
Ledger Combiners for Fast Settlement

Matthias Fitzi1, Peter Gaži1, Aggelos Kiayias1,2, and Alexander Russell?1,3

1 IOHK Research
2 University of Edinburgh

3 University of Connecticut
firstname.lastname@iohk.io

Abstract. Blockchain protocols based on variations of the longest-chain
rule—whether following the proof-of-work paradigm or one of its alter-
natives—su↵er from a fundamental latency barrier. This arises from the
need to collect a su�cient number of blocks on top of a transaction-bearing
block to guarantee the transaction’s stability while limiting the rate at
which blocks can be created in order to prevent security-threatening forks.
Our main result is a black-box security-amplifying combiner based on
parallel composition of m blockchains that achieves ⇥(m)-fold security
amplification for conflict-free transactions or, equivalently, ⇥(m)-fold
reduction in latency. Our construction breaks the latency barrier to
achieve, for the first time, a ledger based purely on Nakamoto longest-
chain consensus guaranteeing worst-case constant-time settlement for
conflict-free transactions: settlement can be accelerated to a constant
multiple of block propagation time with negligible error.
Operationally, our construction shows how to view any family of block-
chains as a unified, virtual ledger without requiring any coordination
among the chains or any new protocol metadata. Users of the system have
the option to inject a transaction into a single constituent blockchain or—
if they desire accelerated settlement—all of the constituent blockchains.
Our presentation and proofs introduce a new formalism for reasoning
about blockchains, the dynamic ledger, and articulate our constructions
as transformations of dynamic ledgers that amplify security. We also
illustrate the versatility of this formalism by presenting robust-combiner
constructions for blockchains that can protect against complete adversarial
control of a minority of a family of blockchains.

1 Introduction

Since the appearance of Bitcoin [33] in 2009, dozens of projects from both
academia and industry have proposed protocols for maintaining decentralized,
robust transaction ledgers in a permissionless setting. The prominent design
paradigm in this space comes from the Bitcoin protocol itself, often referred to
as “Nakamoto-style” ledger consensus. This approach adopts the blockchain—
a linearly ordered sequence of blocks, each of which commits to the previous

? This research e↵ort was partially supported by the National Science Foundation
under grant #1717432.

2 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

history and may contain new transactions—as the fundamental data structure
for maintaining the ledger. The core consensus algorithm then calls for eligible
protocol participants to create transaction-bearing blocks, append them to the
longest chain they observe, and broadcast the result; this implicitly declares a
“vote” for a unique ordered sequence of past transactions—the ledger. As a result,
the immutability of a particular portion of the ledger is not immediate, but rather
grows gradually with the number of blocks (representing votes) amassed on top
of it in the blockchain. This paradigm has been featured in both theoretical
proposals as well as deployed systems and can be instantiated with a wide variety
of Sybil-resistant mechanisms such as proof of work (Bitcoin, Ethereum [7] and
a vast majority of deployed blockchains), proof of stake [24,11,12,2,3], proof of
space [34,10], and others.

In terms of performance, one of the key measures of interest for any distribu-
ted ledger protocol is latency, also called settlement time. Roughly speaking,
this is the time elapsed between the moment a signed transaction is injected
into the protocol and the time it becomes universally recognized as immutable.
While Nakamoto-style consensus protocols have attracted attention both for
their simplicity and for various desirable security features,4 they appear to face
a fundamental barrier when it comes to latency. Informally, for a transaction
to become accepted as stable, a su�cient number of blocks (representing an
agreement over a representative fraction of the parties, weighted according
to the Sybil-resistant mechanism in place) must be collected on top of the
block containing this transaction. However, blocks can only be created at a
limited rate dictated by the delays introduced by the underlying communication
network: if blocks are routinely created by participants that have not yet received
recent previous blocks, forks in the blockchain appear even without adversarial
interference. These forks then result in a division of the honest majority and
represent a threat to the protocol’s security. This relationship is now quite well
understood [35].

One way to address this disadvantage without giving up on the Nakamoto
paradigm (and its advantages) is to carefully design overlay structures on top of
the plain Nakamoto-style blockchain. Several such proposals exist, and can be
roughly split into two categories. The first group of proposals (e.g., [36,38,27])
still produces a full ledger of all settled transactions, but relies on stronger
assumptions for their latency improvement, such as a higher threshold of honest
participants. The second category are so-called layer-2 designs implementing
payment [41,14] or state [15] channels that only need limited interaction with
the slow blockchain; however, they divert from the original goal of maintaining a
distributed ledger of all executed transactions. Hence, the following fundamental
question remains:

What is the fastest achievable settlement time for Nakamoto-style consensus?

4 For example, they can provide security in the Byzantine setting with simple honest
majority [9,36,38], and resilience against fluctuating participation [37,2].

Ledger Combiners for Fast Settlement 3

This question has also been recently addressed by elegant concurrent work on
the Prism protocol [5], albeit with somewhat di↵erent goals; we give a detailed
comparison between our work and [5] in Section 1.2.

1.1 Our Contributions

We approach the challenge of designing low-latency ledgers by introducing a
black-box technique for “combining” a family of existing ledgers into a new,
virtual ledger that provides amplified security properties. Our technique results in
a system with striking simplicity: The construction gives a deterministic rule for
interpreting an arbitrary family of m constituent ledgers as a single virtual ledger.
Participants of the system maintain their current view of each constituent ledger
and, via this interpretation, a view of the master combined ledger. Users simply
inject their transactions into the constituent ledgers as usual. We show that when
users inject transactions into a single constituent ledger they are provided with
settlement guarantees (in the virtual ledger) roughly consistent with those o↵ered
by the constituent ledgers. On the other hand, when a conflict-free transaction
is injected into all of the constituent ledgers, it enjoys a 1/⇥(m) multiplicative
improvement in settlement time. Of course, settlement time cannot be reduced
beyond the time required for a block to be transmitted across the network;
however, our results adapt smoothly to this limit; in particular, by taking m
to scale with the security parameter of the system, we obtain O(1) settlement
time for conflict-free transactions (except with negligible probability). We remark
that in cryptocurrency ledgers, such as Bitcoin, transaction issuers always have
the option to submit conflict-free transactions so that the assumption is not a
limitation. While the results do not require any specific coordination among the
ledgers, they naturally require a measure of stochastic independence; we discuss
this in detail below.

We present our results by formulating an abstract notion which we call a
dynamic ledger. Our constructions transform a family of such dynamic ledgers
into an associated dynamic ledger (as indicated above) in a way that amplifies
the security properties. Typical blockchain algorithms are direct instantiations of
this abstraction: our techniques can thus be applied in wide generality to existing
blockchains such Bitcoin, Ethereum, Ouroboros, etc.

Such a transformation is a “combiner” in the classical cryptographic sense
of the word: an operator for cryptographic primitives that acts in a black-box
manner on a number of underlying implementations of a primitive with the
objective of realizing a strengthened implementation of the same primitive. This
folklore idea in cryptography first received an explicit treatment by Herzberg [23].
One of the objectives for developing combiners—especially prominent in the
context of hash functions—was the concept of robustness. In particular, a robust
combiner maintains the security of the combined implementation despite the
security failure of any number (up to a threshold) of the underlying input
implementations. Another objective for developing combiners is amplification:
In an amplification combiner, the goal is to improve a certain security property
of the combined implementation to a level that goes significantly beyond the

4 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

security o↵ered by the underlying input implementations. The combiner discussed
above is of the amplification variety; later in the paper, we also show how to
achieve robustness in our setting.

With this summary behind us, we describe our contributions in more detail.

A Model for Abstract Ledgers. We provide a new mathematical abstraction
of a distributed ledger that can be used to reflect an arbitrary ledger protocol,
but is particularly well-suited for describing Nakamoto-style blockchains with
eventual-consensus behavior (regardless of their underlying Sybil-resistant election
mechanism). Its main design goals are generality and simplicity, so as to allow
for a clean study of generic constructions with such ledgers that is unencumbered
by the execution details of the underlying protocols.

Roughly speaking, our abstraction—called a dynamic ledger—determines at
every point in time (i) a set of transactions that are contained in the ledger; and
(ii) a mapping that assigns to each transaction a real value called its rank. The
rank plays several roles: it is used to order the transactions in the ledger, describe
their stability, and maintain a loose connection to actual time; the most natural
example of a rank is the timestamp of the transaction’s block in Bitcoin. (In fact,
a simple monotonicity transform is necessary; see Section 4.2.)

A dynamic ledger satisfies three fundamental properties: liveness, absolute per-
sistence, and relative persistence. The former two properties are direct analogues
of the well-established notions of persistence and liveness introduced by previous
formalizations of blockchain protocols; the notion of relative persistence is novel.
In a nutshell, it is a weakening of absolute persistence that guarantees that the
rank of a transaction cannot significantly change in the future; in particular the
relative order of the transaction with respect to su�ciently distant transactions is
determined. This is particularly useful for reasoning about transaction settlement
in the typical setting of interest: when transaction validity depends only on
its ordering with respect to conflicting transactions. Looking ahead, relative
persistence is exactly the notion that allows us to achieve the full benefits of our
amplification combiner; it appears to be of independent interest as well, as it
also arises naturally in our robust combiner.

A combiner for consistency amplification and latency reduction; the

combined rank function. Our main technical contribution, discussed briefly
above, is an amplification combiner for latency reduction of abstract ledgers. This
combiner builds a “combined ledger” (or virtual ledger) as a deterministic function
of m underlying dynamic ledgers. Participants insert their transaction into any
number of the underlying ledgers, depending on the desired settlement-time
guarantees.

