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Abstract

Colloid-sized particles (10 nm-10 wm in characteristic size) adsorb onto
fluid interfaces, where they minimize their interfacial energy by straddling
the surface, immersing themselves partly in each phase bounding the in-
terface. The energy minimum achieved by relocation to the surface can be
orders of magnitude greater than the thermal energy, effectively trapping
the particles into monolayers, allowing them freedom only to translate and
rotate along the surface. Particles adsorbed at interfaces are models for the
understanding of the dynamics and assembly of particles in two dimensions
and have broad technological applications, importantly in foam and emul-
sion science and in the bottom-up fabrication of new materials based on
their monolayer assemblies. In this review, the hydrodynamics of the colloid
motion along the surface is examined from both continuum and molecular
dynamics frameworks. The interfacial energies of adsorbed particles is dis-
cussed first, followed by the hydrodynamics, starting with isolated particles
followed by pairwise and multiple particle interactions. The effect of par-
ticle shape is emphasized, and the role played by the immersion depth and
the surface rheology is discussed; experiments illustrating the applicability
of the hydrodynamic studies are also examined.
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1. INTRODUCTION

In this review we examine the literature on the hydrodynamics of colloids—here, particles of the
order of 10 nm to 10 um in characteristic size—that straddle a fluid interface, such as an air/water
surface or an oil/water interface. As explained below, wetting forces can energetically trap strad-
dling colloids partially immersed in the fluid phases bounding an interface, allowing for the forma-
tion of stable monolayers in which the particles resist moving normal to the surface, but translate
and rotate along the surface. These motions are the focus of this review. As the range of colloid
sizes spans from the nano- to the microscale, we focus on studies based on molecular dynamics
(MD) and continuum frameworks. We begin with a short perspective on why this hydrodynamics
is of interest.

From a scientific point of view, colloids that move and rotate along a fluid surface are paradigms
for the dynamics of self-organization and assembly of particles on a 2D landscape as driven by in-
plane forces. Forces that act on colloids at a fluid interface include thermal fluctuation (Brownian)
forces and external forces such as electrostatic or magnetic forces acting along the surface on
charged or magnetic particles. Interparticle forces become important when particles come close
together; for reviews readers are referred to Kralchevsky & Nagayama (2000, 2001), Kralchevsky
& Denkov (2001), Bresme & Oettel (2007), and Bleibel et al. (2013). These interparticle forces
include capillary attraction due to the deformation of the interface as a result of the particle weight
(Nicolson 1949, Chan et al. 1981, Blanc et al. 2013, Galatola & Fournier 2014) or undulations in
the contact line attaching the interface to particles that are either floating (Stamou et al. 2000,
Kralchevsky et al. 2001, Fournier & Galatola 2002, Danov & Kralchevsky 2010a) or resting on
a solid support [immersion forces (Kralchevsky & Nagayama 1994, 2000, 2001; Kralchevsky &
Denkov 2001)]. In addition, electrostatic repulsions develop between charged colloids (Foret &
Wurger 2004; Oettel et al. 2005; Wurger & Foret 2005; Danov & Kralchevsky 2006, 2010b;
Boneva etal. 2007, 2009; Dominguez et al. 2007; Oettel & Dietrich 2008), or magnetic repulsions
develop if the particles are magnetic and magnetized by a external magnetic field (Vandewalle et al.
2012, 2013; Lumay et al. 2013; Darras et al. 2018).

Aside from their scientific interest, colloids at fluid interfaces have been the focus of signif-
icant technological attention because of their ability to form stable monolayers due to the fact
that they are energetically entrapped at the surface. Early technological interest in them, dating
back to over a century ago, was concerned with their use to stabilize foams and emulsions (see
Binks 2002, Binks & Horozov 2006). Particles added to the continuous liquid phase of a foam, or
the continuous or dispersed phases of an emulsion (Pickering emulsions), adsorb at the bubble or
droplet interfaces, forming a monolayer that stabilizes the dispersed phase from coalescence and
coarsening. Current and emerging applications, however, center around the structures formed as
they assemble under the action of external and interparticle forces. Many experimental studies for
spherical colloids at an air/water interface have demonstrated this assembly: At low particle surface
concentrations, the colloids assemble into clusters, rafts, and foam-like meso-structures. At higher
concentrations, they assemble into hexagonal crystalline lattices with particle separations of a few
molecular diameters (see Pieranski 1980; Onoda 1985; Hérvolgyi et al. 1991, 1994; Ruiz-Garcia
etal. 1997, 1998; Ghezzi et al. 2001; Chen et al. 2005, 2006). Their reorganization and buckling
into multilayers due to surface compression (as on the surface of a Langmuir trough) have also
been detailed. In all of these experiments, the liquid layers are deep (typically much larger than
the particle diameter). Monolayers of spherical colloids have also formed at the interface between
air and a thin liquid film of water or another solvent in which the film thickness is of the order of
the particle diameter. These films are formed by either Langmuir-Blodgett dip-coating or by the
forced spreading of films along a substrate (convective assembly). Evaporation of the liquid in the
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film reduces the interparticle distance and draws the particles together. Denkov et al. (1992, 1993)
showed how well-packed crystalline monolayers can be formed from convective assembly. These
assembled monolayers, in particular, have been utilized in applications such as coatings (superhy-
drophobic or antireflection), templates for micro- and nanostructured materials [e.g., nanosphere
lithography (Burmeister et al. 1997)], and photonic crystals for optoelectronic devices (for reviews
see Prevo et al. 2007).

While the forces that act on colloids trapped on an interface (Bresme & Oettel 2007, Danov
& Kralchevsky 2010a), and the physico-chemistry of the particles, have been well studied (e.g.,
see the reviews Maestro et al. 2018, Ballard et al. 2019, Guzmdn et al. 2021) and their rheological
behavior has been characterized (Mendoza et al. 2014, Deshmukh et al. 2015), a fundamental
understanding of the hydrodynamics of the straddling particles is only beginning to emerge.
The purpose of this review is to summarize this emergent understanding. We begin (Section 2)
by examining the equilibrium energetics of particles straddling a fluid interface, from both a
continuum and an MD perspective. In Section 3, the hydrodynamics is discussed, focusing first
on isolated particles and then on pairwise and multiparticle interactions. Most of the literature
are continuum studies, but we also review recent work on MD simulations of the particle surface
hydrodynamics. Finally, we examine experimental studies on the hydrodynamics (Section 4) and
detail how theory can explain observations. We conclude with a perspective on future directions
of this area of research (Section 5).

2. THE EQUILIBRIUM CONFIGURATION OF COLLOIDS
AT A FLUID INTERFACE

When a colloid particle adsorbs at a fluid interface, the equilibrium position that it achieves is a
function of its shape, the wettability of the surface of the particle relative to the phases that bound
the interface, and the tension of the fluid interface. In Figure 1 we illustrate this surface equili-
bration, from both continuum and MD frameworks, using a sphere of radius # that is uniform in
its surface properties and atop a flat fluid interface (surface tension y) with bounding immisci-
ble phases (1, lower; 2, upper) and immersion depth 4 measured from the particle center to the
interface (d is positive when the center is in the lower phase).
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Figure 1

(@) Schematic representation of a sphere of radius # breeching a fluid interface separating two phases (1, lower; 2, upper) at an
immersion depth d. () Young—Dupré balance of forces at the contact line, ys/» — y5/1 = yfcos@. (¢) Interfacial energy E(d) as a function
of d and contact angle 6.
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In the continuum framework (Figure 14), the interfacial energy E of the sphere as a function
of immersion depth 4, relative to its energy when it is completely in the upper phase (Ey; d/a =
—1), can simply be calculated in terms of the tension of the fluid interface y¢ and the interfacial
energies of the surface in contact with the upper (y,/,) and lower (y/1) phases,

2 d ? 2 d
B0 B = -y 1= (4) [+ 22 (1= %) 0 = o)

where E, is the interfacial energy of the sphere in the upper (2) phase (4w4’y ;). The terms on
the right-hand side of this equation illustrate the competing effects as the colloid locates through
the surface: The first term represents the reduction in energy due to the removal of the fluid
surface by the breeching sphere, and the second term represents the difference in surface energies
as the interfacial area of the upper phase in contact with the sphere is replaced by the lower phase.
The interfacial energy difference, y,/1 — ¥,/2, can be written in terms of the contact angle 6 on the
solid surface, as is clear from the Young—Dupré balance of forces on the sessile drop configuration
(Figure 1b), y,/» — y1 = yrcos 6. As such, 0 represents the relative wettability of the two phases
for the surface 5. For 6 = 0° the lower fluid completely wets the surface, and for 6 = 7 the upper
fluid completely wets the surface; values between these characterize partial wetting. In Figure 1,
E(d/a) — E, is plotted for different contact angles, and it is clear that particles with surfaces of
intermediate wettability have a minimum in the interfacial free energy at a straddling position
—1 < d/a < 1. This position is found from differentiation to be located at deq/2 = cos6 and
the energy minimum is equal to E(deq/a) — Ey = —y¢mwa*(1 + cos6)?. Thus, for intermediate
wettability, the sphere straddles the fluid interface such that it achieves its equilibrium angle on
the solid surface of the particle. This derivation assumes that there are no other forces on the
particle or fluid; it can easily be extended to include gravitational, electrostatic, and magnetic
forces, in which the interface deforms around the particle.

