
Tight Consistency Bounds for Bitcoin
Peter Gaži

IOHK
Aggelos Kiayias

University of Edinburgh
IOHK

Alexander Russell
University of Connecticut

IOHK

ABSTRACT
We establish the optimal security threshold for the Bitcoin protocol
in terms of adversarial hashing power, honest hashing power, and
network delays. Speci�cally, we prove that the protocol is secure if

A0 <
1

�0 + 1/A⌘
,

where A⌘ is the expected number of honest proof-of-work successes
in unit time, A0 is the expected number of adversarial successes, and
no message is delayed by more than �0 time units. In this regime,
the protocol guarantees consistency and liveness with exponen-
tially decaying failure probabilities. Outside this region, the simple
private chain attack prevents consensus.

Our analysis immediately applies to any Nakamoto-style proof-
of-work protocol; in the full version of this paper we also present
the adaptations needed to apply it in the proof-of-stake setting,
establishing a similar threshold there.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
Bitcoin; proof of work

ACM Reference Format:
Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2020. Tight Consistency
Bounds for Bitcoin. In 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’20), November 9–13, 2020, Virtual Event, USA.
ACM,NewYork, NY, USA, 20 pages. https://doi.org/10.1145/3372297.3423365

1 INTRODUCTION
The Bitcoin protocol, proposed in 2008 by Satoshi Nakamoto [15],
has received abundant attention from both the applied and theo-
retical communities. The protocol’s survival in the permissionless
setting—where parties may freely join and depart—and the promise
of digital currencies that can thrive in such a hostile environment
have led to widespread experimentation and numerous implemen-
tation projects. Likewise, the algorithmic core has proven to be
a successful framework for designing and analyzing consensus
algorithms.

Despite over a decade of study, the fundamental guarantees
of the protocol are not well understood. Roughly, the essential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423365

ledger properties—consistency and liveness—are determined by
three interacting features: the hashing power of the adversary, the
hashing power of the honest parties, and networking delays. Ideally,
one would like to establish the precise relationship between these
parameters that guarantees the Bitcoin ledger properties. To date,
such a relationship has been elusive.

We establish this relationship, proving that Bitcoin is secure if

A0 <
1

�0 + 1/A⌘
, (1)

where A0 is the expected number of adversarial proof-of-work suc-
cesses in unit time, A⌘ is the expected number of honest successes,
and no message is delayed by more than �0 time units. Here, ad-
versarial and honest proof-of-work successes are modeled as in-
dependent Poisson processes, with parameters A⌘ and A0 . In this
parameter region, consistency accrues exponentially quickly in the
sense that blocks appearing at depth : in a longest chain can only
be later abandoned with probability exp(�⌦(:)). Liveness obeys
similar exponential guarantees. The result is tight: if A0 exceeds the
threshold (1), the simple private-chain attack prevents consensus.
The threshold, as a function of A⌘ with �xed �0, is indicated by the
solid black curve in Figure 1.

Our results in more detail. Analytically, we work with the stan-
dard discrete approximation to the Poisson distribution to simplify
bookkeeping. Speci�cally, we treat time as divided into small slots
of length B and let ?0 = B ·A0 denote the probability of an adversarial
hashing success in a single slot; ?⌘ = B ·A⌘ is likewise de�ned for the
honest parties. This distribution limits to the Poisson distribution
as B ! 0 and a variety of classical results provide explicit upper
bounds for the distance between these distributions [3]. As slot
length B is considered in the limit to zero, we may safely assume
that no more than one success occurs per slot. This is discussed
formally in Remark 1 below.

We re�ect network delays with a single parameter � = d�0/Be:
while any message sent by honest parties will be delivered, the
adversary may delay its arrival by up to � slots. Delivery takes place
“at the beginning” of the slot, which is to say that the minimum
value � = 1 corresponds to the case where messages transmitted in
slot C are available for other parties’ full consideration in slot C + 1.
In this discretized setting, we prove that Bitcoin is secure if

?0 <
1

� � 1 + 1/?⌘
. (2)

As mentioned above, if ?0 exceeds the bound there is an attack
that prevents any Bitcoin block from settling and succeeds with
probability tending to 1. This natural attack—originally described by
the Bitcoin whitepaper—calls for the adversary to mine on a private
chain with the intention to double spend if the private chain catches
up to honestly held chains. The attack naturally generalizes to the
setting with delays by calling for maximum possible delay of all
honest messages. A notable, and perhaps unexpected, conclusion of

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

819

https://doi.org/10.1145/3372297.3423365
https://doi.org/10.1145/3372297.3423365

our work is that the viability of this straightforward attack precisely
captures the security regime of Bitcoin; in particular, when the
adversarial hashing power exceeds the optimal security threshold
this very attack prevents the protocol from reaching consensus and
thus represents the best one can do to subvert consistency.

Finally, we point out that—while we discuss Bitcoin for concrete-
ness—our results are obtained in a model su�ciently general to
immediately cover any Nakamoto-style proof-of-work protocol.
Additionally, a straightforward adaptation of our techniques estab-
lishes similar results for Nakamoto-style proof-of-stake protocols;
we defer the treatment of the PoS setting to the full version of the
paper [10].

Related work. Analyzing the security of Bitcoin has a long history.
The �rst rigorous results, due to Garay et al. [9], were obtained
in the lock-step synchronous model. Pass et al. [16] gave a new
treatment that established results in the �-synchronous model,
subsequently adopted by Garay et al. [8]. Ki�er et al. [14] tightened
the consistency bound of [16] by associating security with the
behavior of a Markov chain. Ren [17] then simpli�ed and condensed
these results, adopting the continuous-time Poisson model.

This line of research culminated in identifying the “�-isolated
bound,” establishing security if

?0 < ?⌘ (1 � ?⌘)2��1 .
As limB!0 (1 � BA⌘)2�0/B�1 = exp(�2A⌘�0), this corresponds to the
Poisson model bound

A0 < A⌘ exp(�2A⌘�0) .
Roughly, the �-isolated bound can only leverage an honest hashing
success when it is surrounded by a � time region with no competing
honest successes. This �-isolated bound is compared side-by-side
with the optimal bound in Figure 1. While the slopes of the two
bounds coincide at zero, the “�-isolation” criterion penalizes larger
values of A⌘ .

It is most natural to study blockchain algorithms in the regime
where A⌘ + A0 ⇡ 1/�0, as this intuitively maximizes block through-
put; the graph of Figure 1 illustrates this region. Bitcoin itself oper-
ates in a region where A⌘ + A0 is signi�cantly less than 1/�0—that
is, the roughly 10-minute interblock period targeted by Bitcoin is
signi�cantly longer than typical network delays; however, the re-
cent generation of proof-of-work protocols, including Ethereum [2],
explicitly optimize throughput by choosing A0 + A⌘ approximately
equal to 1/�0.

Finally, independent work of Dembo et al. [6] obtains the same
optimal security threshold—for both the proof-of-work and proof-
of-stake settings—using di�erent techniques. Structurally, their
approach belongs to the family of analytic work which relies on
identi�cation of explicit “synchronization points” during an execu-
tion, analogous to the concepts of strong pivots in [4] and Catalan
slots in [12]. Our approach, in contrast, belongs to the family of
analytic work which relies on margin, an explicit combinatorial
metric determining how the length of the longest chain held by the
honest players compares with the lengths of those chains held by
adversarial players under optimal (adversarial) play. Margin was
originally developed to analyze proof-of-stake systems in [1, 5, 13];
as established in [12], these two approaches can be directly related—
at least in the proof-of-stake setting—which perhaps explains the

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

1/�0

A⌘ (honest Poisson parameter)

A 0
(a
dv
er
sa
ria

lP
oi
ss
on

pa
ra
m
et
er
) Bitcoin Security Region

o0 threshold

o iso
0 threshold

Optimal region

�-isolated region

Figure 1: The region of pairs (A0, A⌘) for which Bitcoin is se-
cure with �0 = 10. The optimal bound established in this
paper o0 = 1/(�0 + 1/A⌘) is shown in solid black; the region
beneath this line—�lled in light blue—is the region of pairs
(A0, A⌘) for which we establish security. The best prior bound
o iso0 = A⌘ exp(�2�0A⌘) is shown in dashed black; its corre-
sponding region of security is shown with blue hatching.

satisfying conclusion that the optimal security thresholds can be
articulated using both of these languages.

A technical survey of the proof. Tomotivate the optimal threshold
itself, consider the baseline blockchain height achieved by the hon-
est parties if the adversary contributes no blocks and subjects every
honest message to the maximum delay �. With honest hashing
victories given by a sequence of i.i.d. indicator random variables
F1,F2, . . . corresponding to the time slots, the height ⌘8 achieved
at slot 8 satis�es

⌘8 =

(
⌘8�� + 1, ifF8 = 1, and
⌘8�1, ifF8 = 0.

(3)

It is an easy exercise to show that the expected value of ⌘= is
=/U +$ (1) where U = (��1) +1/?⌘ (as above, ?⌘ is the probability
of an honest hashing success). It is then clear that if ?0 exceeds 1/U—
which is exactly the optimal threshold of (2) above—an adversary
can dominate Bitcoin with the private-chain attack: in particular,
the adversary may pick any undesirable block in the system, begin
building a private chain prior to that block, and eventually overtake
the honest chain which grows at a rate of 1/U .

As for demonstrating security below this threshold, we develop
a set of new techniques for reasoning about the longest chain rule
in the �-synchronous setting. We begin by borrowing the notion
of a “fork,” the bookkeeping tool originating in [13] and adapted to
�-delays in [5]; this is a graph-theoretic convention for maintaining
the structure of all chains that have been constructed during an
execution of a blockchain protocol. With this language for express-
ing chains we consider the notion of “margin” from [1] (where it
was called “relative margin”). In the context of a history of hashing
successes—which indicates the prior slots in time during which
honest and adversarial hashing victories occurred—the notion of
margin provides a precise metric for “how many blocks ahead” of the

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

820

honest chains an adversarial chain could possibly be. More speci�-
cally, margin makes precise the intuition that the analysis of Bitcoin
is a contest between the adversary and the honest players to con-
struct the longest chain. (In fact, one has to specify a particular point
in time before which the adversary’s chain must diverge to make
sense of this notion, but we ignore such details in this summary.)
Previous work analyzed the behavior of margin in the synchronous
setting, �rst showing that it satis�es a relatively simple recurrence
relation, and then analyzing the long term behavior of the pro-
cess that emerges by applying this to i.i.d. random variables, as
above. Existing analyses break down in the �-synchronous case—to
sidestep this di�culty, one can use a pessimistic “�-synchronous
to synchronous reduction mapping,” [5] but this route leads to
precisely the �-isolated bound described above.

Our principal technical contribution is an analysis of margin
in the �-synchronous setting. We mention a few of the technical
challenges that arise; the full details are in Section 3. As margin
is intended to capture the “current advantage” of the adversary,
one would like to show that each adversarial success increases
margin by one. Honest successes are more complicated for several
reasons. Guided by the discussion of ⌘� above, one would like to
prove that any honest success which gives rise to a height increase
according to the rule (3) indeed decreases themargin. Unfortunately,
this natural intuition is not uniformly born out: there are certain
circumstances—occurring when the “race is close” and margin is
close to zero—where the appearance of an honest victory actually
works in the adversary’s favor. However, we show that this natural
intuition can indeed be established when margin is bounded away
from zero. Our results rely on several fork transformations that
yield a semi-normal form for forks; among these is a “compression
transformation” which guarantees that, among all honest blocks of
a particular depth, there is at least one that is “tight” in the sense
that it is placed at the minimum depth history would allow. In
the critical zone around zero, we show looser bounds that rely on
�-isolated successes.

These considerations result in a set of recurrence relations that
bound margin; we then analyze the resulting stochastic process
obtained by the appropriate i.i.d. distribution of hashing successes
in Section 4. This yields a random walk with three regions, which
we analyze separately: when margin is bounded away from zero, it
is stochastically dominated by a negatively biased random walk;
the bias is determined by the gap between ?0 and the optimal
threshold. As we will see, this behavior exactly agrees with the
intuition above. When in a particular region near zero, it follows
a positively biased random walk, but one which descends with
constant probability. Fortunately, the critical zone around zero has
only constant thickness, so the global random walk still has the
desired features: in particular, after : steps the probability it will
ever again rise to zero (or any other constant value) is exp(�⌦(:)).
This establishes consistency.

Remarks and future directions. Wework with a very strong adver-
sary, one who is apprised of all future adversarial and honest mining
successes and their exact times. It is an interesting fact that the
security of the protocol is independent of such adversarial future
knowledge. In particular, such an adversary never has to contend
with regret for building on the wrong chain. On the other hand, we

analyze the “static setting”: ?0 and ?⌘ are constant. It is reasonable
to expect that the analysis can be extended to a setting where these
are variable (but always satisfy, say ?0 < (1 � X)?⌘), but we do not
explore these issues. Our results focus on the “cryptographic” set-
ting where mining power is split between honest parties following
the protocol and adversarial parties deviating arbitrarily; hence we
do not capture rational attacks by honest parties, such as “sel�sh
mining” [7]—of course the e�ect of such attacks can be re�ected in
our model if the sel�sh miners are treated as adversarial. Finally,
for rates A0 and A⌘ that satisfy A0 < 1/(�0 + 1/A⌘), our analysis
establishes consistency and liveness with exponential error bounds;
note that the constants in these error functions depend (necessarily)
on the gap between A0 and 1/(�0 + 1/A⌘).

Organization of the paper. Section 2 de�nes the technical tools of
our analysis: characteristic strings, forks, and the margin quantity;
and reduces the original question of Bitcoin consistency to margin.
Section 3 then shows howmargin can be bounded for a �xed history
of mining successes via a recurrence relation. Finally, Section 4
analyzes the random walk that is implied by this recurrence when
we move to the actual stochastic process with the success history
given by appropriately distributed random variables.

2 PRELIMINARIES
Throughout the paper, N = {0, 1, 2, . . .} denotes the set of natural
numbers (including zero). For = 2 N, [=] denotes the set {1, . . . ,=}
(hence [0] = ;). For a word F = F1 . . .F= 2 ⌃= we denote by
F8:9 its subwordF8F8+1 . . .F 9 , and #0 (F) denotes the number of
occurrences of the symbol 0 2 ⌃ inF ; similarly #0,1 (F) , #0 (F) +
#1 (F). We denote by k the concatenation of languages.

2.1 Our Model and the Bitcoin Protocol
We begin with an informal, abstract description of the Bitcoin proto-
col that su�ces to describe our model. We delay formal de�nitions
of consistency and liveness to later in this section.

The Bitcoin protocol is carried out by a family of parties of
two types: honest parties follow the letter of law, carrying out the
speci�ed protocol, while adversarial parties may diverge arbitrarily
from the speci�cations. All parties actively engage in searching for
“proofs-of-work” (PoWs), which a�ord them the right to contribute
to the ledger. For the purposes of analysis we treat time as divided
into small slots and use a characteristic string to indicate whether a
proof-of-work was discovered in a particular time slot, and whether
the successful party was honest or adversarial. In particular, the
characteristic string F = F1F2 . . . 2 {0, h, a}⇤ associated with an
execution of the protocol is de�ned so that

FC =

8>>><
>>>:

0 if no PoW was discovered in slot C ,
h if an honest party discovered a PoW in slot C ,
a if an adversarial party discovered a PoW in slot C .

