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Abstract—We improve the fundamental security threshold of
eventual consensus Proof-of-Stake (PoS) blockchain protocols
under the longest-chain rule by showing, for the first time, the
positive effect of rounds with concurrent honest leaders. Current
security analyses reduce consistency to the dynamics of an
abstract, round-based block creation process that is determined
by three events associated with a round: (i) event A: at least
one adversarial leader, (ii) event S: a single honest leader, and
(iii) event M : multiple, but honest, leaders. We present an
asymptotically optimal consistency analysis assuming that an
honest round is more likely than an adversarial round (i.e.,
Pr[S]+Pr[M ] > Pr[A]); this threshold is optimal. This is a first in
the literature and can be applied to both the simple synchronous
communication as well as communication with bounded delays.

In all existing consistency analyses, event M is either penalized
or treated neutrally. Specifically, the consistency analyses in
Ouroboros Praos (Eurocrypt 2018) and Genesis (CCS 2018)
assume that Pr[S] − Pr[M ] > Pr[A]; the analyses in Sleepy
Consensus (Asiacrypt 2017) and Snow White (Fin. Crypto 2019)
assume that Pr[S] > Pr[A]. Moreover, all existing analyses
completely break down when Pr[S] < Pr[A]. These thresholds
determine the critical trade-off between the honest majority,
network delays, and consistency error.

Our new results can be directly applied to improve the security
guarantees of the existing protocols. We also complement these
results by analyzing the setting where S is rare, even allowing
Pr[S] = 0, under the added assumption that honest players adopt
a consistent chain selection rule.

Index Terms—Proof-of-Stake blockchains, security, consistency,
concurrent honest slot leaders

I. INTRODUCTION

Proof-of-Stake (PoS) blockchain protocols have emerged as
a viable alternative to resource-intensive Proof-of-Work (PoW)
blockchain protocols such as Bitcoin and Ethereum. These
PoS protocols are organized in rounds (which we call slots
in this paper); their most critical algorithmic component is a
leader election procedure which determines—for each slot—a
subset of participants with the authority to add a block to
the blockchain. Existing security analyses of these protocols
are logically divided into two components: the first reasons
about the properties of the leader election process, the second
reasons about the combinatorial properties of the blockchains
that can be produced by an idealized leader schedule in the
face of adaptive adversarial control of some participants. An
attractive side effect of this structure is that the combinatorial
considerations can be treated independently of other aspects
of the protocol. A recent article of Blum et al. [1] gave an

axiomatic treatment of this combinatorial portion of the analysis
which we extend in this paper.

These common combinatorial arguments can be formulated
with very little information about the leader election process.
Specifically, current analyses focus on three parameters:

• ph, the probability that a slot is uniquely honest, having a
single honest leader;

• pH, the probability that a slot is multiply honest, having
multiple, but honest, leaders; and

• pA, the probability that a slot has at least one adversarial
leader.

Our major contribution is a generic, rigorous guarantee of
consistency under the most desirable assumption1 ph+pH > pA
that achieves optimal consistency error exp(−Θ(k)) as a
function of confirmation time k. Our analysis can be directly
applied to existing protocols to improve their consistency
guarantees.

To contrast this with existing literature, the analysis of
Ouroboros Praos [3] and Ouroboros Genesis [4] require the
threshold assumption ph − pH > pA to achieve the optimal
consistency error of e−Θ(k). Note how multiply honest slots
actually detract from security, appearing negatively in the
basic security threshold. The consistency analyses in Snow
White [5] and Sleepy Consensus [6] assume an improved
threshold ph > pA; however, they only establish a consistency
error bound of e−Θ(

√
k). Note here that multiply honest slots

appear neutrally. All existing analyses break down if ph < pA,
i.e., when the uniquely honest slots are less probable than the
adversarial slots.

Multiply honest slots may arise by design, e.g., when each
player checks privately whether he is a leader. They may also
occur naturally in the non-synchronous setting when the time
between the broadcast of two blocks is exceeded by network
delay—in this case the party issuing the later block may not
be aware of the earlier block which can result the two blocks
sharing the same chain history, a de facto incidence of multiple
honest leaders. The role of these slots is rather delicate: while it
is good for the system to have many honest blocks, concurrent
blocks can help the adversary in creating two long, diverging
blockchains that might jeopardize the consistency property. Our
new analysis shows that this second effect can be mitigated,

1 Consistency cannot be achieved in the case ph + pH < pA. See [2] for a
detailed discussion of the honest majority assumption.
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achieving consistency error bound of e−Θ(k) under the (tight)
assumption ph + pH > pA.

a) Our results and contributions.: As described above,
we show for the first time that PoS blockchain protocols using
the longest-chain rule can achieve a consistency error of e−Θ(k)

under the desirable condition ph + pH > pA. This improves the
security guarantee of all “longest chain rule” PoS protocols such
as Praos [3], Genesis [4], and Snow White [5] (we remark that
other PoS protocols such as Algorand [7] operate in a different
setting where explicit participation bounds are assumed and
forks can be prevented). We discuss our results in more detail
before turning to the model and proofs.

Our analysis in the simple synchronous model achieves the
same asymptotic error bound as in [8]—the tightest result in the
literature—under a much weaker assumption, namely ph+pH >
pA. Thus PoS protocols can in fact achieve consistency with
ph > pA, a regime beyond reach of all previous analyses. When
pH = 0 (i.e., all honest slots are in fact uniquely honest), we
exactly recover the bound in [8]. Finally, when ph " 1 (i.e.,
when uniquely honest slots are rare), our bound has the desired
dependence on ph; no existing analysis works in this regime.

Next, we consider a variant model where the honest players
use a consistent tie-breaking rule when selecting the longest
chain. (I.e., when a fixed set of blockchains of equal length are
presented to a collection of honest players, they all select the
same chain. In previous models, the adversary had the right
to break such ties by influencing network delivery.) Assuming
ph + pH > pA, we prove that the consistency error bound in
this model is identical to the e−Θ(k) bound in [8] even when
ph = 0. No existing analysis survives in this regime.

b) The semi-synchronous setting.: In the ∆-synchronous
communication setting, all messages are delivered with at most
a ∆ delay. Our results mentioned above can be transferred to
this setting using the ∆-synchronous to synchronous reduction
approach used in the Ouroboros Praos analysis [3]. Thus, we
can achieve a consistency error probability of e−Θ(k) in this
setting as well. We present the ∆-synchronous analysis in the
full version [9].

c) A technical overview.: We initially work in the syn-
chronous communication model and extend the synchronous
combinatorial framework of [8] to accommodate multiply
honest slots. Many of the important constructs and proofs
from their development break down, however. Thus we need
new tools with the right expressive properties.

Our analysis focuses on a combinatorial event called a
“Catalan slot.”2 Catalan slots are honest slots c with the property
that any interval containing c possesses strictly more honest
slots—with any number of honest leaders—than adversarial
slots. The analysis of [5] and [6] introduced this basic concept,
though they counted only uniquely honest slots. In comparison
with their analysis, then, our treatment has two important
advantages: first of all, we let multiply honest slots count in
the analysis and, additionally, we achieve strikingly stronger

2The name is a nod to the Catalan number in combinatorics: The nth
Catalan number Cn is the number of strings w ∈ {0, 1}2n so that every
prefix x of w satisfies #0(x) ≥ #1(x).

error bounds: specifically, we achieve optimal settlement error
of exp(−θ(k)) rather then exp(−θ(

√
k)).

A Catalan slot c acts as a barrier for the adversary in that
if an honest blockchain from a slot h < c is padded with
adversarial blocks and presented to an honest observer at slot
c+1, the observer will never adopt this blockchain. As a result,
the chains adopted by this honest observer must contain some
block from slot c. Note that this is true even if c is multiply
honest. A critical observation is that a slot is Catalan if and
only if all competitive blockchains in future slots contain at
least one block from this slot. Thus, if a Catalan slot c is
uniquely honest, all blockchains that are eligible to be adopted
by future honest players must contain the (only) honest block
issued from slot c. We call this the “Unique Vertex Property”
(UVP). Note how the UVP is reminiscent of the “Common
Prefix Property” (CP) in the literature. Together, Catalan slots
and the UVP acts as a conduit between consistency violations
and the underlying stochastic process.