Three important points relative to the above simple derivation are important to note. First,
for particles that are partially wetting, —1 < cosf < 1, the magnitude of the adsorption en-
ergy yima*(l + cos6) is typically much larger than the thermal energy k37, and as such, the
particles—either deposited directly on the interface or adsorbed from the fluid phases—remain
trapped at the interface, moving freely along only the plane of the surface (Binks 2002). Second,
the discussion of the contact line is oversimplified: Most colloid surfaces are rough rather than
smooth or contain chemical heterogeneities, and these heterogeneities lead to a deformation
of the fluid interface in the immediate vicinity of the particle as the contact line adjusts to the
surface protrusions or chemical imperfections to satisfy equilibrium. The surface heterogeneities
create local minima in the free energy, and particles placed on the interface can show a slow
equilibration as they become trapped in these minima (Kaz et al. 2012, Colosqui et al. 2013,
Rahmani et al. 2016). Third, the direct measurement of contact angles on the surfaces of particles
is difficult (for reviews, see Maestro et al. 2014): For large particles (greater than ~10% um), the
contact angle can be obtained directly by visualization. Other techniques have been developed
for colloids tens of micrometers and smaller. These include optical microscopy techniques based
on interference patterns created between the interface and a reference surface [e.g., vertical
scanning interferometry (Boniello et al. 2015)] or patterns generated between the meniscus and a
surface underlying the interface (Hadjinski et al. 1996, Ally & Amirfazli 2010), digital holography
(Kaz et al. 2012, Rahmani et al. 2016), and measurements of the curvature and direction of the
wavefront produced by the particle (Snoeyink et al. 2015). A second set of techniques is based
either on trapping the particle at the interface by gelling the underlying subphase and imaging
the immobilized particles by atomic force microscopy (AFM) or scanning electron microscopy
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to obtain the immersion depth (Paunov 2003), or on immobilizing the particle by jet-freezing
followed by fracturing and shadow casting to obtain this depth (Isa et al. 2011).

For nanoparticles straddling a fluid interface, MD can be used to formulate and minimize in-
terfacial energies to obtain equilibrium immersion depths. MD studies can be used to validate
predictions of the continuum theory when extended to the nanoscale and to provide molecu-
lar insights not revealed by the continuum framework. We use the study of Koplik & Maldarelli
(2017) to illustrate this point. Koplik & Maldarelli’s (2017) MD effort studied a gas/liquid interface
with the liquid comprising a tetramer of atoms (species 1) tethered together by a FENE (finitely
extensible nonlinear elastic) potential and interacting with each other by a Lennard—Jones (LJ) po-
tential, Vij(r) = 4€[(r/o) ™2 — ¢; (r/0)~°], where o is the atom diameter (the same for all atoms),
€ is the common energy scale, 7 is the separation distance between atoms, and the coefficients ¢;
adjust the strength of the attractive interaction between atoms of atomic species 7 and j (¢;; = 1).
The solid particle (species 2) was a rigid spherical section of a cubic lattice of L] atoms constructed
by enclosing all atoms of the lattice within a radius 8o of a central atom. The nanoparticle atoms
interacted with the tetramer via the L] potential with the same energy € but with an attractive in-
teraction strength ¢1;. This interaction strength was changed to provide different wettabilities and
immersion depths. The bottom face-centered cubic lattice consisted of atoms (species 4) attached
by linear tether springs to the lattice sites and with interactions with the other atoms given by
coefficient of attraction ¢4 = 1. All atoms had a common mass 7z. The simulation box (Figure 24)
was a cube of side 60.30, and a Nose-Hover thermostat fixed the temperature to 0.8¢/kg, at
which the tetramer liquid and vapor were in equilibrium. The vapor/liquid surface tension (calcu-
lated through numerical integration of the normal and transverse stress across the interface) was
ve = 0.668¢/5?, the bulk liquid density was 0.8570 =, and the viscosity was n = 5.18m/(c t) [ob-
tained by simulating Couette flow between plates as t = o (m/¢€)'/?] for ¢;; = 1.

From the MD simulations, the immersion could be computed in several ways. In the direct
method, the nanoparticle was initially placed in the liquid layer and allowed to migrate upward
to its equilibrium position on the interface and diffuse along the surface. The height fluctuations
during the surface diffusion had a standard deviation in the height distribution of at most 0.60, and
furthermore, the interface remained approximately flat up to the colloid surface. An immersion
depth can be calculated based on the average horizontal position of the center of the particle
relative to isosurfaces of the fluid density far from the interface (see Figure 25 for ¢, = 0.9).
Note that since the particle radius # is comparable to the size of the interfacial transition zone,
the different isosurfaces intersect the particle at different positions and contact angles; hence, a
convention is required. We define the immersion depth as the vertical distance from the half-bulk-
density isosurface to the particle center, giving an apparent contact angle of d/a = cos 64, which
is given in Figure 2e as a function of ¢;,. Immersion into the liquid increased with cy,, as was also
shown by Cheng & Grest (2012). In contrast, in conventional MD simulations of sessile drops
on a planar substrate, there is no ambiguity because all isocontours intersect the surface at nearly
identical angles. In Figure 2¢ we illustrate this fact by showing the isocontours of a tetramer liquid
drop on a substrate identical to the colloid with the same lattice configuration for ¢;, = 0.9. Using
sessile drop simulations we can define a contact angle 6sp, which is given in Figure 2e.

In the MD framework, the immersion depth can also be calculated by obtaining the free energy
as a function of the vertical position of the center of the colloid 2, by thermodynamic integration
(Razavi et al. 2013): AF = [F(r) - dr, where F is the force on the particle at r. In calculating
the integral, one first places the particle in the nearly empty region above the interface, then it is
slowly displaced downward into the liquid, reequilibrating the system; finally, the force is averaged
while it is held at that position. The results are given in Figure 2d for various wettabilities, with
distance measured in units of o from the bottom of the computational domain and the interface at
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Molecular dynamics (MD) simulations for a nanoparticle interacting with tetramers. (#) Computational domain showing liquid
tetramers, a layered lattice floor, and a nanoparticle constructed from a face-centered cubic lattice of atoms of diameter o.

(&) Isocontours of density at the interface in units of o3 for c12 = 0.9, the coefficient of the strength of the attractive interaction
between the tetramers (atomic species 1) and the nanoparticle (atomic species 2). (¢) Sessile drop simulation of tetramer liquids atop a
solid with the same atoms and lattice structure as the nanoparticle, showing the isocontours of density in the same units and value of ¢1,
as panel 4. (d) Energy AF(¢) relative to immersion in the vapor phase as a function of position through the interface, z; /0. (¢) Contact
angles 6 obtained from energy minimization (F), the position of the nanoparticle at the interface (A), and the sessile drop configuration
(SD) for different values of ¢;;. Figure adapted with permission from Koplik & Maldarelli (2017).

500

2p 2 400 . The curves become flat for lower values of z fully inside the bulk liquid. A contact angle
based on the free energy minimum, AF/(wa’y) = —(1 + cos 6)?, is also plotted in Figure 2e,
and fairly good agreement is obtained for each of the methods.

Three important points can be concluded from the MD simulations: First, even for the lowest
wettabilities (c;; = 0.6) the particle remains trapped at the surface, translating and rotating only
along the surface. Second, the simulation of the change in energy as the particle is positioned
through the interface agrees remarkably with the continuum picture. Third, nanoparticles can
span the interfacial zone defined by the density; when we examine their translation and rotation,
the fact that they are not partially immersed in a bulk liquid affects their hydrodynamics.

