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On Covert Quantum Sensing and the
Benefits of Entanglement

Mehrdad Tahmasbi

Abstract—Motivated by applications to covert quantum radar,
we analyze a covert quantum sensing problem, in which a legit-
imate user aims at estimating an unknown parameter taking
finitely many values by probing a quantum channel while remain-
ing undetectable from an adversary receiving the probing signals
through another quantum channel. When channels are classical-
quantum, we characterize the optimal error exponent under a
covertness constraint for sensing strategies in which probing sig-
nals do not depend on past observations. When the legitimate
user’s channel is a unitary depending on the unknown parame-
ter, we provide achievability and converse results that show how
one can significantly improve covertness using an entangled input
state.

Index Terms—Quantum sensing, covert communication.

I. INTRODUCTION

HILE much of the information-theoretic security lit-
Werature focuses on ensuring secrecy and privacy, in
the sense of preventing or minimizing the information con-
tent leaked by signals, there have been recent efforts geared
at understanding the information-theoretic limits of covert-
ness, defined as the ability to avoid detection by hiding
the mere presence of signals themselves. In particular, such
information-theoretic limits have been successfully charac-
terized in the context of covert communication and covert
sensing. Covert communications describe situations in which
two legitimate parties attempt to communicate reliably over
a noisy channel while avoiding detection by a third party.
A problem closely related to covert communication is stealth
communication [1], [2], in which it is required that the adver-
sary’s observations be distributed according to a pre-specified
distribution, not necessarily associated to the absence of com-
munication. This different constraint could result in different
asymptotics of the optimal number of transmitted bits. Covert
communications are governed by a square-root law [3], which
limits the number of bits that can be reliably and covertly
transmitted to the square root of the block length, and the
channel-dependent pre-constant that governs the scaling is
known for classical discrete-memoryless channels [4], [5], [6],
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Gaussian channels [5], classical-quantum channels [7], [8],
and lossy bosonic channels [9]. Covert sensing, in contrast,
refers to scenarios in which the estimation of parameters of
interest requires the use of probing signals that emit energy
and are therefore detectable; if estimation could be achieved
through purely passive sensing, covertness would automati-
cally be guaranteed. Covert sensing is also governed by a form
of square-root law. Specifically, [10], [11] have considered
the problem of estimating an unknown phase over a bosonic
channel while keeping the sensing undetectable by a passive
quantum adversary. This operation is made possible by the
presence of thermal noise, which allows one to hide the use-
ful sensing signal in the background thermal noise and results
in a mean-square phase estimation error scaling as (’)(\/Lﬁ) if
n is the number of modes. Reference [12] has investigated a
slightly different model in which the objective is to covertly
estimate the impulse response of a linear system. One of the
main results obtained is that the bandwidth of sensing signals
must scale linearly with the time duration of these signals.
Potential applications of covert sensing include covert radar
and covert pilot estimation in wireless communications. We
note that for the latter application, other models such as com-
pound or arbitrarily varying channels have been studied [13]
to handle channel state uncertainty.

The present work studies covert sensing by drawing on
connections with active hypothesis testing [14], [15], also
known as controlled sensing [16]. Active hypothesis testing
differs from traditional hypothesis testing [17], by consid-
ering the possibility of changing the kernel through which
unknown parameters are observed, which leads to estima-
tion strategies that are potentially faster or more accurate.
Recent studies of active hypothesis testing have built upon
the pioneering work of Chernoff [18] on sequential design
of experiments to provide new insights into the problem,
including the benefits of sequentiality and adaptivity [14],
[16], [19], the role of extrinsic Jensen-Shannon Divergence
as an information utility metric [20], the unavoidable trade-
off between reliability and resolution of estimation [15], and
the identification of situations when pure (non-randomized)
policies are optimal [16]. Examples of recent applications of
active hypothesis testing include radar [21] and millimeter-
wave beam alignment [22]. Active hypothesis testing offers a
natural framework for studying covert sensing since covertness
effectively requires one to use different observation kernels to
hide the presence of probing signals.

The problem of quantum state or channel discrimination
without covertness constraint has been intensively studied,
see, e.g., [23, Ch. 3], [24]. The optimal error exponent
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of discrimination of finitely many quantum states has been
characterized [25], [26] and resembles the optimal error expo-
nent of classical states discrimination; this exponent is known
as the multiple quantum Chernoff distance. For quantum chan-
nel discrimination, as the probing signal can be any quantum
state and could be arbitrarily entangled with the environment
and previously received signals, several intriguing phenomena,
specific to the quantum world, could happen. For example,
the legitimate user can substantially decrease the probability
of estimation error by keeping its environment entangled with
the probing signals [23, Example 3.36] or quantum channels
that cannot be perfectly distinguished with a single probing can
be distinguished with multiple probing with zero probability
of error [27].