Our major technical challenge is to bound the probability
that Catalan slots are infrequent. Here we break away entirely
from the analysis of [5] and approach the question using the
theory of generating functions and stochastic dominance. We
find an exact generating function for a related event and use
this, by dominance, to control the undesirable event that a
long window of slots is devoid of Catalan slots. This yields
asymptotically optimal settlement bounds.

Finally, it follows from the discussion above that if two
consecutive slots are Catalan then any subsequent honest block
must contain, in its prefix, a block from each of these slots. In
a setting where all honest players use a consistent longest-chain
selection rule, we show that the first slot has UVP as well.
Since Catalan slots can be multiply honest, PoS protocols can
achieve a consistency error bound of e−Θ(k) in this model
even if ph = 0.

II. THE MODEL AND MAIN THEOREMS

We study the behavior of the elementary longest-chain rule
algorithm, carried out by a collection of participants:
• In each round, each participant collects all valid blockchains

from the network; if a participant is a leader in the round, he
adds a block to the longest chain and broadcasts the result.

Here, “valid” indicates that any block appearing in the chain
was indeed issued by a leader from the associated slot; in the
PoS setting, this property is guaranteed with digital signatures.

We begin by studying this algorithm in the simple, syn-
chronous model posited by Blum et. al [1]. The model adopts
a synchronous communication network in the presence of a
rushing adversary: in particular,
A0. Any message broadcast by an honest participant at the

beginning of a particular slot is received by the adversary
first, who may decide strategically and individually for
each recipient in the network whether to inject additional
messages and in which order all messages are to be
delivered prior to the conclusion of the slot.
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See the comments prior to Section II-A for further discussion of
this network assumption. A variant of this adversarial message-
ordering is presented in Section II-C. The ∆-synchronous
communication model is handled in the full version [9].

Given this, it is easy to describe the behavior of the longest-
chain rule when carried out by a group of honest participants
with the extra guarantee that exactly one is elected as leader in
a slot: Assuming that the system is initialized with a common
“genesis block” corresponding to sl0, the players observe a
common, linearly growing blockchain:

0 1 2 . . .

Here node i represents the block broadcast by the leader of
slot i and the arrows represent the direction of increasing time.

a) The blockchain axioms: Informal discussion.: The
introduction of adversarial participants or multiple slot leaders
complicates the family of possible blockchains that could
emerge from this process. To explore this in the context of our
protocols, we work with an abstract notion of a blockchain
which ignores all internal structure. We consider a fixed
assignment of leaders to time slots, and assume that the
blockchain uses a proof mechanism to ensure that any block
labeled with slot slt was indeed produced by a leader of slot
slt; this is guaranteed in practice by appropriate use of a secure
digital signature scheme.

Specifically, we treat a blockchain as a sequence of abstract
blocks, each labeled with a slot number, so that:
A1. The blockchain begins with a fixed “genesis” block,

assigned to slot sl0.
A2. The (slot) labels of the blocks are in strictly increasing

order.
It is further convenient to introduce the structure of a directed
graph on our presentation, where each block is treated as a
vertex; in light of the first two axioms above, a blockchain is
a path beginning with a special “genesis” vertex, labeled 0,
followed by vertices with strictly increasing labels that indicate
which slot is associated with the block.

0 2 4 5 7 9

The protocols of interest call for honest players to add a single
block during any slot. In particular:
A3. Let k ∈ N. If a slot slt was assigned to k honest players

but no adversarial players, then k blocks are created—
during the entire protocol—each with label slt.

Recall that blockchains are immutable in the sense that any
block in the chain commits to the entire previous history of the
chain; this is achieved in practice by including with each block
a collision-free hash of the previous block. These properties
imply that any chain that includes a block issued by an honest
player must also include that block’s associated prefix.

As we analyze the dynamics of blockchain algorithms, it is
convenient to maintain an entire family of blockchains at once.
As a matter of bookkeeping, when two blockchains agree on

a common prefix, we can glue together the associated paths to
indicate this, as shown below.

0 2 4 5

7 9

8 9

When we glue together many chains to form such a diagram, we
call it a “fork”—the precise definition appears below. Observe
that while these two blockchains agree through the vertex
(block) labeled 5, they contain (distinct) vertices labeled 9; this
reflects two distinct blocks associated with slot 9 which, in light
of the axiom above, may be produced by either an adversarial
participant assigned to slot 9 or two honest participants, both
assigned to slot 9.

Finally, as we assume that messages from honest players
are delivered before the next slot begins, we note a direct
consequence of the longest chain rule:
A4. If two honestly generated blocks B1, B2 are labeled with

slots sl1, sl2 so that sl1 < sl2, then the length of the
unique blockchain terminating at B1 is strictly less than
the length of the unique blockchain terminating at B2.

Recall that the honest participant(s) assigned to slot sl2 will be
aware of the blockchain terminating at B1 that was broadcast
by an honest player in slot sl1 as a result of synchronicity;
according to the longest-chain rule, B2 must have been placed
on a chain that was at least this long. In contrast, not all
participants are necessarily aware of all blocks generated by
dishonest players, and indeed dishonest players may often want
to delay the delivery of an adversarial block to a participant or
show one block to some participants and show a completely
different block to others.

b) Characteristic strings, forks, and the formal axioms.:
Note that with the axioms we have discussed above, whether
or not a particular fork diagram (such as the one just above)
corresponds to a valid execution of the protocol depends on how
the slots have been awarded to the parties by the leader election
mechanism. We introduce the notion of a “characteristic” string
as a convenient means of representing information about slot
leaders in a given execution.

Definition 1 (Characteristic string). Let sl1, . . . , sln be a
sequence of slots. A characteristic string w is an element
of {h, H, A}n. The string w is consistent with a particular
execution of a blockchain protocol on these slots if for each
t ∈ [n], (i) if wt = A, slot slt is assigned to at least one
adversarial player, (ii) if wt = h, slot slt is assigned to a
unique, honest player, and (iii) if wt = H, slot slt is assigned
to at least one honest player and no adversarial players.

Observe that when an execution corresponds to a character-
istic string w, it also corresponds to any string obtained from
w by replacing h symbols with H symbols.

For two strings x and w on the same alphabet, we write
x ≺ w if and only if x is a strict prefix of w. Similarly, we
write x & w if and only if either x = w or x ≺ w. The empty
string ε is a prefix to any string. If wt ∈ {h, H}, we say that
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Fig. 1. A fork F for the characteristic string w = hAhAhHAAH; vertices appear
with their labels and honest vertices are highlighted with double borders. Note
that the depths of the (honest) vertices associated with the honest indices of
w are strictly increasing. Note, also, that this fork has three disjoint paths of
maximum depth. In addition, two honest vertices have label 6 and two more
have label 9, indicating the fact that two honest leaders are associated with
each of the (honest) slots 6 and 9. Honest vertices with the same label are
concurrent and, therefore, cannot extend each other. Note that the two honest
vertices with label 6 extend different vertices with the same depth. This is
allowed since any tie in the longest-chain rule is broken by the adversary.

“slt is honest” and otherwise, we say that “slt is adversarial.”
With this discussion behind us, we set down the formal object
we use to reflect the various blockchains adopted by honest
players during the execution of a blockchain protocol. This
definition formalizes the blockchains axioms discussed above.

Definition 2 (Fork). Let w ∈ {h, H, A}n, P = {i : wi = h},
and Q = {j : wj = H}. A fork for the string w consists
of a directed and rooted tree F = (V,E) with a labeling
# : V → {0, 1, . . . , n}. We insist that each edge of F is
directed away from the root vertex and further require that

(F1) the root vertex r has label #(r) = 0;
(F2) the vertex labels along any directed path are strictly

increasing;
(F3) each index i ∈ P is the label of exactly one vertex of F

and each index j ∈ Q is the label of at least one vertex
of F ; and

(F4) for any indices i, j ∈ P ∪Q, if i < j then the depth of
a vertex with label i is strictly less than the depth of a
vertex with label j.