The above studies examined colloids that were chemically homogeneous; recent attention has
focused on Janus colloids, in which the particle surface contains two faces, one with a small contact
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Continuum (#) and molecular dynamics (MD) (§) simulations of the interfacial energy of a Janus particle of radius # with hemispheres
that wet or do not wet the liquid. The energies are a function of the orientation angle ¥ and the immersion depth (d/z for the
continuum calculation and position zp /o for the MD calculation). Figure adapted with permission from Koplik & Maldarelli (2019).

angle with the liquid phase (a wetting face), and one with a large contact angle with the liquid
phase (a nonwetting face). In Figure 34, we illustrate an example in which one hemisphere is
nonwetting to the liquid (¢ = 112°), and one is wetting (¢ = 0°). Note that for the Janus particle,
the interfacial energy is a function of the orientation angle W (the angle between the symmetry axis
of the Janus colloid and the interface) and the distance from the particle center to the interface
(d/a). For the continuum simulation (Figure 34), the energy calculation begins at ¥ = 0° and
d/a = —1, which corresponds to the nonwetting side down and an initial position of the particle
completely in the vapor phase. Initially, the energy decreases because of the change in interfacial
area when the particle just breaches the interface between fluids 1 and 2. At W = 0°, the interaction
of the nonwetting face of the particle and the liquid as d/ increases to 0 soon overwhelms the
effect of the reduced interfacial area on the total change in energy. This increasingly unfavorable
interaction therefore represents a local maximum in the interfacial free energy. As d/a tends to 1,
the wetting side of the Janus sphere favorably contacts the liquid, hence the decrease in energy.
As the orientation angles increases to 7, the wetting area of the particle becomes more exposed
to the liquid at d/a = 0 and the energy decreases as a result. The lowest free energy occurs at
¥ = 7, where the wetting face is in complete contact with the liquid. More specifically, at an
immersion depth of 0 (therefore d/a = 0), the particle rests with all the wetting area in the liquid
phase and all the nonwetting area in the vapor phase. This location also corresponds to the largest
reduction in the interfacial area by the particle, since the cross-sectional area of the particle is
largest through the particle center. As seen in Figure 34, the result is a sharp minimum in free
energy. It is worth noting that the preferred Janus configuration of particles at ¥ = 7 leads to a
lower energy minimum than the case where the particle surface is uniform with a contact angle
of 6 =112°.

For the MD calculation (Koplik & Maldarelli 2019; Figure 3b) the Janus colloid is formed from
two sets of atoms forming cubic latices filling the hemispheres of the colloid: one set (labeled 2)
with a wetting interaction with a tetramer solvent (¢;, = 1.2, contact angle 8 = 0°), as determined
from the minimum interfacial energy of a particle made of only these atoms, and another set
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(labeled 3) with a nonwetting interaction (c;; = 0.8, contact angle ¢ = 112°). The results of
the thermodynamic integration for the interfacial energy (divided by the MD energy scale €) are
shown in Figure 35, and the landscape has the same features as the continuum plot. However, the
minimum for ¥ = 7 and z, ~ 40 (the location of the free surface in the absence of the particle) is
approximately 240¢ or

E(d/a) — E,

——— ~1.79,

which is greater than the continuum value of —3.0. The reason that the depth (and position) of
the minimum differs arises from the variation in liquid density near the minimum in the MD
simulations. There, the liquid has lower density near the contact line and exerts less attractive
force on the colloid. The free energy minimum occurs when the lower wetting half is immersed,
which requires a deeper depth relative to the distant interface, and at this point the liquid/vapor
interface is distorted, which incurs an additional free energy cost.

3. THEORETICAL STUDIES OF THE HYDRODYNAMICS
OF PARTICLES AT AN INTERFACE

We begin by examining the continuum theories for the translation and rotation of particles strad-
dling a fluid interface. MD simulations are discussed in Section 3.6. The flow generated by the
surface movement of the colloids is typically inertialess; hence, the starting point of continuum
models are, assuming the bounding fluids are Newtonian and incompressible, the Stokes and
continuity equations. Attention has focused principally on motion along flat interfaces, with the
immersion depth assumed constant (as determined by the balance in interfacial energies), and
with the interface remaining flat up to the contact line (viscous forces are small relative to surface
tension forces—capillary numbers are small). With these assumptions, the flow can be understood
(due to the linearity of the Stokes equations) as a sum of separate flow realizations. Here we
discuss this decomposition in the context of a sphere, although the discussion can be easily
extended to colloids of arbitrary shape, as we discuss below. Figure 4 illustrates the three general
motions for a sphere: (#) translation along the interface in the z-direction with velocity Ue,,
(/) rotation around an axis parallel to the interface (and through the particle center) with angular
velocity ©e,, and (¢) rotation around an axis (x) perpendicular to the interface (and through the
particle center) with angular velocity €2, e,. As in the previous section, « is the sphere radius, the
lower phase is denoted by 7 = 1 and the upper phase by i = 2, the bounding fluid viscosities are
denoted by w;, and d/a = cos6 denotes the immersion depth measured from the sphere center
to the interface (which is positive when the center is in the lower phase) as determined from the
contact angle 6. In this section, we focus on the first two canonical motions (# and 4); the third is
straightforward, does not involve any drag due to the rotation, and has been treated by Zabarankin
(2007).

For each of these motions, the resulting hydrodynamic flow is described by solving the Stokes
and, assuming the fluids are incompressible, mass conservation equations:

—Vpl‘ + ;L,-Vzv,- = 0, 1.

V. vV, = O, 2.

where V is the Laplacian operator and p;, p;, and v; are respectively the viscosity, pressure, and
velocity of phase i. Along the fluid interface with unit normal and tangential vectors n) and t),

respectively, for all three realizations in Figure 4, the normal velocity is zero for each phase, and
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A sphere of radius # immersed in a liquid at an immersion depth 4 set by its contact angle 6 (#) translating at velocity Ue;, (b) rotating
around an axis through the sphere center parallel to the interface with angular velocity 2 e,, and (c) rotating with angular velocity

Q| e, around an axis through the sphere center perpendicular to the interface (top, schematic representations; bottorm, the associated free
body diagrams). The viscosities of the upper (liquid 2) and lower (liquid 1) phases are denoted by w> and 1, respectively. Figure
adapted with permission from Das et al. (2018).

the tangential velocity and shear stress are continuous:

ng) - [veil = 0, 3.
) - [Veil = 0, 4.
ng) - [Tl -t =0, 5.

where we have T, = 1;(Vv; + Vv/), the subscript s denotes that the quantity is evaluated at the
surface, and the double brackets indicate a difference across the interface (phase 2 minus phase 1).

At the particle surface, for the translational motion, the normal velocity of the fluid at the
particle surface is equal to the normal velocity of the particle, and for the rotational motion, the
normal velocity is equal to zero:

ng, - [vpy — Ue.] = 0, 6.
ng) - [Q\Iey X Lp) — V(p)i] =0,

where v, denotes the fluid velocity evaluated at the section of the surface that intersects phase
i, and n@,) and r(, are respectively the unit normal to the particle surface and the vector from the
particle center to the surface. The usual assumption for the fluid velocity tangent to the surface of
the particle is that there is no slip—the tangential velocity of the fluid equals that of the particle.
For the translational motion of the particle (Figure 44), the use of this boundary condition does
not give rise to stress singularities at the contact line because there is no movement of the contact
line relative to the surface. Thus, we can apply the no-slip condition, tg, - [v) — Ue.] = 0, where
tp) is a unit vector tangent to the surface and v, is the velocity of liquid 7 at the particle surface.
However, for the rotational motion (Figure 4b), along one face of the sphere the meniscus recedes
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and along another face it advances. The resultant velocity field at the contact line results in a
nonintegrable stress singularity at the surface, which results in the torque required to rotate the
particle tending to infinity. To alleviate this singularity, the liquid can be assumed to slip over the
surface. The phenomenon of slip has been of long-standing interest, most recently with regard to
drag reduction (for reviews, see Lauga et al. 2007, Lee et al. 2014). In a continuum formulation,
slip follows the Navier formulation:
tp) - [V = Ue:] =2 [ng) - T - t)],
to) - [Q1€) X 1) = Vipi] = & [ng) - T - £ |-
Here, the difference between the surface velocity and the fluid at the surface in a tangential di-
rection is equal to a slip coefficient A (with units of length) multiplied by the shear stress Ty,
exerted on the surface in that tangential direction. (In this formulation, we assume implicitly that
the slip length is the same for both phases bounding the interface.) MD simulations on atomically
smooth surfaces have demonstrated slip on the molecular scale and have calculated A as a function
of the strength of the liquid/solid interaction (e.g., Voronov et al. 2007, Sendner et al. 2009). For
strong liquid/solid interactions that characterize complete or strong wetting of the liquid on the
solid surface, slip lengths are of the order of only a few molecular diameters [O(1 nm)], while rel-
atively weaker interactions of partially wetting fluids have slip lengths extending tens of diameters
[O(10 nm)]. Current tools for measuring 2 include particle image velocimetry, image velocimetry
enhanced with evanescent near-field illumination at the surface, AFM, and surface force apparatus
measurements (Neto et al. 2005). Several experiments are consistent with the MD calculations.
For smooth surfaces of a wetting liquid (e.g., water flowing along a hydrophilic surface), either zero
slip or coefficients less than a few nanometers are recorded, while for water over a partially wet-
ting hydrophobic surface (e.g., self-assembled octadecyl silane monolayers), slip lengths of tens of
nanometers are obtained (e.g., Vinogradova & Yakubov 2003, Cottin-Bizonne et al. 2005, Huang
et al. 2006, Bouzigues et al. 2008). For nonpolar liquids wetting smooth hydrophobic surfaces
(the weakest liquid/surface interactions), slip lengths are of the order of a few tens of nanometers
(McBride & Law 2009, Bowles et al. 2011, Zhu et al. 2012). Colloids adsorbing and straddling an
interface show intermediate wettability to each phase; hence, slip lengths of the order of tens of
nanometers are expected. Thus, slip lengths relative to the colloid radius would be of order 0.01
for a particle of radius 1 pm. However, it is important to note that the surface of colloids can be
rough, and as such, the contact line can be pinned by the surface roughness. In this case the particle
is not free to rotate and the torque on the particle generated by the translation is balanced by the
surface tension forces exerted by the meniscus asymmetrically over the particle surface. This point
has been discussed by Dorr & Hardt (2015), and MD simulations detailed below in Section 3.6
provide an example of this pinning for nanoparticles with rough surfaces.
From the solution for the flow field, the drag and torque exerted on the particle in the two flow
realizations can be computed straightforwardly as