In a previous conference paper [28], we revisited the idea of
covert sensing put forward in [10], [11] from the perspective
of active hypothesis testing in a classical setting, which we
called active covert sensing. Therein, we have characterized
the exponent of the probability of detection error subject to
covertness constraints for non-adaptive non-sequential strate-
gies and illustrated the benefits of adaptive non-sequential
strategies. In the present work, we expand upon these results in
the quantum setting, in which the legitimate parties attempt to
discriminate quantum channels subject to a covertness con-
straint. Some of the results developed hereafter supersede
those in [28] but, unlike [28], we do not consider the adapta-
tion of the probing signals with respect to the previous outputs
of the quantum channel; instead, we explore the potential ben-
efits of using entanglement for covert sensing. Specifically,
we offer the following two contributions: i) when the legit-
imate user’s probing signals are classical, but the received
state by both the legitimate user and the warden are quan-
tum, we characterize the exact detection error exponent of
non-adaptive non-sequential strategies subject to a covertness
constraint; ii) when the legitimate user’s channel is a unitary
depending on the unknown parameter, we show that the legiti-
mate user can estimate the unknown parameter with zero error
while satisfying a stronger notion of covertness compared to
what we could achieve over classical-quantum (cq)-channels.
We also prove a converse result showing that the asymptotic
scaling of the covertness in our achievability result is optimal.

The remainder of this article is organized as follows.
We introduce our notation in Section II and formalize the
problem in Section III. We provide our main results for cq-
channels and unitary channels in Section IV and prove them
in Section V. We defer the most technical parts of the proofs
to the appendices to streamline the presentation.

II. NOTATION

We denote a vector of length n (e.g., (x1,...,x,) in X™)
by a boldface letter (e.g., x). We let Tx denote the type of the
vector X, which is a Probability Mass Function (PMF) over X
defined by

iel,n] : x; = al|

Tx(a) £ . , (D

where [m,n] £ {i€Z:m<i<n}. We define P,(X) £
{Tx : x € X"} and Tp L (x:Ty=0Q) for Q € Pu(X). Px

denotes a probability distribution over the set X and Px®Py is
the product distribution over X x ) induced by two marginals
Px and Py. P%" also denotes the n-fold product distribution of
Px over X"*. We define Hj(x) £ —xlogx — (1 — x) log(1 —x)
for x € [0, 1]. Let 1{-} denote the indicator function. We use
standard asymptotic notation O(-), o(-), w(-), and O(-). To
emphasize that the constant hidden in O(-) could only depend
on a parameter 6, we write Og(-).

A quantum system A is described by a finite-dimensional
Hilbert space, which we also denote by A with a slight abuse
of notation. Let dimA be the dimension of A and 14 be the
identity map on A. We denote the tensor product of A and B by
A®B or AB. L(A) denotes the set of all linear operators from
A to A and D(A) denotes the set of all density operators acting
on A, which are the possible states of the quantum system A.
Given two density operators pg € D(A) and pp € D(B), we
denote the product state on AB by p4 ® pp. We also define
pff’” as the n-fold tensor product of p4. A pure state is of
the form |¢)(¢|4 for a unit vector |p)s € A. We use ¢4 to
denote |¢)(¢|4 when there is no confusion. For X € L(A),
the trace norm of X is || X||, £ tr(v/X1X), and v(X) denotes
the number of distinct eigenvalues of X. We also define the
support of X € L(H,4) as the subspace orthogonal to Ker(X),
which we denote by supp(X). We denote the adjoint of X by
X'. When X is Hermitian, i.e., X = X', Amin(X) denotes the
minimum eigenvalue of X. The fidelity between two density
operators p and o is defined as F(p,0) = ||\/ﬁ\/5||%. A
quantum channel Nj4_, p is a linear trace-preserving completely
positive map from L(A) to £(B). Given two quantum channels
N and M, we denote their tensor product by N’ ® M. Let
idy4 be the identity channel on L£(A). For two states p and o
with supp(p) C supp(o), we define

K20l 2 tr(pPo) — 1, @
D(pllo) = tr(p(log p —log ). (3)

Additionally, given the spectral decomposition of a state o =
> ;i AiPi, we define

log A; — log A;
n(pllo) =) — (e = 0)Pilp —0)P))
i o

1
+ Z )\—itr((,o —0)Pi(p — 0)P)). )

Finally, we use standard notions from differential geom-
etry such as tangent space and derivative of a smooth
functions.

III. PROBLEM FORMULATION

Let A, B, and W be quantum systems and ® be a
finite set of parameters.! As illustrated in Fig. 1, let
No 1 L) = LB)geo and {E : L(A) = LW))geo be
two families of quantum channels. Alice’s estimation strategy
consists of the following. Alice prepares a possibly entangled

Twe only consider classical parameters, estimating an unknown quantum
parameter is of interest for certain applications but is outside the scope of this
article.
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Fig. 1.

Model for quantum covert sensing.

state |p)ran, where R is a reference system with dimR =
dim A", and transmits the subsystem A” in the quantum state
¢an. Alice then receives Vg rar = (idgr @ N2 (16) (Plran),
on which Alice performs a POVM ({I'y}yce to estimate
the unknown parameter 6. We measure the estimation error
through?

max(l - tr(l/fg,RAan)). 4)

0c®

Let S(n, €) denote the set of all states |¢)gan such that the
estimation error is not greater than € for some POVM. The
strategy is called non-sequential because the parameter n is
fixed, and non-adaptive because the probing signals are not
adapted to past observations.

