2, it would be able to consume the time

of one full CPU it has requested. However, since T only

has one thread, it can only run on one CPU at a time and,

therefore, cannot take advantage of those phantom available

CPUs. Hence, no matter whether the neighbors are capped

or burstable, the target container will always receive sig-

nificantly lower actual CPU time than its requests amount,

despite no over-commitment in the system. Due to the load

balancing and the way the notion of CPU shares is defined

(without considerations of parallel consumption), the more

threads one container has, the more disruptive it will be

when mixed with other containers with fewer threads, and

the more CPUs it can unfairly utilize in case of burstable.

Now let us examine the case when T is an interactive

application. Unlike a batch application, an interactive appli-

cation may wake up and only do a relatively small amount of

work before going back to sleep. For example, Memcached

receives a request, processes it, replies to the client, and

then goes back to sleep. However, it needs to react quickly,

i.e., wake up as soon as a user request arrives. When the

neighbors are burstable, as shown in Figure 4a, T cannot

wake up in time because of the enforcement of the mini-

mum granularity. Theoretically, T can be scheduled to run

on CPU1 or CPU2. However, frequent migrations between

cores are often discouraged due to cache affinity and other

factors, and hence rarely happen.T therefore has to continue

sharing CPU0 with N1, resulting in an increased requests

processing latency due to limits on frequent preemption and

context switches. Similar to the batch application scenario,

capping the neighbors does not help. As shown in Figure 4b,

only when the neighboring application’s threads exhaust

all their CPU quota, T can finally wake up more frequently

than before. Nevertheless, T still cannot take advantage of

the phantom CPU time on CPU1 and CPU2, simply because

T has only a single thread.

4.3 Our key finding
As we have demonstrated, due to FRS and PCT, target con-

tainers are unable to fully utilize all reserved CPU resources..

One may wonder if these two are scheduler bugs that are

overlooked and can be easily fixed. However, we argue that

neither FRS nor PCT is simply a bug. Rather, they are the re-

sult of interactions between various design considerations in

modern schedulers. When it comes to a system running con-

tainerized workload, the resource reservation requirement

from containers becomes incompatible with those design

choices made in modern schedulers.

Modern schedulers (e.g., Linux’s CFS, FreeBSD’s ULE and

Xen’s Credit scheduler) have been designed with at least

two goals in mind: to maximize resource utilization and to

maximize interactive performance. To support the interac-

tivity, jobs run periodically with time slices assigned by the

scheduler. Time slices are often lower-bounded, otherwise,

the resulting excessive number of context switches will hurt

utilization and performance. Given a lower-bounded time

slice, the scheduler may not effectively preempt a running

job any time a higher priority job needs to run. This directly

contradicts the common expectation of resource reservation

(e.g., CPU bandwidth control of cgroups [7]) in a container-

ized environment: an ideal containerization design would

expect a container, which has a certain amount of CPUs re-

served but has not fully utilized the reserved resource yet,

to be able to run in order to fulfill the reservation before the

reservation expires. The two causes we found are therefore

inevitable results of such conflicts in design goals.

Specifically, despite that the target container can reserve

the amount of a whole CPU so that its threads can run any-

time, whenever such a thread yields or blocks, OS will move

other threads to the reserved CPU to keep it busy. Thus, FRS

is the result of load balancing mechanisms of the schedulers,

which is a result of the goal to maximize utilization. Similarly,

PCT is a result of the combination of two design consider-

ations: 1) threads being unable to unconditionally preempt

others, which in turn is the result of having a lower-bounded

time slice in order to reduce scheduling overhead; and 2)

threads being the scheduling entity, which effectively biases
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Figure 5: Performance and CPU utilization of target container with Linux kernel v5.10 running on CloudLab.

towards containers with more threads, and in turn is the

result of enforcing system-wide fairness across threads.

To summarize, we argue that there is a fundamental mis-

match between the design goals of modern schedulers and

the need to reserve CPU for the containerized environment.

Such a mismatch strongly demands a new mechanism to

fulfill the promise. Hoping the problem may have been mit-

igated by the recent Linux kernel development, we tested

the latest LTS kernel v5.10 with a similar configuration as

in Sec. 3. As shown in Figure 5, the same problem persists

for batch and interactive applications, albeit with slightly

different behaviors from different neighboring workloads.

This leads to our further investigation on the design of a new

resource configuration scheme.