The major challenge is the definition and analysis of the combiner rank
function. Rank is an abstract notion of position in the ledger that is tethered
to absolute time by the security guarantees: for example, in a ledger at time
T the probability that a transaction appearing at rank r is later disrupted is
a function of T � r; the standard case, where the underlying ledgers provide
“linear consistency,” guarantees consistency error exp(�⌦(T � r)). Note that, in
general, there is no guarantee that transactions will appear in all underlying

Ledger Combiners for Fast Settlement 5

ledgers so the combined rank function must somehow assign rank in a fashion
that appropriately reflects both deep transactions appearing in a single ledger and
shallower transactions appearing in many ledgers. This state of a↵airs introduces
two conflicting goals: in order to achieve linear amplification we insist that when a
transaction appears in all m ledgers, our constructed ledger yields settlement error
exp(�⌦(m(T � r)))—note the factor of m in the exponent; on the other hand, a
transaction appearing in a single ledger will be assigned some finite rank and thus
for large values of T we cannot hope to beat exp(�⌦(T � r)), the consistency
guarantee of a single ledger. To realize this, our construction (and combined
rank function) is determined by a parameter L which, intuitively, determines
the transition between these two regimes. One should think of L proportional
to the security parameter of the system, so that 2�⇥(L) is an acceptable bound
for undesirable events; thus, injecting a transaction into all the ledgers achieves
this 2�⇥(L) security bound ⇥(m) times faster than transactions submitted to a
single ledger.

It is a rather remarkable fact that the behavior we demand is provided by
the exponential weighting functions that arise naturally in the theory of regret
minimization (e.g., the multiplicative weights algorithm [1]). The actual form of
our combined rank function is

exp(�combinedRank(tx)/L) =
1

m

mX

i=1

exp(�ranki(tx)/L) .

The (log scale) consistency error achieved by this rank function, when coupled
with underlying ledgers that o↵er linear consistency, is informally illustrated by
the blue line in the figure below. The solid black line is the consistency error
o↵ered by the underlying ledgers; one can clearly see the region of rapid growth
(prior to L) followed by the region where the slope stabilizes to that of the
single ledger bounds, as it must. The dotted line has slope exactly m times that
of the “single ledger” line, corresponding intuitively to “perfect amplification.”

L 2L

“Depth” T � r

�
lo
g
P
r[
fa
il
u
re
]

We analyze two extreme scenarios and show that
while insertion of a transaction into a single ledger
leads to a settlement time comparable to the one
provided by the underlying ledgers, inserting the
transaction into all m ledgers results in a speed-
up by a linear factor ⇥(m). In the natural setting
where there is a cost associated with including a
transaction in each ledger, we emphasize that the
construction yields a trade-o↵ between transaction
fee and settlement time: transactions appearing in
more chains settle faster. The choice can be made
on a per-transaction basis by its sender. Moreover, by considering a su�cient
number of parallel chains m, this allows us to achieve relative settlement in
constant time except with negligible error.

6 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

Clearly, amplification-type results can only be obtained under some sort of
independence assumption on the underlying ledgers. We characterize a generic
(black-box) assumption, called subindependence, which is weaker than full inde-
pendence of the ledgers and su�cient for our results. We also show how subinde-
pendence can be naturally achieved by existing techniques in both proof-of-work
and proof-of-stake settings; details appear in Section 4.1.

Our construction does not require any coordination between the underlying
ledgers, it can be deployed on top of existing blockchains without direct coopera-
tion from parties maintaining the ledgers, so long as these ledgers maintain their
persistence and liveness guarantees, are su�ciently independent, and allow for
inclusion of a su�ciently general class of transaction data.

Finally, we show how our construction can be applied to the most familiar
setting of proof-of-work (PoW) blockchains. Specifically, applying our combiner to
m = � PoW blockchains yields a construction C providing constant-time relative
settlement except with probability negligible in �, articulated in Theorem 1 below.
For concreteness, we work in the synchronous (p, q)-flat PoW model that assumes
the existence of n parties, each of which is allowed to issue q PoW queries per
round that independently succeed with probability p (see, e.g., [20] for details).

Theorem 1 (Informal). Let ✏ > 0 and let � denote the security parameter.
There exists a construction C that, if executed in the synchronous (p, q)-flat PoW
model with n parties out of which at least a (1/2 + ")-fraction is honest, achieves
relative settlement in time O(1) except with an error probability negligible in �.

Hidden in the asymptotic description above is the dependence of p, q, and n
on the security parameter � which must in fact satisfy some natural conditions.
We give a formal statement corresponding to Theorem 1, together with a precise
description of the construction C, as Corollary 7 in Section 4.3.

A simplified illustration of the settlement speed-up provided by our construc-
tion is given in the Appendix of the full paper [17].

A Robust Ledger Combiner. As our final contribution, we describe a class of
constructions of robust ledger combiners: a black-box construction on top of m
ledgers that maintains relative persistence and liveness guarantees even if the con-
tents of a �-fraction of these ledgers (chosen adaptively) are arbitrarily corrupted,
for � up to 1/2. The individual constructions in this class are parametrized by
the choice of an estimator function that is a part of the combiner’s rank function;
we show that the concrete choice of this estimator represents a trade-o↵ between
� and the stability of the combiner, a metric of how much the ranks of individual
transactions in the combiner change as a result of a corruption respecting the
�-threshold. This construction serves as an additional illustration of the generality
of our ledger abstraction. We refer the reader to the full paper [17] for the details.

1.2 Related Work

The formal modeling of robust transaction ledgers and blockchain protocols
goes back to the property-based analysis of Bitcoin due to Garay et al. [20]

Ledger Combiners for Fast Settlement 7

and Pass et al. [35]. These works identified the central properties of common
prefix, chain growth, and chain quality and demonstrated how they imply the
desired persistence and liveness of the resulting ledger. A composable analysis of
a blockchain protocol (namely Bitcoin) in the UC framework [8] along with the
realized ledger functionality first appeared in [4] and, later, essentially the same
functionality was shown to be realized by proof-of-stake protocols in [2,3].

The notion of combiners was formally proposed in [23]. Robust combiners for
hash functions were further studied in [6,40] and also applied to other primitives
such as oblivious transfer [22]. Amplification combiners were introduced by [16]
who also observed that classical results in security amplification can be seen
as such combiners. Indistinguishability amplification for random functions and
permutations achieved by certain combiners from a class of so-called neutralizing
constructions was studied both in the information-theoretic [43,29,28,30,21] and
computational [26,32,39,13,31] settings.

Various approaches are known to reduce settlement times of Nakamoto-style
blockchains. One approach is to deviate from the single-chain structure, arranging
blocks in a directed acyclic graph (DAG) as first suggested by Lerner [25].
Sompolinsky et al. [42] gave a DAG-based construction that substantially reduces
settlement times at the expense of giving up on a total order on all transactions
in the ledger. Another approach explores “hybrid” protocols where committee-
based consensus reduces latency in the optimistic case [36,38]. In context of
proof-of-stake, Algorand [9] reduces settlement times over eventual-consensus
proof-of-stake protocols by finalizing each block via a Byzantine Agreement
subprotocol before moving to the next one. However, Algorand cannot tolerate
fluctuating participation or adversarial stake ratio up to 1/2. Moreover, its
constant-time settlement guarantees are only provided in expectation, in contrast
to our worst-case guarantees.

Concurrent work on the Prism protocol [5] also addressed the e�ciency of
Nakamoto consensus. (We remark that a preliminary version of this paper [18]
was published as an IACR eprint in 2018.) Prism is a concrete, PoW-based ledger
protocol optimizing both throughput and latency compared to Bitcoin. Prism
similarly approaches the problem by introducing “parallel blockchains,” though
in a di↵erent form. Our approach has some notable advantages in comparison
with Prism: (i) our construction is generic and can be deployed on top of existing
ledgers with arbitrary Sybil-resistant mechanisms; (ii) we provide worst-case
constant-time settlement except with a negligible error probability while Prism
(similarly to Algorand) only provides expected constant-time settlement; (iii) we
base our results on the generic subindependence assumption that is weaker than
full independence, which is assumed in Prism (though not achieved by their PoW
mechanism). On the other hand, Prism has an important feature which clearly
sets it apart from our work: it explicitly models and optimizes throughput. A
more detailed comparison between our work and Prism is given in our full paper.

8 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

2 The Ledger Abstraction

In this section we define abstract ledgers which describe the functionality provided
by distributed ledger protocols such as Bitcoin. Our goal here is to capture this
behavior in an abstract, high-level manner, which allows us to express our
composition results unencumbered by the details of the individual protocols.

2.1 Ledgers and Dynamic Ledgers

We start by defining an abstraction of an individual snapshot of the state of a
ledger protocol, which we call a ledger. A ledger reflects a collection of transactions
which are given a linear order by way of a general function called rank. As a
basis for intuition about our definitions and proofs, we mention that, roughly
speaking, Bitcoin realizes such a ledger where the rank function is given by the
timestamp corresponding to the block containing the transaction; we give a more
detailed discussion in Section 4.2.

Our ledger will operate over a transaction space which we define first.

Definition 1 (Transaction space). A transaction space is a pair (T ,�T),
where T is a set of “transactions” and �T is a linear order on T . A conflict
relation C on a transaction space T is a symmetric binary relation on T ; if
(tx1, tx2) 2 C for two transactions tx1, tx2 2 T , we say that tx1 conflicts with
tx2, we write conflict(tx) ✓ T for the set of transactions conflicting with tx.

The linear order �T on the ambient transaction space T is largely incidental;
it is only used in our setting to break ties among transactions with a common rank.
Thus, in practice this linear order can be instantiated with a simple “syntactic”
property—such as a lexicographic ordering—rather than an ordering that reflects
any semantics about the transactions.

In contrast, if a transaction space is equipped with a conflict relation, this is
intended to carry semantic value; in a conventional UTXO transaction model
(such as that of many deployed blockchains) two transactions conflict if they
share UTXO inputs. As we discuss below, a conflict structure permits a more
flexible notion of settlement that is only required to provide strong guarantees
for non-conflicting transactions.

Definition 2 (Ledger). A ledger L for a transaction space (T ,�T) is a pair
(T, rank) where: T ✓ T is a subset of transactions and rank : T ! R+ [{1}
is a function taking finite values precisely on the set T ; that is, T = {tx 2 T |
rank(tx) 6= 1}. The value rank(tx) is referred to as the rank of the transaction
tx. Notationally, if L is a ledger we routinely overload the symbol L to stand for
its set of transactions (the above set T).

The linear order �T and the rank function rank(·) induce a linear order �L

on the ledger by the rule

x �L y :, (rank(x) < rank(y) _ (rank(x) = rank(y) ^ x �T y)) .

Ledger Combiners for Fast Settlement 9

(Thus the underlying total order �T is only used to “break ties.”)