2
Fz = Z /:/ (=pmg) +ng) - Tgy) - €dE;, 9.
T
2
Tow =) / / [t % (=ping) +ng) - T)] - €,dZ;, 10.
[
respectively, where %, is the surface area of the particle adjoining the bottom (i = 1) or top (i =

2) phases. For the translational motion in the +z-direction (Figure 44), the fluids bounding the
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interface exert a drag in the opposite (—z) direction, defining a drag coefficient £}, by the rela-
tionship ). = —pu 4k}, U. This translational motion also generates a torque around an axis par-
allel to the y-direction and through the particle center that acts to rotate the particle. This torque
arises because the shear stresses exerted by the bounding liquids on the sphere are asymmetric due
to the difference in the liquids’ viscosities, and a torque drag coefficient £%. is defined by (), =
—p14* k.U . The rotational motion (Figure 4b) generates a resistive torque around the axis passing
through the sphere center and in the y-direction, as defined by Tiy), = — 114’ #5.Q, where ¥4 is the
resistive torque coefficient due to rotation. Finally, due to the rotation, a drag in the z-direction
is exerted by the bounding fluids due to the shear stress generated by the motion and is given
by Fipy. = —p1a* k52, where k%) is the drag coefficient due to the rotational motion. These drag
coefficients are assembled in a matrix form that defines the net forces and torques on the particle:

FT ok U
@2 | — _gy,| DD , 11.
[T&»/f‘} [k‘T er [”Q

where the T superscript indicates the total drag on the particle. All four coefficients are a function
of the nondimensional groups, the scaled immersion depth (d/4), the slip coefficient (A/4), and
the ratio of the viscosity of the upper to the lower phase (8 = w2 /1)

3.1. Single Particle Half-Immersed at a Clean Fluid Interface

Consider first spherical colloids. If their surfaces are neutrally wetting (9 = 7 /2), then the colloid
straddles the surface symmetrically with the interface as its mirror plane (4 = 0). In this case,
one can take advantage of the symmetry to analytically describe the translation and rotation of
the particles. In this section, we focus on clean fluid interfaces (see below for fluid interfaces
with amphiphilic monolayers and bilayers). For the translational motion, if the fluid viscosities
are equal (B = 1), then the flow is symmetric about the interface and the drag forces on the two
halves of the sphere above and below the interface are equal and can be expressed as 14%,(d = 0,
B =1, x/a)paU . From the solution for the Stokes drag on a sphere in an infinite uniform medium
(which is identical to this symmetric case), the drag coefficient on each halfis 37 (1 + 24 /a)/(1 +
31 /a). The torques exerted on each half of the particle due to the translation (about the y-axis) are
equal in magnitude and opposite in sign so that the net torque is equal to zero. From the solution
for the translational motion of the particle in an infinite medium, the torque exerted on each half
of the sphere around the y-direction is given by £(37/2)[1/(1 + 3A/a)]ua’ U. Since the flow is
symmetric about the (mirror) fluid plane, the shear stress at the interface in this flow field is zero.
In this symmetric solution, for the flow fields in each fluid phase bounding the interface, in the case
of no slip, the velocity field is independent of viscosity since the boundary conditions at the sphere
surface (velocity equal to particle velocity) and the fluid interface (zero normal velocity and zero
shear stress) are all independent of viscosity. The pressure distribution is then derived from the
velocity distribution and is linear in the viscosity. For translating particles at half-immersion for
the case in which the viscosities of the bounding fluids are different, this same symmetric hydrody-
namic solution for the velocity field is valid for each region (since the boundary conditions are in-
dependent of viscosity). Thus, the drag and torque can be obtained by summing the contributions
on each half for the corresponding viscosities. The drag is therefore given by Fy,). = 3k}, (d = 0,
B=1,21/a=0) (s + pu2)aU =37 (u + p2)alU, or k5(d =0, B, A/a = 0) = 3 (1 + B), and the
generated torque is equal to T(y), = 37/2(1u1 — u2)a’U, or k5 (d = 0, B, Afa = 0) = 37 /2(1 — B).
For the important case of a sphere symmetrically straddling a gas/liquid interface (1, = 0), the
hydrodynamic force on the upper half of the sphere is zero, and from the above arguments and

www.annualreviews.org o Particle Hydrodynamics at a Fluid Interface



Annu. Rev. Fluid Mech. 2022.54. Downloaded from www.annualreviews.org
Access provided by City College of New York on 01/02/22. For personal use only.

FL54CH18_Maldarelli

Liquid or

gas 2, U, X
a h t

y
<---
2R
Liquid 1, y4
Figure 5

ARjats.cls October 25,2021 12:9

Liquid or Liquid or

gas 2, U, X gas 2, U, x -
b U c a U ",‘ '-“
z &—»z —— :
> . roJ

= R y
Liquid 1, s Liquid 1, e
I

Symmetrically placed bodies of revolution partially immersed in a liquid of viscosity w1 below a liquid of viscosity w,. Schematic
representation of (2) an oblate ellipsoid, (») a disk of radius R, and () fused spheres of radius # and a contact radius , all translating at

velocity Ue,.

506

by noting the gas/liquid interface is stress free, we can determine the drag coefficient to be

142x/a
t _ _ _
kpd=0,8=0,1/a)=3n 1433/
and the torque coefficient to be
3m 1
t —_ —_ J—
brd =0, =0,3/a) =

The symmetry arguments used above are not applicable to the case of imposed rotation about
the y-axis since the shear stress at the fluid interface is not stress-free and the slip boundary con-
dition involves the viscosity. However, the rotational problem can still be solved analytically by
eigenfunction expansion in Gegenbauer polynomials, which has been undertaken for a tangential-
stress-free interface using the Navier model for slip at the rotating surface of the sphere (O’Neill
etal. 1985). The resistive torque due to the rotation was computed by series summation as a func-
tion of A and diverges as the slip length decreases to zero owing to the contact line singularity
with a correlated logarithmic divergence: #1. = Kjln(#/)) + K; as A tends to 0, with K; ~ 4.5 and
K; ~2.5. The drag in the z-direction generated by the motion was found to equal

kpd=0,8=0,1/a) = %TIS/\M =k,
as required by reciprocity.

Aside from the sphere symmetrically straddling the fluid interface, other particle shapes have
been studied that are symmetric about a plane dividing the particle and straddle the surface with
the interfacial plane coincident with the mirror plane. These symmetric shapes are bodies of revo-
lution and include the oblate ellipsoid (generated by rotation about the minor axis of an ellipse), the
degenerate form (a circular disk), and fused spheres (Figure 5). As with the sphere, the symmetry
of the configuration in these cases allows for analytical solutions but only for the translation along
the surface. Again, these solutions require that (aside from the circular disk) the contact angle at
the intersecting perimeter equals 77 /2 and, therefore, that the particle surface (assumed uniform
in its wettability) is neutrally wetting with respect to the two phases bounding the interface.

For the oblate ellipsoid (Figure 5#), defining 4 to be the protrusion above the interface, and
R the radius of the contact line on the surface, and € = /R, the drag on the spheroid for motion
in the z-direction is given by (Stone & Ajdari 1998, Happel & Brenner 2012, Stone & Masoud
2015, Dorr et al. 2016)

-1

3 —2¢? .

Fipy. = 81 + Mz]ﬂRU|:(IZ;/Zarcsm <\/1 - 82> __¢ i| , 12.
—¢

Maldarelli et al.