Willie observes what Alice transmits through the memory-
less channel & when the parameter is 6, i.e., Willie receives
5(;@"(¢An). One of the input vectors is denoted by [0) € A
and corresponds to Alice being “inactive,” i.e., Willie expects
Alice to transmit [0)®" when no estimation strategy is run.
This allows us measure the inability of Willie to detect probing
signals through the covertness metric

max D(E5" (¢4 | €5 (10)(01")). (6)

We refer the reader to [4], [6] for a discussion on how upper-
bounding (6) yields a bound on the probability of error of
any strategy employed by Willie to detect the presence of an
estimation strategy.

We finally define the quantities

. D5®n . g®n 0 O®n ,
o iR max (&5 (@an) €5 (10)(01°"))
(7

E(n,8) £ inf{e €10, 1[: C(n, €) < 8}, (8)

Cn,e) &

which will be useful to express the fundamental limits of
Alice’s performance.

Remark 1: To ensure that our model is physically realiz-
able, the whole process from Alice to herself and Willie should
be described by a completely positive trace-preserving map as
required by the laws of quantum mechanics. We also allow the
systems received by Alice and Willie have some sub-system
in common. This assumption is necessary because we shall
study the scenario in which Alice’s channel is unitary and
the complementary channel of a unitary channel is constant.
If Alice and Willie’s systems were disjoint, Willie would not
obtain any useful information. Formally, we state our require-
ment as follows. There should exist quantum systems By,

2Note that this definition of estimation error is only meaningful for finite
parameter sets.

Wé, and Cp, isomorphic isometries Vy p : BéCg — B and
Vow : WyCy — W (ie., ByCyp = B and W,Cy = W) and a
quantum channel My : L(A) — L(B'W'C) such that

No(X) = Vo.stry, (Mo (XDVyp VX € LA (9)
E9(X) = Vo wirg, (Mg (X)Vy VX € L(A).  (10)

Because some parts of Alice’s and Willie’s output systems
could be in common, the order in which Alice and Willie
observe their outputs matters. We assume that Willie first
observes his outputs and, should he decide to disturb
the systems, Alice is notified through another means of
communication.

IV. MAIN RESULTS
A. Cq-Channels

We first provide the full asymptotic characterization of
Alice’s optimal performance for covert sensing over cq-
channels. Although the cq channels we consider here have
finite dimension, cq channels are good models for those chan-
nels that arise in quantum optics, such as bosonic channels
in which the input is a classical parameter of the transmitted
states, see, e.g., [10]. In particular, we assume that both Nj
and & are cq for all #. That is, there exist an orthonormal
basis {|a,)a : u € U} for A and two sets of quantum states

{Pjguctt,0c0 and {pypluctineo such that

N@('“u)(au’b = ]l{l/{ == M,}/Ogle Vu, u, el
Eslaanl) = Wu =} plly, Vu,u €U.

(1)
(12)

Note that & and Ny are uniquely characterized by the linear-
ity of quantum channels. We finally assume that 0 € I/ and
that |ag) is the innocent state |0). We also impose some mild
restrictions on the cq-channels that are required to make the
problem meaningful.

D OL20ecO:IWecO\{6): e = P} # 9. This
ensures that Alice cannot distinguish all parameters by
sending only 0, which would result in perfect covertness.

2) There exists 8 € © such that no distribution P over U \
{0} is such that }_, P(u)pﬁ,l@ = ,oevw. This ensures that
Alice cannot simulate sending 0 by a random selection
of other inputs.

3) For all & € ® and for all u € U supp(pﬁ,le) -
supp(p‘())v‘g). This ensures that Willie cannot detect the
estimation with non-vanishing probability when a state
with support not included in supp(,oevw) is transmitted.

We introduce the notion of conditional Chernoff information
to state our main result.

Definition 1: Let 6 and 6’ be two parameters in ® and P be

a distribution over /. The conditional Chernoff information is

C(o10'1P) £ sup =) P
sef0,11

x log<tr((p§|e)s(p§wf)H)) (13)

Theorem 1: Under the assumption on the cq-channel dis-
cussed above, we have —logE(n,8,) = ©(/nd,) for any
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sequence {8,},>; = O(1) N a)(k’%), and in particular,
. log E(n, 5y,)
lim ————
n— 00 ndy,
V2ming . - C(016'1P)
— sup . (4

P \/maXe U(Zu P(“)ngw”/)gwe)

where the supremum is taken over all probability distributions
P over U \ {0}.

Remark 2 [28, Th. 1]: can be obtained as a special case
of Theorem 1, corresponding to the situation in which all

operators in {Pgw}ueu,ee@ and all operators in {pgm}ueuﬁe@
mutually commute.

B. Unitary Channels: The Power of Entanglement

We now consider a situation in which {Up}ycq is a family
of unitaries acting on A such that Ny(p) = Ug,oU;f for all
0 € ©. This corresponds to an ideal situation in which Alice
is able to receive all transmitted signals without any loss. We
also assume that & is independent of 6, i.e., there exists a
quantum channel € : L(A) — L(W) such that & = & for all
6 € ©. The latter assumption helps us simplify the expression
of our results but our proof does not exploit this assumption.
Also note that this assumption does not trivialize the problem
since we still require the sensing to be covert.

1) Achievability: We require again mild assumptions in our
achievability result to make the problem meaningful.

1) Uy # Uy for all 6 # 0’. Without this assumption Alice

would be unable to distinguish at least two parameters.

2) supp(E(p)) C supp(E(]0){0))) for all p € D(A). Without
this assumption, the transmission of such p would allow
Willie to systematically detect Alice.

