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a b s t r a c t

Pancreatic cancer is the deadliest cancer type with a five-year survival rate of less than 9%. Detection of

tumor margins plays an essential role in the success of surgical resection. However, histopathological

assessment is time-consuming, expensive, and labor-intensive. We constructed a lab-designed, hand-

held Raman spectroscopic system that could enable intraoperative tissue diagnosis using convolutional

neural network (CNN) models to efficiently distinguish between cancerous and normal pancreatic

tissue. To our best knowledge, this is the first reported effort to diagnose pancreatic cancer by

CNN-aided spontaneous Raman scattering with a lab-developed system designed for intraoperative

applications. Classification based on the original one-dimensional (1D) Raman, two-dimensional (2D)

Raman images, and the first principal component (PC1) from the principal component analysis on the

2D image, could all achieve high performance: the testing sensitivity, specificity, and accuracy were

over 95%, and the area under the curve approached 0.99. Although CNN models often show great

success in classification, it has always been challenging to visualize the CNN features in these models,

which has never been achieved in the Raman spectroscopy application in cancer diagnosis. By studying

individual Raman regions and by extracting and visualizing CNN features from max-pooling layers,

we identified critical Raman peaks that could aid in the classification of cancerous and noncancerous

tissues. 2D Raman PC1 yielded more critical peaks for pancreatic cancer identification than that of

1D Raman, as the Raman intensity was amplified by 2D Raman PC1. To our best knowledge, the

feature visualization was achieved for the first time in the field of CNN-aided spontaneous Raman

spectroscopy for cancer diagnosis. Based on these CNN feature peaks and their frequency at specific

wavenumbers, pancreatic cancerous tissue was found to contain more biochemical components related

to the protein contents (particularly collagen), whereas normal pancreatic tissue was found to contain

more lipids and nucleic acid (particularly deoxyribonucleic acid/ribonucleic acid). Overall, the CNN

model in combination with Raman spectroscopy could serve as a useful tool for the extraction of key

features that can help differentiate pancreatic cancer from a normal pancreas.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Pancreatic cancer is the fourth most prominent cause of

cancer deaths in the United States (US). Its five-year survival rate

∗ Corresponding author.

E-mail address: jianxu1@lsu.edu (J. Xu).
1 Jian Xu’s orcid: orcid.org/0000-0002-6595-8602.
https://doi.org/10.1016/j.neunet.2021.09.006

0893-6080/© 2021 Elsevier Ltd. All rights reserved.
is ∼9% for all stages combined, and only 3% for patients in the

advanced stage (Pandya, et al., 2008; Society, 2020). According to

recent statistics published by the American Cancer Association,

there were 57,600 new cases of pancreatic cancer diagnosed in

2020 alone and 47,050 deaths. Pancreatic cancer has the highest

ratio of new death/new cases at 81.68% (Society, 2020). In clinical

practice, surgical resection is the primary treatment approach for

the removal of pancreatic cancer at an early stage. If surgery fails
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o resect cancer completely, the resection site is subject to local
elapse. Rapid intraoperative differentiation of cancer and normal
issue plays an essential role in achieving complete resection of
ancreatic cancer (Yang, et al., 2014).
To date, several common approaches have been used for the

etection of pancreatic cancer, such as computerized tomogra-
hy, magnetic resonance imaging, and positron emission tomog-
aphy. However, most of these techniques are time-consuming,
xpensive, require bulky equipment, and are unsuitable for in-
raoperative tissue diagnosis with sufficient sensitivity and speci-
icity. The most common method of tissue diagnosis is the
ostsurgical histological examination of tumor specimens (Yang,
t al., 2014). However, this procedure typically takes several
ours to days to acquire the final diagnostic report, and the
ccuracy of such an analysis relies heavily on the sample quality,
xperience of the pathologist, and medical procedures (Pandya,
t al., 2008; Society, 2020).
Raman spectroscopy is an emerging, real-time diagnostic tool

or analyzing chemical components with unique advantages, in-
luding nondestructive examination, no sample preparation, and
igh specificity to the chemical components (Boiret, Rutledge,
orretta, Ginot, & Roger, 2014; Kourkoumelis, et al., 2015; Pence
Mahadevan-Jansen, 2016). Raman spectroscopy has been ex-