Annu. Rev. Fluid Mech. 2022.54. Downloaded from www.annualreviews.org
Access provided by City College of New York on 01/02/22. For personal use only.

FL54CH18_Maldarelli ARjats.cls October 25,2021 12:9

i = 5 G+ RU [ 14 e 4 06| G, B3.
where the case ¢ « 1 describes an oblate shape only protruding a small distance into the bound
fluid phases relative to the contact line radius. For the case of ¢ — 0, the drag on a circular disk
(Figure 5b) is obtained as F, = 16/3(11 + p2)RU, as originally derived by Ranger (1978).

For fused spheres that intersect as a cusp along the contact perimeter (Figure 5¢) at the fluid
interface with angle 7, and radius 7 equal to # sin 9, Zabarankin (2007) has obtained an analytical
solution for the drag due to motion in the z-direction using a Mehler-Fock integral transform
of the Stokes equations written in toroidal coordinates (the surfaces of the sections of the sphere
coincide with the toroidal coordinate surfaces). As demonstrated below, this solution can be used to
evaluate the drag on spheres at different immersion depths in a gas/liquid interface using symmetry
arguments.

3.2. Single Particle Straddling a Clean Interface at Arbitrary Immersion Depth

When the particle [either a sphere (Figure 4) or a body of revolution (Figure 5)] is straddling the
fluid interface not symmetrically, but at a distance 4 above or below the surface (due to contact
angles larger or smaller than 7 /2), both analytical and numerical solutions have been obtained.
We discuss first the translation of spherical colloids along the surface of a gas/liquid interface
(u2 = 0 or B = 0) in the z-direction (Figure 44), where analytical solutions follow using the
transform calculations that Zabarankin (2007) used for fused spheres (Figure 5¢). These solutions
are symmetric with respect to the mirror plane (z = 0) of the fused spheres, and the shear stress
is therefore equal to zero along this plane. Hence, the part of the symmetric solution below the
mirror plane can represent the solution for a sphere at a gas/liquid interface and submerged to
a depth d = a cos g, where 79 now represents the contact angle 6. Zabarankin (2007) obtained
solutions for the drag for 0 < o < /2 corresponding to immersion depths into the liquid from
d = 0 (symmetrically straddling the interface) to d = 1 [completely emerged and just touching the
interface (z = 0)]. The computed values are shown in Figure 6, where the drag coefficient £}, is
normalized by the Stokes drag coefficient in an infinite medium (6 a;).

When the sphere center lies above or below the interface (—1 < d/a < 1), solutions have
been obtained using boundary integral (Pozrikidis 2007, Luo & Pozrikidis 2008), finite-difference
(Danov etal. 1995,2000), and finite-element methods (Das et al. 2018), and values of the drag coef-
ficients from these simulations complete the range of d/a (see Figure 6a). All of these calculations
are for a slip coefficient of zero, except for the finite-element calculations, which are for a value
of A/a = 0.01 (which was shown to be within a few percent of A/2 = 0). The drag coefficient is
found to increase monotonically with the immersion depth into the liquid phase until the particle
becomes fully immersed (d/a = 1). This is as expected because as more of the surface area of the
particle contacts the viscous liquid and less contacts the gas phase (which does not exert a viscous
traction), a greater drag force is generated. For d/a > 1, Luo & Pozrikidis (2008) using bound-
ary integral calculations and Davis et al. (1994) using eigenfunction expansions in bispherical and
tangent sphere coordinates calculated k},; these are also shown in Figure 6. As the particle locates
further away from the interface (d/a > 1), the drag continues to increase monotonically. This is
due to the influence of the gas/liquid interface on the flow around the particle, as well as the re-
sultant viscous shear stress. In the gap between the particle surface and the fluid interface, viscous
stresses are reduced, as the gas/liquid interface is mobile and velocity gradients are smaller. The
further the particle moves into the liquid phase, the larger the gradients and the larger the drag,
as the liquid in the gap presents a greater resistance to the particle’s translation. For immersion
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(@) Drag coefficient for translation %, (b) the resistive torque due to rotation k%, and (c) the cross-coefficient (generated torque due to
translation or drag due to rotation) as a function of immersion depth d/« for spheres on a clean fluid interface. The drag coefficient is
normalized by the Stokes drag in a bulk liquid, the resistive torque coefficient is normalized by the value in the bulk, and the
cross-coefficients are normalized by the value when the sphere straddles the interface, equally immersed in both phases.

depths d/a larger than O(10), &}, asymptotes to the Stokes drag coefficient 6wau, for translation
in an infinite liquid as the effect of the fluid boundary disappears.

For rotation of a spherical particle about the axis passing through the sphere center and in the
y-direction (Figure 4b) at a gas/liquid interface, a slip coefficient A has to be retained in order
for the resistive torque on the particle due to rotation to remain finite (Section 3.1). As noted
earlier, solutions for #}. have been obtained analytically by O’Neill et al. (1985) for half-immersion
and different values of A /4, and these were shown to diverge logarithmically in . Using a finite-
element method, Das et al. (2018) obtained solutions for £7. for rotating spheres straddling the gas/
liquid interface and further immersed in the liquid phase. These results, along with the calculation
of O’Neill etal. (1985), are shown in Figure 6b for 1/ = 0.01 and g = 0, where the resistive torque
kY. due to rotation is divided by the resistive torque coefficient when the colloid is completely
immersed in the liquid, 87 ua® /(1 4 31 /a). The resistive torque increases with an increase in d/a,
which corresponds to a decrease in contact angle. As the contact angle decreases, larger velocity
gradients develop in the liquid cusp region between the sphere surface and the interface near the
contact line because the cusp angle decreases. (Recall that the fluid interface is assumed to remain
flat.) The increase in velocity gradients increases the resistive viscous shear on the rotating sphere
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and therefore the torque. At d/a = 1, the sphere is completely immersed in the liquid and just
touching the interface. The resistive torque coefficient is finite, because the surface of the particle
has finite slip (A/2 = 0.01). At this point where the rotating sphere breaches the interface, ;.
reaches its maximum value. As d/a increases further, the contact line is removed, and the effect
of its cusp region on generating large resistive stresses disappears. For d/a > 1, k. decreases,
as the resistive torque is only due to the viscous drag around the rotating particle. Davis et al.
(1994) obtained analytical solutions for d/a > 1 for the case in which the colloid interface has zero
slip. When the sphere is in the immediate vicinity of the interface (1 < d/a < 1.1), values of &%
calculated by Davis et al. (1994) are larger than the A/2 = 0.01 coefficients in Figure 65 due to
the surface slip, but they become nearly equal when the gap between the fluid interface and the
surface of the particle becomes more than a few tenths of # because the slip coefficient is small.
Larger slip coefficients were also investigated by Das et al. (2018), which led to reduced values of
ki,

As noted in Figure 44, a torque is generated by the translation of the particle in the z-direction
due to the asymmetry in the tractions exerted on the particle from the bounding phases on either
side of the interface. In the case of a gas/liquid interface, this asymmetry is very significant be-
cause the gas phase does not exert any tractions and acts to rotate the particle in a clockwise
direction (there is a positive value for the cross-coefficient). The cross-coefficient £. describing
the torque due to translation follows from symmetry arguments for 4 = 0 in Section 3.2 and,
for a gas/liquid interface, is #5.(d = 0, B =0, A/a) = 3m/2)[1/(1 4+ 31 /a)]. For other immersion
depths, Pozrikidis (2007) and Das et al. (2018) have obtained solutions for spheres straddling
different positions at the interface, and Davis et al. (1994) and Luo & Pozrikidis (2008) have ob-
tained solutions for spheres below the interface. These results for the cross-coefficient are shown
in Figure 6¢ as a function of d/a, normalized by the value when the sphere is half-immersed in
the liquid with zero slip, 37 /2)[1/(1 + 31/a)]. As the sphere just breeches the interface from the
gas side, the torque exerted on the colloid by translation is small since this torque arises from the
liquid tractions and the contact area with the liquid is small. With further immersion, £%. increases,
reaching a maximum at half-immersion (d/2 = 0) (where the asymmetry in the tractions across the
sphere is the largest) and finally decreasing to zero as the particle becomes completely immersed
in the liquid and located away from the interface. The other cross-coefficient, the normalized
drag due to rotation (k},), is found to be identical in prior studies as required by reciprocity, and
its dependence on d/z follows also from the asymmetry arguments.