If F is a fork for the characteristic string w, we write F ) w.
The conditions (F1)–(F4) are analogues of the axioms A1–A4
above. The formal reflection of axiom A3 by condition (F3)
deserves further comment: We have chosen a definition of
characteristic string that does not indicate the number of honest
victories in cases where there may be many; in particular, the
symbol H may be associated with any positive number of
(honest) vertices in the fork. Indeed, we even permit a fork
to have a single honest vertex associated with such a symbol,
which enlarges the class of forks under consideration for a
particular characteristic string. This strengthens our results by
effectively giving the adversary the option to treat H symbols
as h symbols. See Fig. 1 for an example fork.

A final notational convention: If F ) x and F̂ ) w, we
say that F is a prefix of F̂ , written F * F̂ , if x & w and F
appears as a consistently-labeled subgraph of F̂ . (Specifically,
each path of F appears, with identical labels, in F̂ .)

Let w be a characteristic string. The directed paths in the
fork F ) w originating from the root are called tines; these
are abstract representations of blockchains. (A tine may not
terminate at a leaf of the fork.) We naturally extend the label
function # for tines: i.e., #(t) ! #(v) where the tine t terminates
at vertex v. The length of a tine t is denoted by length(t).

c) Viable tines.: The longest-chain rule dictates that
honest players build on chains that are at least as long as
all previously broadcast honest chains. It is convenient to
distinguish such tines in the analysis: specifically, a tine t of
F is called viable if its length is no smaller than the depth of
any honest vertex v for which #(v) ≤ #(t). A tine t is viable
at slot s if the length of the portion of t appearing over slots
0, . . . , s is no smaller than the depths of any honest vertices
labeled from these slots. (As noted, the properties (F3) and (F4)
together imply that an honest observer at slot s will only adopt
a viable tine.) The honest depth function d : P ∪ Q → [n],
defined as d(i) = maxt∈F {length(t) : #(t) = i}, gives the
largest depth of the (honest) vertices associated with an honest
slot; by (F4), d(·) is strictly increasing.

A. Slot settlement and the Unique Vertex Property
We are now ready to explore the power of an adversary in

this setting who has corrupted a (perhaps evolving) coalition of
the players. We focus on the possibility that such an adversary
can violate the consistency of the honest players’ blockchains.
In particular, we consider the possibility that, at some time t, the
adversary conspires to produce two blockchains of maximum
length that diverge prior to a previous slot s ≤ t; in this case
honest players adopting the longest-chain rule may clearly
disagree about the history of the blockchain after slot s. We
call such a circumstance a settlement violation.

To express this in our abstract language, let F ) w be a
fork corresponding to an execution with characteristic string
w. Such a settlement violation induces two equally long viable
tines t1, t2 that diverge prior to a particular slot of interest.

Definition 3 (Settlement with parameters s, k ∈ N). Let n ∈ N
and let w be a characteristic string of length n. Let t ∈ [s+k, n]
be an integer, ŵ & w, |ŵ| = t, and let F be any fork for ŵ.
We say that a slot s is not k-settled in F if F contains two
maximum-length tines C1, C2 that “diverge prior to s,” i.e., they
either contain different vertices labeled with s, or one contains
a vertex labeled with s while the other does not. Otherwise, we
say that slot s is k-settled in F . We say that slot s is k-settled
in w if, for each t ≥ s+ k, it is k-settled in every fork F ) ŵ
where ŵ & w, |ŵ| = t.

Definition 4 (Bottleneck Property (BP) and Unique Vertex
Property (UVP)). Let w ∈ {h, H, A}T be a characteristic string.
A slot s ∈ [T ] is said to have the bottleneck property in w with
parameter k if, for any fork F ) w and any k ≥ s+ 1, every
tine viable at the onset of slot k contains, as its prefix, some
vertex with label s. Slot s is said to have the Unique Vertex
Property if, for any fork F ) w, there is a unique vertex u ∈ F
with label s so that for any k ≥ s+ 1, all tines viable at the
onset of slot k contain, as their common prefix, the vertex u.
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The (D, T ; s, k)-settlement game

1) A characteristic string w ∈ {h, H, A}T is drawn from D. (This reflects the results of the leader election mechanism.)
2) Let A0 ) ε denote the initial fork for the empty string ε consisting of a single node corresponding to the genesis block.
3) For each slot slt, t = 1, . . . , T in increasing order:

a) (Honest slot.) This case pertains to wt ∈ {h, H}. If wt = h then A sets k = 1. If wt = H then A chooses an arbitrary
integer k ≥ 1. The challenger is then given k and the fork At−1 ) w1 . . . wt−1. He must determine a new fork
Ft ) w1 . . . wt by adding k new vertices (all labeled with t) to At−1. Each new vertex is added at the end of a
maximum-length path in At−1. If there are multiple candidatesa for this path, A may break the tie. If k ≥ 2, multiple
vertices (all with label k) may be added at the end of the same path.

b) (Adversarial slot.) If wt = 1, this is an adversarial slot. A may set Ft ) w1 . . . wt to be an arbitrary fork for which
At−1 * Ft.

c) (Adversarial augmentation.) A determines an arbitrary fork At ) w1 . . . , wt for which Ft * At.
Recall that F * F ′ indicates that F ′ contains, as a consistently-labeled subgraph, the fork F .

A wins the settlement game if slot s is not k-settled in some fork At, t ≥ s+ k.

a It is possible that all maximum-length tines are honest. In the settlement game considered in [8], at least one of these tines was adversarial.

Thus if a uniquely honest slot in w has the BP, it has the
UVP as well. As a consistency property, UVP has several
advantages over slot settlement. First, it easily implies the
latter:

If slot s+ k has UVP in w then s is k-settled in w. (1)

In addition, UVP has a straightforward characterization using
“Catalan slots” (see Theorem 3) which is amenable to stochastic
analysis. Finally, since UVP is structurally reminiscent of the
traditional common prefix (CP) violations, UVP easily implies
CP. The analogous statement “settlement implies CP,” however,
requires a lengthy proof both in [1] and our framework. See
the full version [9] for details.

B. Adversarial attacks on settlement time; the settlement game

To clarify the relationship between forks and the chains at
play in a canonical blockchain protocol, we define a game-
based model below that explicitly describes the relationship
between forks and executions. By design, the probability that
the adversary wins this game is at most the probability that a
slot s is not k-settled.

Consider the (D, T ; s, k)-settlement game (presented in the
box), played between an adversary A and a challenger C with a
leader election mechanism modeled by an ideal distribution D.
Intuitively, the game should reflect the ability of the adversary to
achieve a settlement violation; that is, to present two maximum-
length viable blockchains to a future honest observer, thus
forcing them to choose between two alternate histories which
disagree on slot s. The challenger plays the role(s) of the
honest players.

It is important to note that the game bestows the player A
with the power to choose the number of honest vertices in a
multiply honest slot. Note that this setting makes the player
strictly more powerful and, importantly, implies that the game
is completely determined by the choices made by A (i.e., the
actions of the challenger are deterministic). Consequently, in

Definition 5, we can use a single, implicit universal quantifier
over all strategies A; no choices of the challenger are actually
necessary to fully describe the game.

Definition 5 (Settlement insecurity). Let D be a distribution on
{h, H, A}T . Let w ∼ D be the string used in the first step of a
(D, T ; s, k)-settlement game G. The (s, k)-settlement insecurity
of D is defined as

Ss,k[D] ! max
ŵ%w

|ŵ|≥s+k

max
F'ŵ

Pr

[
F has two maximum-length

tines that diverge prior to slot s

]
.

Note that the probability in the right-hand side is the same as
the probability that the player wins G.