ensively used in many fields, including chemistry, food, environ-
ental science, and medicine (Boiret et al., 2014; He, et al., 2018;
otingher, et al., 2004; Sato-Berru, et al., 2007; Xu, Gao, Han, &
hao, 2017). Moreover, it has been previously used to diagnose
ancers, such as oral, skin, breast cancers, brain cancer (Gebreki-
an, et al., 2018; Ghosh, et al., 2019; Kourkoumelis, et al., 2015;
anoharan, et al., 1998). To explore the potential features from

he spectral data, the most common methods for the classification
f Raman signals are principal component analysis (PCA), linear
iscriminant analysis, and support vector machines (SVMs) (Sohn,
ee, & Kim, 2020).
However, the identification of critical Raman features using

he above-mentioned methods is generally time-consuming and
abor-intensive. For example, Raman spectra are processed by
CA in groups. This results in low efficiency in data usage, and
any important features cannot be easily identified manually

rom other PCA components or scatter plots (Boyaci, et al., 2014;
andya, et al., 2008; Stone, Kendall, Shepherd, Crow, & Barr,

2002; Uy & O’Neill, 2005). In comparison with the conventional
methods (e.g., PCA), deep learning does not require manual in-
tervention to extract Raman features, and has now been success-
fully applied in many medical fields, such as electrocardiographic
(ECG) analysis and tumor segmentation in medical images (Al
Rahhal, et al., 2016; Havaei, et al., 2017; Kowal, Skobel, Gramacki,
& Korbicz, 2021; Zhao, et al., 2018). The convolutional neural
network (CNN) is one of the most successful deep learning mod-
els, and exhibits several advantages, including the requirement
of little prior knowledge or design of explicit features, and a
strong capability to capture inner structures (Fan, Ming, Zeng,
Zhang, & Lu, 2019; Liu, et al., 2017; Lussier, Thibault, Charron,
Wallace, & Masson, 2020; Peng, Zheng, Li, Yang, & Deng, 2020).
Some existing studies have already demonstrated that using Ra-
man spectroscopy in combination with deep learning approaches
could be an optimal strategy for the diagnosis of cancer or anal-
ysis of photoinduced DNA damage (Erzina, et al., 2020; Hollon,
et al., 2020; Weng, Xu, Li, & Wong, 2017; Zhang, et al., 2019).
However CNN models are still difficult to visualize critical Raman
features (peak information) from CNN representations, even most
of them could achieve excellent performance in distinguishing
different tissue types (Fukuhara, Fujiwara, Maruyama, & Itoh,
2019). The role of recognizing spectral features (particularly peak
information) from CNN features is critical in the identification

of biomolecular components (Fukuhara et al., 2019). Our study

456
represents the first effort in this field to extract critical CNN
Raman features that aid in the diagnosis of pancreatic cancer.
In addition, to the best of our knowledge, this is also the first
study that adopts CNN-aided spontaneous Raman spectroscopy
for pancreatic cancer diagnosis.

Thus far, in most existing studies, 1D Raman has been used
directly as a dataset for CNN classification (Carvalho, et al., 2017;
Lee, Lenferink, Otto, & Offerhaus, 2019; Shao, et al., 2020). How-
ever, the single Raman data cannot directly perform the prefea-
ture extraction by using PCA. If the individual Raman spectrum
could be converted into a 2D Raman image, then each new 2D
image could utilize PCA for some prefeature extraction. Our study
not only evaluates 1D Raman but also explores the efficiency of
2D Raman images obtained from the dot products of 1D Raman.
This study also extracts and visualizes the hidden CNN features
from max-pooling layers.

2. Materials and methods

2.1. Animals and Raman spectroscopy system

In this study, the human CFPAC-1 cell line (ATCC R⃝ CRL-
1918TM, pancreatic ductal adenocarcinoma) was used. Before the
injection of the cells in an animal host, tumor cells were grown in
Iscove’s Modified Dulbecco’s Medium (ATCC R⃝ 30-2005TM) with
10% fetal bovine serum (Neuromics, Edina, Minnesota) at 37 ◦C
and 5% CO2 in a humidified environment. For the animal model,
we used 6–8-week-old female immunocompetent athymic nude
Nu/J mice (stock #002019, Jackson Laboratories, Bar Harbor,
Maine, USA).