When the sphere translates in the z-direction along interface between two viscous liquids (i.e.,
B # 0), Pozrikidis (2007) has calculated the drag coefficient and the generated torque due to the
translation. As expected, relative to the case when the phase above the interface is a gas, when
the sphere straddles two viscous liquids with its center above the interface, the drag increases due
to the increased viscous tractions. The tractions on both sides of the interface produce a drag in
the —z-direction so that the drag coefficient is always of one sign. The torque coefficient displays
more interesting behavior: For the gas/liquid interface, the generated torque is always in the clock-
wise direction (positive coefficient) due to the action of the tractions in the liquid phase beneath
the interface, which generate a net torque in that direction. However, as the upper phase becomes
more viscous, the tractions in that phase become more important and generate a torque in the
counterclockwise direction. When the particle is positioned further in the upper phase and the
viscosity contrast is large enough, the net generated torque becomes negative. When the bound-
ing phases have equal viscosities, the cross-coefficient becomes antisymmetric and equal to zero
for d/a = 0, as noted above for spheres half-immersed at an interface.
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3.3. Single Particle Straddling an Amphiphilic Monolayer Interface
or a Membrane Bilayer

Two applications in which the hydrodynamics of particles straddling an interface is important are
the rotation/translation of proteins or other objects bound in biological membranes (Sickert et al.
2007) and the use of colloids as microrheology probes to measure surface viscosities (see, e.g.,
Elfring et al. 2016). Hydrodynamic studies must therefore include, in contrast to the cases dis-
cussed above in which the fluid interface was assumed to be clean and stress-free, the effects of
an adsorbed amphiphilic monolayer or bilayer at the interface. In the literature, two fundamental
models have been constructed to describe these effects: In the first, the particle is assumed to be
embedded in a thin viscous layer of finite thickness representing the membrane or the monolayer.
In the second, a monolayer or bilayer is assumed to be adsorbed at a fluid interface of zero thick-
ness, and the particle, straddling the interface, protrudes into the surrounding phases. We focus
attention on this latter model, as it follows the model constructs of the prior subsections, and we
relate some of the results to the model in which the particle is embedded into a thin film. For
the particle-protruding model, spheres and oblate ellipsoids have been studied. The monolayer or
bilayer is modeled as a 2D surface fluid—typically a Newtonian surface fluid with surface stresses
derived from resistance to interfacial shear and dilation, and an isotropic tension representing the
surface pressure as a function of the surface concentration of the amphiphile. The concentration-
dependent isotropic tension models the effect of Marangoni tractions on the fluid surface arising
from gradients in the tension due to gradients in the surface concentration of the amphiphiles.
The equation for the tangential stress balance at the interface is modified to includes the in-plane
surface stress tensor T:

ng) - [Tl te +t - Vs - (To) =0, 14.
Ty = - I+ pu(Vvs + VV)) + &, Vs - v, 15.

Here 1, and «, are the surface shear and area dilatational viscosities, respectively, which multiply
the shear rate and the rate of area dilation V; - vi; TI(T') = y — y(T") is the surface pressure, which
is a function of the surface concentration I' of the amphiphile as defined by an equation of state and
the tension of the clean interface y¢. The linear equation of state, representing small deviations
from an equilibrium state with concentration I'eq and pressure ITg, is the simplest model for
I(T") and is given by TI(T") = Ieq + ETeq(T — T'eq), where £ = (1/T¢q)(011eq/dTeq) is the Gibbs
elasticity. The surface concentration is then solved with a surface mass balance.

The translational movement of a disk (radius R) along a flat fluid interface with an adsorbed
amphiphilic monolayer or membrane has been examined by Stone & Ajdari (1998) and Sickert
et al. (2007) for a surface incompressible layer and a gas/liquid interface with shear viscosity
us (Figure 7a). These calculations were undertaken for a fluid interface a distance b above a
flat surface with an intervening Newtonian liquid layer, and dual integral equations were solved
to compute the drag coefficient £,. For the case in which the surface viscosity is equal to zero
and the particle radius is much smaller than the the liquid layer (5/R > 1), the calculated
drag is F). = —8u1RU, which is 3/2 times larger than the result for a clean interface, F,. =
—(16/3)1RU, and in agreement with the result of Fischer et al. (2006) that the surface incom-
pressibility retards the translation of a particle embedded in the surface. Stone & Ajdari (1998)
also presented results for finite values of the surface shear viscosity, expressed in terms of the
dimensionless Boussinesq number B = /(11 R), which characterizes the ratio of surface viscous
to bulk viscous tractions on the translational motion. For #/R > 1, Stone & Ajdari (1998) showed
that as 3 increases and surface viscous effects outscale bulk viscous effects, }, increases and can
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(a, Top) A disk of radius R embedded in a fluid interface with a surfactant monolayer or bilayer of shear viscosity us, translating at
velocity Ue; atop a film of thickness 4 and viscosity (1. (Bottomz) Translational drag coefficient kf, plotted against the dimensionless
Boussinesq number B = us/(u1R). Panel 2 adapted with permission from Stone & Ajdari (1998). (b,c, Top row) Sphere of radius «,
half-immersed in a liquid phase of thickness b and viscosity i1, (b) translating at velocity Ue. or (c) rotating at angular velocity Q| e,.
The bottom row shows (b) the translational drag coefficient and (¢) the rotational resistive torque coefficient for these respective cases,
divided by the values when the sphere is completely immersed a semiinfinite liquid phase, plotted against #/4. Panels & and ¢ adapted
with permission from Das et al. (2018).

be an order of magnitude larger than the value for for zero surface viscosity. The calculations of
Stone & Ajdari (1998) are plotted in Figure 7a.

Saffman & Delbriick (1975) and Saffman (1976) calculated the translational drag of a cylinder
of radius R and thickness » moving in a thin, planar film of the same thickness and viscosity uf,
which defines an effective surface viscosity 15 = hur. The film is bounded by semiinfinite liquid
phases with equal Newtonian viscosities 1, or (by symmetry) by gas and liquid phases defining a
Boussinesq number B = p/(i11R) = (bue)/(n1R). In the limit in which the bounding phase vis-
cosities are smaller than the film phase, B > 1, Saffman & Delbriick (1975) developed an asymp-
totic expression for the drag coefficient in the limit in which the cylinder can be considered a point
force:

prdiskin film __ __ 4 RB
@)= In(2B) —y

In Figure 74, the Saffman & Delbriick (1975) resultis plotted and is shown to agree with the exact

U B>1).

solution of Stone & Ajdari (1998) in the limit of large Boussinesq number and sufficiently large
h/R. This expression was improved for a larger range of B by Hughes et al. (1981). Relaxation of
the surface incompressibility limit and inclusion of Marangoni tractions driven by gradients in the
amphiphile concentration created by the translation were examined by Dimova et al. (2000) and,
more completely, by Pourali et al. (2021).

Fischer et al. (2006) examined the translation of a sphere through a monolayer on a flat gas/
liquid interface that was assumed to be two-dimensionally incompressible (V; - v, =0), and
obtained solutions for the translational drag coefficient 4}, (assuming a zero-slip coefficient)
as a function of the immersion depth d/a. Adsorbed monolayers of amphiphiles have high
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elasticities (or dilatational viscosities), which lead to nearly incompressible behavior; therefore, the
limit V; - v, = 0 can be viewed as characterizing how strongly the monolayers or membranes affect
the particle translation. For the case in which the shear viscosity of the membrane is equal to zero
(s = 0), when compared to the values for a clean interface, the results of Fischer et al. (2006) make
clear that the restriction of incompressibility limits the mobility of the particle immersed in the
monolayer/membrane and increases the drag coefficient. Values for the cross-coefficient &Y. were
also calculated and followed the same trend as shown in Figure 5, except that the coefficient values
are larger for each value of d/a. As with the case for the translation of a circular disk along a flat
incompressible fluid surface, the inclusion of shear viscosity increases the drag; in the limit of large
Boussinesq number, where the shear viscosity dominates bulk viscosity, Fischer et al. (2006) found

47 RB
Fpe=— U (B> 1),

In(555) — v
where 6 is the contact angle. This expression agrees with the Saffman expression (Saffman &
Delbriick 1975, Saffman 1976) except for the term 28 in the logarithm is replaced by B/sin#,
accounting for the fact that the sphere is protruding into the liquid while the disk is embedded
entirely in the film. The studies of Fischer et al. (2006) have been extended by Masoud & Stone
(2019) and Stone & Masoud (2015) for the case of spheres and oblate spheroids moving over a

gas/liquid interface with an adsorbed monolayer or bilayer in which these objects only protrude
into the liquid phase a distance &, that is small relative to the major axis of the ellipsoid or the
radius of the sphere.