For a ledger L = (T, rank) and a threshold r, we let L dre def
= (T 0, rank0)

denote the ledger consisting of transactions T 0 def
= {tx 2 T | rank(tx)  r} with

the inherited rank function: rank0(tx) = rank(tx) for all tx 2 T 0 and equal to
1 otherwise. Similarly, for a transaction tx 2 L, let L dtxe denote the ledger
{tx0 | tx0 �L tx} with the inherited rank function.

The above notion of a ledger captures a static state; we extend it to describe
evolution in time as follows.

Definition 3 (Dynamic ledger). Consider the sequence of time slots t 2 N
and any sequence of sets of transactions A(0), A(1), . . . (each a subset of a common
transaction space T) denoting the transactions that arrive at each time slot. A

dynamic ledger is a sequence of random variables D
def
= L

(0),L(1), . . ., that satisfy
the following properties parametrized by security functions p+R : (R+)2 ! [0, 1]
and p�R, pA, l : R+ ! [0, 1]:

Liveness. For every r � 0, t0 � 0, and t � t0 + r,

Pr [Lr,t0,t]
def
= Pr

h
A(t0) 6✓ L

(t) dt0 + re
i
 l(r) .

Absolute Persistence. For each rank r � 0, time t0 � 0, and t � t0, we have
L
(t0) dt0 � re = L

(t) dt0 � re except with small failure probability. Specifically,
for all r, t0 � 0,

Pr [Pr,t0]
def
= Pr

h
9t � t0,L

(t0) dt0 � re 6= L
(t) dt0 � re

i
 pA(r) .

Relative Persistence. For each r+, r� � 0, time t0 � 0, and t � t0, we
have L

(t0) dt0 � r� � r+e ✓ L
(t) dt0 � r�e ✓ L

(t0) except with small failure
probability. Specifically, for each r�, r+, t0 � 0:

Pr
h
9t � t0,L

(t0)
⌃
t0 � r� � r+

⌥
6✓ L

(t)
⌃
t0 � r�

⌥i
 p+R(r

�, r+) ,

Pr
h
9t � t0,L

(t)
⌃
t0 � r�

⌥
6✓ L

(t0)
i
 p�R(r

�) .

As indicated, we let Pr,t0 and Lr,t0,t denote the absolute-persistence failure event
with parameters (r, t0) and the liveness failure event with parameters (r, t0, t),
respectively.

The above definition deserves a detailed discussion. A dynamic ledger is a
sequence of ledgers—one for each time slot t—which reflects the current state
of the ledger structure L

(t) at that time. Throughout the paper, we will use the
superscript notation ·(t) to denote the time coordinate.

Absolute persistence and liveness capture the standard design features of
distributed ledger protocols: absolute persistence mandates that at time t0, the
state of the ledger up to rank t0 � r is fixed for all future times, except with error

10 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

pA(r). Liveness, on the other hand, guarantees that any transaction appearing
in A(t0) will be a part of a (later) ledger at time t � t0 + r with a rank at most
t0 + r, except with error at most l(r). Note that the liveness guarantee only
pertains to transactions tx appearing in the sets A(t0), which may not necessarily
“explain” all of the transactions in the ledger; in particular, we do not always insist
that L(t) ✓

S
st A

(s). This extra flexibility permits us to simultaneously study
di↵ering liveness guarantees for various subclasses of transactions processed by a
particular ledger (see Sect. 3.2).

The remaining property, relative persistence, is more complex: It is a weakening
of absolute persistence by not requiring future stability for the prefix of the
currently seen ledger L

(t0) up to rank t0 � r� � r+; it merely asks that no
transaction tx currently contained in it will rise to a rank exceeding t0 � r�;
likewise, it insists that no transaction tx0 currently absent in the ledger will ever
achieve a rank below t0 � r�, potentially overtaking tx. This property bears
a direct connection to the notion of transaction settlement as we discuss in
Section 2.3. Looking ahead, we note that relative persistence provides su�cient
guarantees for settling transactions that are only invalidated by “conflicting”
transactions, and our combiner will achieve stronger relative-persistence than
absolute-persistence guarantees, allowing for our latency-reduction results in
Section 3.

Note that absolute persistence for some r clearly implies relative persistence
with r+ = 0 and r� = r. A natural parametrization that makes our notions
meaningful is where each f 2

�
pA, p

�
R, l

is monotonically decreasing and satisfies

f(0) � 1 (similarly, p+R should be monotonically decreasing in each coordinate
and p+R(r

�, r+) � 1 whenever 0 2 {r�, r+}). Of course each of these functions
represents a probability upper-bound, though we entertain values above 1 purely
to simplify notation. A persistence or liveness function is exponential if it has the
form f(x) = exp(�↵x+ �) for some ↵ > 0 and � � 0; ledgers with exponential
security will be our main focus.

Finally, our intention is to use dynamic ledgers to model blockchain consensus
protocols. In this case, the chain held by each (honest) party P 2 P is modeled

as a dynamic ledger DP = L
(0)
P ,L(1)

P , . . ., satisfying the properties of persistence
and liveness from Definition 3. Of course, this by itself does not capture all the
desired goals of blockchain protocols, as it does not reflect consensus properties
across parties; how to reflect this in our model is discussed in the full paper [17].

2.2 Composition of Dynamic Ledgers

In the sequel, we will be interested in combining several dynamic ledgers to form
a new “virtual” ledger. This notion of combining makes no assumptions on the
ledgers to be combined other than a common transaction space. Moreover, it
requires no explicit coordination among the ledgers or maintenance of special
metadata: in fact, the “subledgers” involved in the construction do not even need
to “know” that they are being viewed as a part of a combined ledger. Concretely,
a virtual ledger construction is a deterministic, stateless rule for interpreting a

Ledger Combiners for Fast Settlement 11

family of m individual ledgers as a single ledger. This is formally captured in the
following definition.

Definition 4 (Virtual Ledger Constructions). A virtual ledger construction
C[·] is a mapping that takes a tuple of dynamic ledgers (D1, . . . ,Dm) over the same
transaction space T and returns a dynamic ledger C[D1, . . . ,Dm] = L

(0),L(1), . . .
over T determined by three functions (aC, tC, rC) as described below. We write

Di = L
(0)
i ,L(1)

i , . . . with arriving transaction sets denoted A(0)
i , A(1)

i , . . . and the

rank function of each L
(t)
i being rank(t)i . Then

(i) the arriving transaction sets are given by A(t) = aC(A
(t)
1 , . . . , A(t)

m);

(ii) the ledger contents are given by L
(t) = tC(L

(t)
1 , . . . ,L(t)

m); and

(iii) the rank is given by rank(t)(tx) = rC(rank
(t)
1 (tx), . . . , rank(t)m (tx)).

Since the above requirements are formulated independently for each t, it is well-
defined to treat C[·] as operating on ledgers rather than dynamic ledgers; we
sometimes overload the notation in this sense.

Looking ahead, our amplification combiner will consider tC(L
(t)
1 , . . . ,L(t)

m) =S
i L

(t)
i along with two related definitions of aC given by

S
i A

(t)
i and

T
i A

(t)
i ; see

Section 3. The robust combiner will adopt a more sophisticated notion of tC.
In each of these cases, the important structural properties of the construction

are captured by the rank function rC.

2.3 Transaction Validity and Settlement

In the discussion below, we assume a general notion of transaction validity that
can be decided inductively: given a ledger L, the validity of a transaction tx 2 L is
determined by the transactions in the state L dtxe of L up to tx and their ordering.
Intuitively, only valid transactions are then accounted for when interpreting the
state of the ledger on the application level. The canonical example of such a
validity predicate in the case of so-called UTXO transactions is formalized in the
full version of this paper [17]. Note that protocols such as Bitcoin allow only valid
transactions to enter the ledger; as the Bitcoin ledger is represented by a simple
chain it is possible to evaluate the validity predicate upon block creation for each
included transaction. This may not be the case for more general ledgers, such as
the result of applying one of our combiners or various DAG-based constructions.

While we focus our analysis on persistence and liveness as given in Definition 3,
our broader goal is to study settlement. Intuitively, settlement is the delay
necessary to ensure that a transaction included in some A(t) enters the dynamic
ledger and, furthermore, that its validity stabilizes for all future times.

Definition 5 (Absolute settlement). For a dynamic ledger D
def
= L

(0),L(1), ...
we say that a transaction tx 2 A(⌧) \ L

(t) (for ⌧  t) is (absolutely) settled at
time t if for all ` � t we have: (i) L

(t) dtxe ✓ L
(`), (ii) the linear orders �L(t)

and �L(`) agree on L
(t) dtxe, and (iii) for any tx0 2 L

(`) such that tx0 �L(`) tx
we have tx0 2 L

(t) dtxe.

12 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

Note that for any absolutely settled transaction, its validity is determined
and it is guaranteed to remain unchanged in the future.

It will be useful to also consider a weaker notion of relative settlement of a
transaction: Intuitively, tx is relatively settled at time t if we have the guarantee
that no (conflicting) transaction tx0 that is not part of the ledger at time t can
possibly eventually precede tx in the ledger ordering.

Definition 6 (Relative settlement). Let T be a transaction space with a

conflict relation. For a dynamic ledger D
def
= L

(0),L(1), . . ., over T we say that
a transaction tx 2 A(⌧) is relatively settled at time t � ⌧ if for any ` � t
we have: (i) tx 2 L

(`); (ii) for any transaction tx0 such that tx0 �L(`) tx and
tx0 2 conflict(tx) we have tx0 2 L

(t).
We define an analogous notion when T is not equipped with a conflict relation,

by replacing (ii) with the stronger condition that applies to all transactions: for
any transaction tx0 such that tx0 �L(`) tx we have tx0 2 L

(t).

We illustrate the usefulness of relative settlement on the example of the
well-known UTXO transactions. If a UTXO-transaction tx satisfies that: (i) all
its inputs appear as outputs of a preceding valid, absolutely settled transaction,
(ii) tx itself is relatively settled, and finally, (iii) no conflicting transaction (using
the same inputs) is currently part of the ledger; then the validity of tx can be
reliably decided and is guaranteed not to change in the future.