After the CFPAC-1 cells were incubated in media, approx-
imately 2 × 106 cells were transplanted to the dorsa of the
mice by subcutaneous injection. When the size of the tumor
was approximately 1 cm, the mice were euthanized, and the
entire tumor and normal pancreas were dissected. This study was
approved by the Institutional Animal Care and Use Committee
of Louisiana State University (IACUC#20-046), and all operations
followed the guidelines on animal research.

The Raman spectroscopy system consisted of a 785 nm laser
source (laser diode, Turnkey Raman Lasers-785 Series, Ocean
Optics Inc., Dunedin, Flurida, United States), QE Pro spectrometer
(Ocean Optics, Inc), and a Raman probe (RPS785, InPhotonics
Inc., Norwood, Massachusetts, United States). When the Raman
spectra were acquired, the Raman probe was fixed behind the
specimen at a distance of approximately 5 mm. In this study,
20 mice were used. The entire tumor and normal pancreas were
extracted from each mouse. Subsequently, 1305 Raman spectra
were collected from the tumor, and 1224 Raman spectra were
collected from the pancreas.

2.2. Raman measurements, data processing, and data analysis with
CNN models

The measured raw Raman signals often include noise (mainly
from tissue autofluorescence), and the real Raman signals re-
quire preprocessing before feature extractions (Pandya, et al.,
2008). The typical procedures of Raman spectral processing are
(1) autofluorescence removal by asymmetric truncated quadratic
processing (Mazet, Carteret, Brie, Idier, & Humbert, 2005), (2)
background removal, (3) noise removal with the Savitzky–Golay
filter (Cordero, et al., 2017), and (4) normalization.

In addition to the original 1D Raman signal, 2D Raman images
were also obtained from the dot product of each normalized
Raman spectrum and its transpose, as depicted in Fig. 1. To ex-
tract the potential features in 2D Raman images, each 2D Raman

image was prefeatured by PCA, and the score of the first PCA
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Fig. 1. Data processing of one-dimensional (1D) Raman and two-dimensional (2D) Raman images for the convolutional neural network (CNN) model.
Fig. 2. Schematic of the 1D CNN models used to detect pancreatic cancer in a murine cancer model. To match the visualized CNN features with the corresponding
wavenumbers, the stride size was set to 1 to keep the same total length of the feature map in each convolutional (Conv) layer. In the 2D CNN model, all the
convolution filters in the 1D CNN were converted into 2D convolution filters; the stride size was changed to 2. All the other configurations were the same as those
in the 1D model (Purple blocks: Conv filters; orange blocks: feature maps).. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
components (2D Raman PC1) were used as the inputs for CNN
models.

We explored two types of CNN models for the classification
ask: a 1D CNN model, which was used for 1D Raman signals and
he 2D Raman PC1, and a 2D CNN model used for the 2D Raman
mages. The overall structures of these two types of CNN models
ere the same, and were composed of four convolution layers
Conv), a dropout layer, a max-pooling layer, a full connection
ayer, and a softmax layer, as illustrated in Fig. 2. For the length of
eature maps, when keeping the padding size unchanged, the to-
al length of feature maps will be determined by the stride sizes.
o match the extracted CNN features with their corresponding
457
wavenumbers, the stride sizes were set to 1 in each convolutional
layer.

Each convolution layer applied convolution to its input, fol-
lowed by batch normalization (Batch_Normal) and leaky rectified
linear unit (ReLu) activation. The filter size of the first convolution
layer was set to [1, 10], and the filter size was [1, 5] for the other
three subsequent convolution layers. The number of filters was
set to 8 for the first convolution layer (Conv1), followed by 16
for the second convolution layer (Conv2), and 32 and 48 for the
third and fourth convolution layers, respectively. Five-fold cross-
validation was performed to test the CNN models. Sensitivity,
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Fig. 3. 1D Raman and 2D Raman images to identify pancreatic cancer. (a) Original 1D Raman spectrum of pancreatic cancer and (b) corresponding 2D Raman images
obtained from the dot product of the 1D Raman spectrum and its transpose. (c) Comparison of original 1D Raman spectrum and the normalized 2D Raman PC1
scores. (d) Difference between the original 1D Raman spectrum and the normalized 2D Raman PC1 scores.
Fig. 4. (a) Accuracy-epoch and (b) loss-epoch curves of 1D Raman, 2D Raman images, and 2D Raman PC1 during CNN training (each curve is the average of five-fold
cross-validation, and the learning rate is set to 0.001).
specificity, and accuracy were calculated for the evaluation of the
model performance.