Theorem 2: Under the above assumptions, there exists a
positive integer N depending on {Ug}gce such that for all
n>N

1

C(n,0) < Ow,.e (;) (15)
Note that there is a significant difference between the optimal
performance of unitary channels and cq-channels. Indeed,
according to Theorem 1, we have C(n, exp(—O(/n8)) > 8
for all § > 0 and for all cq-channels, while C(n, 0) < O(1/n)
when Alice’s channel is a unitary for all parameters 6. As we
show next, the rate of decay of the covertness metric with n
is optimal under mild assumptions.

2) Converse: Our converse result holds under the following
mildly restrictive assumptions.

1) Uyl0) = Uy |0) for some 6 # 6, i.e., Alice cannot
distinguish all parameters by always sending |0) and
trivially ensuring covertness.

2) E(p) # £(]0)(0]) for all p € D(A) \ {|0)(0}}, i.e., Alice
cannot simulate sending |0) using other quantum states.

3) There exists no sequence {0,},>; C D(A) \ |0){0] such
that

lim lon = 10060l _
n—00 [|E(pn) — E(0) (0Dl

(16)

This last assumption prevents Alice to send states whose
image under & is close to £(]0)(0]). We show that testing
this assumption is possible by providing a computable
equivalent form in Lemma 1.

Theorem 3: Under the above assumptions, for all € € [0, 1],

we have
o 4
oo o(u> a7

n

Remark 3: Note that Theorem 2 and Theorem 3 require dif-
ferent assumptions because we need to restrict Willie’s power
for achievability and Alice’s power for converse.

We now provide a computable equivalent form of our last
assumption in the converse result. We first need the fol-
lowing definition, which introduces a map from L(A) to a
Euclidean space.

Definition 2: Let d £ dimA and {|a1),...,|as)} be an
orthonormal basis for A such that |a;) = |0). We define a
function f : L(A) — R24* which maps X € L(A) to the vector
(Re({ai1X|a), Im({ailX|a)); 1 a]-

We also define 2d — 2 vectors ay, ..., ax4—2 € R2d2 such
that the jth component of a; is 1{i =j} + I{j = [i/2]d + 1}.

We show in Appendix E that the vectors ay, ..., a24—2 €
R24* form a basis for the tangent space of
Flp) ol : ¢ € A, gl = 1} \10)(0]) (18)

at the origin.

Lemma 1: Let £ : L(A) — L(B) be a quantum channel and
|0) € A be a unit vector. Suppose that E(p) # £(|0)(0]) for
all p € D(A) \ {|0)(0]}. We then have

o —10){Oll
sup <
peDAN(0)op 1€(0) —E0)(OD 4

if and only if f(Ker(£)) N span(ay, ..
the function f and the vectors aj, ..
Definition 2.

Proof: See Appendix E. |

Remark 4: If £ : L(A) — L(E) is an invertible map (as
a linear map), there exists no sequence satisfying the above
conditions, which is consistent with our result as Ker(§) =
{0}. However, there might be some quantum channels £ that
are not invertible, but for which we still have f(Ker(£)) N
spanf{ay, ..., axg—2} = {0}.

19)

., axj—2) = {0} where
., axq4—o are defined in

V. PROOFS
A. Achievability Proof of Theorem I
We first derive a general bound on the reliability of a
strategy when the input is generated according to Py.

Lemma 2: Let Py be any distribution over {/". There exists
an (n, €, §) non-adaptive strategy with

> Pu(To) exp(—nC(60116'10))
QeP,(U)
+ Odim B, 1, 10| (logn)

loge = zna)s log

(20)
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and
s=maxD() P uollow ). 21
Ienea(z)( (Xu: U(u)ng”PWQ) (21)
Proof: See Appendix B. |

Deterministic strategies, for which Py is positive only on
one input sequence, cannot achieve any positive exponent as
shown next. Let ©® be as defined in Section IV-A and 6 €
® be such that no distribution P over U \ {0} is such that
>ou P(u)pé‘m = '08VI9' If Alice transmits a fixed sequence u,
we have

s> ]D)(p%v\g ||)03v\9)

= [{ie ]+ u # 0} min D(ofyallofa)- @)

(22)

By our assumption on 6, min,g 4\ (o) D(pgv‘gpevle) is positive.
Therefore, the number of non-zero elements of u is uniformly
bounded. By definition of ®, there also exists 6’ € ®\{#} such
that ’ng = pg‘g,. Thus, even when restricting the parameter
set to {0, 6}, the estimation error cannot vanish. Hence, no
positive exponent is achievable.

Furthermore, independent and identically distributed (i.i.d.)
actions cannot achieve the optimal exponent since, with expo-
nentially small probability, the type of the input sequence
largely deviates from the typical input type and affects the
achievable exponent.

We now introduce an input probability distribution Py that
circumvents the challenges discussed above. Intuitively, Py
should be such that 1) we can control the type of the sequences
in its support and 2) we can ensure covertness. Let P be any
distribution over I{ and define « = 1—P(0). We set for ¢ > 0,

Q£ {Q e Py : Q) — Pw)| < af Yu € U\ {0}},

(24)
A £ UpeoTo, (25)

P (u)
Puu) 2 {g*"@ ! ; j’ 26)

Intuitively, the parameter o allows us to finely control the
type of sequences in A with @ possibly depending on n. In
the following lemma, we provide bounds on (20) and (21) for
this specific choice of Py.