Note that in typical PoS settings the distribution D is
determined by the combined stake held by the adversarial
players, the leader election mechanism, and the dynamics of the
protocol. The most common case (as seen in Snow White [5],
Ouroboros [10], and Ouroboros Praos [3]) guarantees that the
characteristic string w = w1 . . . wT is drawn from an i.i.d. dis-
tribution for which Pr[wi = A] ≤ (1−ε)/2 for some ε ∈ (0, 1);
here the constant (1− ε)/2 is directly related to the stake held
by the adversary. Some settings involving adaptive adversaries
(e.g., Ouroboros Praos [3]) yield a weaker martingale-type
guarantee that Pr[wi = A | w1, . . . , wi−1] ≤ (1−ε)/2. We can
easily handle both types of distributions in our analysis since
the former distribution “stochastically dominates” the latter. As
a rule, we denote the probability distribution associated with a
random variable using uppercase script letters.

Definition 6 (Stochastic dominance). Let X and Y be random
variables taking values in some set Ω endowed with a partial
order ≤. We say that X stochastically dominates Y , written
Y & X , if X (A) ≥ Y(A) for all monotone sets A ⊆ Ω, where
a set A ⊆ Ω is called monotone if x ∈ A implies y ∈ A
for all x ≤ y. As a special case, when Ω = R, Y & X if
Pr[X ≥ Λ] ≥ Pr[Y ≥ Λ] for every Λ ∈ R. We extend this
notion to probability distributions in the natural way.
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Throughout the paper, we adopt the following partial order
on {h, H, A}T : If T = 1, define h < H < A. Otherwise, for
two strings xa, yb ∈ {h, H, A}T , |a| = |b| = 1, xa ≤ yb if and
only if x ≤ y and a ≤ b. When x ≤ y, one might say that
y is “more adversarial” than x: indeed, if F ) x and x ≤ y
then F ) y so that any settlement violation for x induces a
settlement violation for y.

Definition 7 ((ε, ph)-Bernoulli condition). Let T ∈ N, ε ∈
(0, 1), and ph ∈ [0, (1 + ε)/2]. Define pA = (1 − ε)/2 and
pH = 1 − pA − ph. A random variable w = w1 . . . wT taking
values in {h, H, A}T is said to satisfy the (ε, ph)-Bernoulli
condition if each wi, i ∈ [T ], is independent and identically
distributed as follows: Pr[wi = σ] = pσ for σ ∈ {h, H, A}. The
distribution of w is also said to satisfy the (ε, ph)-Bernoulli
condition.

We frequently use the notation pH and pA in the context of
such a random variable when ε and ph can be inferred from
context.

Theorem 1 (Main theorem). Let ε, ph ∈ (0, 1) and s, k, T ∈ N.
Let B be a distribution on length-T characteristic strings
satisfying the (ε, ph)-Bernoulli condition. Then Ss,k[B] ≤
exp

(
−k · Ω(min(ε3, ε2ph)

)
. Furthermore, let W be a distri-

bution on {h, H, A}T so that W & B. Then Ss,k[W] ≤ Ss,k[B].
(Here, the asymptotic notation hides constants that do not
depend on ε or k.)

Note that the quantity ph above is strictly positive. The proof
is deferred to Section IV.

a) Analysis in the ∆-synchronous setting.: The security
game above most naturally models a blockchain protocol
over a synchronous network with immediate delivery (because
each “honest” play of the challenger always builds on a fork
that contains the fork generated by previous honest plays).
However, the model can be easily adapted to protocols in the
∆-synchronous setting by applying the ∆-reduction mapping
of [3] (which is designed to lift the synchronous analysis to
the ∆-synchronous setting). See the full version [9] for details.

b) Public leader schedules.: One attractive feature of this
model is that it gives the adversary full information about the
future schedule of leaders. The analysis of some protocols
indeed demand this (e.g., Ouroboros, Snow White). Other
protocols—especially those designed to offer security against
adaptive adversaries (Praos, Genesis)—keep the leader schedule
private. Of course, as our analysis is in the more difficult “full
information” model, it applies to all of these systems.

c) Bootstrapping multi-phase algorithms; stake shift.: We
remark that several existing proof-of-stake blockchain protocols
proceed in phases, each of which is obligated to generate
the randomness (for leader election, say) for the next phase
based on the current stake distribution. The blockchain security
properties of each phase are then individually analyzed—
assuming clean randomness—which yields a recursive security
argument; in this context the game outlined above precisely
reflects the single phase analysis.

C. A consistent longest-chain selection rule

Let us modify axiom A0 as follows:
A0′. In addition to axiom A0, an arbitrary but consistent

longest-chain tie-breaking rule is used by all honest
participants.

Therefore, if two honest players observe the same set of chains
of maximum length, they will extend the same chain.

Definition 8 (Bivalent characteristic string). Let sl1, . . . , sln
be a sequence of slots. A bivalent characteristic string w is
an element of {H, A}n defined for a particular execution of a
blockchain protocol on these slots so that for t ∈ [n], wt = A if
slt is assigned to an adversarial player, and wt = H otherwise.

The definition of a fork for a bivalent characteristic string
is identical to Definition 2 (somewhat simplified as a bivalent
string does not contain any h symbol). Also note that the
(ε, 0)-condition from Definition 7 is well-defined for bivalent
characteristic strings.

Let w be a bivalent characteristic string, F a fork for w,
and F ′ a fork for wH so that F * F ′ and any honest vertex
in F ′ \ F has label |w|+ 1. If F contains a maximum-length
adversarial tine, there is no guarantee that two honest observers
at slot |w|+ 1 will agree on the longest chain: the adversary
may chose to expose the adversarial chain to one and not the
other. In this case, we say that F has a tie for the longest-
chain rule—or, in short, that F has an LCR tie. When there is
no LCR tie (that is, no maximum-length adversarial tine), all
honest slot leaders at slot |w|+ 1 extend the same honest tine
determined by the consistent longest-chain tie-breaking rule.

Theorem 2 (Main theorem; consistent tie-breaking). Let ε ∈
(0, 1) and s, k, T ∈ N. Let B be a distribution on length-T
bivalent characteristic strings satisfying the (ε, 0)-Bernoulli
condition. Let W be a distribution on {H, A}T so that W & B.
Then Ss,k[W] ≤ Ss,k[B] ≤ exp

(
−k ·Ω(ε3(1+O(ε)))

)
. (Here,

the asymptotic notation hides constants that do not depend on
ε or k.)

The proof is deferred to Section IV. Note that the theorem
above states that a PoS protocol can achieve optimal consistency
error even with a leader election scheme that produces no
uniquely honest slots. In contrast, Theorem 1 requires a non-
zero probability for uniquely honest slots.

III. UNIQUE VERTEX PROPERTY VIA CATALAN SLOTS

As we have outlined before, if slot t in a characteristic
string w has the Unique Vertex Property (UVP) then the slots
s = 1, . . . , t are settled in every fork for w. The goal of
this section is to characterize when a slot has the UVP. We
start with laying down some structural properties of forks.
Next, we define the so-called Catalan slots and show that
if a slot is Catalan then in every fork, all sufficiently long
blockchains must contain a block from that slot. Next, we
show that this implication is actually an equivalence. Finally,
we revisit the above implication assuming that the honest
players use a consistent longest-chain tie-breaking rule.
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A. Viable blockchains
A vertex of a fork is honest if it is labeled with an index i

so that wi ∈ {h, H}; otherwise, it is adversarial.

Definition 9 (Tines, length, and height). Let F ) w be a
fork for a characteristic string. A tine of F is a directed path
starting from the root. For any tine t we define its length to be
the number of edges in the path, and for any vertex v we define
its depth to be the length of the unique tine that ends at v. If
a tine t1 is a strict prefix of another tine t2, we write t1 ≺ t2.
Similarly, if t1 is a non-strict prefix of t2, we write t1 & t2.
The longest common prefix of two tines t1, t2 is denoted by
t1 ∩ t2. That is, #(t1 ∩ t2) = max{#(u) : u & t1 and u & t2}.
The height of a fork (as is usual for a tree) is the length of
the longest tine, denoted by height(F ).