In the 2D Raman CNN model, the filter sizes were changed
o [10, 10] for the Conv1 layers, and [5, 5] for the other three
onvolution layers. The configurations of the other layers were
aintained similarly to those of the 1D CNN model.
All analyses were conducted with MATLAB (version R2019b,

athWorks Inc, Natick, MA, USA).

. Results

.1. 1D and 2D raman images for detection of pancreatic cancer in
mouse model

The typical 1D Raman spectrum obtained from the cancerous
ancreatic tissue (Fig. 3a) commonly contained a large peak at
pproximately 1330 cm−1. The corresponding 2D Raman image
xhibited a diagonal symmetry (Fig. 3b). The overall trend of the
D Raman spectrum and the normalized 2D Raman PC1 were
imilar. However, most of the troughs in the 2D Raman PC1
458
were relatively lower than those in the 1D Raman curve at the
same Raman shift (by 0.08 on average, Fig. 3d). The largest peak
remained unchanged during normalization. Thus, the difference
between the peaks and troughs of the Raman spectra was slightly
larger in the 2D Raman PC1 than in the 1D Raman spectrum
(Fig. 3c).

3.2. Evaluation of a CNN model for detection of pancreatic cancer
with 1D and 2D raman images

To evaluate the efficiency of the CNN models in identifying
cancerous and normal pancreatic tissues, 80% of the Raman data
were used for training, 10% of the data were used for validation,
and 10% of the data were used for testing. To train the CNN
models based on 1D Raman, 2D Raman image, and 2D Raman
PC1 (Fig. 4), each training process contained 50 epochs and used a
learning rate of 0.001. Both the 1D and 2D CNN models achieved
an accuracy >95% only after 5 epochs of training; the training
loss became less than 0.05 after 20 epochs for all three models.
After 35 epochs of training, the model based on 2D Raman images
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Fig. 5. Receiver operating characteristic curves of (a) 1D Raman model, (b) 2D
Raman image model, (c) 2D Raman PC1 model, (d) AUCs of 1D Raman, 2D Raman
image and 2D Raman PC1.

yielded lower loss rates (<0.005) than those based on 1D Raman
(∼0.04) and 2D Raman PC1 (∼0.03). After 35 epochs, the 2D
Raman image model yielded a slightly higher accuracy (close to
100%) than those of the 1D Raman model (98.8%) and 2D Raman
PC1 model (98.9%).

Fig. 5 plots the receiver operating characteristic curves of the
1D and 2D CNN models. All three models achieved high perfor-
mance in the classification of cancerous and normal pancreatic
tissues. The areas under the curve (AUCs) were 0.993 ± 0.003 for
the 1D Raman and 2D Raman PC1 models, and 0.991 ± 0.002 for
the 2D Raman image model (Fig. 5d).

We also gathered statistical measures of the CNN model per-
formance (Fig. 6). All the CNN models demonstrated excellent ac-
curacy, sensitivity, and specificity. The 1D Raman (97.39 ± 1.44%)
and 2D Raman PC1 (96.60 ± 1.21%) CNN models yielded slightly
better accuracy than that of the 2D Raman image (96.44 ± 0.48%)
CNN model. The 1D Raman (97.80 ± 0.90%) CNN models yielded
similar sensitivities to those of the 2D Raman PC1 (97.67 ± 1.81%)
and 2D Raman image (97.67 ± 1.65%) CNN models. The 2D
Raman PC1 (95.56 ± 0.85%) and the 1D Raman (96.85 ± 2.52%)
models exhibited slightly better specificity than that of the 2D
Raman image model (95.15 ± 1.63%). Thus, the CNN models could
efficiently distinguish between cancerous and normal pancreatic
tissues through the Raman spectra. All three models exhibited
similar and high efficiencies.