5 rKube AS A MAKESHIFT SOLUTION
Here we discuss the challenges in fundamentally solving the

problem and then propose a proof-of-concept design called

rKube, as a quick yet practical rescue. rKube demonstrates

what can be achieved, shedding light on future designs.

5.1 Rationale of rKube
Given the fundamental conflicts discussed in Section 4, solv-

ing the problem within the existing scheduler is challenging

without a redesign. For example, an intuitive way to achieve

CPU reservation is to allow the target container to regain the

CPU as soon as it is ready (e.g., after I/O completion). This

requires unconditional preemption, so the target container

will not wait in the queue (and compete with others). By

constantly assigning a higher priority to the target container,

this might be (approximately) achievable. However, the con-

sequence of such an approach is that 1) there are a lot (more)

context switches than without such a change. With an ex-

cessive number of context switches, the overhead increases,

the effective CPU utilization inevitably decreases; 2) while

the target’s CPU utilization is improved, other concurrent

processes suffer because the more time the OS scheduler uses

to serve the target, the less remaining time it has to serve

the other concurrent processes [7]. This is even without

counting the increased overhead of context switches.

Based on our investigation and experiments, we concluded

that changing the scheduler’s existing configuration param-

eters could not effectively mitigate the issue. Even worse is

that other unexpected conflicts may be introduced when fid-

dling with the parameters. Hence, we argue that a redesign of

modern schedulers is mandated to solve the problem. How-

ever, a redesign of a fundamental component such as CFS is

likely to take years to achieve. As a quick and CFS transpar-

ent solution, instead, we propose rKube, which augments the

Kubernetes by introducing the currently missing parameters

that allow users to express their demand to the kubelet. It

relies on CPU reservation (instead of dynamic weight adjust-

ment) to implement resource allocation and scheduling.

Specially, CPU reservations could be achieved by setting

CPU affinity for individual containers. For this purpose,

Linux provides a control feature, called cgroups, that could be

utilized by rKube via setting cpuset .cpus . While cpu .shares
provides relative CPU shares among groups, cpuset .cpus lim-

its CPU usages in absolute values that are independent of

the CPU speed and the scheduling of neighboring containers.

In our design, rKube first selects a set of CPUs to be reserved
for the target container based on their requests .cpu; then, it
sets cpuset .cpus for all the containers to guarantee that the

runqueues of the selected CPUs are exclusive for the target

container. In this way, no other neighboring containers will

be scheduled on these CPUs. Eventually, the system and the

other containers will not be affected by the scheduling over-

head of the reserved CPUs, the cost of which will be paid by

the users who are in demand.

5.2 Implementation of rKube
We built our rKube prototype based on Kubernetes v1.17.3.

To enable a user to require specific scheduling for a container

explicitly, we add a new field named “policy” to the Kuber-

netes pod template. It refers to if the CPU request is strict
or standard. Based on this field’s value, a container can

have its requests .cpu fulfilled by cpuset .cpus instead of the

original cpu .shares if the request is strict, i.e., using rKube.
Otherwise, it falls back to the original implementation. Thus,

this option provides backward compatibility.
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To implement rKube, we modify Kubernetes components

kubectl, apiserver, kube-scheduler and kubelet to

make sure the new field is correctly passed to kubelet in

the host. In the host, once a container has strict CPU requests,

the configured number of CPUs is selected. Aswe observed in

Figure 2, contention on the hardware resources also impacts

the target application. To reduce the interference with its

neighboring applications in the shared memory hierarchy,

the CPU topology is taken into consideration in the CPU

selection. rKube aims to separate them from shared CPUs

used by other containers. For example, when requests .cpu is

larger than the CPU number in a socket, and all CPUs in that

socket are not reserved yet, all these CPUs will be selected.

They will be added to cpuset .cpus of the target and will be

removed from cpuset .cpus of all others in the host.

There are other design choices in building rKube. Orig-
inally, in the host, kube-reserved and system-reserved
can be used to requests CPU for Kubernetes and OS sys-

tem daemons, such as the kubelet, container runtime, and

sshd [25]. Similar to user containers, rKube applies the same

CPU reservation for the requests of system services to pre-

vent them from being starved and becoming bottlenecks.

Furthermore, since containers may fail unexpectedly, like

other Kubernetes components, our subsystem that manages

cgroup should also be resilient to container crashes. For this

purpose, rKube does not rely on Docker to update cgroup
values, but instead, it maintains host status and writes to

cgroup filesystem directly. The subsystem also checks for

any inconsistency on all pod life cycle events. Hooking pod

life cycle events rather than container life cycle events makes

the CPU reservation simple, stable, and complete.