Lemma 3: Let 6 and 0’ be two distinct elements of ®. We
have

> Py(Tg) exp(—nC(0116'1Q))
QP U)

log

< min(—n(C(0||9’|P) = O, | (Rt D,

u
1

n(l —a(l+ CIZ/II))

<ty oe(r(Ohe) (50) 7)) e

In addition, we have

D(Z PU(“)ngw”Pgwe) < nD <Z P(M)p%gllp(v)m)

an{z
3
) dim W
x log| ——— |n
)\min(paqg)

2
+ Hb(2|2/{|exp<—ar;§ >>

(28)

+ 2|L{|exp(—

Proof: See Appendix C. [ |

We are now ready to prove the achievability of the exponent
in (14). Let P be any distribution over ¢/ \ {0} (not depending
on n) and {A,},>( be a vanishing sequence specified later. We
define

26,(1 — Xp)

o 2 - , (29)
nmaxg 1 (ZM Pu) pyypg ||:00W|9)
all—a, u=0,
Pu) = {anp(u) u# 0. G0

We then choose Py according to (26), for which we have

D <Z PU(U),O{IJVW ”'03V|0>

(@) oaun 2
< nD(ZP(n)p;‘V|g||p9vw> +2|U|exp(— 35 )

dim W ane?
T n—i—Hb(ZIZ/{Iexp(——a e )) (32)
P <p0 ) 3

min | Py|9

L)) (Z P(u)plyg ||p8v,9) +exp(—w(logn)  (33)

2
© n(%n(ZF(u)pgve)”p(v)V@) + o(aﬁ))

€19

+ exp(—w(logn)) (34)
@ 5
S (= d)ba + O(ann> + exp(—aw(log 1)) (35)
3
2
={1-1)8,+0 ﬁ + exp(—w(logn)) (36)

where (a) follows from (28), (b) follows since we are choosing

Sy = w(k’%), (c) follows from Lemma 5 in Appendix A and

(d) follows from (29). We set

1
b 1
dn=0O ﬁ + 5 exp(—w(logn)), (37)
which is vanishing and ensures that

ID)(Z“PU(u)p{;'VWHp{,)Vle) < §,. Therefore, by Lemma 2,
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there exists an (n, €, 8,) with

log e, = max log Z Py(Tp) exp(—nC(6]16'10))
? <P, W)

+ Odim ,ju|, 10| (logn). (38)

To upper-bound €,, we consider two cases for 6 and 6’. If
PY = PQ g+ then (27) yields that

—log Z Py(Tp) exp(—n(C(9||9’|Q)) (39)
0P, U)
> nC(016'IP) + O[p,v,m](na,,;|L1|) (40)
(a) —
> nan(l +§|u|0{pﬁ,0}(1)>>C(9”9/|P)’ 41

where (a) follows from the definition of P and since all terms
in the definition of C(GHG’ |P) are non-negative. If pg‘g *
pg‘g,, we have

—log(Pu(Tg) exp(—nC(6116|P)))
> —(1 —a,(1+ i)

K 1—s
inf 1 t(‘))(o,) @ o).

where (a) follows since infse[oyl]log(tr((pg‘g)s(pgle/)l’S)) <

(42)

0 when ,og‘g 7+~ pgw" Therefore, we can exclude all pairs
4,6 with pg‘g * 'ng’ from the maximization in (38) for
large enough n. Thus, using Lemma 2 and (41), we have

—loge, > mxn<1 + CIUIO[ }(1))

P
X min _ C(6]|¢’|P)
9,9/:pg|9=pgm/

+ Odim . ju). |0 (10g n). (43)
Using the definition of «;, in (29), we obtain

V2 min o _0 C(6]1¢'|1P)

I 0F£0":0g19=Ppior
lim inf — —£<" e (44)

n—oo  \/én — B .
" \/max(; U(Zu P(”)Pf)tme”pl?vw)

B. Converse Proof of Theorem 1

Let us consider a sequence of (n, €,, §,) non-adaptive strate-
gies, for which the input is generated according to a PMF Py
over U" in the n™ strategy. We define

_ 1
P2 -0 Py, 45
n; U 45)
oy 21— P0), (46)
P(w)
Pay 2] o u#0 47
(u) {o DY 47)

Lemma 4: We have

min
.0 0
g#e/ﬁg‘g—pgw/

logn
_OdimB,L{l,@I( . )

As n goes to infinity, «, tends to zero and we have

—loge, < na,C(016'|P)

(48)

=2}

n a2 =

= > 7”m§1XH<ZM:P(u)P€’V|eIIP(v)V|9> 9, W}(ai). (49)
Proof: See Appendix D. |
We therefore have Eq. (52) on the bottom of the next page,

where (a) follows from (48), and (b) follows from (49) and

the constraint §, = w(logn/n). Taking the limit as n goes to

infinity, we obtain the desired converse bound.