3.3. Visualization of the CNN hidden features from the max-pooling
layer

Although CNN was successful in differentiating species by
Raman signals, it is still challenging to identify the key Raman
features that help with this differentiation. A recent study was
conducted to visualize the Raman features from max-pooling
layers to differentiate between pharmaceutical compounds and
numerically mixed amino acids. (Fukuhara et al., 2019). In this
study, we explored the feasibility of visualization of hidden Ra-
man features in differentiating between cancerous and normal
tissues from max-pooling layers.
459
The mean Raman spectra of the 1D Raman and 2D Raman PC1
of the cancerous and normal pancreatic tissues were loaded in
their corresponding trained CNN classifiers; the strongest activa-
tion channels were then extracted from the max-pooling layers.
Given that the sizes of the feature maps in each convolution layer
were the same as those of the input features, the visualized CNN
features were plotted with the Raman shifts, and some critical
CNN Raman features were visualized from the max-pooling lay-
ers. In the 1D Raman CNN model (Fig. 7a), the Raman peaks at
720 and 1660 cm−1 were more significant in the normal pancreas,
whereas the peaks at 1449 cm−1 were considerably higher in
the cancerous pancreas. In the 2D Raman PC1 CNN model, more
peaks could be extracted. The peaks at 645, 821, 855, 1243, 1449,
and 1583 cm−1 (Fig. 7b) were only found in pancreatic cancer,
whereas the peaks at 671 cm−1 were more significant in the
normal pancreas.

The mean 2D Raman images of the cancerous and normal
pancreatic tissues were also loaded in the trained 2D CNN classi-
fier. The CNN features were then extracted from the max-pooling
layer and reshaped to the original size of the input 2D Raman
images. On the reconstructed 2D images, the R1 region was
relatively brighter in pancreatic cancer; however, this area was
darker for the normal pancreas (Fig. 8a Tum-R1 vs. Pan-R1). In
contrast, the R2 region was relatively darker for the cancerous
pancreas but brighter in the normal pancreas (Fig. 8a Tum-R2 vs.
Pan-R2).

From the plot of the normalized diagonal pixel values, it
can be seen that the normal pancreas had a lower intensity
than the cancerous pancreas when the Raman shift was lower
than 1800 cm−1. This tendency was reversed when the Raman
shift was beyond this value. In the wavenumber range of 600–
1800 cm−1, the peaks at 1128 and 1449 cm−1 could be found
on the diagonal pixel curve for the cancerous pancreas (red line:
Tum_diagnol), and a 1010 cm−1 peak was found on that for the
normal pancreas (black line: Pan_diagnol) (Fig. 8b).

Similar to Fig. 7, all the strongest activation channels of the
est dataset (visualized CNN features) were extracted and visual-
zed from the max-pooling layers across 10-fold cross-validation.
he Raman spectra with the correct classification were selected
nd their mean CNN feature curves are depicted in Fig. 9. In

2D Raman PC1 (Fig. 9b), the Raman spectra in the wavenumber
range of 600–1800 cm−1 exhibited larger intensities than those
beyond 1800 cm−1, whereas 1D Raman exhibited slightly larger
Raman intensities in the range of 600–1600 cm−1 (Fig. 9a). This
result was more evident in the full wavenumber range (600–
3970 cm−1) (Fig. S2). Pancreatic cancer (red line) yielded substan-
tial peaks at 623, 727, 821, 855, 1449, 1583, and 1640 cm−1 in
the 1D Raman spectra (Fig. 9a), and the peaks at 623, 727, 855,
1128, 1177, 1449, and 1640 cm−1 in the 2D Raman PC1 (Fig. 9b).
The normal pancreas (black line) yielded detectable peaks at 720,
1100, 1258, 1482, and 1744 cm−1 in the 1D Raman spectra, and
720, 1010, 1100, 1258, 1482, 1575, and 1744 cm−1 in the 2D
Raman PC1.