The above sections discuss the hydrodynamics of a single colloid on a planar fluid interface
that is bounded by either two semiinfinite liquid phases, or a gas and a semiinfinite liquid. If the
interface is next to a solid surface, then the particle motion will be affected by the interaction with
the surface as mediated by the intervening liquid. This problem has been addressed for straddling
spheres on a clean interface by Das et al. (2018) (Figure 7b,c¢) or for disks by Stone & Ajdari (1998)
(Figure 74), where the fluid interface has an adsorbed amphiphilic layer or bilayer membrane. In
both studies the interface is bounded by a gas phase and a liquid layer atop a solid surface. In
Figure 7b the drag coefficient is plotted as a function of the thickness of the underlying liquid
layer for a sphere straddling the interface with a contact angle of 7 /2. The coefficient is normalized
by the drag coefficient when the solid surface is infinitely far from the interface (37), and it is
clear that the presence of the wall increases the drag as the underlying liquid layer exerts a larger
viscous resistance due to the no-slip condition at the wall creating a larger velocity gradient in
the layer. For a rotating sphere half-immersed in the liquid, the coefficient of resistive torque
does not show a large increase with decreasing layer thickness (Figure 7c), as resistance generated
by the large gradients near the contact line is the dominant contribution to the resistive torque.
For a disk translating edgewise on a gas/liquid interface with a amphiphilic monolayer or bilayer,
the drag similarly increases with decreasing layer thickness, as shown in Figure 74 for a fixed
value of the monolayer shear viscosity (Boussinesq number). Note importantly that as B3 increases,
the retarding effect of the surface shear viscosity becomes dominant, and a decrease in the layer
thickness leads to a small increase in the drag coefficient.

3.4. Pairwise Interactions of Colloids Straddling a Fluid Interface

The above sections make clear that the hydrodynamics of a single particle straddling a fluid inter-
face in Stokes flow has been studied in some detail. The hydrodynamic interactions of multiple
particles has not been examined as extensively, particularly on a fundamental level that begins
with pairwise interactions. For colloids completely immersed in a bulk phase in Stokes flow, these
pairwise interactions are well understood (e.g., Jeffrey & Onishi 1984). In particular, for pairs of
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Drag coefficients (2) f1, () f2, (c) f3, and (d) f4 for the canonical pairwise motions of two spheres of radius # on a fluid interface as a
function of immersion depth (contact angle 0) and center-to-center separation distance €. Cases 1 and 2 (#,0) are motions parallel to the
line of centers connecting the spheres, and cases 3 and 4 (¢,d) are motions perpendicular to the line of centers. The drag coefficients are
scaled by the coefficient of an isolated sphere at that immersion depth, k},(d/a, B = 0). Figure adapted with permission from Das et al.
(2021).

spheres rotating and translating relative to one another in a liquid phase at a separation ¢, the drag
and resistive torque coefficients (and the corresponding cross-coefficients) have been calculated
by analytical and numerical methods. For a pair of spherical colloids straddling a flat gas/liquid
interface, each at an immersion depth d, Das et al. (2021) have computed the drag coefficients for
the spheres traveling in tandem along [case 2; f>(d/a, £ /a)] or perpendicular to [case 4; f3(d/a, £/a)]
their line of centers, as well as for spheres with oppositely directed motion along [case 1; fi(d/a,
¢/a)] or perpendicular to [case 3; (f2(d/a, £/a)] their line of centers (Figure 8). The drag coeffi-
cients, scaled by the coefficient of an isolated particle at that immersion depth, k5, (d/a, g = 0),
are plotted in Figure 8 as a function of the separation distance between the spheres for different
immersion depths.

For in-tandem motions (Figure 8b,d) the coefficients increase with a decrease in the separa-
tion distance and collapse into one curve for all immersion depths. These collapsed curves coin-
cide with the drag coefficients computed by Jeffrey & Onishi (1984) (normalized by the Stokes
drag of an isolated particle in an infinite medium) for two particles moving in tandem and com-
pletely immersed in the liquid either along the line of centers or perpendicular to line of centers.
These calculations verify a simple rule for calculating the in-tandem coefficients at a flat gas/liquid
interface:

fidjat)a) _ fis(t/a)
ky(d/a, B =0) 6

(i =2,4), 16.

where f;.(¢/a) and fi(d/a,£/a) are drag coefficients in an infinite medium and on the surface
simply nondimensionalized by pa. For oppositely direct motions (Figure 84,c), the scaled resis-
tance coefficients increase with a decrease in separation distance but do not collapse for different
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immersion depths to the corresponding normalized drag coefficient curves for particles in an in-
finite medium. When the particle preferentially wets the liquid (for contact angles less than 7/2),
the scaled resistance increases without bound as the separation distance tends to zero because of
the unbounded increase in the lubrication forces. For oppositely directed motions in which the
particle resides predominantly in the gas phase, the scaled resistance tends to a finite value at zero
separation since upon contact fluid remains entrained in the gap between the particles. Only for
neutral wetting do the scaled resistances collapse to the curves for particles immersed in an infinite
medium, due to the symmetry of the motion.

3.5. Hydrodynamic Interactions of Multiple Particles at a Fluid Interface

Several studies have examined the hydrodynamic interaction of multiple particles on a flat inter-
face. Dehghani et al. (2017) and Barman & Christopher (2016) studied a surface shear (Couette)
flow, with a 2D Stokesian dynamics simulation that included the interparticle forces of capillary
and electrostatic repulsion. This work was extended to study aggregation in the absence of an
imposed flow (Dehghani & Christopher 2019; Rahman et al. 2019a,b). Pairwise hydrodynamic
interactions were accounted for by Equation 16. The drag on a planar array of immobile colloids
on a gas/liquid interface (d/a = 0) was studied by Vidal & Botto (2017). They placed the array,
fully immersed, at the midplane of a channel with a shear flow and used the symmetry to obtain
the drag on the particles at an air/liquid interface (half the fully immersed drag). Discrete-element
and Brownian dynamics simulations (see Nishikawa et al. 2003, 2006; Fujita et al. 2004; Millett &
Wang 2011; Uzi et al. 2016) have simulated the self-organization, with detailed accounting using
diffuse interface theory, of the capillary attraction and electrostatic interaction forces. Particles that
are magnetized by an external magnetic field and adsorbed at a gas/liquid interface (or just below
the interface) have been a model system for understanding 2D particle dynamics (e.g., Zahn et al.
1997; Rinn et al. 1999; Zahn & Maret 1999; Kollmann et al. 2002; Léwen et al. 2005; Vandewalle
etal. 2012, 2013; Lumay et al. 2013; Darras et al. 2018; Du et al. 2018; Hilou et al. 2018).

3.6. Molecular Dynamics Simulations of the Translation of Nanoparticles
on a Fluid Interface

The MD framework for studying the motion of nanoparticles on a vapor/liquid surface was dis-
cussed in Section 2. The liquid was composed of tetramers and the nanoparticle was a sphere of
atoms cut from a cubic lattice. The atoms all interacted by L] potentials with the interaction con-
stant ¢;, describing the attraction of the nanoparticle atoms to the tetrameric liquid atoms. The
larger this interaction, the more wettable is the nanoparticle to the liquid and, at equilibrium, the
deeper is the immersion of the nanoparticle into the liquid side of the interface (smaller contact
angle). Using this model, Koplik & Maldarelli (2017) obtained the drag coefficient using three dif-
ferent methods. In the first, the diffusive motion of the nanoparticle along the surface was observed
in time, and from the mean square displacement, the diffusion coefficient was calculated. From
the diffusion coefficient and the Stokes—Einstein equation, the drag coefficient on the particle was
obtained. Alternatively, the velocity autocorrelation for this diffusive motion was measured, and
the diffusivity and drag was computed. Third, the nanoparticle was dragged at constant velocity
along the interface (atits equilibrium immersion depth), and the force was measured and averaged
to compute the drag coefficient. In all these simulations, the particle was allowed to freely rotate.
A final simulation was undertaken in which the particle was moved at a constant velocity along
the surface, but the rotation was suppressed and the force and drag coefficient were measured.
The drag coefficients obtained by these methods are plotted as a function of the interaction
energy ¢y, in Figure 94, where the drag coefficients are divided by the drag on the nanoparticle in
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(@) Drag coefficients normalized by the bulk Stokes drag &}, as a function of the interaction parameter c13: ¢
is the drag coefficient from a continuum study for a no-slip sphere (Figure 6), £ is the drag coefficient
calculated from the mean square displacement of diffusive measurements using the Stokes—Einstein relation,
&v is the drag coefficient obtained from the velocity autocorrelation of diffusing spheres, §p is the drag
coefficient directly measured for a freely rotating sphere dragged along the interface, and £xr is the drag
coefficient directly measured for a nonrotating pulled sphere. () Rotation angle W as a function of
nondimensional time 7 as a particle diffuses along the surface. Figure adapted with permission from Koplik
& Maldarelli 2017).

a bulk medium. This drag was also obtained by MD simulation of a nanoparticle diffusing along
or being pulled at a constant velocity in the tetramer liquid and away from the interface. The
value obtained was in good agreement with the Stokes drag. From Figure 9, it is clear that the
coefficients computed by the different methods are in agreement and demonstrate that the greater
the immersion depth, the larger the drag coefficient, in agreement with the continuum calculations
(Figure 6). Figure 9 also plots the relative drag coefficients from the continuum calculations.
The MD drag coefficients are systematically smaller at each immersion depth, a result that can
be attributed to the fact that the nanoparticles translate through an interface of reduced density
and interfacial traction (Figure 5). The MD simulations also provide a unique perspective on the
rotation of the nanoparticle and provide insight into the effect of roughness, as the nanoparticle
surface is not smooth. In Figure 95, the angle W between a fixed line through the nanoparticle
and the interface is plotted as a function of time for a particle diffusing along the surface for ¢, =
0.7. It is clear that the rotation is not completely free, but executes stick—slip motions due to the
surface roughness.