C. Proof of Theorem 2

We first recall from [27] that given a unitary U # 14 acting
on A, one can find a positive integer m and a pure state |v)m
such that (v|U®"|v) = 0. Applying this result to the unitary
U; Uy # 14, there exist a positive integer my o/ and pure state
V9.07) g in A™0¢ such that (vg g/| (U} Ug) =™ [vg g1) = 0.
Let m = 29#/ mg g and |v)4m be a pure state in A™ defined
as the tensor product of all |vge/) 4m e in an arbitrary order.
Let £ £ |n/m]. Alice decomposes the first m¢ channel uses
into £ sub-blocks of length m, selects one sub-block at random,
transmits |v)4m on that sub-block, and transmits |0) for any
other channel use. By transmitting |v)4m, Alice can estimate
6 without error.

We now analyze the covertness. Let us denote the state
transmitted through the channels by

A 1 ‘ i—Dm n—im
¢An=Z;(|0><O|>®< D™ @ v (v]4m ® (10)(ON"™.  (53)
Note that

D(E®" (an) 1E%"(10)(01%")) (54)
Qm m Rm
@ x(¢ <|v><v|Amz||s 100 5,
1

56
= Do (€ (0) (0D)” (0
(b) m

(57)

< 9
T (n = m)Amin(E(10){01)™

where (a) follows from [29, eq. (B144)], and (b) follows since
¢ > (n —m)/m. Since m is a constant independent of n, we
obtain the desired bound on the covertness.

D. Proof of Theorem 3

We consider a general strategy, in which Alice initially pre-
pares |¢p)ran and, after receiving |yg)gan = (IR ® ng’”) for
an unknown parameter 6, performs a POVM to estimate 6.
We assume that the estimation error as defined in (5) is €
and the covertness as defined in (6) is 6. We desire to prove
that § > 05((1 —e)t /n). We show this result in three steps
sketched as follows.
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1) We first use the assumption that Uy|0) = Uy |0) for
some 6 # 6’ to show that € > 1—2[¢a» — (|0)(0)®" ;.

2) We upper-bound | pan — (I0><0|)®"||1 by
Og((nY_1_ D(E(Pa)1£(10) (OI)))4) The proof of
this step rehes on both our assumptions on &, i.e.,
E(p) # £(10)(0]) for all p € D(A) \ {|0)(0]} and

sup lp = 10001, _ (58)

peD@anoy o 1€e) — E0) 0Dl

3) We use standard converse argument for covert commu-
nication to show that

ZD (®a;)I€I0)(0D) < 6. (59)

Combining these three steps yields that € > 1 — Og((né)%),
which is equivalent to § > Og((1 — 6)4/n) as desired. We
now prove each step.

a) Proof of step 1: The estimation error, €, is lower-
bounded by

max| (Y [Yg') | (60)
0540’
+ ®n 2
= max|01( 1.8 (Ujr) " )i Q)
2
. ; ®n
_g;éagg tr<¢An<U9U9/) ) (62)
_ ®n _ T , on
_%tr((uoxon éu) (U U )
®n 2
—tr<(|0)(0|)®n<U;U0’) ) (63)
2 mi oop®) (wive) ™) —1| 4
> min tr((dw—(l {0 )( 9 0/) )— (64)
(b) n ®n
= min | 2 tr((¢An—(|0><0|>®)(U;Uer) )‘ (65)
(©
> 1= 2[gan — (10)0D*" | (66)
(67

where (a) follows because Uy|0) = Uy |0) for some 6 # 6/,
(b) follows from |1 —z|> = 1—2Re(z) +|z|> > 1 —2|z| for any

b) Proof of step 2: We have

Jow — @O, € /1 = Flgae, (0)0D™")  (68)
= V1= (01%"gar0)®"  (69)
B | =
< | D_(1—(0lgal0))  (70)
\ =1
© | <
< | > |00 (71)
N i=I

where (a) follows from [30, Th. 1], (b) follows from (classical)
union bound, and (c) follows since 1 — F(p,0) < [lp —0oll;
when p is pure. We now state a lemma that allows us to bound
o — 10)(Olll, using € — 10){OD)l; By our assumption on
& there exists B > 0 such that for all i € [1, n],

11001 — ¢u, |, < BIEAOYOD — E(ea)],  (72)
< B/D(E(@a)IEA0)OD).  (73)
This implies that

| par — (10 OD®" |, (74)
<VB|> \/D(6(¢>Ai)||5<|0> (D) (75)

\ =1
<VB J > D(E(¢a)IEA0YOD)  (76)

\
c) Proof of step 3: We have

D(E®" (gam) 1€ (10)(0%")) (77

= —H(E®(¢pan)) + tr(E%" (ar) log((£(10)(0))®"))
(78)

—H(E®" (pan)) + Z tr(E

i= 1

—ZH (¢a;) +Ztr

(¢4,) log(£(10)(01)))  (79)

(¢4,) 10g(£(10)(01))) (80)

complex number z, and (¢) follows from [tr(XY)| < [XI|[[Y]], = ZD (94 I€0)(0D). 81
for all X, Y € £(A") and [|(U}Up)®"|| = 1.
nayming_y o _ o C(0110'1P) — Ogimp.jul, |®|( o )
log e, @ 00" 0519=Ply 1 " " (50)
San opht
218, (1+0(1)) . "np
d ming 4.0 _o C(0]0'|P
) \/maxg "(Zu P(u)pg‘,w”pOWIQ) OF0"Pp10=Ppr ( 6" ) 51
- Spn
2(1 +o(1 >
_ (L + o)) min _ C(9]10'P) (52)

J maxg U(Zu F(”)pﬁ/w”pe{/w) 9#9’:,92‘9:/)2'9,
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APPENDIX A
APPROXIMATION OF QUANTUM RELATIVE ENTROPY

We characterize in the next lemma the expansion of
D(ap1 + (1 — @) pollpo) in o around zero.