(4)

It is occasionally convenient to treat in�nite characteristic strings
in {0, h, a}N for which we use the same conventions. We study
a probability distribution B(?0, ?⌘) of characteristic strings that
re�ects di�erent rates of adversarial and honest success.

De�nition 1. Let ?0, ?⌘ > 0 satisfy ?0 + ?⌘  1. Let B(?0, ?⌘) de-
note the distribution on characteristic stringsF1F2 . . . 2 {a, h, 0}N

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

821

given by independent selection of eachFC so that

FC =

8>>><
>>>:

a with probability ?0,
h with probability ?⌘,
0 with probability 1 � ?0 � ?⌘ .

Remark 1 (The discrete approximation to the Poisson process).
The most natural mathematical model for the distribution of proof-
of-work successes is a Poisson process, which re�ects both the
memoryless aspect of the proof-of-work challenge and the fact
that it takes place in (e�ectively) continuous time. We work in the
standard discrete approximation to the Poisson process since it
simpli�es the accounting in Section 3; however, the proof could
as well have been presented in the Poisson setting. To clarify the
relationship between these models, consider the Poisson process
with parameter _ occurring on [0, !) ⇢ R. Dividing the interval
into !/B subintervals of length B , let -C be the indicator random
variable for the event that at least one success appears in the C-th
subinterval. Then E [-C] = 1 � exp(�_B) ⇡ _B and the probability
that two Poisson successes appear in any of the subintervals is
!/B · [1 � exp(�_B) (1 + _B)] = $ (!_2B) by the union bound, which
limits to zero linearly in B . It follows that, except with probability
$ (!_2B), the results of the independent random variables -C are
su�cient to determine the position of every success in [0, !) with
accuracy ±B/2 and to determine their relative order exactly. Select-
ing a su�ciently small B then su�ces to bound the probability of
all the events of interest for our analysis. This also explains the
assumption that no more than one proof-of-work success can arise
in a particular time slot—this does not change the limiting model.
A �nal remark: scaling the discrete �-synchronous models of Pass
et al. [16] and Garay et al. [8]—which do re�ect multiple hashing
successes—likewise leads to this very same Poisson model (for the
same reason). Ren [17] adopts precisely the Poisson model.

The Bitcoin protocol calls for parties to exchange blockchains,
each of which is an ordered sequence of blocks beginning with a
distinguished “genesis block,” known to all parties. Each proof-of-
work success confers on that party the right to add exactly one
block to an existing blockchain. (In fact, the party must identify
the previous chain on which she wishes to build ahead of time,
but this will not a�ect our analysis.) Honest parties follow the
longest-chain rule which dictates that they always choose to add
to the longest blockchain they have yet observed and broadcast
the result to all other parties. The basic dynamics of the system,
with a particular characteristic stringF and an adversary, can be
described as follows.

Let CC denote the collection of all blockchains created by time C
and let � (CC) denote the subset of all chains in CC whose last block
was created by an honest party. Set C0 = {⌧}, where⌧ denotes the
unique chain consisting solely of the genesis block. The genesis
block is “honest”; thus � (C0) = C0. It is convenient to adopt the
convention that C�C = � (C�C) = {⌧} for any negative integer
�C < 0. Then the protocol execution proceeds as follows. For each
timestep C = 1, . . .:
• IfFC = 0, de�ne CC = CC�1 and � (CC) = � (CC�1).
• IfFC = a, the adversary may select a single blockchain ⇠ from
CC�1 and add a block to create a new chain⇠ 0. Then CC = CC�1[
{⇠ 0} and � (CC) = � (CC�1).

• If FC = h, the adversary may select any collection of chains
V for which � (CC��) ✓ V ✓ CC�1. This is the “view” of the
honest player, who applies the longest chain rule toV , selects the
longest chain ! 2 V where ties are broken by the adversary, and
adds a new block to create a new chain !0. Then CC = CC�1[{!0}
and � (CC) = � (CC�1) [{!0}.

In each time step C we also maintain the set of �-dominant chains
DC ✓ CC , determined entirely by CC and� (CC��): namely,DC is the
set of all chains in CC that are at least as long as the longest chain in
� (CC��). The intuition behind the de�nition of �-dominant chains
is that, in a time slot C , it is in principle possible to manipulate an
honest party into adopting any �-dominant chain, as the adversary
is only obligated to deliver those chains in � (CC��) and the chains
in DC are at least as long as those in � (CC��).

This description implicitly places several constraints on the ad-
versary; most notably, the only means of producing new chains is
to append a block (associated with a proof-of-work success) to an
existing chain. In practice, these constraints are guaranteed with
cryptographic hash functions. Note that the �-synchrony assump-
tion is re�ected in the rule for the case FC = h: the adversary is
obligated to deliver all chains produced by honest players that are
� slots old. Finally, we permit the adversary to have full view of
the characteristic string during this process. Of course, in practice
a Bitcoin adversary must make decisions “on line.” As mentioned
above, our proof shows that this extra power does not change the
security threshold of Bitcoin.

While expressed as a game between the adversary and the honest
players, considering that the adversary selects both the view V of
each honest player and is empowered to break ties, the structure
of the resulting sequence of chains (that is, the directed acyclic
graph naturally formed by the blocks) is determined entirely by the
adversary and the characteristic string.

In this context, we are interested in preserving two properties,
consistency and liveness, originally formulated in [9]. To formulate
the properties we record two de�nitions related to chain pre�xes:
For a chain ⇠ 2 CC and a natural number : , we de�ne ⇠ |: 2 CC�:
to be the chain obtained by removing from ⇠ all blocks originating
from slots {C � : + 1, . . . , C}. When : � C , we de�ne ⇠ |: = ⌧ . We
then de�ne ⇠ 0 � ⇠ i� ⇠ 0 = ⇠ |: for some : � 0; in this case we say
that ⇠ 0 is a pre�x of ⇠ .

• Consistency; with parameter : . For any slots C1  C2, any
chains ⇠1 2 DC1 and ⇠2 2 DC2 satisfy ⇠1 |: � ⇠2.

• Liveness; with parameter D. For any two slots C1, C2 > 0 with
C1+D  C2, and any chain⇠ 2 DC2 , there is a time C 0 2 {C1, . . . , C1+
D} and a chain ⇠ 0 2 � (CC 0) \ � (CC 0�1) such that ⇠ 0 � ⇠ .

Intuitively, consistency mandates that any blockchain possibly held
by an honest party at time C2 extends a blockchain that was held
by an honest party at any previous time C1, except perhaps for a
:-slot su�x which could have been abandoned. Liveness, on the
other hand, mandates that the blockchain held by an honest party
incorporates at least one fresh honest block over any period of D
slots.

Note that the above de�nitions are tailored for the discrete set-
ting, they can be trivially translated to the Poisson setting by con-
sidering continuous time in place of slots.

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

822

2.2 Characteristic Strings and Forks
We let ⌃ = {0, h, a} and consider characteristic stringsF = F1 . . .F!
drawn from the set ⌃! . Recall that the 8-th symbol F8 of F intu-
itively indicates if a proof-of-work success occurred in the 8-th slot
of an !-slot execution of the Bitcoin protocol as captured in (4).

The following notion of a fork will be our core analytical tool
for reasoning about the security properties of the protocol.

De�nition 2 (PoW �-fork). Let � be a positive integer and ! 2 N.
A PoW �-fork for the stringF = F1 . . .F! 2 ⌃! is a directed, rooted
tree � = (+ , ⇢) with a labeling function

lb : + ! {0} [{8 2 [!] : F8 < 0}
satisfying the axioms (A1)–(A4) below. Edges are directed “away
from” the root so that there is a unique directed path from the root
to any vertex. The value lb(E) is referred to as the label of E . A
non-root vertex E is called honest whenFlb(E) = h; otherwise it is
adversarial.
(A1) The root A 2 + has label lb(A) = 0 and is considered honest.
(A2) The sequence of labels lb(·) along any directed path is in-

creasing.
(A3) IfF8 = h then there is exactly one vertex with the label 8 , if

F8 = a then there is at most one vertex with the label 8 .
(A4) For any pair of honest vertices E,F for which lb(E) + � 

lb(F) we have len(E) < len(F), where len(·) denotes the
depth of the vertex.

A �-fork abstracts a protocol execution with a simple but su�-
ciently descriptive discrete structure. Its vertices and edges stand
for blocks and their connecting hash links (in reverse direction),
respectively. The root represents the genesis block, and for each ver-
tex E , lb(E) and len(E) denote the slot in which the corresponding
block was created and the block’s depth, respectively.

It is easy to see the correspondence between the above axioms
and the constraints imposed in the protocol execution. In particular,
(A1) corresponds to the trusted nature of the genesis block; (A2)
re�ects that the blocks’ ordering in a chain must be consistent
with slot order; (A3) re�ects that honest players produce exactly
one block per PoW success, while the adversary might forgo a
block-creation opportunity; �nally (A4) re�ects the fact that given
su�cient time, as needed for block propagation in the network, an
honest party will take into account the blocks produced by previous
honest parties.

De�nition 3 (Fork notation). We write � `� F to indicate that �
is a �-fork for the stringF . If � 0 `� F 0 for a pre�xF 0 ofF , we say
that � 0 is a subfork of � if � contains � 0 as a consistently-labeled
subgraph. A fork � `� F is closed if all its leaves are honest. By
convention, the trivial fork, consisting solely of a root vertex, is
closed. The closure of a fork � , denoted � `� F , is the maximal
closed subfork of � .

An individual blockchain constructed during the protocol exe-
cution is represented by the notion of a tine, de�ned next. Conse-
quently, in later informal discussions we often identify a blockchain
with its respective tine if no confusion can arise.

De�nition 4 (Tines). A path in a fork � originating at the root is
called a tine (note that tines do not necessarily terminate at a leaf).

As there is a one-to-one correspondence between directed paths
from the root and vertices of a fork, we routinely overload notation
so that it applies to both tines and vertices.

Speci�cally, we let len()) denote the length of the tine) , equal
to the number of edges on the path (see axiom (A4)). In the un-
usual cases where we wish to emphasize the fork from which E
is drawn, we write len� (E). We further overload this notation by
letting len(�) denote the length of the longest tine in a fork � . Like-
wise, we let lb(·) apply to tines by de�ning lb()) , lb(E), where
E is the terminal vertex on the tine) . For a vertex E in a fork � ,
we denote by � (E) the tine in � terminating in E . We say that a
tine is honest if the last vertex of the tine is honest; otherwise it is
adversarial.

De�nition 5 (Branches). For an integer ✓ � 1 and for two tines
) ,) 0 of a fork � , we write) ⇠✓) 0 if the two tines share a vertex
with a label greater or equal to ✓ . The set of all tines) 0 2 � such
that) ⇠✓) 0 is called the branch of) in � and denoted B� () ; ✓);
when ✓ can be inferred from context, we write B� ()).

Intuitively,) ⇠✓) 0 guarantees that the respective blockchains
agree on the state of the ledger up to time ✓ . Looking ahead, the
adversary can only make two honest parties disagree on the state
of the ledger up to time ✓ if she makes them hold two chains corre-
sponding to tines for which) ⌧✓) 0.

De�nition 6 (Fork trimming; dominance). Given a string F =
F1 . . .F= and a positive integer : , we let F d: = F1 . . .F=�:+1
denote the string obtained by removing the last : �1 symbols. For a
fork � `� F1 . . .F= we let � d: `� F d: denote the fork obtained by
retaining only those vertices labeled from the set {0, . . . ,=�:+1}. In
the degenerate case : > = we de�neF d: to be the empty string and
� d: to be the trivial fork containing only the root. For convenience,
we sometimes prefer to emphasize the remaining length of the
string (resp. fork), and denote byF<e and �<e the<-symbol pre�x
of F and the corresponding fork, formally F<e , F d=�<+1 and
�<e , � d=�<+1.

For an integer X > 0, a tine) in � is called X-dominant if

len()) � len(� dX)
and simply call it dominant in the case X = 1 (i.e., when len()) �
len(�)).

Observe that honest tines appearing in � d� are those that are
necessarily visible to honest players at a timeslot just beyond the
last one described by the characteristic string. Correspondingly, in
the special case X = �, the notion of a �-dominant tine corresponds
to �-dominant chains as de�ned in the experiment described in
Section 2.1. More broadly, here and below we will always only be
interested in two possible values of the parameter X : either X = �
or X = 1; and whenever we suppress X in the notation, it indicates
the case X = 1.

2.3 Advantage and Margin
Now we de�ne our central quantity of interest called margin.

De�nition 7 (Advantage, margin). For a �-fork � `� F and X > 0,
we de�ne the X-advantage of a tine) 2 � as

UX ()) = len()) � len(� dX) .

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

823

In cases where we wish to explicitly identify the fork � in the
notation, we write UX� (·). Observe that U

X
� ()) � 0 if and only if)

is X-dominant in � . For ✓ � 1, we de�ne the X-margin of a fork � as

VX✓ (�) = max
)⌘⌧✓)0

)⌘ is X-dominant

UX� ()0) ,

this maximum extended over all pairs of tines ()⌘,)0) where)⌘ is
X-dominant and)⌘ ⌧✓)0 . We call the pair ()⌘,)0) the X-witness
tines for � if the above conditions are satis�ed; i.e.,)⌘ is X-dominant,
)⌘ ⌧✓)0 , and VX✓ (�) = UX� ()0). Note that there might exist multiple
such pairs in � , but under the condition ✓ � 1 there will always
exist at least one such pair, as the trivial tine)0 containing only the
root vertex satis�es)0 ⌧✓) for any) and ✓ � 1. For this reason,
we will always consider VX✓ only for ✓ � 1.

We overload the notation and de�ne the X-margin of a charac-
teristic stringF as

VX✓ (F) = max
�`�F

VX✓ (�) .

We call a fork � `� F a X-witness fork forF if VX✓ (F) = VX✓ (�); again
multiple X-witness forks may exist for a stringF .

We often write U� and V✓ as shorthands for U1� and V1✓ , respec-
tively; for brevity we also refer to 1-witness tines and 1-witness
forks as witness tines and witness forks, respectively.

Remark 2. Intuitively, U�� ()) captures the length advantage (or
de�cit) of the tine) against the longest honest tine created at least �
slots before the upcoming slot, and hence now known to all honest
parties. Consequently, V�✓ (�) records the maximal advantage of any
tine)0 in � that potentially disagrees with some �-dominant tine)⌘
about the chain state up to slot ✓ . A negative V�✓ (�) hence indicates
that the adversary cannot make an honest party holding)⌘ switch
to any)0 that would potentially cause a revision of its ledger state
up to slot ✓ ; this connection between margin and consistency is
made formal in Section 2.4.

Remark 3. The bulk of our analysis focuses on the quantity V✓ (F).
This quantity, without the special considerations on tine dominance,
appears to be somewhat more tractable than V�✓ (F). However, the
direct relationship between settlement failures andmargin sketched
above is most easily expressed using V�✓ (F). The two notions have
a simple relationship which justi�es the choice to study V✓ (): if
F , G 2 ⌃⇤ and |G | � �, then V�✓ (FG)  V✓ (F~), where ~ 2 ⌃⇤ is the
string obtained by replacing every h in G with the symbol a. (See
Lemma 20.)