When an adversary builds a fork, it is natural to imagine
that he “grows” an existing fork by adding new vertices.

Definition 10 (Fork prefixes). Let w, x ∈ {h, H, A}∗ so that
x & w. Let F, F ′ be two forks for x and w, respectively. We say
that F is a prefix of F ′ if F is a consistently labeled subgraph
of F ′. That is, all vertices and edges of F also appear in F ′

and the label of any vertex appearing in both F and F ′ is
identical. We denote this relationship by F * F ′.

When speaking about a tine that appears in both F and F ′,
we place the fork in the subscript of relevant properties.

For any string x (on any alphabet) and a symbol σ in that
alphabet, define #σ(x) as the number of appearances of σ in
x. When a characteristic string w ∈ {h, H, A}T is fixed from
the context, we extend this notation to sub-intervals of [T ] in a
natural way: For integers i, j ∈ [T ], i ≤ j, let I = [i, j] ⊂ [T ]
be a closed interval and define #σ(I) = #σ(wi . . . wj) for
σ ∈ {h, H, A}. A characteristic string w is called hH-heavy
if #h(w) + #H(w) > #1(x); otherwise, it is called A-heavy.
For a given characteristic string w of length T , an interval
I = [i, j] ⊆ [T ] is called A-heavy if wi . . . wj is A-heavy.

Let F be a fork for w and let B be an honest tine in F .
We say that B has an adversarial extension t if B can be
extended to an adversarial tine t using only adversarial vertices
from the interval I = [#(B) + 1, #(t)] so that B ≺ t and the
last honest vertex on t is B. Note that t can be made disjoint
with any F -tine over the interval I . If w = xy and two tines
t1, t2 are disjoint over y, we call these tines y-disjoint. We
also equivalently say that t1 is y-disjoint with t2.

Fact 1. Let w ∈ {h, H, A}T be a characteristic string, s ∈
[T + 1] be an integer, x & w, |x| = s− 1. Let F be a fork for
w, B an honest vertex in F , h = #(B), and I = [h+1, s− 1].
Let Fx ) x be a fork prefix of F so that Fx contains all honest
tines from F with labels at most s−1. The following statements
are equivalent: (a) I is A-heavy; and (b) B has an adversarial
extension t, #(t) ∈ I so that t is viable at the onset of slot s.

Proof. First let us prove that (a) implies (b). Let t∗ be a
maximum-length honest tine in F so that #(t∗) ∈ I . There
can be two cases. If B is on t∗, the adversarial slots in I can
be used to create an adversarial tine t so that i) B is the last

honest vertex on t, ii) B is the last common vertex between t
and t∗, and iii) length(t) ≥ length(t∗) so that t is viable at
the onset of slot s. Now suppose B is not on t∗. Let B∗ be the
first honest vertex on t∗ so that #(B∗) ≤ #(B). If the interval
I ′ = [#(B∗) + 1, #(B)− 1] is non-empty, t∗ must contain only
adversarial vertices in I ′. We can build the adversarial tine t
as follows: Extend B∗ by duplicating the vertices on t∗ in the
interval [#(B∗) + 1, #(B)− 1], put B on t and finally, extend
B using only adversarial slots from I so that B∗ is the last
common vertex between t and t∗, and length(t) ≥ length(t∗).
Hence t is viable at the onset of slot s.

It remains to prove that (b) implies (a). Since t is an
adversarial extension of B, it contains only adversarial vertices
from I . By assumption, t is viable at the onset of slot s. It
follows that #A(I) ≥ #h(I) + #H(I) since the longest tine
grows by at least one vertex for each honest slot in I .

Corollary 1. Let w be a characteristic string, F be any fork
for w, and let t be any tine in F . Let B1 and B2 be two honest
vertices on t such that (i) #(B1) < #(B2), (ii) t contains only
adversarial vertices from I = [#(B1) + 1, #(B2)− 1], and (iii)
t contains at least one vertex from I . Then I is A-heavy.

Proof. By assumption, the honest vertex B2 builds on some
adversarial tine t′ that is viable at the onset of slot #(B2) and,
importantly, contains B1 as its last honest vertex. By Fact 1,
the interval I is A-heavy.

B. Catalan slots and the UVP
Below, we define the so-called Catalan slots and show, in

Theorems 3 and 4, that certain Catalan slots have the UVP.

Definition 11 (Catalan slot). Let w ∈ {h, H, A}T be a
characteristic string and let s ∈ [T ] be an integer. s is called
a left-Catalan slot in w if, for any integer # ∈ [s], the interval
[#, s] is hH-heavy in w. s is called a right-Catalan slot in w if,
for any integer r ∈ [s, T ], the interval [s, r] is hH-heavy in w.
Finally, s is called a Catalan slot in w if it is both left- and
right-Catalan in w.

Observe that a left- or right-Catalan slot must be honest.
In addition, the slot before a left-Catalan (resp., after a right-
Catalan) slot must be honest as well. Thus the slots adjacent
to a Catalan slot must be honest. A Catalan slot c acts as a
barrier for adversarial tine extensions in that in any fork, every
tine viable at the onset of slot c+ 1 must be honest.

Fact 2. Let w ∈ {h, H, A}T be a characteristic string and s a
left-Catalan slot in w. In any fork for w, every viable tine at
the onset of slot s+ 1 is an honest tine from slot s.

Proof. Let τ be the longest tine with label s. (τ is an honest
tine. If s is a uniquely honest slot, τ is unique. Otherwise, τ is
unique up to tie-breaking among equally-long tines.) We claim
that all adversarial tines t ∈ F, #(t) ≤ s− 1 are strictly shorter
than τ . Suppose, towards a contradiction, that t is a viable
adversarial tine at the onset of slot s + 1, i.e., #(t) ≤ s − 1
and length(t) ≥ length(τ). Let B be the last honest vertex
on t; necessarily, #(B) < s. According to Fact 1, the interval
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[#(B) + 1, s] is A-heavy. But this contradicts the assumption
that s is left-Catalan. Hence t cannot be viable.

Observation 1. If s is a Catalan slot for w, Fact 2 implies
that in every fork for w, an honest slot leader at slot s + 1
always builds on top of an honest tine with label s; this tine,
in fact, will have the maximum length among all tines with
label s.

Fact 3. Let w ∈ {h, H, A}T be a characteristic string. If an
honest slot in w has the bottleneck property then it is Catalan.

Proof. Let s ∈ [T ] be an honest slot in w. We will prove the
contrapositive: i.e., if s is not Catalan then s does not have the
BP. Suppose s is not a Catalan slot. Then there must be some
a, b ∈ [T ] so that I = [a, b] is the largest A-heavy interval
which includes s. Necessarily, either b = T , or b+ 1 must be
an honest slot. Likewise, either a = 1, or a − 1 must be an
honest slot. Let u ∈ F, #(u) = a − 1 be an honest tine. (If
a = 1, we can take u as the root vertex.) Since I is A-heavy,
Fact 1 states that it is possible to augment F with an adversarial
extension t, u ≺ t so that t is viable at the onset of slot b+ 1.
In particular, the extension will use only adversarial vertices
from the interval I and, in particular, t will not contain any
vertex from the honest slot s. Thus s does not have the BP.

It turns out that a uniquely honest Catalan slot has the UVP.

Theorem 3. Let w ∈ {h,H,A}T be a characteristic string.
Let s ∈ [T ] be a uniquely honest slot in w. Slot s is Catalan
in w if and only if it has the UVP in w.

Proof. (The reverse implication.) Since s has the UVP it
satisfies the (weaker) bottleneck property. By Fact 3, the honest
slot s must be Catalan.

(The forward implication.) By assumption, slot s has a
unique honest leader. Let τ be the unique honest tine at slot
s. By Fact 2, the honest tine τ is the only viable tine at the
onset of slot s + 1. If s = T then τ is the only viable tine
at the onset of slot T + 1. Now suppose s ≤ T − 1. As s is
a Catalan slot, slots s and s + 1 must be honest. Let t be a
viable tine at the onset of some slot k, k ≥ s+ 2. We claim
that τ must be a prefix of t.