Lemma 5: Let p; and py be two density operators on A
such that pg is invertible. We have for small o > 0

1
Diepr + (1 = @)pollpo) = 30°n(pillpo) + Opy (@) (82)

Remark 5: This result is similar to [8, Lemma 1], but the
expression for n(p1llpo) in [8] is
o0
tr(/o p1(00 +9) 100 +s)‘ds> SRS
which involves an integration. In addition, in Lemma 5, the
constant behind the higher order term is independent of pi,
which is not shown in [8, Lemma 1] and which is crucial in
our converse argument.

We first recall two results from functional calculus before
proving Lemma 5.

Lemma 6: Let X be a positive operator in L£(H) with eigen-
decomposition X = Z?:l AiP;, where A1, ..., A4 are distinct
eigenvalue of X and P; is the projection onto the eigen-
subspace corresponding to X;. There exists € > 0O such that
for all Y with || X — Y| <€, X+ Y is positive and

log(X + ¥) = log(X) + 3 Di;PiYP; + OX(||Y||2), (84)
iy

log A;—log A;
D;j = bk

where
1 7 (85)

)\_i 1=].

Proof: Tt follows from applying [31, Th. 4.2] to the function
log(-). |

Lemma 7: Let I C R be an open interval in R and
f : 1 — R be a smooth function. Let A and B be two self-
adjoint operator in L(#H). We define g(z) £ tr(f(A + tB)) for
all 7 such that all eigenvalues of A 4 B are in I. Then, the
domain of g is open and for each ¢ in the domain of g,

g (1) =t(f'(A + tB)B).

Proof: See [32, eq. (11.176)]. [ |
We now prove Lemma 5. Let pg has eigen-decomposition
> ;i AiP; and define

(86)

loghi—logh; . .
SELTORA
Dy = { R (87)
)L_i 1=].
We also define A £ p; — py and
g(a) £ D(ap; + (1 — @) pollpo) (83)
= D(po + aAllpo) (39)
= tr((po + @A) log(po + aA))
— tr((po + aA) log(po)). (90)
Note that
g (@) 91

@ tr(A(log(po + aA) + 1)) — tr(Alog po) 92)
= tr(A(log(po + aA) —log(po))) (93)
Ll al Yo DiPi@aIp+On(leal?) || ©4)
i
=l Al Y DiPi@dIP + Op(leal?) | | ©5)
i
—a Y Dijue(APAP) + tr(AOPO <||aA||2)> (96)
i
Dy Di(APAP) + Op («?) ©7)
¥
= an(pillpo) + Op (o) 98)

where (a) follows from Lemma 7, (b) follows from Lemma 6,
and (c) follows since the norm of A = p; — pg is bounded
for all density operators pp and p;. We then have

1 a « /
‘g(a)—iazn(mllpo) @ ‘ /0 (¢ (ﬁ)—ﬂn(mllpo))dﬁ‘
(99)

5/0 ' (B) — Bn(pillpo)|dB  (100)

® /O ’ O (£)dp
o)

where (a) follows from the fundamental theorem of calculus
and (b) follows from Eq. (98).

(101)

(102)

APPENDIX B
PROOF OF LEMMA 2

We first recall a result from [26] on the optimal performance
of discriminating multiple quantum states.

Lemma 8: Let {pp}gce be a finite family of density oper-
ators acting on a finite dimensional space. There exists a
Positive Operator Valued Measurement (POVM) {T'g}yc@ such
that

max tr(pg (1 — T'g)) < 10(/0] — 1)
0e®
. s l—s
< maxvon) 3 i e(vins)
6£0’
(103)
Proof: It follows from combining [26, Th. 2] and

[26, eq. (39)]. [

Alice samples the input sequence u according to Py and
receives pg g 4 :01’;\]9 ® - ® ,01”3"‘9. Alice then performs the
POVM (I'j : 6 € ©} given by Lemma 8 for the states

{’OEW}@E@’ resulting in estimation error
10(|6| — 1 2maxv( h )
(19| ) R PBo

. e V/ u 1—s
< 3t (o) (b))

040’

(104)
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Note that maxgeo v(popy) < (n+ 1ydimBIUI 4nd

s 1—s
sei[r(l),fl] tr((p§|9> (pg“”) > (105)
n NS Ui 1—s
S ) () 7)o
= m - 2
x log (tr<<p§’ia)s(p?e/)l_s>>> (107)
= exp (—n ses[lilfl] — I; Tu(u)
X 10g<tr<(/0§|9>s (Pgw') 1—s))> (108)
= exp(—nC(0116'|Tu))- (109)

This concludes the proof.