Remark 4. In the special case |F | < ✓ , we can observe that any
fork � `� F and any tines) ,) 0 2 � satisfy) ⌧✓) 0 (in particular,
) ⌧✓)). Hence, in this case the quantity VX✓ (F) simpli�es to

VX✓ (F) = max
�`�F

VX✓ (�) = max
�`�F
) 2�

UX� ()) = max
�`�F
) 2�

len� ()) � len(� dX)

and so in this case we always have VX✓ (F) � 0.

It is easy to see that if a fork � `� F has VX✓ (�) < 0 then all tines
of length at least len(� dX) belong to the same branch. This justi�es
the following de�nition.

De�nition 8 (Main branch). LetF 2 ⌃= , ✓ � 1, and � `� F such
that VX✓ (�) < 0. The unique branch of � that contains all tines
of length at least len(� dX) (and possibly other tines) is called the
X-main branch of � and denoted MX (�); we again omit X in the
notation to indicate that X = 1.

2.4 Margin and Consistency
We now formalize the intuitive connection between margin and
consistency outlined in Remark 2.

Consider an execution of the Bitcoin protocol over a lifetime
of ! slots, let F = F1 . . .F! be the corresponding characteristic
string. Let � `� F be the fork consisting of vertices corresponding
to all blocks created during the execution, connected via the nat-
ural “child-block” relation and labeled by their creation slot. For
brevity, for each C 2 [!] let �C ,FC be the shorthands for �C e ,FC e ,
respectively.

L���� 1. Consider the Bitcoin execution described above. If for
every ✓ 2 [! � :] and every C 2 {✓ + :, . . . , !} we have V�✓ (FC) < 0
then :-consistency was maintained during that execution.

P����. Let 1  C1  C2  ! be slots and let ⇠8 2 DC8 be the
�-dominant chains from the de�nition of the consistency property.
If C1  : then there is nothing to prove, hence assume C1 > : and
consider ✓ := C1 � : .

Fix any C 2 {C1, . . . , !}. Since V�✓ (�C)  V�✓ (FC) is negative by
assumption, there is a �-main branch M� (�C) in �C , and tines in
this branch share a vertex in or after slot ✓ , hence the corresponding
blockchains “agree” on their view of the content of the blockchain
up to slot ✓ . Moreover, any) 8 M� (�C) has U��C ()) < 0 and there-
fore len()) < len((�C)d�), hence) is not �-dominant in �C . There-
fore, for each �xed C 2 {C1, . . . , !}, all �-dominant blockchains DC
in slot C agree up to slot ✓ .

It remains to show that for C 2 {C1, . . . , ! � 1}, tines in M� (�C)
share their pre�x up to slot ✓ with tines inM� (�C+1). If len((�C)d�) =
len((�C+1)d�) then this is clear as M� (�C) ✓ M� (�C+1) and as ar-
gued above, all tines inM� (�C+1) agree up to ✓ . On the other hand, if
len((�C)d�) < len((�C+1)d�) then no extension of a tine) 2 �C ,) 8

M� (�C) can belong toM� (�C+1), as we had len()) < len((�C)d�),
and) could be extended by at most one vertex in �C+1, hence the
extended tine is still shorter than len((�C+1)d�). Therefore, by an in-
duction argument, all chains inDC1[DC2 agree on their pre�x up to
✓ and so this is also true for⇠1 and⇠2, establishing consistency. ⇤

3 THE MARGIN RECURRENCE
Recall the meaning of the margin quantity V✓ as discussed in Sec-
tion 1 and formalized in Section 2.3: Given some history of mining
successes captured as a characteristic stringF 2 ⌃⇤, V✓ (F) deter-
mines the potential length advantage (or de�cit) of the best tine an
adversary could potentially use to make an honest party revise its
view of the history up to slot ✓ .

Given Lemma 1, our goal in this section is to establish upper
bounds on V✓ (F) for characteristic strings F 2 ⌃⇤. Our bounds
are expressed inductively, having the form V✓ (FG)  V✓ (F) + 5 (G)
where F , G 2 ⌃⇤, for some appropriate function 5 of the su�x G .
Intuitively, we would like V✓ (F) to satisfy the ideal recurrence: for

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

824

F , G 2 ⌃⇤ and |G | � � � 1,

V✓ (FGh)  V✓ (F) + #a (G) � 1 . (5)

Here V✓ (·) increases by 1 for each ‘a’-symbol and decreases with
certainty by 1—intuitively this accounts for the last ‘h’-symbol
which is at least � slots ahead of any of the slots associated withF .

Roughly, we show that when V✓ (F) is “suitably large” or “suitably
small,” this ideal recurrence holds. The region around zero is more
problematic; in this case we only show that V✓ cannot move too
quickly, and that there are certain su�xes (like 0��1h) which indeed
force V✓ (·) to decrease. Because this di�cult region will have only
constant width, we will see that it does not adversely a�ect the
�nal probabilistic results.

The step decomposition. The decomposition ofF appearing
in the ideal recurrence (5) above plays a special role in the analysis.
We lay down some notation to re�ect this.

De�nition 9 (The step decomposition). Let F = F1F2 . . . 2
{a, h, 0}N. For such a string, we consider the decomposition F =
f1f2 . . . where each

f8 2 ⌃S , {a, h, 0}��1 k {a, 0}⇤ k {h} .
We reserve the word symbol to refer to elements of ⌃, and the
word step to refer to elements of ⌃S . We write S(F) , f1f2 . . . to
indicate the resulting sequence of elements of ⌃S . Throughout, we
let |W | denote the number of symbols in the step W 2 ⌃S .

We remark that this decomposition is unique and has the fol-
lowing direct interpretation: (1) write F = GhF 0 where G is the
shortest pre�x of length at least � � 1 that is followed by the sym-
bol h. (2) emit the symbol f = Gh; (3) repeat the process onF 0. The
sequence of symbols produced by this process corresponds to the
f8 above.

Organization. We start by introducing some key technical tools
below in Section 3.1. As a warm-up, in Section 3.2 we establish
a variant of the ideal recurrence (5) in the considerably simpler
setting “before the slot ✓ ,” i.e., for F such that |F | < ✓ . Then we
turn to the more interesting case of general |F |, considering three
separate regions: the “critical” region where V✓ (F) is close to zero
(Section 3.3); the “cold” region where it is su�ciently below zero
(Sections 3.4); and the “hot” region where it is su�ciently above
zero (Section 3.5). As mentioned above, we show that the ideal
recurrence (5) holds in the hot and cold regions.

3.1 Compressed Forks and the Restructuring
Lemma

In our arguments we make use of special honest vertices called
tight that are, informally speaking, at the minimal depth that the
preceding part of the fork allows without violating the axiom (A4).
Herewe de�ne these vertices formally and summarize several useful
properties they have: in particular, in Lemma 4 we show how a fork
that has a tight vertex at each possible depth (we call such forks
compressed) allows for a complex restructuring operation that leads
to a lower-bound on the margin of the underlying characteristic
string.

De�nition 10. Let � `� F 2 ⌃= . An honest vertex E of � is
called tight if len(E) = len(�lb(E)��e) + 1. The fork � is said to

be compressed if, for every depth 0  3  len(�), there is a tight
honest vertex E of depth 3 .

L���� 2. Let � `� F 2 ⌃= . Let E be a tight vertex and let E 0 be
an honest vertex with lb(E)  lb(E 0); then len(E)  len(E 0).

P���� �� L���� 2. As lb(E)  lb(E 0) and E is tight,
len(E) = len(�lb(E)��e) + 1  len(�lb(E0)��e) + 1  len(E 0) . ⇤

Note the contrapositive of Lemma 2: if len(E 0) < len(E) then
lb(E 0) < lb(E).

L���� 3. Let F 2 ⌃⇤, there exists a compressed witness fork
� `� F forF .

P����. Let � `� F be a witness fork forF . We describe a trans-
formation, which we naturally call “compression,” that converts �
into a compressed fork �2 `� F for which V✓ (�2) = V✓ (�). If � is
compressed, the transformation makes no change. Otherwise, the
transformation is given as a sequence of “compression steps,” each
of which reduces the total depth of the fork and locally improves
tightness violations.

In particular, if � is not compressed, there is a smallest depth
3  len(�) for which there is no tight honest vertex of depth 3 . Let
� 0 denote the labeled rooted tree obtained from � by carrying out
the following alterations:
• If 3 = 1, for every vertex E of depth 3 = 1, replace any edge (E,D)
by an edge (A ,D) where A is the root.

• If 3 > 1, raise every vertex E of depth 3 one level in the tree by
replacing the unique edge of the form (D, E) with the edge (?, E),
where ? is the parent of D.

The labels of all vertices in � 0 remain the same as those of the
corresponding vertices in � . As indicated above, we refer to the
procedure carrying � 7! � 0 as a compression step.

We verify that � 0 `� F : Axiom (A1) is trivially satis�ed. Ax-
iom (A2) holds for � 0 as all directed edges added to � 0 respect the
label ordering. Axiom (A3) holds as all labels are preserved. Finally,
we consider axiom (A4). Note the e�ect that the process has on the
depth of honest vertices in the general case 3 > 1: The depths of all
honest vertices with (initial) depth less than 3 are preserved, while
the depths of all honest vertices with depths at least 3 are decreased
by exactly one. Thus the only possible violations of axiom (A4)
could occur among those honest vertices at depth exactly 3 ; how-
ever, as all such vertices are non-tight by assumption, reducing
their depth by one guarantees axiom (A4). Finally, observe that if
3 = 1, all vertices of depth 3 are adversarial, as any honest vertex
of depth 1 is tight by de�nition, hence the above reasoning applies
as well despite a di�erent alteration rule.

In light of the comments above, we note that len(� 0) = len(�)�1
and len(� 0) = len(�) � 1. It follows that a �nite number of com-
pression steps results in a compressed fork, �2 , as desired.

In general, we show below that V✓ (� 0) � V✓ (�); thus, if V✓ (�) =
V✓ (F) then V✓ (� 0) = V✓ (F) and � 0 is likewise an optimal fork.
Consider a tine) of � ; we may naturally associate this with the
tine) 0 of � 0 that terminates with the same vertex. If U� ()) �
0 it follows from the discussion above that U� 0 () 0) = U� ()), as
len() 0) = len()) � 1 and len(� 0) = len(�) � 1. If U� ()) < 0 it
follows that U� ())  U� 0 () 0)  U� ()) + 1, depending on whether

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

825

the alterations involve any vertices of the) . It follows immediately
that V✓ (� 0) � V✓ (�). Speci�cally, let ()⌘,)0) be two witness tines
for � so that U� ()⌘) � 0, U� ()0) = V✓ (�), and)⌘ ⌧✓)0 . Let) 0

0 and
) 0
⌘ be the two tines corresponding to)0 and)⌘ in � 0, respectively;
clearly) 0

⌘ ⌧✓) 0
0 and note that this does not depend on ✓ . Then

U� 0 () 0
⌘) = U� ()⌘) and U� 0 () 0

0) � U� ()0); therefore) 0
⌘ is dominant

in � 0 and we have V✓ (� 0) � V✓ (�), as desired. ⇤

L���� 4 (R������������ �����). LetF 2 ⌃⇤ be a characteristic
string and � `� F be a compressed fork for F , let)1 ⌧✓)2 be
arbitrary tines in � . For 8 2 {1, 2}, let E8 be an honest vertex on)8 and
let �8 denote the set of all adversarial vertices on)8 deeper than E8 . If
lb(E1)  lb(E2) then

V✓ (F) � U� (E1) + |�1 [�2 | .

P����. We sketch the proof here; a detailed proof appears in
Appendix B. On a high level, we restructure the fork � to obtain
a valid fork e� `� F that satis�es V✓ (e�) � U� (E1) + |�1 [�2 |,
establishing the claim. This restructuring consists of two main
modi�cations: (i) use (at least) all adversarial vertices in �1 [�2 to
build a tine e)0 on top of E1 with len(e)0) at least len(E1) + |�1 [�2 |;
and (ii) use tight vertices of depths len(E2) +1, len(E2) +2,. . . , len(�)
to build an honest tinee)⌘ on top of E2 that achieves len(e)⌘) = len(�).
A simple additional modi�cation is needed to ensure that the honest
descendants of E1 and E2 do not violate the validity of the resulting
fork e� . The heart of the argument is then to verify that e� is indeed
a valid fork forF . ⇤

3.2 Warm-up: Margin Prior To ✓
We start by describing the behavior of V✓ (F) for |F | < ✓ . Note that
this signi�cantly simpli�es the notion as discussed in Remark 4, in
particular |F | < ✓ implies V✓ (F) � 0. We use this simpler case to
illustrate the approach taken also in our later proofs.

L���� 5. Let ✓ � 1,F 2 {0, h, a}<✓ and G 2 {0, h, a}���1. Then

V✓ (FGh) 
(
V✓ (F) + #a (G) � 1 if V✓ (F) � 1 ,
#a (G) if V✓ (F) = 0 .

P����. The proof proceeds by case analysis. First consider the
case V✓ (F) � 1. If V✓ (FGh)  #a (G) then the lemma follows im-
mediately, hence assume V✓ (FGh) > #a (G). Let � 0 `� FGh be a
witness fork forF 0 , FGh and let () 0

⌘,)
0
0) be a witness pair in � 0.

Let � , � 0 |F |e `� F and de�ne) , () 0
0)|F |e as the restriction of) 0

0
to vertices with labels at most |F |; we have) 2 � . By de�nition of
) 0
0 , at least V✓ (FGh) deepest vertices of) 0

0 are adversarial. By the
assumption V✓ (FGh) > #a (G), more than #a (G) deepest vertices of
) 0
0 are hence adversarial. However,) 0

0 \) only contains vertices
with labels beyond |F |, and the whole � 0 contains at most #a (G)
adversarial vertices with such labels, hence) 0

0 \) must consist
solely of adversarial vertices and we get len() 0

0) � len())  #a (G).
Consider any honest tine)� of maximum length in � , we have

lb()�)  |F |. Now let) 0
� be the unique honest tine in � 0 that

satis�es lb() 0
�) = |F 0 | as it terminates with the unique honest

vertex corresponding to the trailing h-symbol of FGh according
to axiom (A3) of De�nition 2. As |Gh| � �, axiom (A4) gives us

len()�) < len() 0
�) and hence

len(�) < len(� 0) . (6)

As |F | < ✓ , we have) ⌧✓) and the pair () ,)) can serve as a
witness pair in � . We can hence conclude

V✓ (F) � V✓ (�) � U� ()) = len()) � len(�)
� [len() 0

0) � #a (G)] � [len(� 0) � 1]
= V✓ (FGh) � #a (G) + 1 ,

(7)

as desired, �nishing the proof for V✓ (F) � 1.
In the case V✓ (F) = 0, the situation V✓ (FGh) > #a (G) cannot

occur, as the same reasoning as above would give us 0 = V✓ (F) �
V✓ (FGh) � #a (G) + 1 � 1, a contradiction. Hence in this case we
must have V✓ (FGh)  #a (G) as desired. ⇤

Remark 5. Notice the structure of the argument in the �rst part
of the proof of Lemma 5. To prove an upper-bound on V✓ (FGh),
we consider the optimal fork � 0 ` FGh witnessing V✓ (FGh) and
the witness tines () 0

⌘,)
0
0) in � 0; we then use these witnesses to

construct a related fork � ` F that achieves su�cient V✓ (�), which
of course lower-bounds V✓ (F). This translates to an upper-bound
on V✓ (FGh) in terms of V✓ (F) as desired, cf. (7), observing that
|G | � � � 1 guarantees len(� 0) > len(�).