In a dynamic ledger with liveness, absolute and relative persistence described
by l, pA and (p+R, p

�
R) respectively, there is a clear direct relationship of both types

of settlement to these properties. Namely, a transaction tx 2 A(⌧) is absolutely
(resp. relatively) settled in time ⌧ + rl + rp (resp. ⌧ + rl + r+ + r�) except with
error pA(rp) + l(rl) (resp. l(rl) + p+R(r

�, r+) + p�R(r
�)).

While the time ⌧ when the transaction tx entered the system is not necessarily
observable by inspecting the ledger, settlement itself is an observable event: tx
is absolutely (resp. relatively) settled at time T if it is seen as part of the
ledger L(T)dT � rpe (resp. L(T)dT � r+ � r�e), except with error pA(rp) (resp.
p+R(r

�, r+) + p�R(r
�)).

For ledgers that provide better guarantees for relative persistence than for
absolute persistence, relative settlement can occur faster than absolute settlement.

3 The Security-Amplifying Combiner for Latency
Reduction

We describe a general combiner which transforms m underlying ledgers to a
virtual ledger in which transactions settle more quickly. As discussed previously,
by logging a transaction in all of the underlying ledgers, users can be promised a
⇥(m) (multiplicative) reduction in settlement time; on the other hand, by logging
a transaction in a single one of the underlying ledgers, the promised settlement
time is roughly consistent with the underlying ledger settlement time.

Ledger Combiners for Fast Settlement 13

3.1 The Subindependence Assumption

Given m dynamic ledgers D = (D1, . . . ,Dm), informally, we say that the dynamic
ledgers satisfy "-subindependence if, for any collection of events F1, . . . , Fm

capturing either persistence or liveness failures—with the understanding that Fi

refers solely to properties of Li—we have Pr [
V

i Fi] 
Q

i Pr[Fi] conditioned on
some event occurring with probability at least 1� ".

Definition 7 (Subindependence). Let D = (D1, . . . ,Dm) be a collection of m
dynamic ledgers. Ledgers D satisfy "-persistence subindependence if for any subset

I ✓ {1, . . . ,m} and any collection of persistence failure events {P (i)
ri,ti | i 2 I},

where the event P (i)
? refers to Di, there is an event E with Pr[E] � 1 � "

such that we have Pr
⇥V

i P
(i)
ri,ti

�� E
⇤

Q

i p
(i)
A (ri). We similarly define "-liveness

subindependence.
Throughout our proofs, we treat " as negligible quantity and, for purposes

of a clean exposition, do not include the additive error terms related to " in
our concluding error bounds. (See Section 4.1 for further discussion, including
how to interpret the notion of “negligible” in this context.) Consistent with this
treatment, we leave " implicit in our notation, and simply say that the dynamic
ledgers D possess subindependence if they possess both persistence and liveness
subindependence.

As we discuss in Section 4.1, in situations such as those that arise in block-
chains one cannot hope for exact independence among persistence failure events
for the simple reason that an adaptive adversary may decide—as a result of
the success of her attacks on some subset of the ledgers—to cease attacking
the others; this creates a (harmless) negative correlation between failure events.
Intuitively, the subindependence conditions express the inability of an attacker to
outperform the simple setting where she aggressively attacks each of the ledgers
in isolation of the others. We discuss how subindependence can be naturally
achieved in both PoW and PoS settings in Section 4.1.

3.2 The Parallel Ledger Construction

We consider m dynamic ledgers D def
= (D1, . . . ,Dm) over the same transaction

space T and sequence of time slots t 2 {0, 1, . . .}, where each dynamic ledger Di =

L
(0)
i ,L(1)

i , . . . and its sequence of arriving transactions is denoted as A(0)
i , A(1)

i ,

Definition 8 (Construction P[D]). Our main construction P[D1, . . . ,Dm]
(which we also write P[D] when convenient) is defined by

aC(A
(t)
1 , . . . , A(t)

m) =
[

i

A(t)
i , tC(L

(t)
1 , . . . ,L(t)

m) =
[

i

L
(t)
i ,

14 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

and the rank function rank
(t)
L defined as follows: For a tuple r = (r1, . . . , rm) 2

(R [{1})m and a constant L, define

rankL(r)
def
= �L ln

0

@ 1

m

X

ri  ✓(r)

exp(�ri/L)

1

A , (1)

where ✓(r) = mini ri + L lnm, and exp(�1/L) is defined to be 0. We overload
the notation to apply to transactions, so that the resulting rank function can serve
the purposes of a virtual ledger construction: Let tx be a transaction appearing

with rank ri in ledger L
(t)
i for some fixed t; then define rank

(t)
L (tx) = rankL(r).

The definition (1) can be rephrased into an alternate, and somewhat more

intuitive, equation: if I✓
def
= {i | ri  ✓(r)} then

1

m

X

i2I✓

exp(�ri/L) = exp(�rankL(r)/L) . (2)

In particular the notion is a simple average if rank is interpreted under an exponen-
tial functional: exp(�rank(·)/L). Note, additionally, that for any r = (r1, . . . , rm),
we have mini2[m] ri  rankL(r) 

�
mini2[m] ri

�
+ L lnm and, furthermore, the

inequality can be naturally interpreted if some or all of the ri are 1. The first
inequality is tight when all ri are equal.

A final remark about truncation by the threshold ✓(r): While the “large-scale”
features of the parallel ledger—including relative persistence and liveness—do
not depend on truncation, absolute persistence depends on eventual stability of
the rank function. The truncation operation guarantees this, ensuring that only
a bounded portion of the ledger is relevant for determining the final rank of a
transaction.

Preemptive rank function. When the dynamic ledgers D are defined over a
transaction space with a conflict relation, we consistently work with a slightly
di↵erent notion of preemptive rank for the amplification construction above.
Specifically, we say that a transaction tx is dominant in a ledger L if it appears
in the ledger and no earlier transaction conflicts with tx (that is tx 2 L and
tx0 �L tx) tx0 62 conflict(tx)). Let ⇢i be the rank of tx in ledger Li and define
ri = ⇢i if tx is dominant in Li, and ri = 1 otherwise. Then the preemptive rank
rank

⇤
L(tx) of tx is defined to be rankL(r1, . . . , rm).

Fast and slow submission. We consider two ways of submitting tx to P[D]:

The “fast” mechanism: A transaction tx is simultaneously submitted to all

of the underlying dynamic ledgers {Di}mi=1, appearing in
T

i2[m] A
(t)
i .

The “slow” mechanism: A transaction tx is submitted to (at least) one of

the dynamic ledgers Di, appearing in
S

i2[m] A
(t)
i .

Ledger Combiners for Fast Settlement 15

An important feature of our protocol is that a single deployment supports both
of these mechanisms and their use can be decided by transaction producers on
a per-transaction basis. As we will see, these two mechanisms exhibit markedly
di↵erent liveness guarantees: Participants desiring fast liveness and settlement5

can adopt the fast mechanism by submitting their transactions to all m of the
ledgers; participants with less urgency can adopt the slow mechanism, simply
submitting their transactions to a single ledger.

To formally capture this in a clean way, we will introduce a slight variant,
PF [D], which allows us to specifically study the improved liveness properties
of transactions when they happen to be submitted for insertion into all of the
constituent ledgers Di at the same time. Specifically, PF [D] has precisely the

same definition as P[D] with the exception that aC(A
(t)
1 , . . . , A(t)

m) =
T

i A
(t)
i .

Thus, note that the two virtual ledgers P[D] and PF [D] contain exactly the
same elements with exactly the same ranks. They di↵er only in the sets of
transactions (determined by aC) for which they provide liveness guarantees:

“slow” liveness guarantees for
S

i A
(t)
i correspond to bounds on P[D] while “fast”

liveness guarantees for transactions in
T

i A
(t)
i correspond to liveness guarantees

for PF [D]. This bookkeeping slight of hand is merely a way to use a single
abstraction to express both a general liveness guarantee and an accelerated
guarantee for transaction submitted to all ledgers Di.

We remark that fast settlement guarantees are provided anytime a transaction
has been submitted to all of the underlying ledgers: the proof does not require
that they be submitted at exactly the same time. In terms of the definitions above,

the proof would apply even if we defined A
(t)
i

def
=
S

st A
(s)
i , F (t) def

=
T

i A
(t)
i , and

A(t) (the set for which fast settlement is guaranteed) to be F (t) \ F (t�1). Thus a
transaction would be guaranteed fast settlement as soon as it has been submitted

to all relevant ledgers. We work with the simple formulation (
T

i A
(t)
i) merely as

a matter of convenience.

3.3 Main Result and Proof Outline

Our main result follows, formulated for exponentially secure ledgers as defined in
Section 2.1.

Theorem 2. Let D = (D1, . . . ,Dm) be a family of m subindependent dynamic
ledgers defined over a common transaction space T with a conflict relation, each
possessing exponential liveness l(r) = exp(�↵lr + �l) and absolute persistence
p(r) = exp(�↵pr + �p). Consider the combined dynamic ledgers PF [D] and P[D]

with the (preemptive) rank function rank
⇤
L for a parameter L � m. Then for

PF [D], there is a constant C > 1 so that if L � Cm lnm, we have

Pr
h
9tx 2 A(t0) not relatively settled at time t0 + 2r

i

 exp(�r⌦(m) +O(m)) + exp (�⌦(r)�⌦(L ln(m))) .
(3)

5 Recall the di↵erence between liveness and settlement in our terminology (cf. Sec-
tion 2.3).

16 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

At the same time, for P[D] we have

Pr
h
9tx 2 A(t0) not absolutely settled at t0 + 2r

i
 m exp(�⌦(r) +O(L lnm)) .

The constants hidden in the ⌦() and O() notation depend on ↵p,↵l,�p,�l, but
they are independent of m, L, and r.

Note that in (3), the first term vanishes with the desired m-fold speedup,
and dominates the total error as long as roughly rm < L. Beyond that, the
second term is dominant and the error vanishes at the pace of a single constituent
ledger. This is essential for enabling both slow and fast settlement, as discussed
in Section 1.1. Note that as L can be chosen to scale with the security parameter
so that exp(�⇥(L)) is an acceptable error probability, the region rm < L is thus
exactly where the settlement speedup is desired.