Suppose, for a contradiction, that t does not contain τ as
its prefix. Let B1 be the last honest vertex on t such that
#(B1) ≤ s− 1. (If s = 1 or no such vertex can be found, take
B1 as the root vertex.) Likewise, let B2 be the first honest
vertex, if it exists, on t such that #(B2) ∈ [s+ 1, k − 1].

Suppose B2 exists. If #(B2) = s+1 then, by Observation 1,
B2 builds on τ , contradicting our assumption that τ is not a
prefix of t. Otherwise, suppose #(B2) ∈ [s+ 2, k − 1]. Let I
be the interval [#(B1) + 1, #(B2) − 1]. Clearly, I contains s.
If t contains any adversarial vertex between B1 and B2 then,
by Corollary 1, I must be A-heavy; but this contradicts the
assumption that s is a Catalan slot. Otherwise, B2 builds on
top of B1 and, in particular, B1 must be viable at the onset of
slot #(B2) ≥ s+ 1. Since #(τ) = s, this means length(B1) ≥
length(τ). However, since #(B1) < s, by the monotonicity of

the honest-depth function d(·), length(τ) ≥ 1 + length(B1).
This contradicts the inequality above.

Now suppose B2 does not exist. We claim that t is an
adversarial tine. To see why, note that if t were honest and
#(t) ≥ s + 1 then there would have been a B2. Since s is a
uniquely honest slot and τ is not a prefix of t by assumption,
#(t) 1= s if t is honest.

Finally, if t is honest and #(t) ≤ s − 1 then, by Fact 2, t
cannot be viable at the onset of slot s+ 1 since s is Catalan.
Since s+1 is an honest slot, honest tines with label s+1 will
be strictly longer than t and, therefore, t cannot be viable at
the onset of slot k ≥ s + 2 either. We conclude that t must
be an adversarial tine viable at the onset of slot k. By Fact 1,
the interval I = [#(B1) + 1, k− 1] must be A-heavy. However,
since I contains s, it contradicts the fact that s is a Catalan
slot. It follows that every viable tine t ∈ F, #(t) ≥ s+ 1 must
contain τ as its prefix.

The following theorem shows that under axiom A0′, two
consecutive Catalan slots imply that the first slot has the UVP.

Theorem 4. Let w ∈ {H, A}T be a bivalent characteristic
string and axiom A0′ is satisfied. Let s ∈ [2, T ] be an integer
such that s and s− 1 are two honest slots in w. The following
statements are equivalent: (i) Slots s, s− 1 are Catalan. (ii) If
s ≤ T − 1, both s and s − 1 have the UVP. Otherwise, slot
T − 1 has the UVP but slot T has the BP.

Proof. (The reverse implication.) Since the slots s, s− 1 have
the BP, they must be Catalan by Fact 3.

(The forward implication.) Slots s, s − 1 are Catalan. Let
Vs (resp. Vs+1) be the set of all viable tines at the onset of
slot s (resp. slot s + 1). Since s − 1 (resp. s) is a Catalan
slots, we use Fact 2 and conclude that Vs (resp. Vs+1) can
contain only maximum-length honest tines t, #(t) = s−1 (resp.
#(t) = s). Let us ∈ Vs be the unique vertex determined by the
consistent tie-breaking rule when applied to the set Vs. Define
us+1 ∈ Vs+1 in an analogous way for the set Vs+1.

Let k ∈ [s+1, T +1] be an integer. We wish tho show that
for every tine t viable at the onset of slot k, the following
holds: (i) if s ≤ T − 1 then us ≺ us+1 & t, and (ii) if s = T
then uT−1 ≺ t where #(t) = T .

All tines at the honest slot s build upon us. If s = T , we
are done. Otherwise, i.e., if s ≤ T − 1, let τ = us+1 and note
that us ≺ us+1 = τ . If k = s+1, we are done since by Fact 2,
every tine at the honest slot k will build upon τ .

It remains to reason about the case s ≤ T −2 and k ≥ s+2.
Consider a tine t which is viable at the onset of slot k. (All
we know about t’s label is that #(t) ≤ k − 1.) We claim
that τ ≺ t. Suppose, towards a contradiction, that τ is not a
prefix of t. Let B1 be the last honest vertex on t such that
#(B1) ≤ s − 1. (If no such vertex can be found, take B1 as
the root vertex.) Likewise, let B2 be the first honest vertex on
t such that #(B2) ∈ [s+ 1, k − 1].

Below, we show that every choice for B1, B2 leads to a
contradiction and, therefore, τ must be a prefix of t. If B2

exists then, by construction, #(B1) < s < #(B2) ≤ k − 1. If
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#(B2) = s+ 1 then, as we have argued earler, B2 must have
built on τ . This contradicts our assumption that τ is not a prefix
of t. Otherwise, suppose #(B2) ≥ s+ 2. Let I be the interval
[#(B1) + 1, #(B2)− 1] and note that I contains s. There can
be two scenarios. If t contains an adversarial vertex between
B1 and B2 then, by Corollary 1, I must be A-heavy; but this
contradicts the assumption that s is a Catatan slot. Otherwise,
B2 builds on top of B1 and, in particular, B1 must be viable
at the onset of slot #(B2) ≥ s+ 1. Since #(τ) = s, this means
length(B1) ≥ length(τ). However, since #(B1) < s, by the
monotonicity of the honest-depth function d(·), length(τ) ≥
1 + length(B1). This contradicts the inequality above.

If B2 does not exist then we claim that t is an adversarial
tine. To see why, note that if t were honest and #(t) ≥ s+ 1
then there would have been a B2. If t were honest with #(t) =
s, t 1= τ then t would not be viable at the onset of slot s+ 2.
This is because s is a Catalan slot and as such, each vertex
from slot s + 1 builds on τ, length(τ) ≥ length(t). Hence
tines viable at the onset of slot s + 2 must have length at
least 1 + length(τ) > length(t). Finally, if t is honest and
#(t) ≤ s− 1 then, by Fact 2, t cannot be viable at the onset
of slot s+ 1 since s is Catalan. Since s+ 1 is an honest slot,
honest tines with label s+ 1 will be strictly longer than t and,
therefore, t cannot be viable at the onset of slot k ≥ s+2 either.
We conclude that t must be an adversarial tine viable at the
onset of slot k. By Fact 1, the interval I = [#(B1) + 1, k − 1]
must be A-heavy. However, since I contains s, it contradicts
the fact that s is a Catalan slot.

IV. PROOF OF MAIN THEOREMS

In this section, we present two bounds on the stochastic event
“Catalan slots are rare.” Specifically, Bound 1 concerns uniquely
honest Catalan slots and complements Theorem 3; Bound 2
concerns two consecutive Catalan slots and complements
Theorem 4. We defer the proofs till the next section.

Bound 1. Let T, s, k ∈ N, T ≥ s + k and ε, qh ∈ (0, 1).
Let w be a characteristic string satisfying the (ε, qh)-
Bernoulli condition and let y = ws . . . ws+k−1. Then
Prw[w does not contain a uniquely honest Catalan slot in y]
is at most exp

(
−k · Ω(min(ε3, ε2qh))

)
.

In particular, when qh = (1+ε)/2, the bound above coincides
with the bound in [1].

Bound 2. Let T, s, k ∈ N, T ≥ s + k and ε ∈ (0, 1).
Let w be a bivalent characteristic string satisfying the
(ε, 0)-Bernoulli condition and let y = ws . . . ws+k−1. Then
Prw[w does not contain two consecutive Catalan slots in y]
is at most exp

(
−k · Ω(ε3(1 +O(ε)))

)
.

a) Proof of Theorem 1.: We consider the distribution
B first. Write w = xyz, |x| = s − 1. Recall that Ss,k[B] =
Prw∼B[s is not k-settled in w]. Theorem 3 and Equation (1)
implies that if w contains a uniquely honest Catalan slot c ∈
[s, s+k] then slot s must be k-settled in w. In fact, by virtue of
Fact 2, it suffices to take c ∈ [s, s+k−1], i.e., |x| ≤ c ≤ |xy|.