The same high-level approach is also used in the proofs of the
subsequent Lemmas 7, 8 and 10; the challenging part is typically to
construct � and the right tines in � such that they provably witness
su�cient V✓ (�).

3.3 The Critical Region
In the “critical region” (near zero) we will rely on rather loose
information about the behavior of V✓ . The �rst bound (Lemma 6)
establishes that |V✓ (FG) � V✓ (F) |  #h,a (G)—each symbol of G can
change V✓ () by at most one. Its straightforward proof is deferred to
Appendix B.

L���� 6 (V✓ �� 1�L��������). LetF 2 {0, h, a}⇤ be a characteristic
string. Then V✓ (F0) = V✓ (F) and for G 2 {h, a} we have

��V✓ (FG) �
V✓ (F)

��  1.

The second bound for the critical region (Lemma 7) shows that
for |F | � ✓ , V✓ (F0Ch) < V✓ (F) when C � ��1. Note that for |F | < ✓
a similar statement (with a singular exception of V✓ (F) = 0) follows
from Lemma 5. The proof of this lemma follows the approach from
Remark 5 and is also given in Appendix B.

L���� 7. Let ✓ � 1 andF 2 {0, h, a}�✓ be a characteristic string.
Then V✓ (F0��1h)  V✓ (F) � 1.

3.4 The Cold Region
We now study the setting when V✓ is su�ciently small. Speci�cally,
consider a string of steps f = f1 . . . f= 2 ⌃=S , where each f8 2 ⌃S .
We identify the set

Cold = {f = f1 . . . f= 2 ⌃+S :
V✓ (f1 . . . f=�1) + #h,a (f=) + #h (f=�1) < 0}

where naturally #h (f0) = 0. We show that in the region de�ned by
Cold, V✓ satis�es the ideal recurrence (5).

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

826

Note that the following lemma does not require any relationship
between |F | and ✓ , the value ✓ can be an arbitrary positive constant.
Nonetheless, the lemma is only useful to control margin after slot
✓ , as we know from Lemma 5 that before that slot, margin cannot
be negative.

L���� 8. Let ✓ � 1; letF 2 {0, h, a}⇤, G 2 {0, h, a}���1, and let
I 2 {0, h, a}� be the �-long su�x ofF (if |F | < � then I = F). If
V✓ (F) < �#h,a (G) � #h (I) then

V✓ (FGh)  V✓ (F) + #a (G) � 1 .

In particular, for any f 2 ⌃⇤S and any step W 2 ⌃S , if fW 2 Cold then
V✓ (fW)  V✓ (f) + #a (W) � 1.

P����. Our high-level approach exactly follows Remark 5, where
the fork � ` F and its tines evidencing su�cient V✓ (F) are con-
structed simply as the restrictions of a compressed witness fork
� 0 ` FGh and its witness tines () 0

⌘,)
0
0) to F ; a detailed argument

follows.
LetF 0 , FGh and let � 0 be a compressed witness �-fork � 0 `�

F 0; let () 0
⌘,)

0
0) be a pair of witness tines in � 0 such that len() 0

⌘) =
len(� 0). Furthermore, let � , � 0 |F |e `� F and de�ne)⌘ , () 0

⌘)|F |e
and)0 , () 0

0)|F |e , i.e.,)⌘ and)0 are the restrictions of) 0
⌘ and) 0

0
to vertices with labels at most |F |; we have)⌘,)0 2 � by de�nition
of � . The inequality len(�) < len(� 0) can be established exactly
as (6) in Lemma 5.

By our assumption of negative V✓ (F), there is a well-de�ned
main branchM(�). We �rst establish that, intuitively speaking, any
tines in � outside of M(�) are, after F , extended by adversarial
vertices only.

C���� 9. Consider any tine) 2 � such that) 8 M(�) and any
) 0 2 � 0 that extends) in � 0 so that) =) 0

|F |e . Then the set of vertices
) 0 \) contains no honest vertices.

To see this, observe that any honest vertex in � 0with label greater
than |F | must have depth at least len(� d�) +1 by axiom (A4), hence
all vertices in) 0\) with depth at most len(� d�) must be adversarial.
Furthermore, len(�) � len(� d�)  #h (I) + #h (G): this is because
� 0 is compressed and contains an honest vertex for each depth
3 2 {len(� d�) + 1, . . . , len(�)}; but at most #h (I) of these honest
vertices can have labels from [|F |] (by de�nition of � d�), similarly
at most #h (G) of these honest vertices can have labels greater than
|F | (by Axiom (A4)). This gives us len()) + #a (G) < len(� d�), as
we have U� ())  V✓ (F) < �#h,a (G) � #h (I) by our assumption
on V✓ (F), and hence len() 0) < len(� d�). This already implies that
there are no honest vertices in) 0 \) and establishes Claim 9.

We now argue that)⌘ 2 M(�). Towards contradiction, assume
that)⌘ 8 M(�). Then Claim 9 applies to)⌘ and) 0

⌘ \)⌘ contains no
honest vertices, hence

len() 0
⌘)  len()⌘) + #a (G) . (8)

However, by assumption len()⌘) � len(�) = U� ()⌘)  V✓ (F) <
�#0 (G) and hence len()⌘) < len(�)�#a (G), and using equations (8)
and (6) gives us len() 0

⌘) < len(�) < len(� 0), a contradiction with
the de�nition of) 0

⌘ . Therefore,)⌘ 2 M(�).

Since) 0
⌘ ⌧✓)

0
0 , it also follows that)⌘ ⌧✓)0 , and at most one of

these tines belongs toM(�), hence we have)0 8 M(�). By Claim 9,
) 0
0 \)0 contains no honest vertices. Hence we have

len() 0
0)  len()0) + #a (G) (9)

and we can combine equations (6) and (9) to get

V✓ (F) � U� ()0) = len()0) � len(�)
� len() 0

0) � #a (G) � len(� 0) + 1 = U� 0 () 0
0) � #a (G) + 1

= V✓ (F 0) � #a (G) + 1 ,

�nishing the proof of Lemma 8. ⇤

3.5 The Hot Region
We shift attention to the setting when V✓ is su�ciently large. Specif-
ically, consider a string of steps f = f1 . . . f= 2 ⌃=S where each
f8 2 ⌃S and = � #h (f=) + 3. We write f = efgf= , where g consists
of #h (f=) + 2 steps, and identify the set

Hot = {f = efgf= | V✓ (efg) � #a (g) + 2} .
We show that in the region de�ned by Hot, V✓ satis�es the ideal
recurrence (5).

We �rst need to formally de�ne the minimal honest height ⌘� (·).

De�nition 11. Let G 2 {0, 1}⇤ and recall that G d� denotes the
string obtained by removing the last � � 1 symbols from G , with
the understanding that the result is n if |G | < �. We de�ne ⌘� (G)
inductively so that ⌘� (n) = 0, ⌘� (G0) = ⌘� (G), and ⌘� (G1) =
⌘� (G d�)+1. We often overload⌘� to apply to strings from {0, h, a}⇤,
in that case only the honest symbols h are counted as 1s, while
symbols 0 and a are treated as 0s.

Now we can state the result describing V✓ in the Hot region.

L���� 10. Let ✓ � 1, let G 2 {0, h, a}��1 k {0, a}⇤, and let F 2
{0, h, a}⇤ with ⌘� (F) > #h (G) + 3. Let I be the shortest su�x of the
stringF with the property that⌘� (I) � #h (G)+3. If V✓ (F) > #a (I)+2
then we have

V✓ (FGh)  V✓ (F) + #a (G) � 1 .

In particular, for any f 2 ⌃⇤S and any step W 2 ⌃S , if fW 2 Hot then
V✓ (fW)  V✓ (f) + #a (W) � 1.

P����. The high-level approach again follows Remark 5; this
time the argument is more involved than in the Cold case and
requires the use of our restructuring lemma (Lemma 4). More con-
cretely, starting with a compressed witness fork � 0 ` FGh and its
witness tines () 0

⌘,)
0
0), we look at their restrictions ()⌘,)0) toF and

identify the last honest vertices on these tines, denoted E⌘ and E0 ,
respectively. We show that lb(E⌘) < lb(E0) would contradict the
optimality of the original fork � 0, while lb(E⌘) � lb(E0) allows us
to invoke Lemma 4 to obtain the desired lower bound on V✓ (F).

Let � 0 ` FGh be an optimal compressed fork forF 0 , FGh and
� ` F the restriction toF ; if) 0 is a tine in � 0, we let) denote the
associated tine for � . Let) 0

⌘ and) 0
0 be a pair of witness tines for

� 0. Observe that len(�) < len(� 0) can again be established exactly
as (6) in Lemma 5.

We �rst prove a lower bound on V✓ (F 0). Towards that, con-
sider a witness fork ⌧ `� F for F , and let (*⌘,*0) be witness

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

827

tines for ⌧ such that len(*⌘) = len(⌧). For B 2 {h, a}, let �B ,�
8 2 {|F | + 1, . . . , |FG |} : F 0

8 = B

. Construct a labeled rooted tree

⌧ 0 from ⌧ by (i) adding #h (G) honest vertices labelled by indices
from �h, all of them as direct descendants of the terminal vertex
of*⌘ ; (ii) adding a single honest vertex with label |F 0 | as a direct
descendant of any of the above-added honest vertices; and �nally
(iii) extending the tine *0 by a path consisting of #a (G) adversarial
vertices labelled by the increasing sequence of indices from �a. Let
* 0
⌘ denote the tine terminating in the vertex labelled |F 0 | and let* 0

0
be this newly-constructed tine extending*0 in⌧ 0. Observe that⌧ 0

is a valid �-fork forF 0: the axioms (A1)–(A3) are trivially satis�ed,
and the axiom (A4) also holds as all newly added honest vertices
only share depth with honest vertices labelled closer than � to their
own label. Clearly len(* 0

⌘) = len(⌧ 0) and moreover, *⌘ ⌧✓ *0

implies * 0
⌘ ⌧✓ *

0
0 ; hence we have

V✓ (F 0) � len(* 0
0) � len(* 0

⌘)
= (len(*0) + #a (G)) � (len(*⌘) + 2)
= V✓ (F) + #a (G) � 2 > #a (IG) , (10)

where the last inequality follows by our assumption on V✓ (F).
We now establish that also in this setting there are no honest

vertices on) 0
0 with a label greater than |F |, in other words, there

are no honest vertices in) 0
0 \)0 . Towards a contradiction, assume

that there is an honest vertex in) 0
0 \)0 and let E 0a be the honest

vertex on) 0
0 with maximum label (and hence also maximum depth).

Since lb(E 0a) > |F |, all vertices D on) 0
0 with len(D) > len(E 0a)

also have lb(D) > lb(E 0a) > |F |, and by maximality of E 0a all these
vertices are adversarial, hence there are at most #a (G) such vertices
by axiom (A3). However, we also have len(E 0a)  len(� 0) as E 0a
is honest. Put together, we have V✓ (F 0) = len() 0

0) � len(� 0) 
len() 0

0) � len(E 0a)  #a (G). This contradicts (10), concluding the
proof that there are no honest vertices on) 0

0 \)0 . Hence we have
len() 0

0) � len()0)  #a (G).
Let E0 be the last honest vertex on)0 (we now know that it

is also the last honest vertex on) 0
0). Likewise, let E⌘ be the last

honest vertex on)⌘ . We consider two cases depending on lb(E0)
and lb(E⌘).

The case lb(E⌘) < lb(E0). For a tine) and a portion ~ of the
characteristic string, we let #h (~;)) denote the number of honest
vertices in) labeled with symbols from ~; we similarly overload
also the notation #a and #h,a.

We �rst establish that

len(E0) < len()⌘) + #a (Gh;) 0
⌘) . (11)

Note, �rst of all, that len()⌘) � len(� 0)�#h,a (Gh;) 0
⌘). Now consider

len(E0). Observe that E0 cannot be labeled from the string I: if it
were, then V✓ (� 0)  #a (IG) which contradicts (10). Hence E0 is
labeled prior to I and it follows that len(� 0) � len(E0) + [⌘� (I) �
1] � len(E0) + #h (G ;) 0

⌘) + 2 by de�nition of I. Hence

len()⌘) � len(� 0) � #h,a (Gh;) 0
⌘)

�
⇣
len(E0) + #h (G ;) 0

⌘) + 2
⌘
� #h,a (Gh;) 0

⌘)
> len(E0) � #a (Gh;) 0

⌘) ,

proving (11).

Now we invoke Lemma 4 with tines) 0
⌘ ,)

0
0 and vertices E⌘ , E0 in

� 0. By assumption lb(E⌘) < lb(E0) and hence we obtain V✓ (F 0) �
U� 0 (E⌘) + |�⌘ [�0 |, where �⌘ (resp. �0) is the set of adversarial
vertices in) 0

⌘ after E⌘ (resp. in) 0
0 after E0). Note that lb(E⌘) < lb(E0)

implies E⌘ < E0 and together with the de�nition of E⌘ , E0 this means
that �⌘ \�0 = ; and |�⌘ [�0 | = |�⌘ | + |�0 |.

Recall that)⌘ (resp.)0) contains only adversarial vertices after
E⌘ (resp., E0) by de�nition of E⌘ (resp. E0). Moreover,) 0

0 \)0 also
only contains adversarial vertices. Hence we get

V✓ (F 0) � U� 0 (E⌘) + (len()⌘) � len(E⌘))
+ (len() 0

0) � len(E0)) + #a (Gh;) 0
⌘)

� U� 0 ()⌘) + (len() 0
0) � len(E0)) + #a (Gh;) 0

⌘)
> U� 0 (E0) + (len() 0

0) � len(E0)) � U� 0 () 0
0) ,

where the third inequality follows from (11). This contradicts the
optimality of � 0 and) 0

0 , and shows that this case cannot occur.
The case lb(E⌘) � lb(E0). Let)� denote a maximal length hon-

est tine in � . If)� ⌧✓)0 , these two tines witness

V✓ (F) � U� ()0) � (len() 0
0) � #a (G)) � len(�)

� (len() 0
0) � #a (G)) � (len(� 0) � 1)

= V✓ (FGh) � #a (G) + 1

as desired. Otherwise, we assume that)� ⇠✓)0 and hence)� ⌧✓
)⌘ .

In this case, we begin by compressing the fork � : Let 2 (�) `� F
denote the compression of � . If E is a vertex of � it appears in 2 (�);
in order for context to be clear we let 2 (E) denote the vertex E as it
appears in 2 (�). If) is a tine of � , we let 2 ()) denote the associated
tine in the compression (that is, the tine that terminates with the
vertex that terminates)). As U� ()0) � 0, recall that U2 (�) (2 ()0)) =
U� ()0). Note that the last honest vertex on 2 ()0) may not be 2 (E0)
(due to a compression step); letF0 be the vertex for which 2 (F0)
is the last honest vertex on 2 ()0). As lb(F0)  lb(E0), we still have
the inequality lb(F0)  lb(E⌘) (and hence, of course, lb(2 (F0)) <
lb(2 (E⌘))).