On a high level, the proof for PF [D] goes as follows. For a transaction
tx 2 A(t0), we can expect that: (1) At time t0 + 2r, tx appears in at least 4m/5
of the m ledgers with rank at most t0+ r. (2) At most m/5 of these 4m/5 ledgers
will exhibit an absolute persistence failure allowing a change of their state up to
rank t0 + r after time t0 + 2r, a↵ecting the rank of tx. Based on the above two
events, at any time after t0 + 2r there can be at most 2m/5 ledgers that do not
contain tx with rank at most t0 + r. Then: (3) For any competing transaction
tx0 2 conflict(tx) not present at time t0 + 2r, these 2m/5 ledgers will never
contribute enough to the rank of tx0 to overtake tx in PF [D]. More precisely,
each of the three above events is shown to fail with at most the error probability
in the theorem statement.

The result for P[D] is proven along the following lines. Assume a transaction tx
inserted to (at least) one of the ledgers Li at time t0. For any t � t0 + r�L lnm,

we have tx 2 L
(t)
i dt0 + r � L lnme except for probability l(r � L lnm), and, by

the properties of the rank function, also tx 2 L
(t)dt0 + re. Let T � t = t0 + 2r

and assume tx 2 L
(t)dt0 + re as by the above liveness guarantee. As L(T)dt0 + re

is fully determined by the ledgers L
(T)
j dt0 + r + L lnme, a persistence failure

L
(T)dt0+re 6= L

(t)dt0+re implies a persistence failure of some L(t)
j dt0+r+L lnme,

which has a probability at most m pA(�r + L lnm).
The bound for PF [D] in particular gives us the following corollary.

Corollary 1. In the setting of Theorem 2, if the number of chains m scales with
the security parameter then PF [D] achieves constant-time settlement except with
an error probability negligible in the security parameter.

In the rest of this section, we establish the above results in full detail. In
Section 3.4 we study the central part of our combiner—its rank function; and
based on it, Section 3.5 obtains our persistence and liveness bounds in their
most general form. Section 3.6 specializes them to the setting of interest with
exponentially-secure underlying ledgers; and finally Section 3.7 concludes the
derivation of Theorem 2 and Corollary 1.

Ledger Combiners for Fast Settlement 17

3.4 Properties of rank

Before discussing the persistence and liveness guarantees of our construction, we
derive some general properties of its rank function.

Lemma 1. Let r = (r1, . . . , rm) 2 (R [{1})m and T � mini ri. Let IT = {i |
ri  T} and, for each i 2 IT , define di = T � ri. Writing D = T � rankL(r),

X

i2IT

di � D + L ln

✓
m� m� 1

exp(D/L)

◆
.

We note the following weaker, but convenient, bound: when D � 0, the sumP
i2IT

di is no more than D + L ln ((mD + L)/(D + L)).

Proof. Let I✓ = {i | ri  ✓(r)}. Writing R = �rankL(r)/L, from equation (2) we
have

m exp(T/L) exp(R) = exp(T/L)
X

i2I✓

exp(�ri/L) 
X

i2I✓\IT

1 +
X

i2IT\I✓

exp(di/L)

(⇤)
 (|I✓|� 1) + exp

X

i2IT

di/L

!
 (m� 1) + exp

X

i2IT

di/L

!

(4)

where the inequality
(⇤)
 above follows from the fact that for any ai � 0 we haveP`

i=1 exp(ai)  (`� 1) + exp(
P`

i=1 ai), and di � 0 for all i 2 IT . (This follows
by expanding the power series of ex and noting that

P
aki  (

P
ai)k for positive

ai.) Inequality (4) then yields

X

i2IT

di
L

� ln


m exp


T

L
+R

�
� (m� 1)

�
=


T

L
+R

�
+ ln


m� m� 1

exp(T/L+R)

�

and hence
X

i2IT

di � (T � rankL(r)) + L ln

✓
m� m� 1

exp([T � rankL(r)]/L)

◆
,

completing the proof. The second lower bound indicated in the theorem follows
from the fact that exp(1 + x) � 1 + x for x � 0. ut

We note a corollary of this, which also reflects the number of contributing
terms in the sum defining rank.

Corollary 2. Let r = (r1, . . . , rm) 2 (R [{1})m and T � mini ri. Let

IT = {i | ri  T} , I✓ = {i | ri  ✓(r)} , m0 = |I✓| ,

and, for each i 2 IT , define di = T � ri. Then

X

i2IT

di �
⇥
T � rankL(r)

⇤
+ L ln

✓
m� m0 � 1

exp([T � rankL(r)]/L)

◆
.

18 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

Proof. This follows from the proof of Lemma 1 by working with the version of
Equation (4) that retains dependence on |I✓|. ut

For two rank tuples r = (r1, . . . , rm) and s = (s1, . . . , sm) in (R[{1})m, we
define r _ s to be the tuple (min(r1, s1), . . . ,min(rm, sm)).

Lemma 2 (Rank addition). Consider two rank tuples r = (r1, . . . , rm) and
s = (s1, . . . , sm) in (R [{1})m. Then

exp(�rank(r _ s)/L)  exp(�rank(r)/L) + exp(�rank(s)/L) ; (5)

and moreover, for any ↵ 2 (0, 1),

rank(r) � rank(r_s)+ln(1/↵)L =) rank(s)  rank(r_s)+ln(1/(1�↵))L . (6)

Proof. The validity of equation (5) can be observed by simply expanding the
rank function according to its definition. For the implication (6), note that if
rank(r) � rank(r _ s) + ln(1/↵)L then (5) gives us

exp
�
�rank(r _ s)/L

�
 ↵ · exp

�
�rank(r _ s)/L

�
+ exp

�
�rank(s)/L

�

and hence exp
�
�rank(s)/L

�
� (1�↵) ·exp

�
�rank(r _ s)/L

�
, implying rank(s) 

rank(r _ s) + ln(1/(1� ↵))L as desired. ut

3.5 Persistence and Liveness of the Parallel Ledgers

We begin with a lemma that establishes relative persistence guarantees under
general circumstances: it requires only a super-additive persistence function and
does not require that the transaction space have a conflict relation.

Definition 9 (Super-additive functions). Recall that a function f : R ! R
is convex if, for any x1, . . . , xn and �1, . . . ,�n for which �i � 0 and

P
i �i = 1,

we have f(
P

i �ixi) 
P

i �if(xi). A persistence function p is super-additive if
log p is convex. It follows that p satisfies the inequality

mY

i=1

p(ri)  p

1

m

X

i

ri

!m

. (7)

Note that any exponential persistence function (as defined in Sect. 2.1) is super-
additive.

Lemma 3 (Relative persistence of P[D]). Consider P[D], the parallel compo-
sition of m subindependent ledgers, each with super-additive absolute persistence
pA(·). For any � > 0 and time T , the probability that an adversary can inject
a transaction tx that does not appear in any of the ledgers so as to achieve
rankL(tx)  T �D is at most

i(D; �, L)
def
=

✓
D + L lnm

�

◆m

· pA
✓

1

m

✓
D + L ln

✓
mD + L

D + L

◆◆
� �

◆m

.

Ledger Combiners for Fast Settlement 19

Moreover, the ledger P[D] satisfies the following relative persistence guarantees:
for any t0, r � 0,

Pr
h
9t � t0,L

(t) dt0 � re 6✓ L
(t0)
i
 p�R(r;L)

def
= i(r; �, L)

and, for the constant r⇤ = ln(2)L,

Pr
h
9t � t0,L

(t0) dt0 � (r + r⇤)e 6✓ L
(t) dt0 � re

i
 p+R(r, r

⇤;L)
def
= i(r; �, L) .

Proof. In light of Lemma 1, in order for a transaction tx to be injected into the
m ledgers so as to achieve rankL(tx)  T �D, it must appear with a rank tuple
(T � d1, . . . , T � dm) for which

X

i

di � D + L ln

✓
mD + L

D + L

◆
.

In preparation for applying a union bound, we identify a finite family of tuples
R so that for any tuple of positive reals x = (x1, . . . , xm) with

P
xi � ⇤ there is a

“bounding” tuple r 2 R so that r  x and
P

i ri ⇡ ⇤. (Here the  indicates that
ri  xi for all i.) For two real numbers x and � > 0, define bxc� to be the largest

integer multiple of � that is less than or equal to x; that is, bxc�
def
= max{k 2

�Z | k  x}. Observe that for any tuple x = (x1, . . . , xm) for which
P

i xi � ⇤,

the tuple bxc�
def
= (bx1c�, . . . , bxmc�) contains only integer multiples of �, is

coordinate-wise no larger than x, and satisfies ⇤ � �m 
P

ibxic�  ⇤. For
⇤ � 0, let R(⇤, �) = {r = (r1, . . . , rm) | ri 2 �Z, ri � 0,⇤� �m 

P
i ri  ⇤}.

With this in place, it follows that if tx appears with ranks (T � d1, . . . , T � dm)
and T � rankL(tx) � D then there is a tuple

r 2 R def
= R

✓
D + L ln


mD + L

D + L

�
, �

◆

for which r  d and hence (T � d1, . . . , T � dm)  (T � r1, . . . , T � rm).
For a tuple r = (r1, . . . , rm) consider the event, denoted Er, that the adversary

can inject a transaction so that it appears with rank no more than T � ri in
ledger i. By subindependence and the convexity of log pA(·),

Pr[Er] 
mY

i=1

pA(ri)  pA

1

m

mX

i=1

ri

!m

,

from inequality (7) above. Then we have

Pr
⇥
tx injected so that rankL(tx)  T �D

⇤
 |R| ·max

r2R
Pr[Er] .

To conclude the argument, invoking the upper bound |R|  ((D + L lnm)/�)m

we see that the probability Pr[tx injected so that rankL(tx)  T �D] is bounded
above by

✓
D + L lnm

�

◆m

· pA
✓

1

m

✓
D + L ln


mD + L

D + L

�◆
� �

◆m

.

20 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

The bound on p�R(r) follows immediately.
As for p+R(r, ln(2)L;L), consider a transaction tx with rank T � (r + ln(2)L).

In order for such a transaction to rise to rank T �r, some subset S of appearances
of the transaction must be removed with su�cient rank to permit the resulting
rank to rise to T � r. In light of Lemma 2, this removal must involve rewriting
the underlying blockchains at ranks corresponding to rank at least T � (r +
ln(2)L) + ln(2)L = T � r, as desired. (This corresponds to the setting ↵ = 1/2 in
Lemma 2). ut

We state a corollary of the above result which pertains to the problem of
injecting a transaction into a particular subset of the ledgers. This relies directly
on Corollary 2, and will be a critical component of the ⇥(m)-amplification results
below.