Note that our implementation of rKube did not change

the underlying host’s default scheduling, e.g., CFS. We chose

not to directly modify CFS to make it fit for containerized

environments because 1) we strive to make the implementa-

tion transparent to the underlying OS, and 2) CFS is widely

used for other purposes, and modification of that would im-

pede the adoption of rKube. For similar considerations, rKube
keeps the default approach for requesting resources, but with

the new option added, it is backward compatible.

As a makeshift solution, rKube also comes with several

limitations. For example, at the moment, it does not support

fractional CPU shares, and by allocating CPUs exclusively,

it could impact the overall host resource utilization.

6 EVALUATION
The performance of rKube is evaluated from two perspectives:

1) its effectiveness in reducing the neighbor interference and

keeping the CPU resource promise, and 2) how does a good

resource promise translate into the direct benefits for devel-

opers and cloud service providers, i.e., its practical value. For

effectiveness, rKube is compared with the default scheduling

strategy, referred to as standard in the corresponding fig-

ures. We evaluate with both synthetic workload (Section 6.1)

and realistic workload adapted from real-world data center

traces (Section 6.5). For the practical value, we study three

common use cases in cloud performance tuning and evaluate

the benefits of using rKube against the typical best practices
in production [14], including “resource scaling” (Section 6.2

and 6.3) and “resource under-commitment” (Section 6.4).

6.1 Effectiveness of rKube
First, we study whether the containerized applications’ per-

formance can be improved with rKube and how much it can

help, if any. For this purpose, we compare the CPU consump-

tion and performance of different containerized applications

in themulti-tenant environment where different neighboring

containers are running with standard and rKube. The evalu-
ation is conducted using the same setup as in Section 3.1.

Figure 6 shows the result under rKube, while the result
under standard is shown in Figure 2 in Section 3. The re-

sults show that rKube effectively increases the CPU uti-

lization and performance of the target applications, regard-

less of what type of settings a neighboring container uses.

For example, for streamcluster, when its neighbor runs a

memory-intensive workload and does not have limits .cpu
set, as shown in Figure 2b and Figure 6b, rKube increases
its CPU utilization from 27% to 93%; correspondingly, as

shown in Figure 2a and Figure 6a, its completion time is

reduced from 482.0 seconds to 86.4 seconds, a speedup by

more than 5x. For the batch applications, the speedup of task

completion time ranges from 2.1x to 5.6x depending on the

different neighboring workloads. For Memcached, as shown
in Figure 2c and Figure 6c, rKube increases its CPU utilization

from 55% to 95%, while its maximum serving throughput

increases from 37k to 62k rps. Figure 8 further shows that

the corresponding 99%-ile tail latency for read operations

is reduced by over 13x, from 8479µs to 621µs . We observe

that the improvement of Memcached happens across all the
situations, with a throughput boost from 1.2x to 1.7x and a

reduction of tail latency between 12.9x and 13.7x.

As a makeshift solution, rKube slightly scarifies overall

host CPU utilization in certain cases. For example, as shown

in Figure 7b, for the burstable & memory-intensive case,

rKube decreases host CPU utilization from 100% to 91%, since

user (neighbor) containers are prevented from using CPU

reserved for system services. In this figure, the CPU below

the lower dashed line is reserved for the target container, the

CPU between two dashed lines is reserved for the neighbor

container, and the CPU above the upper dashed line is re-

served for other system services. However, for the capped &

memory-intensive case, rKube instead increases host CPU

utilization from 88% to 92%.
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(b) Batch apps, CPU utilization.
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Figure 6: Performance and CPU utilization of target container with rKube. (standard result in Figure 2)
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Figure 7: Composition of overall host CPU utilization with rKube and
standard. Dotted lines indicate the CPU allocated to target/neighbors.
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6.2 Vertical scaling vs. rKube
Our evaluation so far shows that, with correctly enforced

CPU requests, rKube can effectively improve the applica-

tion’s CPU utilization and performance in the multi-tenant

containerized environment. In current practices, when a user

deploys an application to the cloud, and the application’s

performance is not satisfying, the user often has to invest

more resources to improve its performance, often referred as

vertical scaling. As most cloud providers charge users based

on the resources requested , an accurate estimate of resource

demand for the application is not only critical for predicting

its performance (e.g., when the task can complete), but can

also help reduce the user’s cost. We next study how rKube
can effectively avoid unnecessary resource wastage with

improved cost-effectiveness.