We again invoke Lemma 4, this time for tines 2 ()0), 2 ()⌘) and
vertices 2 (F0), 2 (E⌘) in 2 (�). Since lb(2 (F0)) < lb(2 (E⌘)), we ob-
tain the following, where � is the set of adversarial vertices on
2 ()0) after 2 (F0) in 2 (�):

V✓ (F) � U2 (�) (2 (F0)) + |�| = U2 (�) (2 ()0)) = U� ()0)
= len� ()0) � len(�)

�
�
len� 0 () 0

0) � #a (G)
�
�

⇣
len(� 0) � 1

⌘
= U� 0 () 0

0) � #a (G) + 1 = V✓ (F 0) � #a (G) + 1 .

This concludes the proof for the second case. ⇤

4 ANALYSIS OF THE STOCHASTIC PROCESS
Finally, in this section we apply the margin bounds developed
above to establish the optimal security threshold for Bitcoin. The
remaining technical issue is to analyze the margin recurrences
when characteristic strings are drawn according to the symbol
distribution B(?0, ?⌘) of De�nition 1. While the analysis itself
requires some detailed treatment of the boundaries between the

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

828

various regions described in Section 3, the intuition and high-level
structure of the proof are easy to describe.

Recall from the introduction the critical security threshold.

De�nition 12. For ?⌘ > 0 and � 2 N, we de�ne the discrete
critical threshold

o (?⌘,�) :=
1

(� � 1) + 1/?⌘
.

For A⌘ > 0 and �0 > 0, we likewise de�ne the Poisson critical
threshold

o (A⌘,�0) :=
1

�0 + 1/A⌘
.

While o is a function of ?⌘ and �, we simply write o when these
parameters can be inferred from context; o is treated similarly.

To relate the security threshold o in the Poisson setting to dis-
crete threshold o , recall that the discrete approximation is given
by taking ?⌘ = BA⌘ , ?0 = BA0 and � = d�0/Be for a (small “slot
length”) parameter B . If A0, A⌘ , and �0 satisfy A0 < o , which is to say
1/A0 > �0 + 1/A⌘ then, by scaling this inequality by 1/B , we �nd
that

1
?0

=
1
BA0

>
�0
B

+ 1
BA⌘

> (d�0/Be � 1) + 1
?⌘

= � � 1 + 1
?⌘

.

This proves the following.

F��� 11. For all B > 0, Bo (A⌘,�0)  o (BA⌘, d�0/Be); hence, if
A0 < o (A⌘,�0) then B · A0 < o (B · A⌘, d�0/Be).

Thus, any A0 , A⌘ , and �0 satisfying the Poisson threshold yield
discrete approximations (for any B > 0) that likewise satisfy the
discrete threshold.

Note that o satis�es the equality 1/o = (� � 1) + 1/?⌘ , which
gives an immediate and intuitive interpretation: note that ifF8 = G
for a symbol G 2 ⌃ that occurs with probability ? then 1/? is the
expected waiting time before the next occurrence of G . Thus the
threshold corresponds to the setting where the average waiting
time for “a” symbols is larger, by an additive factor of � � 1, than
the average waiting time for “h” symbols.

The step distribution; revisiting the ideal recurrence. Consistent
with the treatment in the previous section, we group symbols of
the characteristic string together into steps. In preparation for stat-
ing the �nal results and discussing the proofs, we set down a few
properties of the distribution arising on steps.

De�nition 13. WhenF has the distribution B(?0, ?⌘) of De�ni-
tion 1, the steps f8 arising fromF are independent and identically
distributed random variables, taking values in {a, h, 0}⇤. We denote
this distribution S(?0, ?⌘ ;�).

Observe that when W is drawn from S(?0, ?⌘ ;�), its length fol-
lows a translated geometric distribution: for each : � 0,

Pr[|W | = � + :] = ?⌘ (1 � ?⌘): . (12)

This immediately yields the following tail bound.

F��� 12. Let W be drawn according to S(?0, ?⌘ ;�). Then
Pr[#a (W) � :]  Pr[|W | � :] = exp(�⌦(:)) .

The estimates of Lemma 5, Lemma 8, and Lemma 10 show that,
with particular exceptions, V adheres to the ideal recurrence on
steps:

V (fW) 7! V (f) + #a (W) � 1 .

The claim below con�rms that when ?0 < o , this transition has
negative bias (for W drawn from S(?0, ?⌘ ;�)), its straightforward
proof appears in Appendix B.

C���� 13. Let ?0 < o (?⌘,�) and let W have the distribution
S(?0, ?⌘ ;�). Then E [#a (W) � 1] < ?0/o � 1 < 0. We remark,
additionally, that if ?0 = BA0 , ?⌘ = BA⌘ , and � = d�0/Be, then
?0/o < A0/o .

A high-level view of the stochastic process and the �nal proba-
bilistic analysis. In light of the discussion above, the random walk
described by V✓ (f1 . . .) initially observes a negative bias with a bar-
rier at zero (arising from the rules of Lemma 5); once the length of
the string exceeds ✓ , the walk is more complicated: it is negatively
biased except for an “unruly” region around zero. A simple classical
example of such a walk on the integers Z is pictured below, having
negative bias at all sites but for a “hurdle” at zero:

0

�1�2

1

.1

.9
.4

.6

.6

.4

.6

.4

.6

.4

Despite the hurdle—which moves the particle back to 1 with proba-
bility 90%—this walk indeed diverges to �1, and does so at a “linear
rate,” which is to say that the value at time) is �⌦()) except with
probability exp(�⌦())). This is exactly the sort of statement we
establish for V✓ (). One explanation for this phenomenon is that any
time the particle is lucky enough to jump the hurdle at zero, with
constant probability it will never revisit zero, descending to �1 as
described. Furthermore, the negative bias above zero ensures that
the particle has recurring opportunities to jump the hurdle. Note
that the hidden constants in the asymptotic notation depend on the
constants in the walk.

In Appendix A we establish the rigorous estimate for the be-
havior of the full walk formulated as Theorem 14 below. We then
apply this main technical result in Section 4.1 to control Bitcoin
consistency failures.

T������ 14. Let ?0 , ?⌘ and � satisfy ?0 < o (?⌘,�). Fix< � 0.
Let f = f1, . . . denote a sequence of steps, each identically dis-
tributed according to S(?0, ?⌘ ;�). Let ✓ denote the random variable
|f1 . . . f< |, i.e., the length of f1 . . . f< in symbols. Then for any) � 0
and" > 0,

Pr[9C � < +) , V✓ (f1 . . . fC) � �"] = exp(�⌦()) +$ (")) ,

where the constants hidden by the asymptotic notation are universal
aside from dependence on |?0/o � 1|.

Similarly, we use the following Lemma 15, analyzing the notion
of ⌘� (·) from De�nition 11, to argue Bitcoin’s liveness. Its straight-
forward induction proof appears in Appendix B; the large deviation
bound (14) follows immediately from the classical McDiarmid in-
equality.

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

829

L���� 15. Let ? 2 (0, 1) and � 2 {1, 2, . . .}. Let -1, . . . ,-= be
independent Bernoulli random variables, each taking the value 1 with
probability ? . Let U = � + (1 � ?)/? and - = (-1, . . . ,-=); then��=/U � E [⌘� (-)]

��  1 . (13)

Furthermore,

Pr[|⌘� (-) � =/U | � _
p
= + 1]  2 exp(�2_2) . (14)

4.1 The Bitcoin Security Threshold
We begin with the discrete version of the main theorem.

T������ 16. If ?0 < o (?⌘,�) then a Bitcoin execution over a
lifetime of ! slots achieves :-consistency and D-liveness except with
error probabilities (!/�) · exp(�⌦(:)) and (!/�) · exp(�⌦(D)), re-
spectively. If ?0 > o (?⌘,�), then the private chain attack is successful
(with probability tending to 1 exponentially quickly), and Bitcoin is
insecure.

P����. The main claim is the positive statement for consistency.
Consider an !-slot execution of the protocol and let f1,f2, . . . be
the resulting sequence of steps as per De�nition 9; for convenience,
we treat this as an in�nite sequence, while only being interested
in its pre�x covering the �rst ! slots. Observe, however, that this
pre�x involves no more than !/� steps (as each step covers at least
� symbols). First, recall that by Fact 12 and a union bound, we have

Pr [98 2 [!] : |f8 | � I]  (!/�) · exp(�⌦(I)) . (15)

Moreover, given (12), for) , (?⌘/4�) · : and for any< 2 [!/�]
we have |f<f<+1 . . . f<+)�1 |  : except with error probability
exp(�⌦(:)). (This follows from classical tail bounds for sums of
geometric variables; see Lemma 26.)

We invoke Theorem 14 for each< 2 [!/�], using) as above
and " , 2: for a suitable constant 2 > 0 depending on the con-
stants hidden in the asymptotic notation of Theorem 14, so that
the error term remains exp(�⌦(:)) in each invocation. Applying
union bound over all<, this gives us

Pr
⇥
9< 2 [!], 9eC � < +) : V✓ (f1 . . . feC) � �2:

⇤
= (!/�) · exp(�⌦(:)) .

This means that for any two slots ✓ , C that are step boundaries sepa-
rated by at least) steps, and hence also if they are separated by at
least : slots, we have V✓ (�C) < �2: except with error exp(�⌦(:)).

We extend this to arbitrary slots ✓ , C that are not necessarily step
boundaries. Thanks to the Lipschitz property of V✓ (Lemma 6), we
know that in any slot C 0 belonging to the step following immediately
after the slot C , V✓ (�C 0) may di�er from V✓ (�C) by at most C 0 � C ,
which can be upper-bounded by a su�ciently small multiple of
: using (15), with error exp(�⌦(:)). By a similar argument, for
any slot ✓ 0 from the step immediately before the slot ✓ , V✓0 (�C) may
di�er from V✓ (�C) by at most ✓ � ✓ 0, which can be similarly bounded
using (15). To conclude, by a proper choice of 2 0, we have that for
any ✓ 2 [! � :] and C 2 {✓ + :, . . . , !}, V✓ (�C) < �2 0: except with
probability (!/�) · exp(�⌦(:)).

Finally, we transition from V✓ to V�✓ : for any F = f1 . . . fAF 0

whereF 0 is an incomplete step, V�✓ (F) � V✓ (F) can be written

[V�✓ (F) � V✓ (f1 . . . fA�1)] + [V✓ (f1 . . . fA�1) � V✓ (F)]

which is no more than 2#h,a (fAF 0) by Lemma 6. (See also Lemma 20
for a detailed discussion of the relationship between V and V�.) The
resulting quantity can be again bounded using (15). We conclude
that for any ✓ 2 [! � :] and C 2 {✓ + :, . . . , !}, V�✓ (�C) < 0 except
with an overall error probability (!/�) · exp(�⌦(:)), and invoke
Lemma 1 to establish consistency.

For the positive result on liveness, the argument follows exactly
the same path as in previous work (e.g., [16, 17]), with the single
exception that the honest chain growth is lower-bounded by ⌘� (·)
(and Lemma 15) rather than the number of so-called “left-isolated
slots” or “non-tailgaters.”

Finally, the negative result is straightforward: If we have ?0 >
o (?⌘,�) then the expected growth rate of a private chain domi-
nates that of an honest chain with maximally delayed blocks (with
strong tail bounds), and so the private-chain attack succeeds with
overwhelming probability. ⇤

The statement in the Poisson setting follows immediately.

C�������� 17. If A0 < o (A⌘,�0) then a Bitcoin execution over
a lifetime of !, where (1) honest and adversarial PoW successes are
modeled by Poisson processes with parameters A⌘ and A0 , respec-
tively, and (2) honest messages are delayed by no more than �0 time,
achieves :-consistency and D-liveness except with error probabilities
! · exp(�⌦(:)) and ! · exp(�⌦(D)), respectively. If A0 > o (A⌘,�0),
then the private chain attack is successful (with probability tending
to 1 exponentially quickly), and Bitcoin is insecure.

P����. This follows directly from the proof of Theorem 16. (Note
that �0 is a constant and hence does not appear in the error bounds
above, in contrast to Theorem 16.)

In particular, �x a parameter B > 0—the length in time of a
discrete slot—and de�ne ?0 = BA0 , ?⌘ = BA⌘ , and � = d�0/Be. In
the limit, as B ! 0, this yields the Poisson model. As noted in
Fact 11, it follows that for any B , ?0 < o (?⌘,�), and the proof
of Theorem 16 applies. A critical feature of the proof is that the
conclusions are independent of B . In particular, the error rates and
constants selected in the proof are independent of B—indeed, the
dynamics of walk are given by the bias, which is bounded for any B
by �(1 � ?0/o) < �(1 � A0/o).

We remark that in the Poisson setting, we naturally wish to
parameterize consistency and liveness in terms of absolute time
(rather than an integer number of discrete slots, which would scale
with 1/B). Note that the time Cstep associated with a single step
drawn from S(?0, ?⌘ ;�) converges (as B ! 0) to the shifted expo-
nential distribution �0 + - , where - is exponentially distributed
with parameter ?⌘ (so that the density function of - is given by
?⌘ exp(�G?⌘)). Applying standard tail bounds for such variables
(see Lemma 26), we �nd that in time C one must observe ⌦(C/�0)
of these “Poisson steps” except with probability exp(�⌦(C/�0)).
Thus the error bounds of Theorem 16 scale in C/�0, as desired. ⇤

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1717432.

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

830

REFERENCES
[1] Erica Blum, Aggelos Kiayias, Cristopher Moore, Saad Quader, and Alexander

Russell. 2020. The Combinatorics of the Longest-Chain Rule: Linear Consistency
for Proof-of-Stake Blockchains. In 31st SODA, Shuchi Chawla (Ed.). ACM-SIAM,
1135–1154. https://doi.org/10.1137/1.9781611975994.69

[2] Vitalik Buterin. 2013. A Next-Generation Smart Contract and Decentralized
Application Platform. https://github.com/ethereum/wiki/wiki/White-Paper.

[3] L. Le Cam. 1965. On the distribution of sums of independent random variables.
In Bernoulli, Bayes, Laplace: Anniversary Volume. Springer-Verlag.

[4] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Recon�g-
urable Consensus and Applications to Provably Secure Proof of Stake. In FC 2019
(LNCS), Ian Goldberg and Tyler Moore (Eds.), Vol. 11598. Springer, Heidelberg,
23–41. https://doi.org/10.1007/978-3-030-32101-7_2

[5] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake
Blockchain. In EUROCRYPT 2018, Part II (LNCS), Jesper Buus Nielsen and Vincent
Rijmen (Eds.), Vol. 10821. Springer, Heidelberg, 66–98. https://doi.org/10.1007/
978-3-319-78375-8_3

[6] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. 2020. Everything is a Race and Nakamoto
Always Wins. https://arxiv.org/abs/2005.10484. arXiv:cs.CR/2005.10484

[7] Ittay Eyal and Emin Gün Sirer. 2014. Majority Is Not Enough: Bitcoin Mining
Is Vulnerable. In FC 2014 (LNCS), Nicolas Christin and Reihaneh Safavi-Naini
(Eds.), Vol. 8437. Springer, Heidelberg, 436–454. https://doi.org/10.1007/978-3-
662-45472-5_28

[8] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Backbone
Protocol: Analysis and Applications. Cryptology ePrint Archive, Report 2014/765,
revision Feb 2017. https://eprint.iacr.org/2014/765.