We also studied the frequency of Raman peaks of visualized
CNN features that appeared across all the tested spectra. In 1D
Raman, 623, 727, 821, 855, 1449, 1583, 1620, and 1640 cm−1

appeared frequently for pancreatic cancer, whereas 720, 1100,
1258, 1482, and 1744 cm−1 were frequently found for the normal
pancreas (Fig. 10a). In 2D Raman PC1, peaks with high peak
frequency could be observed at 623, 727, 855, 1177, 1449, 1555,
and 1620 cm−1 in pancreatic cancer, and at 720, 1010, 1100, 1258,
and 1744 cm−1 in the normal pancreatic tissue (Fig. 10b).
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Fig. 6. (a) Accuracy, (b) sensitivity, and (c) specificity of the 1D and 2D CNN models used for the distinction between cancerous and normal pancreatic tissues.
Fig. 7. CNN features of the mean spectra of cancerous pancreatic tissue and normal pancreatic tissue; CNN features were the strongest activations extracted from
the max-pooling layer in (a) 1D Raman and (b) 2D Raman PC1.
Fig. 8. CNN features from the max-pooling layer in the mean 2D Raman images. (a) 2D images of CNN features of cancerous (Tum) and normal pancreatic (Pan)
tissues from the max-pooling layer. (b) Normalized diagonal pixel curves from 2D images of CNN features.
3.4. Screening frequency regions important for accurate pancreatic
cancer detection using CNN models

To examine the contribution of each wavelength region to
the classification, we divided the full wavenumber range (600–
3970 cm−1) into 215 individual subregions, each being 22 cm−1

ide. The subregions were then loaded individually into the 1D
NN model to differentiate between a pancreatic tumor and a
ormal pancreas. Fig. 11 depicts the testing accuracy of each
ndividual subregion. The subregions of 848–869, 1056–1077,
346–1400, 1546–1565, 1720–1760, and 1790–1810 cm −1 were

found to contribute higher accuracy in classifying tissues using
the 2D Raman PC1 CNN model. The subregions of 1178–1198,
2010–2027, 2195–2211, 3011–2025, 3510–3540, 3620–3650, and
460
3917–3940 cm−1 resulted in higher tissue classification accura-
cies using the 1D Raman CNN model.

4. Discussion

Pancreatic cancer deaths are ranked fourth among all cancer
deaths in the US with a low five-year survival rate (≤9%). Thus
far, there has been no reliable method to rapidly differentiate
between cancerous and normal tissues (e.g., <1 min) (Pandya,
et al., 2008; Society, 2020). In this study, we designed highly
effective CNNmodels to differentiate between cancerous and nor-
mal pancreatic tissues based on Raman spectroscopy. To further
utilize the hidden Raman signal features for the CNN models,
we constructed 2D Raman images from the original 1D Raman
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Fig. 9. Mean CNN feature curves of the test dataset from the max channels of the max-pooling layers in the wavenumber range of 600–2000 cm−1 . (a) 1D Raman
nd (b) 2D Raman PC1 (Tum: pancreatic cancer, Pan: normal pancreas).. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
Fig. 10. Peak frequency at specific wavenumbers occurring in the CNN features of the test dataset from the max channels of the max-pooling layers. (a) 1D Raman
nd (b) 2D Raman PC1. Peak intensity >0.5, like in Fig. 7.
Fig. 11. Accuracies of individual subregions of 1D Raman and 2D Raman PC1 in
classifying cancerous and normal pancreatic tissues.

spectra by the dot products of the Raman spectra and their

transposes. Additionally, each 2D Raman image was processed by
461
PCA to generate 2D Raman PC1 data. Compared with the original
1D Raman spectrum, 2D Raman PC1 could enlarge the difference
between the maximum and minimum values of the signal. 1D
Raman, 2D Raman images, and 2D Raman PC1 were then loaded
into 1D or 2D CNN models to classify cancerous and normal
pancreatic tissues.