Corollary 3 (Relative persistence of P[D] with targeted insertion). Con-
sider P[D], the parallel composition of m subindependent ledgers, each with
super-additive absolute persistence pA(·). Let I denote a subset of m0 of the
ledgers and let D satisfy exp(D/L) > (m0 � 1)/(m� 1). Then for any � > 0 and
time T , the probability that an adversary can inject a transaction tx that does
not appear in any of the ledgers so as to appear only in ledgers I and achieve
rankL(tx)  T �D is no more than

i(D,m0; �, L)
def
=

✓
D + L lnm

�

◆m0

·pA
✓

1

m0

✓
D + L ln

✓
m� m0 � 1

exp(D/L)

◆◆
� �

◆m0

.

Proof. This follows from the proof of Lemma 3 by suitably adjusting the bound
on |R| to the restricted set of chains and applying the bound from Corollary 2. ut

We return to the general setting to formulate a bound on absolute persistence.

Lemma 4 (Absolute persistence of P[D]). Consider P[D], the parallel com-
position of m subindependent ledgers, each with absolute persistence pA(·). Then
the parallel ledger P[D] has absolute persistence pA(r)  m pA(r � L lnm).

Proof. As above, we let P[D1, . . . ,Dm] = L
(0),L(1), Consider a time t0

and r � L lnm. We observe that for any time t � t0, L(t)dt0 � re is completely

determined by the ledgers L(t)
i dt0�r+L lnme. To see this, consider a transaction

tx in the general ledger L(t) of rank s  t0 � r. Letting si denote the rank of tx

in the constituent ledgers L(t)
i , recall that mini si  s  t0 � r and, furthermore,

that s = rank(tx) depends only on those si for which

si  ✓(s) = min
i

si + L lnm  s+ L lnm  t0 � r + L lnm ;

in particular rank(tx) is determined only by the ledgers L(t)
i dt0 � r + L lnme.

To conclude, a persistence failure in L
(t)dt0 � re implies a persistence failure

in some L
(t)
i dt0 � r+L lnme and thus pA(r)  m pA(r�L lnm), as desired. ut

As the ledger PF [D] is identical to P[D] aside from the definition of aC, it
possesses the persistence guarantees described in Lemma 3, Corollary 3, and
Lemma 4.

Ledger Combiners for Fast Settlement 21

Liveness. We now direct our attention to liveness. We separately consider two
distinct ways of submitting a transaction to the parallel ledger, the “fast” and
the “slow” mechanisms as defined in Section 3.2. Recall that formally, the “fast”
case corresponds to the liveness function of the virtual ledger PF [D], while the
“slow” case corresponds to the liveness of the virtual ledger P[D]. We study these
liveness functions next.

Definition 10 (Census). Consider P[D], and let tx 2 T be a transaction.

The (r, T)-census of tx, denoted by C(T)
r (tx), is the number of ledgers for which

tx 2 L
(T)
i dre. When T can be inferred from context, we shorten this to the

r-census Cr(tx).

Lemma 5 (Liveness of PF [D]). Consider PF [D], the parallel composition of
m subindependent ledgers, each with liveness l(·). Then, for any t0 and t for
which t � t0 + r and any � 2 [0, 1],

Pr[9tx 2
\

A(t0)
i with (t0 + r, t)-census  (1� �)m] 

✓
m

�m

◆
l(r)�m .

It follows that for any � 2 (0, 1) the ledger PF [D] has liveness

l
PF

(r) =

✓
m

�m

◆
l

✓
r � L ln

✓
1

1� �

◆◆m�

.

Proof. Consider times t � t0 and a delay r � 0. For a parameter � 2 (0, 1)

we consider the (census) event that the transactions in
T

i A
(t0)
i appear in at

least (1� �)m of the ledgers L(t)
i dt0 + re. In this case, any transaction tx 2 At0

has rank rank(tx)  t0 + r + L ln (1/(1� �)) in the ledger L(t). It follows that
the probability that there exists a transaction in A(t0) that does not appear in
L
(t)dt0 + r + L ln(1/(1� �))e is no more than

� m
�m

�
l(r)�m. Reparametrizing this

(by setting r0 = r + L ln(1/�)) yields the statement of the lemma. ut

Lemma 6 (Liveness of P[D]). Consider P[D], the parallel composition of
m ledgers, each with liveness l(·). Then the parallel ledger P[D] has liveness

l
P
(r) = l(r � L lnm).

Proof. Consider times t � t0 and a delay r � 0. Observe that if a transaction tx

appears in any L
(t)
i dt0 + re then it appears in L

(t)dt0 + r + L lnme. This yields
the statement of the lemma. ut

3.6 Ledgers with Exponential Security

To achieve guarantees with more immediate interpretability and prepare for our
main amplification results, we consider the most interesting case for persistence
and liveness functions: r 7! exp(�↵r+ �) for ↵,� � 0. Note that such a function
is superadditive according to Definition 9. The following statements follow directly
from Corollary 3 with � = 1, and from Lemmas 4–6.

22 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

Corollary 4 (Relative persistence with targeted insertion). Consider
P[D] or PF [D], the parallel composition of m ledgers, each with absolute persis-
tence pA(r) = exp(�↵pr + �p). Let I denote a subset of m0 of the ledgers and
let D satisfy exp(D/L) > (m0 � 1)/(m� 1). Then for any � > 0 and time T , the
probability that an adversary can inject a transaction tx that does not appear in
any of the ledgers so as to appear only in ledgers I and achieve rankL(tx)  T�D
is no more than

(D + L lnm)m
0
· exp

✓
�↵p


D + L ln

✓
m� m0 � 1

exp(D/L)

◆�
+ (↵p + �p)m

0
◆

.

Corollary 5 (Absolute persistence). Consider P[D] or PF [D], the paral-
lel composition of m ledgers with absolute persistence pA(r) = exp(�↵pr +
�p). Then the ledgers P[D] and PF [D] both have absolute persistence pA(r) 
m↵pL+1 exp(�↵pr + �p).

Corollary 6 (Liveness). Consider P[D] and PF [D], constructed with m ledgers
D that each possess liveness l(r) = exp(�↵lr + �l). Then, for any � 2 (0, 1) and
times t0 and t for which t0 + r  t,

Pr[9tx 2 A(t0) with (t0 + r, t)-census  (1� �)m] 
✓

m

�m

◆
exp(��m(↵lr � �l))

and the liveness function l
PF

(·) of PF [D] satisfies

l
PF

(r) =

✓
m

�m

◆
exp

✓
�↵l�m

✓
r � L ln

✓
1

1� �

◆◆
+ �l�m

◆
.

The liveness function l
P
(·) of P[D] satisfies l

P
(r) = m↵L exp(�↵lr + �l).

Theorem 3 (Restatement of Theorem 2 for P[D]). Consider P[D] for a fam-
ily of m subindependent ledgers D = (D1, . . . ,Dm), each possessing exponential
liveness l(r) = exp(�↵lr+ �l) and (absolute) persistence p(r) = exp(�↵pr+ �p).
We assume all ledgers are defined over a common transaction space T with a
conflict relation and the general ledger is defined over the (preemptive) rank
function rank

⇤
L for a parameter L � m. Then

Pr


9tx 2 A(t0) not absolutely
settled at time t0 + 2r

�
 m exp(�⌦(r) +O(L lnm)) .

The constants hidden in the ⌦() and O() notation depend on ↵p,↵l,�p,�l, but
they are independent of m, L, and r.

Proof. Assume a transaction tx inserted to (at least) one of the ledgers Li at time
t0. By Corollary 6, at any point in time t � t0 + r, we have that tx 2 L

(t)dt0 + re
except for probability l(r)  exp(�⌦(r) + O(L lnm)). Let T � t = t0 + 2r.
By Corollary 5, L(T)dt0 + re = L

(t)dt0 + re remains persistent except for error
pA(r)  m exp(�⌦(r) + O(L lnm)). The stated bound now follows by union
bound over the errors l(r) and pA(r). ut

Ledger Combiners for Fast Settlement 23

3.7 Fast Settlement with Preemption: Achieving Linear

Amplification and Constant Settlement Time

We show how to achieve ⇥(m) amplification for liveness and settlement time. This
construction applies to transaction spaces with a conflict relation, and focuses on
the setting of ledgers with exponential security, as discussed in the section above.

The settlement function. To contrast the constructions against the underlying
ledgers, it is convenient to introduce a settlement function s(r), which provides
an error bound for the event that a transaction submitted at a time t0 has not
(relatively) settled by time t0 + r. Assuming that the underlying ledgers provide
exponential liveness and persistence yields settlement

s(r)  pA(r/2) + l(r/2) = exp(�⇥(r)) (settlement of underlying ledgers Di).

Our goal is to demonstrate that the fast ledger PF [D] provides linear amplification,
yielding settlement function s of the form

sPF (r)  exp(�⇥(mr)) + exp(�⇥̃(r + L)) (settlement of fast ledger PF [D]).

(Here the ⇥̃() notation neglects an additive term linear in m but logarithmic in
L and r.) Note that this scales as exp(�⇥(rm)) so long as rm  L.

As discussed earlier, participants are free to use the “slow” logging mechanism
(that is, simply logging their transaction in a single of the underlying ledgers), in
which case they will achieve

sP(r)  exp(�⇥(r) +O(L lnm)) (settlement of slow ledger P[D]).

Thus parameter L determines the transition between fast and slow settlement.
For r ⇡ L/m, one achieves fast settlement; for r ⇡ L logm, the system provides
settlement guarantees asymptotically consistent with those of the underlying
ledgers themselves.

Theorem 4 (Restatement of Theorem 2 for PF [D]). Let D = (D1, . . . ,Dm)
be a family of m subindependent dynamic ledgers defined over a common trans-
action space T with a conflict relation, each possessing exponential liveness
l(r) = exp(�↵lr+ �l) and absolute persistence p(r) = exp(�↵pr+ �p). Consider

the combined dynamic ledger PF [D] with the (preemptive) rank function rank
⇤
L

for a parameter L � m. We have

Pr


9tx 2 A(t0) not relativ-
ely settled at time t0+2r

�
 exp(�r⌦(m) +O(m))+

exp (�⌦(r)�⌦(L ln(m)) +O(m ln(L+ r))),

thus there is a constant C > 1 so that if L � Cm lnm this probability is

exp(�r⌦(m) +O(m)) + exp (�⌦(r)�⌦(L ln(m))) .