[9] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone
Protocol: Analysis and Applications. In EUROCRYPT 2015, Part II (LNCS), Elisa-
beth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer, Heidelberg, 281–310.
https://doi.org/10.1007/978-3-662-46803-6_10

[10] Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2020. Tight Consistency
Bounds for Bitcoin. Cryptology ePrint Archive, Report 2020/661. https://eprint.
iacr.org/2020/661.

[11] Yaonan Jin, Yingkai Li, Yining Wang, and Yuan Zhou. 2019. On Asymptotically
Tight Tail Bounds for Sums of Geometric and Exponential Random Variables.
arXiv:math.ST/1902.02852

[12] Aggelos Kiayias, Saad Quader, and Alexander Russell. 2020. Consistency in Proof-
of-Stake Blockchains with Concurrent Honest Slot Leaders. IACR Cryptology
ePrint Archive 2020 (2020), 41. https://eprint.iacr.org/2020/041

[13] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In
CRYPTO 2017, Part I (LNCS), Jonathan Katz and Hovav Shacham (Eds.), Vol. 10401.
Springer, Heidelberg, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[14] Lucianna Ki�er, Rajmohan Rajaraman, and abhi shelat. 2018. A Better Method
to Analyze Blockchain Consistency. In ACM CCS 2018, David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, 729–744. https:
//doi.org/10.1145/3243734.3243814

[15] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).
[16] Rafael Pass, Lior Seeman, and abhi shelat. 2017. Analysis of the Blockchain

Protocol in Asynchronous Networks. In EUROCRYPT 2017, Part II (LNCS), Jean-
Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10211. Springer, Heidelberg,
643–673. https://doi.org/10.1007/978-3-319-56614-6_22

[17] Ling Ren. 2019. Analysis of Nakamoto Consensus. Cryptology ePrint Archive,
Report 2019/943. https://eprint.iacr.org/2019/943.

A DETAILED ANALYSIS OF THE
STOCHASTIC PROCESS

In this appendix we provide a full technical treatment of the sto-
chastic analysis outlined in Section 4, proving Theorem 14.

A.1 The Stationary Distribution Prior to ✓
We consider the distribution of V✓ (F) where |F |  ✓ . Focusing
on the step decompositionF = f1 . . . and the recurrence relation
established in Lemma 5, we observe that for any f = f1 . . . f: 2 ⌃:S
for which |f |  ✓ , V✓ (f)  ⌫(f), where ⌫(·) is given by the upper
bounds of Lemma 5. That is, ⌫(n) = 0, and

⌫(fW) =
(
⌫(f) + #a (W) � 1 if ⌫(f) > 0
#a (W) if ⌫(f) = 0,

where f 2 ⌃⇤S and W is a single step, W 2 ⌃S . In light of Claim 13,
when the symbols are drawn from S(?0, ?⌘ ;�) the quantity ⌫()
follows a negatively biased randomwalk onNwith a barrier at zero;
in this setting where the upper tails of the walk are sub-geometric
(that is, there is an upper bound on the one-step tails of the form
⇠0�: for some 0 > 1), it follows immediately that the random
variables ⌫(f) converge to a stationary distribution.

To articulate the result formally, we recall the notion of stochastic
dominance. For two random variables - and . taking values in
R, we say that . stochastically dominates - , written - � . , if for
all _ 2 R, Pr[- � _]  Pr[. � _]. Note that if - � . we can
transfer tail bounds on . to tail bounds on - : if Pr[. � _]  5 (_)
then Pr[- � _]  5 (_). The discussion above implies that for any
random variable f , V✓ (f) � ⌫(f) (so long as |f |  ✓).

L���� 18. Let -1,-2, . . . be a sequence of i.i.d. random variables
taking values inN for which (i.) E [-8] < 1 and (ii.) there are constants
0 > 1 and � > 0 so that Pr[-8 = :]  � · 0�: . Let,C denote the
random walk on N given by the rule,0 = 0,

,C =

(
,C�1 + -C � 1 if,C�1 > 0, and
,C�1 + -C if,C�1 = 0.

Then there is a random variable (, taking values in N, for which
,C � (for all C and, moreover, there are constants 0⇤ > 1 and�⇤ > 0
so that Pr[(= :]  �⇤ · 0�:⇤ .

The proof appears in Appendix B. Applying Lemma 18 to the
random variables -8 = #a (f8) (with the f8 drawn as above), yields
the following bound on V✓ (·).

C�������� 19. Let f = f1 . . . ,f< 2 ⌃<S be independently gen-
erated according to S(?0, ?⌘ ;�). Let ✓ = ✓ (f) denote the random
variable |f |. Then Pr[V✓ (f) � :]  exp(�⌦(:)).

A.2 The Descent to �1 After ✓
This section proves Theorem 14. In general, the proof proceeds by
considering several coupled stochastic processes:

B(?0, ?⌘) : F1 . . .FC1| {z } FC1+1 . . .FC2| {z } . . .

S = S(F) : f1 f2 . . .
M : <1 = V✓ (f1) <2 = V✓ (f1f2) . . .
P : c1 = c (f1) c2 = c (f1f2) . . .
I : 81 =] (f1) 82 =] (f1f2) . . .
I⇡ : 8⇡1 =]⇡ (f1) 8⇡2 =]⇡ (f1f2) . . .

The random variables F8 of B = B(?0, ?⌘) are described in Def-
inition 1. The process S is given by the rule f (F) described in
De�nition 9 above. The “margin process”M is determined by ap-
plication of V (·) to S. This is the principal process of interest, and
the subject of Theorem 14.

The �nal processes, which are introduced solely for the purposes
of analysis, are I, the ideal process, which carries out the ideal
recurrence, and P, the pessimistic process, which only relies on
the generally applicable results from Lemma 6 and Lemma 7. We
study, additionally, a “deformation” of the ideal process denoted
I⇡ . These are de�ned by the following recurrences.

De�nition 14 (The ideal process; the pessimistic process). Fix
� > 0. De�ne], c : ⌃⇤S ! Z by the rule] (n) = c (n) = 0, for the

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

831

https://doi.org/10.1137/1.9781611975994.69
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://arxiv.org/abs/2005.10484
https://arxiv.org/abs/cs.CR/2005.10484
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-45472-5_28
https://eprint.iacr.org/2014/765
https://doi.org/10.1007/978-3-662-46803-6_10
https://eprint.iacr.org/2020/661
https://eprint.iacr.org/2020/661
https://arxiv.org/abs/math.ST/1902.02852
https://eprint.iacr.org/2020/041
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/3243734.3243814
https://doi.org/10.1145/3243734.3243814
https://doi.org/10.1007/978-3-319-56614-6_22
https://eprint.iacr.org/2019/943

empty string n , and, for f 2 ⌃⇤S and a single step W 2 ⌃S ,

] (fW) =] (f) + #a (W) � 1 ,

and

c (fW) =
(
c (f) � 1 if W = 0Ch with C � � � 1,
c (f) + #a,h (W) otherwise.

In general, we apply these functions to su�xes of a sequence f 2
⌃⇤S . To re�ect this usage, we generalize these functions to prescribed
basepoints for convenience. Speci�cally, we de�ne

] (f ;g) = V✓ (f) +] (g) and c (f ;g) = V✓ (f) + c (g) ,
for f, g 2 ⌃⇤. (Note that ✓ and � are implicit in this notation, but
they can be inferred from context.)

Note that] and c aremotivated by themargin bounds of Section 3.
In particular, in light of Lemma 6 and Lemma 7,

V✓ (fg)  c (f ;g)
for any |f | � ✓ . (In fact, for c this is true even without the length
restriction on f .) We note here an important relationship with V�✓ (),
which will be relevant for the proof of Theorem 14.

L���� 20. Let F 2 ⌃⇤ and G 2 ⌃⇤ satisfy |G | � �. Let ~ denote
the string obtained from G by replacing all h with a. Then

V�✓ (FG)  V✓ (F~)  V✓ (F) + #h,a (G) .
Similarly, letF 2 ⌃⇤ and writeF = f1 . . . f<F 0, where each f8 2 ⌃S
and F 0 2 ⌃⇤ so that the expression f1 . . . f<F 0 denotes a partial
rendering ofF into steps followed by an arbitrary su�x. Then

V�✓ (F)  V✓ (f1 . . . f<�1) + #h,a (f<F 0) .

P����. Let � `� FG where, as in the statement of the lemma,
|G | � �. Then, � may be viewed as a fork ofF~, as any vertex of �
associated with an honest symbol of G can be associated with an
adversarial symbol. We let � 0 `� F~ denote this fork � viewed as a
fork ofF~; note that while � and � 0 have identical structure, there
may be honest vertices of � that are adversarial in � 0. Note, also,
that len(�) = len(� d�). Thus a pair of �-witness tines � are a pair
of witness tines in � 0; this proves the statement. ⇤

Likewise, roughly speaking, if fg 0 satis�es the Hot or Cold con-
ditions for each pre�x g 0 of g , then

V✓ (fg) ] (f ;g) .
Finally, to manage some technical issues in the proof, we intro-

duce a related process with a less ready interpretation.

De�nition 15 (The deformed ideal process;⇡-typicality). For each
⇡ � 4, de�ne the function]⇡ : ⌃⇤S ! Z by the following rules.
In general, for a string f 2 ⌃⇤S , we write f = fbaseftail, with the
convention that ftail consists of the last ⇡ steps of f ; if f consists
of fewer than ⇡ steps, we de�ne ftail = f and fbase = n . Then for
f 2 ⌃⇤S and a single step W 2 ⌃S , we say that fW is ⇡-typical if

#h,a (W)  ⇡ � 2, and #h,a (h)  ⇡ for each step h in ftail .

Note that typicality is determined only by the last ⇡ steps of f and
the step W . Then we de�ne]⇡ (n) = 0, and in general

]⇡ (fW) =
(
]⇡ (f) + #a (W) � 1 if fW is ⇡-typical,
]⇡ (f) + #h,a (W) otherwise.

We similarly de�ne a notion with a basepoint:

]⇡ (f ;g) = V✓ (f) + []⇡ (fg) �]⇡ (f)] ,
for f, g 2 ⌃⇤.

Observe that]1 () =] (), which explains the name. ⇡-typicality
is a convenient “local” criterion for membership in Hot or Cold (as
it depends only on the most recent ⇡ + 1 steps); in particular, the
details of the de�nition are meant to appropriately correspond to
the de�nitions of Hot and Cold as described by the claim below.

C���� 21. Let fW 2 ⌃⇤S ⇥ ⌃S be ⇡-typical. Then

V✓ (f) > ⇡2 =) fW 2 Hot ,

V✓ (f) < �⇡2 =) fW 2 Cold .

As a result, if fW is ⇡-typical and |V✓ (f) | > ⇡2 then]⇡ (f ;W) =
] (f ;W) = V✓ (fW). More generally, if |V (f) | > ⇡2 then V✓ (fW) 
]⇡ (f ;W).

P����. This follows immediately from Lemma 8, Lemma 10, and
Lemma 6. ⇤

We �rst develop a standard tail bound for the random variables
that arise naturally in the ideal process] (that is, the #a (f8) �
1). Recall that for a real-valued random variable - , the moment-
generating function <- is de�ned by the rule I 7! E

⇥
4I-

⇤
. The

proofs of the following �ve lemmas appear in Appendix B.

L���� 22. Let 0 > 1 and ⇠ > 0. Let � be a random variable on
{�1, 0, 1, . . .} satisfying E [�] < 0 and Pr[� = :]  ⇠0�: . Then

<� (_)  1 + E [�] _/2 (16)

for su�ciently small _.

L���� 23. Let 0 > 1, ⇠ > 0, and W > 0. Consider a sequence of
i.i.d. integer-valued random variables /1,/2, . . . satisfying E [/8] =
�W < 0 and Pr[/8 = :]  ⇠0�: . Let (= =

Õ=
8=1 /8 . Then there is a

constant U > 0 so that

8⇤ � �W=/2, Pr[(= � ⇤]  4�U (⇤+W=/2) . (17)

It follows that for any # > 0,

Pr[9= � # , (= � �W=/4] = 4�⇥(#) . (18)

L���� 24 (G������’� ����). Let 0 > 1 and ⇠ > 0. Let /1, . . . be
a sequence of i.i.d. random variables taking values in {�1, 0, 1, . . .}
satisfying E [/8] < 0 and Pr[/8 = :]  ⇠0�: . Let (= =

Õ=
8=1 /8 .

Then
(1) for any ⇡ > 0, Pr[9C > 0, (C � ⇡] = exp(�⇥(⇡)), and
(2) Pr[8C > 0, (C < 0] > 0.

L���� 25. Let �1,�2, . . . be a sequence of i.i.d. random variables
taking values in N for which Pr[�1 = :] = exp(�⌦(:)). Likewise,
let ⌧ be a random variable taking values in N, independent from the
�8 , for which Pr[⌧ = :]  exp(�⌦(:)). Then

(1) Pr[⌧ + �1 � :] = exp(�⌦(:)), and
(2) Pr[�1 + · · · + �⌧ � :] = exp(�⌦(:)).

The constants hidden by these instances of asymptotic notation may
be di�erent.

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

832

L���� 26. Let -1,-2, . . . be a sequence of independent geomet-
rically distributed random variables, so that each -8 has the distri-
bution Pr[-8 = :] = ? (1 � ?): for a parameter ? 2 (0, 1]. Then
E [-8] = (1 � ?)/? and, for any _ � 1,

Pr

"
=’
8=1

-8 > _=/?
#
 4�= (1�_) .

Let .1,.2, . . . be a sequence of independent exponentially distributed
random variables, so that each .8 has the probability density function
?4�?G (G � 0). Then E [.8] = 1/? and, for any _ � 2,

Pr

"
=’
8=1

.8 > _=/?
#
 4

�= 1
4(?+1) (_�1) .

A.3 The Proof of Theorem 14
Finally we put the pieces together to prove Theorem 14.

P���� �� T������ 14. Denote by

bias = E [] (W)] = E [#a (W) � 1] < 0

the (negative) bias of the “ideal walk” (with W being sampled from
S(?0, ?⌘ ;�)). We organize the proof around three “zones,” corre-
sponding roughly to the Hot, Cold and critical cases studied in
Section 3.

Speci�cally, we select a “typicality limit” ⇡ � 4 and de�ne the
following subsets of the integers:

'� = {I 2 Z | I < �⇡2},
'0 = {I 2 Z | �⇡2  I  ⇡2}, and

'+ = {I 2 Z | ⇡2 < I} .

To determine the limit ⇡ de�ning these regions, consider indepen-
dent selection of ⇠ � 4 steps W1 . . .W⇠ and a �nal step W 0 (each
independently according to S(?0, ?⌘ ;�)). Then examine the ran-
dom variable

%⇠ =]⇠ (W1 . . .W⇠W 0) �]⇠ (W1 . . .W⇠)

=

(
#a (W 0) � 1 if W1 · · ·W⇠W 0 is ⇠-typical,
#a,h (W 0) otherwise.

As ⇠ ! 1, note that Pr[#h,a (W8) > ⇠] = exp(�⌦(⇠)) and hence

Pr[max(#h,a (W1), . . . , #h,a (W⇠), #h,a (W 0)) � ⇠] = ⇠ exp(�⌦(⇠)) .