Thus the probability above is bounded by Bound 1 which
renames ph = qh. This proves the first inequality.

Now let us prove the second inequality. For any player
playing the settlement game, let C be the set of strings
on which the player wins. Clearly, C is monotone with
respect to the partial order ≤ defined on {h, H, A}T (see below
Definition 6). To see why, note that if the player wins on a
specific string w, he can certainly win on any string w′ so that
w ≤ w′. By assumption, W & B. It follows from Definition 6
that PrW [w] ≤ PrB[w] for any w in the monotone set C.
By referring to the definition of settlement insecurity (see
Definition 5), we conclude that Ss,k[W] ≤ Ss,k[B].

b) Proof of Theorem 2.: This proof is identical to the
proof of Theorem 1 except that we need to refer to Theorem 4
in lieu of Theorem 3 and Bound 2 in lieu of Bound 1.

V. PROOFS OF BOUNDS 1 AND 2
As a rule, we denote the probability distribution associated

with a random variable using uppercase script letters. Observe
that if Y & X and Z is independent of both X and Y , then
Z + Y & Z +X . In addition, for any non-decreasing function
u defined on Ω, Y & X implies u(Y ) ≤ u(X).

a) Generating functions.: We reserve the term generating
function to refer to an “ordinary” generating function which
represents a sequence a0, a1, . . . of non-negative real numbers
by the formal power series A(Z) =

∑∞
t=0 atZ

t. We denote
the above correspondence as {at}←→ A(Z). When A(1) =∑

t at = 1 we say that the generating function is a probability
generating function; in this case, the generating function A can
naturally be associated with the integer-valued random variable
A for which Pr[A = k] = ak. If the probability generating
functions A and B are associated with the random variables
A and B, it is easy to check that A · B is the generating
function associated with the convolution A+B (where A and
B are assumed to be independent). Translating the notion of
stochastic dominance to the setting with generating functions,
we say that the generating function A stochastically dominates
B if

∑
t≤T at ≤

∑
t≤T bt for all T ≥ 0; we write B & A to

denote this state of affairs. If B1 & A1 and B2 & A2 then
B1 · B2 & A1 · A2 and αB1 + βB2 & αA1 + βA2 (for any
α,β ≥ 0). Moreover, if B & A then it can be checked that
B(C) & A(C) for any probability generating function C(Z),
where we write A(C) to denote the composition A(C(Z)).

Finally, we remark that if A(Z) is a generating function
which converges as a function of a complex Z for |Z| < R for
some non-negative R, R is called the radius of convergence of
A. It follows from Theorem 2.19 in [11] that limk→∞ |ak|Rk =
0 and that |ak| = O(R−k). In addition, if A is a probability
generating function associated with the random variable A then
it follows that Pr[A ≥ T ] = O(R−T ).

Due to space constraints, we skipped some easy details in
the proof below and only outlined the proof of Bound 2. We
refer the reader to the full version [9].

A. Proof of Bound 1
Let p = (1 − ε)/2 and q = (1 + ε)/2 so that q − p = ε.

Let qH = q − qh. Let B denote the event that w does not
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contain a uniquely honest Catalan slot in y. We would like to
upper-bound Prw[B].

Define the process W = (Wt : t ∈ N),Wt ∈ {±1} as Wt =
1 if and only if wt = A. Let S = (St : t ∈ N), St =

∑
i≤t Wi

be the position of the particle at time t. Thus S is a random
walk on Z with ε negative (i.e., downward) bias. By convention,
set W0 = S0 = 0.

a) Case 1: x is an empty string.: In this case, we write
w = yz so that |y| = k. Let ct be the probability that t is
the first uniquely honest Catalan slot in w with c0 = 0, and
consider the probability generating function {ct}←→ C(Z) =∑∞

t=0 ctZ
t. Controlling the decay of the coefficients ct suffices

to give a bound on Pr[B], i.e., the probability that y does not
contain a Catalan slot, because this probability is at most
1 −

∑k−1
t=0 ct =

∑∞
t=k ct. To this end, we develop a closed-

form expression for a related probability generating function
Ĉ(Z) =

∑
t ĉtZ

t which stochastically dominates C(Z). Recall
that this means that for any k,

∑
t≥k ck ≤

∑
t≥k ĉk. Finally,

bound the latter sum by using the analytic properties of Ĉ(Z).
Treating the random variables W1, . . . as defining a (neg-

atively) biased random walk, define D (resp. A) to be the
generating function for the descent stopping time (resp. the
ascent stopping time) of the walk; this is the first time
the random walk, starting at 0, visits −1 (resp. +1). The
natural recursive formulation of these descent time yield
simple algebraic equations for the descent generating function,
D(Z) = qZ+pZD(Z)2 and A(Z) = pZ+qZA(Z)2, and from
this we may conclude that D(Z) = (1−

√
1− 4pqZ2)/2pZ

and A(Z) = (1 −
√
1− 4pqZ2)/2qZ. Note that while D

is a probability generating function, A is not: according to
the classical “gambler’s ruin” analysis, the probability that a
negatively-biased random walk starting at 0 ever rises to 1 is
exactly p/q; thus A(1) = p/q.

A slot is Catalan in w iff it is both left- and right-Catalan. A
slot is left-Catalan if the walk S descends to a new low at that
slot. In addition, the same slot (say s) is right-Catalan if the
walk never reaches that level in future, i.e., Ss ≥ Si, i ≥ s+1.
The probability of the latter event is 1−A(1) = 1−p/q = ε/q,
conditioned on the fact that Ws = −1.

Assume that the walk is now at its historical minimum. (It
may or may not be a new minimum.) We can think of the
generating function C(Z) as a search procedure for finding the
first uniquely honest Catalan slot. Let v be the first symbol
we observe. Let E(Z) be the generating function for a walk
which makes an ascent with certainty and then descends again
to its historical minimum. We claim that C(Z) equals

pZD(Z)C(Z)+ qhZ(ε/q)+ qhZ(p/q)E(Z)C(Z)+ qHZC(Z) .

To see why, note that regarding v, there can be four alternatives
for the walk which is currently at its historical minimum:

(i) With probability p, v = A and the walk moves up. Then
we wait till the walk makes a first descent and restart.

(ii) With probability qh · ε/q, v = h and the walk diverges
below. Hence our search has succeeded and we stop.

(iii) With probability qh · (1 − ε/q) = qhp/q, v = h and the
walk returns to the origin from below. Then we wait

for the walk to match its minimum again before we can
restart. Note that E(Z) is the generating function for this
“guaranteed ascent then match minimum” walk.

(iv) With probability qH, v = H and the walk moves down.
Since we will reach a new minimum, we restart.

After rearranging, we get

C(Z) =
(qhε/q)Z

1−
(
pZD(Z) + (qhp/q)ZE(Z) + qHZ

) . (2)

Since E(1) = 1 by assumption, p+(qhp/q)+ qH = 1− qh(1−
p/q) = 1 − qhε/q. It follows that C(1) = (qhε/q)/(1 − (1 −
qhε/q)) = 1; hence C(Z) is a probability generating function.

Instead of working directly with E(Z), we can work with
a generating function Ê(Z) which is identical to E(Z) for
the initial ascending part but differs in the descending part.
Specifically, in the descending part, the walk represented by
Ê(Z) descends as many levels as the number of steps it took to
return to the origin. Clearly, E(Z) & Ê(Z) ! A(ZD(Z))/A(1).
Here, an individual term in A(ZD(Z)) =

∑
i aiZ

iD(Z)i

has the interpretation “if the first ascent took i steps then
immediately descend i levels.” Since A(Z) is not a probability
generating function, we have to normalize it by A(1) to
make sure that the ascent happens with certainty. Writing
F(Z) ! pZD(Z) + qhZA(ZD(Z)) + qHZ, note that

C(Z) & Ĉ(Z) ! (qhε/q)Z/(1− F(Z)) . (3)

Since F(1) = p+qhp/q+qH = 1−qh(1−p/q) = 1−qhε/q, we
have Ĉ(1) = 1, i.e., Ĉ(Z) is a probability generating function.
It remains to establish a bound on the radius of convergence
of Ĉ. A sufficient condition for the convergence of Ĉ(z) for
some z ∈ R is that all generating functions appearing in the
definition of Ĉ(z) converge at z and that F(z) 1= 1.