The constants hidden in the ⌦() and O() notation depend on ↵p,↵l,�p,�l (and
constants selected during the proof), but they are independent of m, L, and r.

24 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

Proof. Consider the set of transactions A(t0). In light of Corollary 6, at time
T = t0 + 2r these transactions will appear in at least (1 � �)m of the ledgers
with rank t0 + r except with probability

✓
m

�m

◆
exp(�↵lr + �l)

m�  exp(��m[↵lr � �l � ln(e/�)]) .

Specifically the (t0 + r, r0 + 2r)-census of these transactions is at least (1� �)m.
Observe that so long as r exceeds a constant determined by ↵, �, and �, this has
the desired scaling.

We now consider the possibility that a transaction from A(t0+2r) (or later)
that conflicts with some transaction in A(t0) can achieve rank less than those
in A(t0). We observe that almost all of the (1� �)m ledgers guaranteed above
(that contain the transactions of A(t0) at rank at most t0 + r) are fixed for all
future times up to this rank. Specifically, the probability that more than �m of
these ledgers are not persistent through rank t0 + r (in the view of future times
T � t0 + 2r) is at most

✓
m

�m

◆
exp(�↵pr + �p)

�m  exp(��m[↵pr � �p � ln(e/�)]) .

As above, for a constant r that depends only on ↵p, �p, and �, we achieve the
desired scaling.

Observe that—except with this small error probability exp(�⌦(mr))—all
transactions in A(t0) have rank

⇤
L no more than t0 + r + ln(1/(1 � 2�))L at all

future times.

In order for a transaction appearing after t0+2r to compete with a transaction
in A(t0), then, it must achieve a rank

⇤
L of t0 + r + ln(1/(1 � 2�))L using only

2�m of the ledgers. At time T = t0 + 2r, we apply Corollary 4 with the setting
of D = r � ln(1/(1� 2�))L; further assuming that � < 1/4, this event can occur
with probability no more than

(r + L lnm)2�m·

exp

✓
�↵p


r � L ln

✓
1

1� 2�

◆
+ L ln

✓
m� 2�m

1� 2�

◆�
+ (↵p + �p)2�m

◆
.

As we assume m  L, this is no more than

(r + L2)2�m exp

✓
�↵pr � ↵pL


ln

✓
m
1� 4�

1� 2�

◆
� 1

�
+ (↵p + �p)2�m

◆

= exp (�↵pr � ↵pL [ln(m) +O(1)] +O(m ln(L+ r)) .

By choosing L = Cm logm for large enough C, we obtain the form recorded in
the statement of the theorem. ut

Ledger Combiners for Fast Settlement 25

Remark 1. By setting � = 1/5 in the proof above, we obtain a version that
reflects the leading constants in the exponent. The three contributing terms are:

exp(�(m/5)[↵lr � (�l + 3)]) Failure of A(t0) to achieve (t0+r, t0+2r)-census
� 4m/5;

exp(�(m/5)[↵pr � (�p + 3)])
Persistence failure exceeding m/5 of these trans-
actions at rank t0 + r;

exp(�↵pr � ↵pL[ln(
m
3e)] +

m
5 (2�p + 4 ln(r + L))

Persistence failure of remain-
ing rank by insertion into
2m/5 chains.

3.7.1 Worst-Case Constant-Time Settlement

In the setting where we have the luxury to select m so that it scales with the
security parameter of the system, the construction above provides constant time
settlement. Specifically, examining the statement (and following remarks with
explicit bounds) of Theorem 2 above, by merely taking r large enough to ensure
that ↵lr � �l + 4 and ↵pr � �p + 4 the first two failure terms above both decay
exponentially in m. Likewise, by suitably adjusting L so that

L � m+ (m/5)(2�p + 4 ln(r + L))

↵p ln(m/3e)

the third term also falls o↵ exponentially in m. (This is always possible with
L = O(m logm).) Thus this achieves settlement in constant time except with
probability negligible in the security parameter, establishing the following corol-
lary stated earlier.

Corollary 1 (restated). In the setting of Theorem 2, if the number of chains m
scales with the security parameter then PF [D] achieves constant-time settlement
except with an error probability negligible in the security parameter.

In the full paper [17] we additionally explore the amplification problem in
a stronger setting, called the coordinated model, assuming that any transaction
attempted to be included into any of the ledgers is also immediately attempted
to be included into all of the remaining ledgers. This allows to adopt a simpler
rank function and achieve simpler results.

4 Implementation Considerations

4.1 Achieving Subindependence

Proof of Stake. Subindependence is easier to achieve in the proof-of-stake
setting. In PoS, block creation rights are attributed to protocol participants via
a stake-based lottery governed by randomness that is derived as a part of the
protocol. Hence, a straightforward solution for obtaining (sub)independence in a
setup with m PoS blockchains is to derive independent lottery randomness for
selecting block creators for each of the chains (even in situations where these are
sampled from the same stake distribution). This approach has been proposed
before, e.g., in [19], and hence we omit the details.

26 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

Proof of Work. Blockchain subindependence in the proof-of-work setting can be
achieved by generalizing the 2-for-1-PoW idea from [20] where two independent
PoW-oracle queries are obtained from a single invocation of the random oracle.
Similarly to [5], we propose a construction for an m-for-1-PoW to achieve m
PoW-queries (one for each chain) by invocation of one single random oracle
query—however, introducing some dependence between the m resulting queries.
Still, the construction is su�cient to serve as a common PoW to maintain m
subindependent ledgers.

The Construction. Given a hash function H : {0, 1}⇤ ! {0, 1} modeled as a
random oracle, we partition a hash output Y = H(X) into two bit-segments
Y = (Y1, Y2) of size /2 each. The first segment decides whether the query is

successful (by the test Y1 < T for some threshold T with p
def
= T/2/2), the

second segment assigns the invocation to a particular PoW instance i 2 [m] (by
computing i = 1+(Y2 mod m)). The single invocation H(X) is then defined to be
successful for instance i if it is both successful and is assigned to instance i (i.e.,

Y1 < T and i = 1+ (Y2 mod m)). Formally, we write PoWm
p (X)

def
= (S1, . . . , Sm)

where Si
def
= (Y1 < T ^ i = 1+(Y2 mod m)) 2 {0, 1} for the bit vector of successes

of the query X with respect to all instances. Note that the random variables Si

are fully determined by X and the internal randomness of the random oracle.

Analysis. We compare PoWm
p (X) to an “ideal” oracle IPoWm

p0 (X) that for each

new query X samples a fresh response IPoWm
p0 (X)

def
= (S̃1, . . . , S̃m) such that

each binary random variable S̃i takes value 1 with probability p0 and all S̃i are
independent; repeated queries are answered consistently. Responses to new queries
IPoWm

p0 (X) hence also depend only on the input and the internal randomness of
IPoWm

p0 . Let �(·, ·) denote the standard notion of statistical distance (sometimes
called the total variation distance) of random variables. Then we have the
following simple observation.

Lemma 7. For any x 2 {0, 1}⇤ and p 2 (0, 1), we have

�
⇣
PoWm

p (x), IPoWm
p/m(x)

⌘
 p2 .

The above lemma already justifies the use of PoWm
p for achieving subinde-

pendence in practical scenarios. To observe this, note that the use of IPoWm
p/m

would lead to full independence of the individual PoW lotteries, and by Lemma 7
the real execution with PoWm

p will only di↵er from this ideal behavior with prob-
ability at most Q · p2, where Q is the total number of PoW-queries. With current
values of p ⇡ 10�22 in, e.g., Bitcoin,6 and the block creation time adjusting to
10 minutes, this di↵erence would manifest on expectation in about 1018 years.
Note that any future increase of the total mining di�culty while maintaining
the block creation time would only increase this period. Nonetheless, in the full
paper [17], we prove the following, fully-parameterized result.

6 https://btc.com/stats/diff

https://btc.com/stats/diff

Ledger Combiners for Fast Settlement 27

Lemma 8. Consider the collection of m dynamic ledgers D = (D1, . . . ,Dm)
produced by a parallel m-fold execution of Bitcoin using PoWm

p as the joint PoW
oracle as described above, with n parties, each making q queries to PoWm

p per
round. Let � denote a security parameter and assume throughout that q � �5,
m  �, pq  �, and the honest parties dominate the adversarial parties su�ciently
to invoke existing analysis yielding exponential persistence and liveness bounds
for an individual chain. Then the ledgers D satisfy "-subindependence with
" = poly(�) · exp(�⌦(�)).

4.2 Realizing Rank via Timestamped Blockchains

An important consideration when deploying our virtual ledger construction over
existing blockchains is how to realize the notion of rank. We note that typical
Nakamoto-style PoS blockchains (e.g., the Ouroboros family, Snow White) assume
a common notion of time among the participants and explicitly label blocks
with slot numbers with a direct correspondence to absolute time. These slot
numbers (or, preferably, a notion of common time associated with each slot
number) directly a↵ord a notion of rank that provides the desired persistence
and liveness guarantees. To formalize this property, we introduce the notion of a
timestamped blockchain.

Definition 11. A timestamped blockchain is one satisfying the following con-
ventions:

– Block timestamps. Every block contains a declared timestamp.
– Monotonicity. In order for a block to be considered valid, its timestamp can
be no less than the timestamps of all prior blocks in the blockchain. (Thus
valid blockchains consist of blocks in monotonically increasing order.)

Informally, we say that an algorithm is a timestamped blockchain algorithm
if it calls for participants to broadcast timestamped blockchains and to “respect
timestamps.” More specifically, the algorithm satisfies the following:

– Faithful honest timestamping. Honest participants always post blocks with
timestamps determined by their local clocks.

– Ignore future blocks. Honest participants ignore blocks that contain a times-
tamp which is greater than their local time by more than a fixed constant.
(These blocks might be considered later when the local clock of the participant
“catches up” with the timestamp.)