All three methods could achieve excellent performance in
classifying cancerous and normal pancreatic tissues, where the
training accuracies were over 98.8% and the training losses were
smaller than 0.05. Compared with 1D Raman and 2D Raman PC1,
the model that used 2D Raman images could acquire a slightly
higher training accuracy (close to 100%) and a considerably lower
training loss (less than 0.005). From the test dataset, it can be
seen that all three methods yielded high-testing accuracy (>96%),
sensitivity (>97%), and specificity (>95%) in the identification of
cancerous and noncancerous Raman spectra. In the three cases,
AUC could reach up to 0.99. Thus, the CNN model with four
convolutional layers has high efficiency in classifying cancerous
and normal pancreatic tissues.

When compared to the conventional GoogLeNet model (being
revised for 1D and 2D Raman signals) and random forest, our
proposed CNNs model exhibits a better efficiency for the classifi-
cation of pancreatic cancer with about 2% higher than GoogleNet
in accuracy, sensitivity, and specificity (Fig. S3 and S4), when up
to 5% higher than the random forest in accuracy and specificity.
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oreover, due to the complicated architectures of GoogleNet,
he whole training procedures cost a large amount of time (over
,600s for 1D Raman spectra and around 1,100s for 2D images).
owever, our proposed CNNs only take about 60 s (1D Raman)
or a single 50-epochs training due to the simple structures,
nd the accuracy is higher than the convolutional architecture.
eanwhile, we also examine the influence of the number of the
onvolutional layers on the classification of pancreatic cancer.
he results show that our proposed CNNs with 4 convolutional
ayers is an optimal design for the classification of pancreatic
ancer; under three datasets, the testing accuracy, sensitivity, and
pecificity of our proposed CNN models were larger than the
imilar CNNs with 3 or 5 convolutional layers (Fig. S5).
Currently, gross examination, intraoperative frozen section

nalysis (IFSA), and postsurgical histopathological examinations
re the most common approaches used for the evaluation of
ancreatic cancer (Ghosh, et al., 2019; Handgraaf, et al., 2014;
ang, et al., 2014; Zhou, et al., 2012). However, these conventional
ethods have significant drawbacks and are incompatible with

he accurate intraoperative diagnosis because they are (1) time-
onsuming (e.g. postsurgical histopathological examinations >
0–30 min), (2) highly subjective to histopathological translation,
3) dependent on tissue preparation (particularly in IFSA), (4) are
ssociated with a limited number of biopsy points, and (5) associ-
ted with sampling bias and tissue loss owing to biopsies (Jaafar,
006; Pandya, et al., 2008; Society, 2020; Vahini, Ramakrishna,
aza, & Murthy, 2017). Compared with these traditional ap-
roaches, Raman signals are strongly dependent on the changes
f chemical compositions (e.g., proteins or nucleic acids) in the
iological samples. Raman peak positions and amplitudes contain
mportant biochemical information on tissue compositions (Sohn
t al., 2020). Therefore, identifying the critical Raman peaks or
egions that help differentiate cancerous from noncancerous tis-
ues is crucial in the understanding of the chemical composition
hanges among various tissues. Many studies have reported that
sing a CNN model in combination with Raman spectra could
erve as a satisfactory, rapid, and non-destructive approach to
lassify chemical species (Fan et al., 2019; Mazet et al., 2005;
albovsky & Lednev, 2020).
However, visualization and interpretation of the critical fea-

ures from the CNN model remains the main challenge of this
pproach. In the field of CNN-aided Raman spectroscopy, there
as only one recent report that used simple spectra, generated
y the Lorentzian function and white noise, to aid in the fea-
ure visualization of amino acids and pharmaceutical compounds
ixed with known ratios (Fukuhara et al., 2019). Our work is the

irst report in this field to identify the critical Raman features
hat can assist in the classification of cancerous and noncancerous
issues. We extracted the maximum activation channels from
ax-pooling layers to visualize the critical features that are most

elevant to the classification by CNN models. In addition, to the
est of our knowledge, our effort is also the first CNN-aided
pontaneous Raman spectroscopy study to provide intraoperative
ancreatic cancer diagnosis.
Based on the accuracy of the screening regions (Fig. S1), it