It follows that lim⇠!1 Pr[W1 · · ·W⇠W 0 is ⇠-typical] = 1 and hence
that lim⇠!1 E [%⇠] ! bias. De�ne ⇡ to be the smallest value of
⇠ for which E [%⇠] < bias/2. We explain the relevance of this rule
for selecting ⇡ below.

Throughout the proof, we often write the sequence f1f2 . . . as
f1 . . . fBg1 . . . (so that g8 = fB+8) with the implicit understanding
that B � <. With this convention, the initial steps always determine
the “pre-✓” dynamics V✓ (f1 . . . f<), whose statistics are controlled
by Corollary 19.

We associate with every pre�x of steps f1 . . . f<g1 . . . gC a state
in the set {'�,'0,'+}, depending on which of these contains the
integer V✓ (fg). We now consider the transitions between these
states.

Dynamics in the region R+. Consider entry to '+ at “time” B (i.e.,
after B steps), and let f = f1 . . . fB . We examine the random walk
V✓ (f), V✓ (fg1), . . . by comparing it to]⇡ (f ; n),]⇡ (f ;g1), Return-
ing to the de�nition of]⇡ (f ;g), observe that while fg1 . . . gC 2 '+,
V✓ (fg1 . . . gC) > ⇡2 and, by the results of Section 3.5 and Claim 21,

V✓ (fg1 . . . gC) ]⇡ (f ;g1 . . . gC) .
We wish to show that this]⇡ (f ;g1 . . .) walk will descend to ⇡2

(so that V✓ (fg) returns to '0) with certainty and, moreover, that the
descent will occur quickly: that is, the probability that the descent
will take : steps is exp(�⌦(:)).

A typical entry into '+ arrives with an initial value /init for
which Pr[/init = :] = exp(�⌦(:)). This can either occur at time<,
when the distribution of V✓ (f1 . . . f<) is given by Corollary 19, or
as a result of a transition from '0 (or '�) in which case the value is
bounded above by ⇡ + #a (W) for the last step prior to the transition
to '+, in which case the height is bounded by Fact 12.

Fixing f , we consider the random variables

,C =]⇡ (f ;g1 . . . gC) �]⇡ (f ;g1 . . . gC�1) .
By the de�nition of ⇡ , E [,C] < �bias/2 for any C > ⇡ (so long as
the walk remains in '+); for C  ⇡ , the exact behavior of,C may
depend on f but in any case,C  #0,⌘ (gC). To account for this, we
de�ne

/warm =
⇡’
C=1

,C and /C =,C+⇡ (for C � 1) .

In light of Fact 12 and Lemma 25, Pr[/warm � :] = exp(�⌦(:)) as
it is a sum of a constant number of variables with exponential tails.
We wish to show that

Pr

"
/init + /warm +

:’
C=1

/C � ⇡2
#
= exp(�⌦(:)) ,

and hence that V () returns to '0 quickly.
Although the random variables /8 satisfy the conditions of Lem-

ma 22, we cannot directly apply Lemma 23 to this sequence of
random variables as they are not independent. However, /C1 and
/C2 are independent if |C1 � C2 | > ⇡ since the conditioning aris-
ing from]⇡ () only involves the previous ⇡ steps. Thus we may
partition the : random variables into ⇡ subsets indexed by arith-
metic progressions with multiple ⇡ ; each subset then contains
random variables that are never closer than ⇡ from each other.
The tail bounds of Lemma 23 apply to each subset. By the union
bound, it then follows that there is a constant ⇠ > 0 so that
Pr[/1 + · · · + /: > �⇠:] = exp(�⌦(:)). Combining this with
the bounds on /init and /warm, we conclude that the probability
that the walk remains in '+ for : steps is exp(�⌦(:)), as desired.

Dynamics in the region R0. Consider entry to '0 at time B � <
and let f = f1 . . . fB . We examine the random walk V✓ (f), V✓ (f ;g1),
. . . by comparing it to c (f ; n), c (f ;g1), Considering that the
“width” of the region, 2⇡2 + 1, is a �xed constant the next distinct
observed state will be '� with nonzero constant probability; at
worst, this is the probability of observing a sequence of back-to-
back 0��1h steps that carry c (), and hence V (), into '� (Lemma 7).
Moreover, considering that each non-overlapping block of 2⇡2 + 1
steps independently escapes from '0 to '� with positive constant

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

833

probability, it follows that the probability that the walk remains in
'0 for more than : steps is exp(�⌦(:)).

Dynamics in the region R�. The analysis is nearly identical to
the case for '+, though in this setting we must specially handle the
event that the walk never returns to '0 (or '+). Consider entry to
'� at a time B � < and let f = f1 . . . fB . We examine the random
walk V✓ (f), V✓ (fg1), . . . by comparing it to]⇡ (f ; n),]⇡ (f ;g1),
As in the analysis of the '+ case, we condition on an arbitrary
history f and note that so long as V✓ (fg1 . . . gC) remains in '�

V✓ (fg1 . . . gC) ]⇡ (f ;g1 . . . gC) ;
again this follows from Claim 21. This yields the random variables

,C =]⇡ (f ;g1 . . . gC) �]⇡ (f ;g1 . . . gC�1) .
As in the case of '+, it is convenient to decompose the steps of
the walk into an initial “warm” region consisting of at least ⇡
steps—which may su�er from some conditioning from f—and the
remaining steps. By the de�nition of ⇡ , E [,C] < �bias/2 for any
C > ⇡ (so long as the walk remains in '�); for C  ⇡ , the exact
behavior of,C may depend on f but in any case,C  #0,⌘ (gC). To
account for this, we will select a constant ⇠warm > ⇡ and de�ne

/warm =
⇠warm’
C=1

,C and /C =,C+⇠warm (for C � 1) .

As pointed out above, the random variables /C are independent of
f . We set the exact value of ⇠warm in the argument below.

First we establish that with constant probability, this walk never
returns to'0 (or'+). Adopting the approach from the'+ case above,
we partition the sequence of random variables /C into ⇡ families
of i.i.d. random variables; speci�cally, let / (B)

8 = /⇡8+B (for B 2
{1, . . . ,⇡}). Then for each �xed B the sequence/ (B)

8 are independent
random variables that satisfy the assumptions of Lemma 23 and
hence Lemma 24. In particular, there is a constant ⇠ > 0 so that

Pr

"
9C > 0,

C’
8=0

/ (B)
8 � ⇠

#
<

1
2⇡

for each �xed B . Hence

Pr

"
9C > 0,

C’
8=0

/8 � ⇠ · ⇡
#
 Pr

"
9B9C > 0,

C’
8=0

/ (B)
8 � ⇠

#

< 1/2 .
(19)

We now assign⇠warm = ⇠ ·⇡ . To complete the argument, note that
with constant probability the �rst ⇠warm of the random variables
,C—precisely those comprising /warm—all take the value �1 as this
is guaranteed by the possibility that each of these steps is 0��1h.
The variables/ (1)

8 may depend on this conditioning, as⇡-typicality
depends on the prior ⇡ steps; however, the conditioning assigns
the “warm” random variables values that contain no adversarial
symbols: this can only increase the probability that a particular/ (1)

B
is ⇡-typical and hence reduce its expected value. We conclude that
the / (B)

8 satisfy equation (19), even under conditioning. It follows
that with constant probability

ÕC
8 ,8 never rises above �⇡2 and

hence that V () never departs '�.
Conditioned on the event that V✓ () never departs '�, the value

V✓ (fg1 . . . g⇡) is bounded above by �⇡2; hence also V✓ (fg1 . . . gC)

is bounded above by �⇡2 +Õ8=C�⇡
8=1 /8 . Again applying Lemma 23

to this sum (after decomposing it into
Õ
8 /

(B)
8 as above), we �nd

that, for any",) > 0,

Pr[9C �) , V (fg1 . . . gC) � �" | V✓ (fg1 . . .) never escapes '�]
 exp(�⌦()) +$ (")) .

Finally, we wish to show that if V () returns to '0 (or '+), it does
so quickly. This proceeds exactly as in the case of '+: in light of
Lemma 23, for a constant ⇢ > 0, the probability that any one of
the sums

ÕC
8=1 /

(B)
8 exceeds �⇢C is exp(�⌦(C)) and hence that V ()

departs '� quickly, if it does so at all.
Finally, consider the transitions among the states '�, '0, and '+.

Any arrival into the state '� results in the desired permanent de-
scent beyond �" with constant probability. Otherwise, the waiting
time to leave any of the states after entry has a worst-case exponen-
tial tail: speci�cally, there are constants�trans > 0 and 0trans > 1 so
that for any of the three states the probability that the waiting time
between arrival and departure in that state exceeds : is no more
than�trans0�:trans. Furthermore, from either '0 or '+, the probability
of transitioning to '� in the next two state transitions is a nonzero
constant. It follows that) , the number of transitions that occur
before observing the permanent descent, has an exponential tail. As
the convolution of) waiting time distributions has an exponential
tail by Lemma 25, it follows that the walk permanently descends
past �" with certainty and, moreover, the number of steps before
this event takes place has an exponential tail. ⇤

B OMITTED PROOFS
B.1 Proof of the Restructuring Lemma

(Lemma 4)
P����. On a high level, we restructure the fork � to obtain

a valid fork e� `� F that satis�es V✓ (e�) � U� (E1) + |�1 [�2 |,
establishing the claim. This restructuring consists of two main
modi�cations: (i) use (at least) all adversarial vertices in �1 [�2 to
build a tine e)0 on top of E1 with len(e)0) at least len(E1) + |�1 [�2 |;
and (ii) use tight vertices of depths len(E2) +1, len(E2) +2,. . . , len(�)
to build an honest tinee)⌘ on top of E2 that achieves len(e)⌘) = len(�).
A simple additional modi�cation is needed to ensure that the honest
descendants of E1 and E2 do not violate the validity of the resulting
fork e� . The heart of the argument is then to verify that e� is indeed
a valid fork forF .

Towards a formal description of the restructuring operation,
we identify sets of vertices in � that will be modi�ed in the same
way. Let ~ denote the last common vertex of)1 and)2, and let
I denote the deeper one of the vertices {E1,~}. First, we de�ne
�0
8 , {0 2 �8 : lb(0) > lb(I)}, we write � , �0

1 [�0
2 and refer

to the individual vertices in � as 01, . . . 0 |� | so that 8 < 9 implies
lb(08) < lb(0 9).1 Next, as � is compressed, it contains a tight honest
vertex for each depth in {len(E2) + 1, . . . , len(�)}. We label these
vertices ⌘1, . . . ,⌘6 , where 6 = len(�) � len(E2) and ⌘8 has len(⌘8) =
len(E2) + 8 , and denote � , {⌘1, . . . ,⌘6 }. Note that there might be
several tight vertices of a particular depth in � , the choice of vertices

1We recommend the reader to �rst consider the simplest situation where len(~) <
len(E8) for both 8 2 {1, 2} and hence I = E1 and�0

8 = �8 .

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

834

for� is arbitrary, we just ensure that it contains one vertex for each
of the relevant depths. Finally, we denote by ⇡ = {31, . . . ,3 |⇡ | }
the set of all vertices that at the same time (a) are honest, (b) are
(possibly indirect) descendants of either E1 or E2, (c) are not (possible
indirect) predecessors of either I or E2, and (d) are not in � . We
again index the vertices in ⇡ in an increasing order of labels.

We �rst modify � as follows:
Set �: The unique edge of the form (D,01) is replaced with the

edge (I,01) and for each 8 2 {2, . . . , |�|}, the unique edge of the
form (D,08) is replaced with the edge (08�1,08).

Set � : The unique edge of the form (D,⌘1) is replaced with the
edge (E2,⌘1) and for each 8 2 {2, . . . ,6}, the unique edge of the
form (D,⌘8) is replaced with the edge (⌘8�1,⌘8).

We denote the resulting labeled tree �0, note that �0 is not nec-
essarily a valid fork. To reestablish validity, we proceed with the
following sequence of modi�cations:
Set ⇡: For each 8 2 {1, . . . , |⇡ |} the unique edge of the form (D,38)

in �8�1 is replaced by (eD8 ,38), where eD8 is the vertex in �8�1 with
maximum depth out of all honest vertices with label at most
lb(38) � �; note that this in particular excludes 3 9 for 9 > 8 .
Formally,

eD8 , argmax
D2�8�1; Flb(D)=h
lb(D)lb(38)��

len�8�1 (D) , (20)

where ties in max can be broken arbitrarily. The labeled tree
resulting from the 8-th iteration is called �8 .

Finally, we let e� , � |⇡ | .
We now show that e� is a valid fork for F . The axioms (A1)

and (A3) are clearly maintained by the above modi�cations and
hence inherited from � . Axiom (A2) is satis�ed in e� as each newly
added edge (D, E) has lb(D) < lb(E). For new edges {(·,38) : 38 2 ⇡}
this directly follows from (20), for new edges {(·,08) : 08 2 �} this
is a consequence of the de�nition of �0

8 and the ordering within �.
Finally, in � we have by construction

len(E2) < len(⌘1) < · · · < len(⌘6) = len(�),
E2 is honest, and each ⌘8 is tight (and hence honest). Applying
Lemma 2 to each ⌘8 implies that

lb(E2) < lb(⌘1) < · · · < lb(⌘6)
as required.

To verify axiom (A4), note that when moving from � to e� , the
depths of all honest vertices outside of ⇡ remained unchanged.
The depth of a vertex 38 2 ⇡ might have changed, but it has not
increased; this can be shown by simple induction on 8: by induction
hypothesis, also the depths of all honest vertices with labels up to
lb(38) � � have not increased from � to e� , and hence

len� (38) � max
D2� , Flb(D)=h
lb(D)lb(38)��

len� (D) + 1

� max
D2e� , Flb(D)=h
lb(D)lb(38)��

lene� (D) + 1 = lene� (38) ,

where the �rst inequality follows from axiom (A4) in � and the
last equality is a consequence of (20). Given the above, the only
possible violation of axiom (A4) in e� could occur for a pair (E,F)

withF = 38 2 ⇡ , but this is exactly prevented by the rule (20). This
concludes the argument that e� `� F .

To �nish the proof, denote by e)0 and e)⌘ the tines in e� terminating
in 0 |� | and ⌘ |� | , respectively. Given)1 ⌧✓)2 we have lb(~) < ✓ ,
and note that the last common vertex of e)0 and e)⌘ has label at most
lb(~), hence we have e)0 ⌧✓ e)⌘ . Furthermore, len(e)⌘) = len(e�) by
construction. Hence we have

V✓ (F) � V✓ (e�) � Ue� (e)0) = U� (I) + |�| .

Finally, U� (I) + |�| � U� (E1) + |�1 [�2 |: if I = E1 then each
�8 = �0

8 and hence � = �1 [�2; otherwise I = ~ and U� (I) �
U� (E1) + |(�1 [�2) \�|. This concludes the proof. ⇤

B.2 Proof of Lemma 6
P����. The lower bound V (FG) � V (F) � 1 is straightforward;

in fact one can establish higher precision bounds

V✓ (F0) = V✓ (F) ,
V✓ (Fa) � V✓ (F) + 1

and V✓ (Fh) � V✓ (F) � 1 .