Figure 9a and Figure 9b show the effect of vertically scal-

ing streamcluster vs. when rKube is applied alone, respec-

tively. Two strategies are available when performing vertical

scaling: 1) the number of threads equals to the CPU requests,

thus increasing along with the CPU requests; and 2) the

number of threads remains fixed while the CPU requests

increase. We denote these two strategies as Vertical 1 and
Vertical 2 in the figure. By default, the number of threads

and the CPU requests are both set to 12 for streamcluster.
We then vary the CPU requests between 10 and 22, as shown

by the figure’s x-axis. In this case, strategy “Vertical 2” keeps

the number of threads 12. Figure 9a and Figure 9b show

the normalized completion time, which is calculated as the

ratio of the completion time of various scaling strategies

to the baseline. Thus, the smaller the ratio is, the less the

completion time it takes.

The results show that by requesting more CPUs, the ap-

plication performance for streamcluster improves slowly

with both scaling strategies. As a comparison, rKube (dashed
lines) requires no additional CPU resources but reduces

the application’s completion time by 40%, as shown in Fig-

ure 9a (when the neighbor application is capped andmemory-

intensive), and by 80%, as shown in Figure 9b (when the

neighbor application is burstable and memory-intensive).

Furthermore, vertical scaling causes further performance

drop with a burstable neighboring application since the CPU

contention increases as more threads are spawned by verti-

cal scaling. This trend can be observed from the results of

“Vertical 1” in Figure 9b.

The results indicate that rKube is more effective than ver-

tical scaling when guaranteeing a predictable performance.

Solely increasing resources does not prevent the target ap-

plications and neighbor threads from sharing the same CPU

runqueue, thus "stealing" CPU resources from the target.
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Figure 9: streamcluster perfor-
mance improvement when using
vertical scaling and rKube.
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Figure 10: Memcached performance
improvement when using horizon-
tal scaling and rKube.
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Figure 11: Application Perfor-
mance by under-commitment
strategy and rKube.

6.3 Horizontal scaling vs. rKube
For interactive applications, “horizontal scaling” or “scaling

out” is often used when the applications hit a performance

bottleneck. Unlike vertical scaling, horizontal scaling typi-

cally requires provisioning and committing additional infras-

tructure capacity to achieve the desired performance. For

example, to enable the Memcached cluster to serve at higher

throughput, one can increase the number of Memcached repli-
cas and distribute the load across all the replicas.

Figure 10a and Figure 10b show the effect of horizontally

scaling Memcached vs. when rKube is applied alone. For both
tests, the deployed Memcached observes a target throughput

of at least 300k rps. The vertical dashed lines denote the

minimum number of replicas needed to achieve the target

throughput. The minimum number of replicas is 7 and 9 in

Figure 10a and Figure 10b, respectively, due to the different

settings of neighboring containers. We observe that by in-

creasing the number of replicas, the tail latency decreases

gradually. On the other hand, with the help of rKube, the
minimum number of replicas is 5 for both types of neighbors,

with a tail latency of 606 and 613 ms. Finally, by compar-

ing the results in Figure 10a and Figure 10b, we find that

rKube is incredibly helpful when having burstable neighbors

than when having capped neighbors. Capped neighbors will

be throttled after their CPU consumption meets their de-

mand, while burstable neighbors can be more aggressive in

competing resources.

Overall, the results show that while scaling out can im-

prove Memcached’s throughput, the latency is also increased

due to neighbor containers. rKube can mitigate such effects,

delivering better service quality to users.

6.4 Resource under-commitment vs. rKube
By default, Kubernetes assigns all the allocatable CPUs of

the host to containers. When a host node in a Kubernetes

cluster runs out of resources, the kubelet (the primary “node

agent” that runs on each host node) will be triggered to

reclaim resources by evicting pods until the resource us-

age is under a pre-defined threshold again. Therefore, an

admin or the cloud provider may intentionally leave some

resources unassigned (i.e., under-commitment) to guarantee

that there is enough resource headroom when the load of the

(higher-priority) applications spikes. We call such a strategy

“resource under-commitment”. We study the effectiveness

of resource under-commitment and compare it with that of

rKube. We gradually reduce the number of CPU requests

of the neighbor containers (so that more allocatable CPUs

become available and can be utilized if needed) to simulate
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the over-supplied resource scenario. Figure 11 shows the per-

formance improvement of streamcluster, when we reduce

the number of CPUs assigned to the neighboring containers

that are capped and running memory-intensive workloads.