4. EXPERIMENTAL MEASUREMENTS OF DRAG COEFFICIENTS
FOR PARTICLES MOVING ALONG A SURFACE

4.1. Isolated Particles

Some experimental work has been done on measuring the drag force on isolated spherical colloids
forced to move along a surface by capillary or magnetic forces by equating the actuating forces to
the Stokes drag. To compare the drag to the theoretical predictions of Figure 6, one also needs the
contact angle or the immersion depth, and these measurements were discussed above (Section 2).
For single spheres, Petkov et al. (1995) measured the velocity of glass particles (a few hundred
micrometers in radius) that translated up an air/water meniscus. Contact angles were obtained by
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visualization. A trajectory was simulated as a function of time and comparison with the experimen-
tal data yielded the Stokes drag, which was in very good agreement with the theoretical predictions
given by Figure 6. Vassileva et al. (2005) measured the drag on single glass particles a few hun-
dred micrometers in radius moving up a meniscus at the pentadecane/glycerol-water interface
with matched viscosities. The contact angles were measured by direct visualization. Compari-
son of the experimental trajectories with the simulations yielded a value for the drag coefficient
slightly larger than that of the theoretical prediction. Ally & Amirfazli (2010) used polystyrene
particles (a few micrometers in radius) embedded with magnetite floating on planar air/water and
air/silicone oil interfaces. Ally & Amirfazli (2010) applied a measured magnetic field along the
surface to move the particles, and contact angles were measured using film trapping and interfer-
ometry. The experimental trajectories were in good agreement with the simulation values using
the drag coefficients in Figure 6.

Experiments on smaller spherical colloids (100 nm—1 um in diameter) in which the diffusivity is
first measured directly by tracking the fluctuating position of the particle due to Brownian motion,
and then computing the drag coefficient from the Stokes—Einstein relation, do not systematically
agree with theoretical predictions. For hydrophobic particles at the decalin (oil)/water interface,
Peng et al. (2008) obtained a diffusion coefficient approximately equal to the value in the bulk oil
phase, noting that this result followed from the almost complete immersion of the colloid in the oil.
For partially wetting particles at the silicone oil/water interface, Du et al. (2012) obtained a value
for the diffusion coefficient that was between the bulk phase diffusivities, as would be anticipated.
Sickert et al. (2007) and Sickert & Rondelez (2003) have demonstrated that the surface diffusivity
of particles at the air/water interface (for small contact angles) is larger than it is in the bulk
(due to the smaller drag coefficient) but smaller than the continuum prediction. However, other
experiments have shown anomalous behavior for the surface drag coefficient: Gehring & Fischer
(2011) studied charged spherical nanoparticles (of the order 100 nm) at the air/water interface
and obtained drag coefficients larger than the theoretical bulk value. They attributed this result to
surface viscous forces due to the presence of surfactants on the surface. For large contact angles of
hydrophobic particles at the air/water surface, Boniello et al. (2015) showed that the surface drag
coefficient was larger than the bulk value [see Radoev et al. (1992), Chen & Tong (2008), Dhar
etal. (2008), Maestro et al. (2011), and Samaniuk & Vermant (2014), which also report anomalous
behavior]. Dissipation of energy at the contact line due to thermal fluctuations has been reported
as the reason for this anomalous behavior (Boniello et al. 2015, Villa et al. 2020).

4.2. Pairwise Interactions of Particles on a Surface

Vassileva et al. (2005) located two submillimeter-sized glass spheres a few capillary lengths close to
one another on a pentadecane/glycerol-water interface with matching bulk viscosities, and mea-
sured the decrease in separation due to capillary attraction. Contact angles were measured by
direct visualization. A theoretical prediction was constructed that accounted for the hydrody-
namic interaction between the particles using Equation 16, and good agreement was obtained.
Two particle capillary attraction investigations were also undertaken by Dalbe et al. (2011) using
millimeter-sized polyethylene and nylon spheres at the air/glycerol-water interface with contact
angles measured by visual inspection. Using Equation 16, the authors simulated the approach
trajectory and found qualitative agreement, presumably because they did not account for the de-
pendence of the single-particle drag coefficient on the immersion depth. Boneva et al. (2007,
2009) studied two hydrophobized glass colloids (charged and uncharged) a few hundred microm-
eters in radius interacting by electrostatic and capillary attractive forces at a tetradecane/water
interface, and measured contact angles directly by visualization. They observed an attraction and
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simulated the trajectory using Equation 16, but with a single-particle drag coefficient obtained
by a wetted area approximation. Boneva et al. (2007, 2009) observed reasonable agreement for
uncharged particles, although the experimental drag exceeded the theoretical prediction. For the
charged particles, the agreement was not as good, a consequence apparently of the neglect of
the electrostatic component of the interaction in the theoretical simulation. Similarly, Dani et al.
(2015) measured the gravity-induced capillary attraction of millimeter-sized Teflon spheres at
an oil/water interface and simulated the trajectory of the approaching spheres using Equation 16
and direct visualization for contact angle measurements. They found very good agreement with
the experiments when the effect of the immersion depth on the single particle drag coefficient was
taken into account.

5. PERSPECTIVE AND FUTURE DIRECTIONS

This review makes clear that in describing the hydrodynamic motion of colloids straddling a fluid
interface, the analysis of the motion for Stokes flows and isolated particles is fairly well developed,
and experiments on the translational motion agree with the theoretical predictions. The important
exceptions are the experiments that obtain the (translational) drag coefficient by measuring the
diffusion coefficient of the particles as they fluctuate on an air/water interface by Brownian forces.
These experiments obtain the drag coefficient using the Stokes—Einstein equation, and lead to the
anomalous result that the drag coefficient is larger when the colloid is on the surface than when it
is in the bulk liquid. Pairwise interaction of particles in Stokes flow on a surface is also complete
(at least for translational motions), but the simulations have not been fully tested experimentally
because systematic experiments have not been undertaken on the capillary attraction of colloids
while varying the particle immersion depth. Stokesian dynamics simulations for assemblies of
particles on a surface have begun, and these studies can be used to understand microstructure
formation and assembly under the influence of different applied in-plane forces. MD simulations
have only begun to examine the hydrodynamics of nanoparticles moving along the surface. With
this summary, several areas for new research become apparent, as outlined below.

1. Molecular dynamics (MD) simulations allow the hydrodynamic motion of colloids strad-
dling a fluid interface to be studied on the nanoscale, and can offer insights into how the
particle surface topology and chemical heterogeneity affects the rotational mobility of
the particle. Very little work has been done in this area, and continuum calculations are
difficult to undertake (see Dorr & Hardt 2015). MD simulations provide an easier route
to understand these effects (Koplik & Maldarelli 2017) and efforts should be made in
this direction.

2. Most studies, both continuum and MD, examine the case of clean fluid interfaces. The
exceptions are studies that examine particles moving along a fluid surface with an am-
phiphilic monolayer or bilayer (e.g., Stone & Masoud 2015, Sickert et al. 2007). These
studies assume that the surface is incompressible and focus on the effect of the surface
shear viscosity. While this modeling is most relevant to biological systems, surfactant
monolayers are not always incompressible, and detailed attention has not been paid to
the Marangoni forces developing when the surface is compressible. Some studies in this
direction have been undertaken for translational motion driven by an external force,
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including the influence of surface viscous and Marangoni effects (Elfring et al. 2016,
Pourali et al. 2021), and for active colloids at an interface driven by Marangoni gradients
(e.g., Vandadi et al. 2017, Dietrich et al. 2020), but more detailed studies using realistic
descriptions of the surface elasticity should be encouraged.

3. The disconnect between theory and experiment with regard to the calculated drag co-
efficients for micrometer-sized particles as obtained by measurements of their diffusion
coefficient needs to be understood. MD simulations are a natural choice to understand
how thermal fluctuations at the contact line can give rise to an enhanced drag, which has
been posited as the reason for this disconnect, and offer a promising route for explaining
this anomalous behavior.
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