As mentioned above, typical Nakamoto-style PoS blockchains are timestamped
by design. For PoW blockchains the situation varies case by case. For instance,
Bitcoin provides block timestamps, but these follow a more complex convention
which guarantees that the timestamp associated with each block exceeds the
median timestamp of the previous 11 blocks. Note, then, that one can assign a
“logical timestamp” to block Bt equal to the maximum timestamp on the blocks
{Bi : i  t}; these logical timestamps are then monotonically non-decreasing.
Ignoring future blocks is also a part of the Bitcoin protocol.

28 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

For blockchains that do not provide timestamps satisfying the above notion
natively, the full paper [17] describes a straightforward transformation that mod-
ifies any longest-chain rule blockchain algorithm into a timestamped blockchain,
and demonstrates security of the transformation.

Timestamped blockchains as dynamic ledgers. Timestamped blockchains
can be interpreted as dynamic ledgers in the natural way: for a fixed party
P and time t, the ledger L

(t)—corresponding to the index t in the dynamic
ledger—consists of all the transactions present in the blocks constituting the
blockchain BP,t held by P at time t that have a timestamp not greater than t.
The rank of each transaction tx 2 L

(t) is then defined to be the timestamp of the
earliest block in BP,t containing it. Observe that standard exponentially vanishing
error bounds on the persistence and liveness of such blockchains then translate
to exponential failure bounds for the respective properties of the dynamic ledger.

4.3 A Proof-of-Work Instantiation

In this section we summarize the implications of our results for the proof-of-work
setting by proving Corollary 7, which is a more detailed version of Theorem 1.
Recall the definition of the (p, q)-flat PoW model from Theorem 1.

Corollary 7. Let ✏ > 0 and let � denote the security parameter. Let D =
(D1, . . . ,Dm) be a family of m = � dynamic ledgers induced from m PoW-based
blockchains using PoWm

p as their joint PoW oracle, having a common transaction
space with a conflict relation, and run by a combined population of n = poly(�)
parties in the synchronous (p, q)-flat PoW model, out of which at least a (1/2+✏)-
fraction is honest. Let the assumptions of Lemma 8 be satisfied, i.e., q � �5,
pq  �.

Consider the combined dynamic ledger PF [D] with the (preemptive) rank
function rank

⇤
L. Then for PF [D], there is a constant C > 1 so that if L = Cm lnm,

PF [D] achieves constant-time relative settlement except with an error probability
negligible in the security parameter �. (Observe that with such choice of L the
system still provides meaningful single-chain settlement guarantees.)

Proof (sketch). The statement is an instantiation of Corollary 1 (which is itself
based on Thm. 2) to the case of m = � PoW-based ledgers using a joint PoWm

p

oracle. The required subindependence of this mining mechanism follows from
Lemma 8. ut

References

1. S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

2. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros gene-
sis: Composable proof-of-stake blockchains with dynamic availability. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 913–930.
ACM Press, Oct. 2018.

Ledger Combiners for Fast Settlement 29

3. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros chronos:
Permissionless clock synchronization via proof-of-stake. Cryptology ePrint Archive,
Report 2019/838, 2019. https://eprint.iacr.org/2019/838.

4. C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger:
A composable treatment. In J. Katz and H. Shacham, editors, CRYPTO 2017,

Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, Aug. 2017.
5. V. K. Bagaria, S. Kannan, D. Tse, G. C. Fanti, and P. Viswanath. Prism: Decon-

structing the blockchain to approach physical limits. In L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, editors, ACM CCS 2019, pages 585–602. ACM Press, Nov.
2019.

6. D. Boneh and X. Boyen. On the impossibility of e�ciently combining collision
resistant hash functions. In C. Dwork, editor, CRYPTO 2006, volume 4117 of
LNCS, pages 570–583. Springer, Heidelberg, Aug. 2006.

7. V. Buterin. A next-generation smart contract and decentralized application platform.
2009. Online manuscript.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001.

9. J. Chen and S. Micali. Algorand, 2016. arXiv preprint 1607.01341.
10. B. Cohen and K. Pietrzak. The chia network blockchain, 2019. Online manuscript.
11. P. Daian, R. Pass, and E. Shi. Snow white: Robustly reconfigurable consensus and

applications to provably secure proof of stake. In I. Goldberg and T. Moore, editors,
FC 2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, Feb. 2019.

12. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In J. B. Nielsen and V. Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer,
Heidelberg, Apr. / May 2018.

13. Y. Dodis, R. Impagliazzo, R. Jaiswal, and V. Kabanets. Security amplification for
interactive cryptographic primitives. In O. Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 128–145. Springer, Heidelberg, Mar. 2009.

14. S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. Perun: Virtual payment
hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy

(SP), pages 327–344, 2019.
15. S. Dziembowski, S. Faust, and K. Hostáková. General state channel networks. In

D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages
949–966. ACM Press, Oct. 2018.

16. M. Fischlin and A. Lehmann. Security-amplifying combiners for collision-resistant
hash functions. In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
224–243. Springer, Heidelberg, Aug. 2007.

17. M. Fitzi, P. Gaži, A. Kiayias, and A. Russell. Ledger combiners for fast settlement,
2020. Cryptology ePrint Archive, Report 2020/675.

18. M. Fitzi, P. Gaži, A. Kiayias, and A. Russell. Parallel chains: Improving throughput
and latency of blockchain protocols via parallel composition, 2018. Cryptology
ePrint Archive, Report 2018/1119.

19. M. Fitzi, P. Gaži, A. Kiayias, and A. Russell. Proof-of-stake blockchain protocols
with near-optimal throughput, 2020. Cryptology ePrint Archive, Report 2020/037.

20. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,

Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, Apr. 2015.
21. P. Gaži and U. Maurer. Free-start distinguishing: Combining two types of indis-

tinguishability amplification. In K. Kurosawa, editor, ICITS 09, volume 5973 of
LNCS, pages 28–44. Springer, Heidelberg, Dec. 2010.

https://eprint.iacr.org/2019/838
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://arxiv.org/abs/1607.01341
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://eprint.iacr.org/2020/675
https://eprint.iacr.org/2018/1119
https://eprint.iacr.org/2018/1119
https://eprint.iacr.org/2020/037

30 Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell

22. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners for
oblivious transfer and other primitives. In R. Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 96–113. Springer, Heidelberg, May 2005.

23. A. Herzberg. On tolerant cryptographic constructions. In A. Menezes, editor,
CT-RSA 2005, volume 3376 of LNCS, pages 172–190. Springer, Heidelberg, Feb.
2005.

24. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg,
Aug. 2017.

25. S. Lerner. Dagcoin draft, 2015. Online manuscript.
26. M. Luby and C. Racko↵. Pseudo-random permutation generators and cryptographic

composition. In 18th ACM STOC, pages 356–363. ACM Press, May 1986.
27. B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi. Afgjort: A partially synchronous

finality layer for blockchains, 2019. Cryptology ePrint Archive, Report 2019/504.
28. U. M. Maurer, Y. A. Oswald, K. Pietrzak, and J. Sjödin. Luby-Racko↵ ciphers

from weak round functions? In S. Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 391–408. Springer, Heidelberg, May / June 2006.

29. U. M. Maurer and K. Pietrzak. Composition of random systems: When two weak
make one strong. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages
410–427. Springer, Heidelberg, Feb. 2004.

30. U. M. Maurer, K. Pietrzak, and R. Renner. Indistinguishability amplification. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 130–149. Springer,
Heidelberg, Aug. 2007.

31. U. M. Maurer and S. Tessaro. Computational indistinguishability amplification:
Tight product theorems for system composition. In S. Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 355–373. Springer, Heidelberg, Aug. 2009.

32. S. Myers. E�cient amplification of the security of weak pseudo-random function
generators. Journal of Cryptology, 16(1):1–24, Jan. 2003.

33. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Online
manuscript.

34. S. Park, A. Kwon, G. Fuchbauer, P. Gazi, J. Alwen, and K. Pietrzak. Spacemint: A
cryptocurrency based on proofs of space. In Proceedings of the 22nd International

Conference on Financial Cryptography and Data Security (FC). Springer, 2018.
35. R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in asyn-

chronous networks. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017,

Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, Apr. / May
2017.

36. R. Pass and E. Shi. Hybrid consensus: E�cient consensus in the permissionless
model, 2016. Cryptology ePrint Archive, Report 2016/917.

37. R. Pass and E. Shi. The sleepy model of consensus. In T. Takagi and T. Peyrin,
editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer,
Heidelberg, Dec. 2017.

38. R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confirmation.
In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821
of LNCS, pages 3–33. Springer, Heidelberg, Apr. / May 2018.

39. K. Pietrzak. Composition does not imply adaptive security. In V. Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 55–65. Springer, Heidelberg, Aug.
2005.

https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf
https://eprint.iacr.org/2019/504
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/917

Ledger Combiners for Fast Settlement 31

40. K. Pietrzak. Non-trivial black-box combiners for collision-resistant hash-functions
don’t exist. In M. Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
23–33. Springer, Heidelberg, May 2007.

41. J. Poon and T. Dryja. The bitcoin lightning network: Scalable o↵-chain instant
payments, 2016. Online manuscript.

42. Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE: A fast and scalable
cryptocurrency protocol, 2016. Cryptology ePrint Archive, Report 2016/1159.

43. S. Vaudenay. Decorrelation: A theory for block cipher security. Journal of Cryptology,
16(4):249–286, Sept. 2003.

https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://eprint.iacr.org/2016/1159

	Ledger Combiners for Fast Settlement
	Introduction
	Our Contributions
	Related Work

	The Ledger Abstraction
	Ledgers and Dynamic Ledgers
	Composition of Dynamic Ledgers
	Transaction Validity and Settlement

	The Security-Amplifying Combiner for Latency Reduction
	The Subindependence Assumption
	The Parallel Ledger Construction
	Main Result and Proof Outline
	Properties of rank
	Persistence and Liveness of the Parallel Ledgers
	Ledgers with Exponential Security
	Fast Settlement with Preemption: Achieving Linear Amplification and Constant Settlement Time
	Worst-Case Constant-Time Settlement

	Implementation Considerations
	Achieving Subindependence
	Realizing Rank via Timestamped Blockchains
	A Proof-of-Work Instantiation