In Figure 11a, the x-axis represents the number of assigned

CPUs (to both the target and neighboring applications) vs.

total allocatable CPUs. Throughout, the target application

streamcluster always requests 12 CPUs, as listed in Table 1.
For example, 20/22 means 20 are assigned to the applications

(where 12 is assigned to streamcluster and 8 is to the neigh-
bor), and 2 are allocatable but not assigned. For rKube, the
number of assigned CPUs for the target application is fixed

at 12. By default, all CPUs (22/22) are assigned to the target

and neighboring containers. The performance of the target

application in the default setting is used as our baseline for

comparisons. As shown by the y-axis (normalized comple-

tion time), the target application’s performance improves

when the neighboring container requests fewer CPUs.

rKube is more effective and efficient; rKube correctly en-

forces the CPU shares and provides a performance guarantee

for the target application. For example, the completion time

is reduced by 40% when we decrease the number of allocated

CPUs from 22/22 to 12/22. In this case, rKube outperforms

the under-commitment strategy even when there are 10 ad-

ditional unassigned CPUs (and could be used by the target).

Figure 11b compares under-commitment and rKube for
Memcached. As shown, the throughput improves (while the

99%-ile tail latency decreases) as more CPUs become avail-

able (unassigned). We also observe similar trends for the

latencies of Memcached update operations (omitted due to

space limitations). Overall, when serving at the same through-

put level, rKube significantly outperforms under-commitment

strategies in terms of the 99%-ile tail latency. Furthermore,

with the help of rKube, Memcached achieves higher maxi-

mum throughput (the horizontal dashed line in the figure),

which is comparable with that of under-commitment. Again,

unlike under-commitment, which sacrifices the overall CPU

utilization (the CPU utilization drops from 22/22 to 16/22),

rKube is able to maintain a high CPU utilization of 22/22.

With rKube, a higher level of performance improvement

is achieved. More importantly, rKube maintains the high-

est level of CPU utilization without needing to sacrifice the

resource share of the neighboring application. This is desir-

able for modern data centers that have long been suffering a

notoriously low overall resource utilization [34, 35, 53, 54].

6.5 rKube with Alibaba traces
We evaluate rKube using production data center traces from

Alibaba [31]. The original traces contain a 12-hour longwork-

load of co-located long-running, interactive jobs and tran-

sient, batch jobs. The whole workload spans ∼1300 machines.
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Figure 12: rKube’s performance with Alibaba traces,
normalized against standard.

Since the trace datasets lack detailed information about ap-

plication types, we use Memcached to simulate online, in-

teractive jobs and the PARSEC benchmark suite to simulate

offline, batch jobs. For each job, we set the requested CPUs

based on the values of plan_cpu in the traces, and we derive

the number of threads based on the values of cpu_avg and
cpu_max. We use a 40-core server with 2x Intel Xeon Silver

4114 CPUs (10C20T) from CloudLab [39] for this experiment.

We reserve 2 cores for systems and the rest of 38 cores are

used for containers. We randomly choose 50 machines from

the traces and replay the workload assigned to that particular

machine using our settings for a fixed period of time.

Figure 12 reports the normalized performance of rKube.
We observe that both the throughput and the 99%-ile tail

latency of Memcached get improved compared to those of

standard by an average of 35% and 451%, respectively, with

the tail latency being as much as 10× faster. The throughput

of batch jobs, defined the number of batch jobs completed

per minute, however, shows some level of variance across

machine IDs—batch jobs run 8% slower on average under

rKube than under standard. The result is expected—by reserv-
ing CPUs for specific containerized applications, rKube may

lead to some level of CPU under-utilization. Different from

previous experiments, here the resource of the batch jobs are

uncapped and not isolated by rKube, given their lower prior-

ity in data centers. The results demonstrate the efficacy of

rKube in sustaining real-world, production data center work-

loads, as data center operators or cloud providers typically

assign higher priorities for online, interactive, directly-user-

facing applications while providing best-effort, temporary

resource over-commitment for short-lived batch jobs with

lower priorities [54, 55, 58]. We believe this is mostly accept-

able considering that rKube can significantly reduce SLA

violations and most batch jobs have low priorities.