These follow by considering an optimal fork � `� F with witness
tines ()⌘,)0): if G = a, an adversarial vertex can be added to the
end of)0 ; if G = h, this honest vertex can be added to the end of)⌘ .
The resulting forks clearly achieve the statistics above.

We turn our attention to the upper bound V✓ (FG)  V✓ (F) + 1.
Let � 0 `� FG be a compressed optimal fork with witness tines
() 0
⌘,)

0
0). Let � `� F denote the fork that results by removing the

vertex E associated with the symbol G . If E does not appear on either
of the witness tines, the same tines establish that V✓ (�) � V✓ (� 0)
and we conclude that V✓ (F) � V✓ (FG), as desired. If E appeared on
) 0
0 (and possibly also on) 0

⌘ if) 0
⌘ =) 0

0), we let ()⌘,)0) denote the
restrictions of () 0

⌘,)
0
0) to � and note that the witness tines ()⌘,)0)

establish that

V✓ (F) � V✓ (�) � U� ()0) � U� 0 () 0
0) � 1 = V✓ (FG) � 1 ,

as desired. It remains to consider the case that E appears on) 0
⌘

and not on) 0
0 . As above, let)⌘ denote the tine in � resulting from

removing E from) 0
⌘ , and observe that � is compressed. If U� 0 () 0

0) =
V✓ (FG) � 0, we invoke Lemma 4. Let E⌘ and E 00 denote the deepest
honest vertices on)⌘ and) 0

0 respectively; let �⌘ (resp. �0
0) be the

set of adversarial vertices on)⌘ (resp.) 0
0) deeper than E⌘ (resp. E 00).

If lb(E⌘)  lb(E 00) then Lemma 4 gives us

V✓ (F) � U� (E⌘) + |�0
0 [�⌘ | � (U� (E⌘) + |�⌘ |) + |�0

0 \�⌘ |
� �1 + |�0

0 \�⌘ | � V✓ (FG) � 1

as desired. On the other hand, if lb(E 00)  lb(E⌘) we similarly have

V✓ (F) � U� (E 00) + |�0
0 [�⌘ | � U� (E 00) + |�0

0 | � U� 0 () 0
0)

= V✓ (FG) .

Finally, we consider the case that U� 0 () 0
0) = V✓ (FG) < 0. Letting)�

denote a maximum length honest tine in � we consider two cases:
if)� ⌧) 0

0 , these two tines witness V✓ (F) � U� () 0
0) � U� 0 () 0

0) =
V✓ (FG), as desired. Otherwise,)� ⌧)⌘ and these two tines witness
V✓ (F) � U� ()⌘) � U� 0 () 0

⌘) � 1 � V✓ (FG) � 1, as desired. ⇤

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

835

B.3 Proof of Lemma 7
P����. We follow the approach outlined in Remark 5. Let � 0 `�

F0��1h be a witness fork forF0��1h and let) 0
0 and) 0

⌘ denote a pair
of witness tines in � 0 so that U () 0

⌘) � 0 and U () 0
0) = V✓ (F0��1h).

Let E denote the vertex in � 0 corresponding to the �nal h symbol and
let � `� F denote the fork obtained by removing the vertex E . Note
that len(�) < len(� 0) by the same argument as (6) in Lemma 5.

Note that as |F | � ✓ and) 0
⌘ ⌧✓)

0
0 , E cannot appear on both these

tines. If E appears on) 0
0 , let)0 denote the tine in � resulting from

removal of E . As) 0
0 terminated with an honest vertex and, by de�-

nition, V✓ (F0��1h) = U� 0 () 0
0), we conclude that V✓ (F0��1h) = 0.

In this special case, then, we wish to show that V✓ (F) � 1. Observe
that)0 is dominant in � , as len()0) = len(� 0) � 1 = len(�). On the
other hand, U� () 0

⌘) = U� 0 () 0
⌘) + 1 so the two tines (now playing

reverse roles) witness V✓ (F) � 1, as desired. Otherwise, E does not
appear on) 0

0 . In this case, we let)⌘ denote the tine corresponding
to) 0

⌘ in � : speci�cally, if E does not appear in) 0
⌘ then de�ne)⌘ =) 0

⌘ ;
otherwise, de�ne)⌘ to be the result of removing E from) 0

⌘ . In ei-
ther case, however,)⌘ is dominant in � (as len(�) = len(� 0) � 1).
Thus the tines) 0

0 and)⌘ (in �) witness V✓ (F) � V✓ (F0��1h) + 1,
as desired. ⇤

B.4 Proof of Claim 13
P����. We have

E [#0 (W)] =
1’
✓=�

Pr[|W | = ✓] · E [#0 (W) | |W | = ✓]

=
1’
✓=�

Pr[|W | = ✓] · (✓ � 1)?0

 ?0

1’
✓=�

Pr[|W | = ✓] · ✓ = ?0E [|W |]

= ?0
�
(� � 1) + E

⇥
⌧?0

⇤ �
= ?0

�
(� � 1) + 1/?⌘

�
= ?0/o < 1 ,

where⌧? denotes a geometrically distributed random variable with
distribution Pr[⌧? = C] = (1 � ?)C�1? (for C � 1). ⇤

B.5 Proof of Lemma 15
Recall the notion of ⌘� (·) from De�nition 11. We record the Mc-
Diarmid inequality, which immediately implies a large deviation
bound on ⌘�.

T������ 27 (M�D������’� ���������). Let - = -1, . . . ,-= be
a sequence of independent random variables taking values in {0, 1}.
Let 5 : {0, 1}= ! R have the property that for any G = (G1, . . . , G=) 2
{0, 1}= and ~ = (~1, . . . ,~=) 2 {0, 1}= that di�er only in a single
coordinate |5 (G) � 5 (~) | < ⇠ . Then

Pr
-

⇥
|5 (-) � E [5 (.)] | � _

p
=
⇤
 2 exp(�2_2/⇠) ,

where . has the same distribution as - .

P���� �� L���� 15. Fix ? 2 [0, 1] and de�ne

⌘= = E [⌘� (-1, . . . ,-=)]

where, as in the statement of the lemma, the -8 are independent
Bernoulli random variables with E [-8] = ? . To match the de�nition
of ⌘�, we de�ne ⌘0 = 0. Expanding the expectation around the
outcome of the last random variable -= , we �nd that

⌘= = (1 � ?)⌘=�1 + ? (1 + ⌘=��) for all = > �. (21)

Likewise, we �nd that ⌘= = (1 � ?)⌘=�1 + ? for all 0 < =  �. In
this regime (where =  �) we can directly solve for ⌘= :

⌘= = 1 � (1 � ?)= for 0 < =  �.

De�ne 5 (=) = =/U . A calculation con�rms that 5 (·) satis�es the
recurrence relation (21) for all = 2 Z:

5 (=) = (1 � ?) · 5 (= � 1) + ? [1 + 5 (= � �)] .

To complete the proof, we proceed by induction. For any 0  = 
�, both ⌘= and 5 (=) lie in the interval [0, 1] which establishes (13).
Assuming (13) for all : < = (where = > �), we observe that

5 (=) � ⌘= = (1 � ?) [5 (= � 1) � ⌘=�1] + ? [5 (= � �) � ⌘=��]

as both 5 and ⌘ satisfy (21). Thus

|5 (=) � ⌘= |  (1 � ?) |5 (= � 1) � ⌘=�1 | + ? |5 (= � �) � ⌘=�� |
 (1 � ?) + ? = 1 ,

as desired.
Finally, note that

|⌘� (G1, . . . , G=) � ⌘� (~1, . . . ,~=) |  1

if (G1, . . . , G=) and (~1, . . . ,~=) di�er in only one coordinate. The
large deviation bound follows directly, then, from the McDiarmid
inequality (Theorem 27). ⇤

B.6 Proof of Lemma 18
P����. Let 6: = Pr[-8 = :] and let ⌧ (G) = Õ

:�0 6:G: denote
the corresponding ordinary generating function associated with the
random variables -8 . By assumption, for su�ciently small 0 > 1,
6:  � · 0�: ; it follows that⌧ (G) is well-de�ned and di�erentiable
around 1. As E [-] < 1, expanding the derivative we �nd that
⌧ 0(1) = E [-8] < 1; in particular, for su�ciently small 1 > 1,
⌧ (1) < 1. Thus, we may adopt an 0⇤ = min(0,1) satisfying both of
these inequalities. Let

⌫ = �0⇤/(0⇤ �⌧ (0⇤)) .

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

836

Then we show by induction that (for all C and :) Pr[,C = :] 
⌫0�:⇤ . The base case C = 0 is immediate.

Pr[,C = :] = Pr[,C�1 = 0] · 6: +
:’
9=0

6 9 Pr[,C�1 = : � 9 + 1]

 �0�:⇤ +
1’
9=0

6 9 Pr[,C�1 = : � 9 + 1]

 �0�:⇤ +
1’
9=0

6 9⌫0
�:+9�1
⇤

= �0�:⇤ + ⌫0�:�1⇤
1’
9=0

6 90
9
⇤

= �0�:⇤ + ⌫0�:�1⇤ ⌧ (0⇤)
= 0�:⇤ (� + ⌫⌧ (0⇤)/0⇤) = ⌫0�:⇤ ,

as desired. ⇤

B.7 Proof of Lemma 22
P����. Let U = 1/0 < 1. Assume that _ < 1/4 is small enough

to satisfy the following additional inequalities:

_ ln2 (_�1)  |E [�] |
4 · 32 (1 �

p
U)2 ⇤ |E [�] |

4 · 62 ln2 (1/U) , and
(22)

_  1/⇠ . (23)

The inequality ⇤ above follows directly from the fact that 1�pU <
(1/2) ln(1/U) for all U 2 (0, 1). Decompose<� (_) into two sums:

<� (_) =
’

�1:<(
4_: Pr[� = :]

| {z }
(†)

+
’
(:

4_: Pr[� = :]

| {z }
(‡)

,

where (= 2 · ln(_2/⇠)/ln(U) is a threshold chosen to balance
error terms determined below. We record the fact that under con-
straint (23) we have the simpler upper bound

( 6 ln(_)/ln(U) . (24)

Consider the sum (†). We �rst record two estimates applied in
the bound. Observe that

_(2  _

✓
6 ln(_�1)
ln(U�1)

◆2
 _ ln2 (_�1)

✓
6

ln(U�1)

◆2
 |E [�] |

4
(25)

and hence _( _(2 < 1/2. We additionally remark that for |X | < 1,
| exp(X) � (1 + X) |  X2/[2(1 � |X |)]. Then we �nd that

’
�':<(

4_: Pr[� = :] 
’

�':<(

✓
1 + _: + _2:2

1 � |_: |

◆
Pr[� = :]

 1 + _E [�] + _2(2

2(1 � _()
 1 + _E [�] + _2(2 . (26)

 1 + _E [�] + _

4
|E [�] | , (27)

where line 26 follows because _( 1/2, as noted above, and line 27
follows from (25).

As for the sum (‡), in light of constraint 22 we �nd that
’
(:

4_: Pr[� = :] 
’
(:

4_:⇠U: =
⇠ (U4_)(
1 � U4_

 ⇠
p
U(

1 � p
U

 _2

1 � p
U

 _
|E [�] |

4
.

(28)

where we used the fact that _ < ln(1/pU) and hence U4_ <
p
U in

the �rst inequality of the last line. Thus

<� (_)  1 + _E [�] + 2
|E [�] |

4
 1 + _

E [�]
2

,

as desired. ⇤

B.8 Proof of Lemma 23
P����. Applying Lemma 22 to the random variables /8 , there is

a constant _⇤ for which</8 (_⇤)  1 � _⇤W/2  exp(�_⇤W/2). As
the /8 are independent,

<(= (_⇤) = E
h
4_

⇤ Õ=
8 /8

i
=

=÷
8

E
h
4_

⇤/8
i
 exp(�=_⇤W/2) .

Thus

Pr[(= �)] = Pr[4_⇤(= � 4_
⇤)] 

E
h
4_

⇤(=
i

4_⇤)

 4�=_
⇤W/24�_

⇤) = exp(�_⇤ () + =W/2)) . ⇤

B.9 Proof of Lemma 24
P���� �� L���� 24. For a constant ⇡ ,

Pr[9= > 0, (= � ⇡] 
1’
==1

Pr[(= � ⇡] 
1’
==1

4�U [⇡+W=/2]

= 4�U⇡
1’
==1

4�W=/2 =
4�U⇡

4W/2 � 1
, (29)

where U is the constant promised by Lemma 23. Let⇡⇤ be a constant
for which (29) is less than 1. Then, with non-zero probability /1 =
/2 = . . . = /⇡⇤ = �1, so that (= = �⇡⇤ and no future (= is zero. ⇤

B.10 Proof of Lemma 25
P����. Let G(-) = Õ

: 0:-
: and H(-) = Õ

: 1:-
: be the or-

dinary generating functions for the random variables ⌧ and �8 ,
respectively. By assumption there are constants 0 > 1 and � > 0
for which 0: = Pr[⌧ = :]  �0�: and constants 1 > 1 and ⌫ > 0
for which 1: = Pr[�8 = :]  ⌫1�: . Thus G(-) converges inside
[0,0); likewise H(-) converges inside [0,1).

Recall thatG(-)⇥H(-) = Õ
2=-= is the generating function for

⌧+�1. AsG(-) ·H(-) converges in [0,min(0,1)) (and,min(0,1) >
1), Pr[⌧ + �1 = :] = 2: = exp(�⌦(:)). The tail bound in the
statement of the theorem follows immediately.

Recall that G(H(-)) is the generating function associated with
the convolution of⌧ copies of � (the random variable

Õ⌧
8=1 �8). As

H converges in a neighborhood around 1 and limI!1+ H(I) = 1,
there is a value I⇤ > 1 for which � (I⇤) converges to a value
less than 0 (which is > 1). Then G(H(I⇤)) converges; writing
G(H(/)) = Õ

: 2:-
: , we conclude that 2: < exp(�⌦(:)). The tail

bound in the statement of the theorem follows immediately. ⇤

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

837

B.11 Proof of Lemma 26
This is a result of [11, Thm. 1].

Session 3C: Consensus CCS '20, November 9–13, 2020, Virtual Event, USA

838

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Our Model and the Bitcoin Protocol
	2.2 Characteristic Strings and Forks
	2.3 Advantage and Margin
	2.4 Margin and Consistency

	3 The Margin Recurrence
	3.1 Compressed Forks and the Restructuring Lemma
	3.2 Warm-up: Margin Prior To
	3.3 The Critical Region
	3.4 The Cold Region
	3.5 The Hot Region

	4 Analysis of the Stochastic Process
	4.1 The Bitcoin Security Threshold

	Acknowledgments
	References
	A Detailed Analysis of the Stochastic Process
	A.1 The Stationary Distribution Prior to
	A.2 The Descent to - After
	A.3 The Proof of Theorem 14

	B Omitted Proofs
	B.1 Proof of the Restructuring Lemma (Lemma 4)
	B.2 Proof of Lemma 6
	B.3 Proof of Lemma 7
	B.4 Proof of Claim 13
	B.5 Proof of Lemma 15
	B.6 Proof of Lemma 18
	B.7 Proof of Lemma 22
	B.8 Proof of Lemma 23
	B.9 Proof of Lemma 24
	B.10 Proof of Lemma 25
	B.11 Proof of Lemma 26