The generating functions D(z) and A(z) converge when
the discriminant 1 − 4pqz2 is positive; equivalently |z| <
1/
√
1− ε2 = 1 + ε2/2 + O(ε4). In addition, conditioned

on the convergence of A(z) and D(z), we can check that
A(z) < 1/2qz and D(z) < 1/2pz. On the other hand,
the convergence of F(z) depends on the convergence of
D(z) and A(zD(z)). The convergence of A(zD(z)) is like-
wise determined by the positivity of its discriminant, i.e.,
1−(1−ε2)

(
z · (1−

√
1− (1− ε2)z2)/(1− ε)z

)2
> 0 . The

inequality above implies that if A(zD(z)) converges when
|z| < R1 !

((
2/
√
1− ε2 − 1/(1 + ε)

)
/(1 + ε)

)1/2
, where

R1 = 1 + ε3/2 +O(ε4) ≈ exp
(
ε3(1 +O(ε))/2

)
. (4)

Note that the radius of convergence of A(ZD(Z)) is smaller
than that of A(Z) or D(Z).

We can check that when F(z) converges, it satisfies F(z) ≤
F(|z|). Therefore, it suffices for us to require that F (z) 1= 1 for
z > 0. We can also check that F (z) is convex and increasing
for z ∈ [0, R1).

Let R2 be the solution to the equation F(z) = 1, z > 0.
Then Ĉ(z) would converge for |z| < R ! min(R1, R2). It
remains to characterize R2 in terms of ε and qh. Note that
R1 < 2 as long as ε ≤ 0.97. Since the final bounds will be
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only asymptotic in ε, it suffices for us to consider small ε. Thus
we consider the case where 0 < z < R1 < 2, i.e., z − 1 < 1.

If we express F(z) as its power series around z = 1, we can
check that F(1) = 1−εqh/q, F′′(1) = 1−ε

ε5

(
qh(1 + 3ε) + qHε2

)
,

and F′(1) = p(1+1/ε)+qh(p/q)
(
1+(1+1/ε)/ε

)
+qH. Since

F′′(1) > 0 and F(z) is convex and increasing, the first-order
approximation f(z) = (1− εqh/q) + F′(1)(z − 1) is a lower
bound for F(z) when 1 ≤ z < R1. The approximation error
at any z ∈ (1, 2) is F(z)− f(z) = O(h(z)) where we define
h(z) ! F′′(1)(z−1)2 . Since the bounds we develop will have
either O(·) or Ω(·) in the exponent, it suffices to ensure that
R2 = Θ(R∗2). In the exposition below, we will only develop
approximations R∗2 satisfying R2 = (1 − θ)R∗2 for a small
positive constant θ ∈ (0, 1).

In the special case qH = 0, F(Z) simplifies as F(Z) =
pZD(Z) + qZA(ZD(Z)). Note that F(Z) converges when
A(ZD(Z)) does and it is not hard to check that F(z) < 1.
Thus the radius of convergence of Ĉ is R1 if qH = 0.

The remainder of the exposition considers the general case
0 < qh < q. Let the solution to the equation f(z) = 1
is R∗2 ! 1 + ε(qh/q)/F′(1). If qh is small, we can check
that h(R∗2) vanishes and thus f(z) is a good approximation
for F(z). It follows that F′(1) ≈ p(1 + 1/ε) + q = q/ε
and, therefore, R∗2 ≈ 1 + (εqh/q)/(q/ε) = 1 + qh(ε/q)2 ≈
exp(ε2qh/q2) = eO(ε2qh) since q ∈ (1/2, 1). (Although we
have an asymptotic notation, it is important that we have the
right exponent on qh.) If, on the contrary, qh = O(1) but ε
vanishes then F′(1) will be dominated by its second term; that
is, F′(1) ≈ qh(p/q) (1 + (1 + 1/ε)/ε) = O(qh/ε2) and, hence,
R∗2 ≈ 1 + O

(
(εqh/q)/(qh/ε2)

)
= 1 + O(ε3) = eO(ε3) since

q ≈ 1/2.
Recall that R1 = exp

(
O(ε3(1 +O(ε)))

)
. It follows that the

radius of convergence of Ĉ(z) is R = exp
(
O(min(ε3, ε2qh))

)
.

Recall that if the radius of convergence of Ĉ is exp(δ) then ĉk =
O(e−δk). Hence, Pr[B] is a geometric sum and it is at most
O(e−δk) as well. We conclude that Prw[B] ≤ O

(
e−k lnR

)
=

exp
(
−k · Ω(min(ε3, ε2qh))

)
.

b) Case 2: x is non-empty.: Next, let us consider the
case when x 1= ε, i.e., |x| ≥ 1. Let m = |x| and write w = xyz
where |y| = k. Recall the processes (Wt) and (St) defined on w
and, in addition, define M = (Mt : t ∈ N),Mt = min0≤i≤t Si

and X = (Xt : t ∈ N), Xt = St −Mt. By convention, set
M0 = X0 = 0. Thus Xt denotes the height of the walk S, at
time t, with respect to its minimum Mt.

For a fixed h = Xm, the relevant generating function would
be D(Z)hĈ. Hence the final generating function is C̃(Z) !∑∞

h=0 Pr[Xm = h] · D(Z)hĈ(Z) whose tth coefficient is the
probability that t is a Catalan slot in y.

Note that X = (Xt) is an ε-downward biased random
walk on non-negative integers with a reflective barrier at −1.
Specifically, for any h ∈ N,Pr[Xt = h | Xt−1 = h− 1] = p
and Pr[Xt = h − 1 | Xt−1 = h] = Pr[Xt = 0 | Xt−1 =
0] = q. In [8, Lemma 6.1], it is proved that the distribu-
tion of Xm is stochastically dominated by the distribution
of X∞, written X∞ and defined, for k = 0, 1, 2, . . ., as
X∞(k) = Pr[X∞ = k] = (1−β)βk where β ! (1−ε)/(1+ε).

Let {X∞(k)} ←→ X∞(Z) = (1 − β)/(1 − βZ). It fol-
lows that C̃(Z) is dominated by

∑∞
h=0 X∞(h)D(Z)hĈ(Z) =

X∞(D(Z))Ĉ(Z) = (1− β)Ĉ(Z)/(1− βD(Z)).
Let * denote the quantity above. For it to converge, we

need to check that D(Z) should never converge to 1/β. Since
the radius of convergence of D(Z)—which is (1− ε2)−1/2—
is strictly less than (1 + ε)/(1 − ε) for ε > 0, we conclude
that * converges if both D(Z) and Ĉ(Z) converge. The radius
of convergence of * would be the smaller of the radii of
convergence of D(Z) and Ĉ(Z). We already know from
the previous analysis that Ĉ(Z) has the smaller radius of
convergence of these two; therefore, the bound on Prw[B]
from the previous case holds for |x| ≥ 0.

B. Proof outline for Bound 2
The random walk of interest is the same as in the previous

proof. However, we are interested in a slightly different
stopping time. Its generating function is M(Z) = εD(Z)

1−(1−ε)E(Z)
where E(Z), the “epoch generating function,” is dominated
by Ê(Z) = pZD(Z) + qZA(ZD(Z))/A(1). It can be easily
checked that M(Z) converges as long as A(Z),D(Z), and
A(ZD(Z)) converge and (1− ε)Ê(Z) < 1. Thus the radius of
convergence of M(Z) is given by (4).
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[3] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Advances in Cryptology – EUROCRYPT 2018, 2018, pp. 66–98.
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