7 RELATEDWORK
The Kubernetes and Docker community has long been suffer-

ing from the performance issues related to Linux scheduling

and OS virtualization [8, 11–13, 15]. Kubernetes provides
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alternative host CPU management policies [42], e.g., static
policy, which utilizes cpuset.cpu to pin the pods for better

performance. However, the static policy is intended for better
cache affinity and lower scheduling overhead, not reducing

neighbor interference. It also comes with its own limitations.

For example, it can be applied if and only if it is a Guaranteed
pod and has integer CPU requests. Those pods will still share
the CPU with system services such as the container runtime

and the kubelet. Also, a host cannot have mixed static and

sharing containers at the same time. As a comparison, rKube
is specifically designed to reduce interference and can be

enabled on selected pods on a host with other CPU sharing

pods running together.

In the meantime, the Linux community has been actively

investigating new cases where Linux fails to provide proper

CPU isolation support for containerized applications [6, 20,

21, 26, 27]. However, despite the efforts. Many of these per-

formance issues still persist with the latest software stack,

stressing that improvement for the containerized environ-

ment is imperatively needed.

Researchers have identified drawbacks of the CPU sched-

ulers. For example, Lozi et al. [49] reported that the Linux

scheduler sometimes fails to make good use of the CPU

resources and causes performance degradation for some ap-

plications. Kim et al. [44] found that CFS with distributed

runqueues fails to achieve a global fare share scheduling, and

proposed a global virtual time fair scheduling as a solution.

Bouron et al. [33] analyzed the impact of two OS schedulers:

FreeBSD’s default ULE scheduler, and Linux’s default CFS,

on applications performance, and concluded there is no over-

all winner for complex use cases. Our work focuses on the

context of containerized environments, where fulfilling the

promise of CPU resource requests is crucial to users.

Considerable prior works have examined performance

isolation in multi-tenant clouds. CPI
2
[57] used cycle-per-

instruction data to identify and throttle misbehaved tasks in

the shared hosts. VASE [48] claimed that the protection scope

is erroneously used as the resource scope in the multi-tenant

environment and proposed virtual CPUs as a container for

CPU accounting and management. Bubble-Up [50] identi-

fies contention on the shared resource as a major obstacle

for high-priority, latency-sensitive tasks to share hosts with

other tasks, and provides a characterization method that

predicts the performance degradation due to the contention

on the shared resource in the memory subsystem. Studies

showed that small latency variation per microservice would

result in significant (tail) latency increases, and severely im-

pact the end-user experience [36, 41, 59]. rKube also targets

the multi-tenant container cloud environment but is among

the first to provide a solution to address this issue. Though

contention on shared hardware is commonly known as a

challenge for performance isolation, we demonstrate that,

even without CPU over-commitment, performance isolation

is non-trivial due to the Linux scheduler design.

Some other studies have explored container performance

isolation. Iron [43] improves the network CPU isolation by

accounting for the CPU time spent on the network stack on

behalf of the co-located containers. Gao et al. [42] argued

that Linux cgroups fails to achieve consistent and fair re-

source accounting, and show that the resource consumption

is not correctly charged to the specified cgroup configura-

tions. In our work, we show that, in addition to those issues,

the mismatched interaction between cgroups and Linux’s de-

fault CFS scheduler is the main cause of severe performance

interference.

8 CONCLUSION
Containerized cloud environments are becoming more and

more popular in the production environment. While offer-

ing plenty of advantages, it has also been found that the

application performance suffers from significant variations,

making it difficult for resource requesting (for users) and

resource planning (for cloud providers). In this paper, we

have quantitatively evaluated the performance variations

of batch and interactive applications, and showed that the

application could suffer a slowdown of 5x, leading to SLA

violations. These results motivated us to reason the underly-

ing causes, which point to the forced runqueue sharing and

the phantom CPU time due to the scheduling mechanism

used in the underlying host. We have shown the problem is

due to the misaligned design goals of the scheduler and the

containers, which mandates a new kernel scheduler redesign.

As a proof-of-concept, we have designed and implemented

rKube, a CFS-transparent alternative, by augmenting the ex-

isting Kubernetes with an additional option, making it back-

ward compatible. Our evaluation results show that rKube
can effectively deliver the performance corresponding to a

user’s requests and outperform the common best practices

for scaling up in the production environments for improving

the application’s performance, demonstrating what can and

should be achieved in the future efforts.

rKube is open-sourced and is available at: https://github.

com/njuliuli/kubernetes/tree/policy.
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