as found that the Raman regions of 600–1800 cm−1 (fingerprint
egion Lee et al., 2019) are important for the classification of
ancerous and normal pancreatic tissues. This result was further
onfirmed by the max-pooling features of mean 2D images (Fig. 8)
nd the mean CNN feature curves of the test dataset (Fig. 9).
n the fingerprint region (600–1800 cm−1), the mean 1D Raman
nd 2D Raman PC1 (Fig. 7) yielded peaks at 645, 821, 855, 1243,
449, and 1583 cm−1, which were indicative of pancreatic cancer,
hereas the 720 and 1660 cm−1 peaks were relevant to a normal
ancreas. Thus, both 1D Raman and 2D Raman PC1 helped visu-
lize their unique CNN features for the classification of cancerous
nd normal pancreatic tissues.
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In addition, the CNN features from the entire test dataset pro-
ided more critical feature visualization. 2D Raman PC1 yielded
arger peak magnitudes in CNN features than those in 1D Raman.
n the CNN features of the test dataset and their high-frequency
eaks, the Raman peaks at 623, 727, 821, 855, 1128, 1177, 1449,
555, 1583, 1620, and 1640 cm−1 were found in pancreatic can-
er, whereas the peaks at 720, 1010, 1100, 1258, 1482, 1575, and
744 cm−1 were found in the normal pancreas.
Given that Raman peaks are strongly related to chemical com-

onents, the visualized CNN features listed above and the high-
requency peaks indicative of pancreatic cancer are more likely to
e linked with the peaks of 623, 645, 727, 821, 855, 1128, 1177,
243, 1449, 1555, 1583, 1620, and 1640 cm−1 that represent
rotein components, particularly collagen contents (Casper, 1993;
han, et al., 2006; Cheng, Liu, Liu, & Lin, 2005; Dawson, Rueda,
paricio, & Caldas, 2013; Frank, McCreery, & Redd, 1995; Frank,
edd, Gansler, & McCreery, 1994; Lau, et al., 2003; Pandya, et al.,
008; Schulz & Baranska, 2007; Talari, 2015). The normal pan-
reas yields distinct peaks at 671, 720, 1010, 1100, 1258, 1482,
575, and 1744 cm−1, indicating the components of lipids and
ucleic acid (particularly DNA/RNA) (Casper, 1993; Notingher,

et al., 2004; Pandya, et al., 2008); (Stone, Kendall, Smith, Crow, &
Barr, 2004; Talari, 2015). Thus, this method can aid in the analysis
of biomolecular tissue components through chemical analysis,
and pancreatic cancerous tissue can be rapidly identified by its
Raman features.

5. Conclusions

In this study, we designed CNN models that could efficiently
classify cancerous and normal pancreatic tissue based on spon-
taneous Raman spectra, which was the first such effort in the
application of pancreatic cancer diagnosis. The original 1D Raman
and the two 2D Raman methods could achieve high performance:
testing sensitivity, specificity, and accuracy were higher than
95%, and the AUC could be up to 0.99. Through the screening of
increasing regions and individual subregions and the visualization
of CNN features, the fingerprint regions (600–1800 cm−1) were
significant to the recognition of pancreatic cancer. With the CNN
features extracted from max-pooling layers, we located some
Raman peaks that were critical to the classification of cancerous
and normal tissue. From these peaks, we could identify that the
cancerous pancreatic tissue contained increased protein content,
particularly collagen, whereas the normal pancreas contained
more lipids and nucleic acid (particularly DNA/RNA). This was the
first effort that visualized features in the field of CNN-aided Ra-
man spectroscopy for cancer diagnosis. Overall, the CNNmodel, in
combination with spontaneous Raman spectroscopy, could serve
as a useful tool for the extraction of key features that can aid in
the differentiation of pancreatic cancerous tissue from a normal
pancreas.

Although our work has demonstrated the feasibility of pan-
creatic cancer detection by CNN-assisted spontaneous Raman
scattering and the possibility of important Raman feature visu-
alization from CNN models for the first time in this field, the
current study was limited to murine cancer models. The findings
will be evaluated further in conjunction with human pancre-
atic cancer studies in the near future. Moreover, our CNN-aided
spontaneous Raman spectroscopy, with our lab-designed Raman
system, has the potential to become a rapid (<30 s), accurate tool
for intraoperative tissue diagnosis in pancreatic cancer surgery.
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