APPENDIX C
PROOF OF LEMMA 3

We introduce a notation that simplifies our expressions. Let
us define for u € U and s € [0, 1],

A u S0 1—s
fisiw 2 10g(w( (plhgo) (o) ). 110)
which is always non-positive and
Lr2 min min " i) > —o0. 111
7 u’eZ/{\{O}s’e[O,l]f(S u) ( )
We then have
log| Y Pu(To)exp(—nC(0]6'|0)) (112)
Q<P (U)
< max [-nC(016'10)] (113)

T QePU):Py(To)>0

max |:—n sup —ZQ(u)f(s; u):| (114)

QePuU):Py(Tg)>0 sel0 1] oy

(@)
<

B QEP,,(UI)I:I%()J((E)>O nsesll(l)l,)ll ME%O}Q(M)JC(S’ "
(115)
)
< —nosup — ) (P(u) = {a)f (si u) (116)
s€[0,1] uel\ (0}
< C(0110'|P) — nag U|Ly, (117)

where (a) follows since f(s;0) < 0, and (b) follows since
Py(Tp) > 0 if and only if |P(u) — Q(u)| < «¢ for all
u € U\ {0} (see Eq. (24)-(26)). Note also that Q(0) = 1 —
Y wenni0y Q) = 1= o 0 (Pa) +a) = PO) —at U] =
1 —a(l+¢|U|) for all Q € Q. The same line of reasoning as

in Eq. (112)-(117) then provides that

log[ > Pu(Tp)exp(~nC(016'1Q))
QP L)
< —n(l —a(l +|U])) inf f(s,0), (118)
se[0,1]
which yields Eq. (27) together with Eq. (117).
Let U be distributed according to P®" and Ty denote its
type, which is a random element of P, (/). We have

(@)
1—P(A) < ) P(ITu(w) — Pw)| > ¢a)
ueld\{0}

vy

uel\{0}:P(u)>0

(119)

P(Ty(w) — P(w)| = a)

(120)

© a?ng?

< 2 — 121

= 2 exP( 3P(u>> (20
ueld\{0}:P(u)>0

@) 2

< 2|u|exp(—“’ff ) (122)

where (a) follows from the union bound, (b) follows since
Ty(u) = 0 with probability one when P(u) = 0, (c) follows
from a Chernoff bound, and (d) follows since P(u) < 1 —
P0) = « for all u € U \ {0}. Note that %HPU — PP =

1—-P®*(A) < 21U exp(—‘mfz) by the definition of Py. Hence,

the data processing inequality implies that

Y Pupyyy — Y PP Wy

omg'Z)
3 )

Finally, the following continuity result for the relative
entropy completes the proof of (28).

Lemma 9: Let pg and og be two density operators over B"
such that %H,OB — oBll; < €. We then have

‘D<0B ||/03v\9> - D(UB”P?wg)‘

1
2
1

< 2|Z/{|exp<— (123)

< elog dim B s n+E©. (24
(Amin(oy0)
Proof: Note that
D (s8llobye ) = D(omloW)| (125)
= |H(pp) — H(ow) + tr((on — om) log oWy ) )| (126)
< |H(ow) — Hiow)| + |((on — om) log(ply) )| (127)

(%) € log(dim B)n + Hp(€) + ‘tr((pg — oB) log(p{,)w@))‘
(128)

< €log(dim Byn + Hy(€) + 0w — ol | log oy ) |
(129)
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1
< elog(dim B)n 4+ Hy(€) + 2e log| ———— |n
Amin (:O(v)v|9)
(130)
where (a) follows from Fannes’ inequality. |
APPENDIX D

PROOF OF LEMMA 4

Eq. (49) follows from the same argument used to obtain [8,
eq. (39)], except using Lemma 5 instead of [8, Lemma 1]. We
prove Eq. (48) in four steps as summarized below.

o Step 1: We lower-bound the estimation error of this

strategy by

max Z Py (u)tf<F9 PB\@)

)

(131)

1 u u
|O| s < EHPBW Ppjo’

o Step 2: Let us now consider the spectral decomposition of
pgw = Zyeypg ) lef () (ey ()], where Y is a set of size
dim B, pjy is a PMF over ), and {|eg(y)) 1y e y} forms
an orthonormal basis for B. We also define qg’ o, y) &
12 (y)|(e(‘,‘ ) ley (y’)) 2, which is a PMF over ) x ), and
g8 £ q' ® - ®q,", which is a PMF over () x J)". We

shall show that
1 1
- 10~ o=l
1‘2( o0 1)

(132)

e Step 3: Let Pyjy and PV| y be two conditional distribu-

tions, u € U" be a sequence with type Ty, and V and \%

be distributed according to Py = Pyjy—y, ®@- - - @ Py|y=u,

and Py = Py y—y, ®- - - ®Py -, respectively. We shall
show that

Z min (PV ), Py (V))

1
=3 [ebo — i

> exp| —n sup log
5€[0,1]

x (Z Tuw)) PVU<v|u>SPmU(v|u>1—S>

()

o Step 4: We show that

(133)

,

= exp(—nC(9||9|TU) n O(IO%)) (134)

1
u u
- EHIOBW ~ PRy

which concludes the proof together with Jensen’s inequal-
ity and the convexity of the exponential function.
We now provide the detailed proof of each step.
a) Proof of step 1: Note that

maXZPU(u)tr<Fg,oﬁ|9) (135)
|®| ZPU(u)Ztr(rngw) (136)
= |®| ZPu(u)max< —gﬂpﬁw—pﬁw 1) (137)

]>, (138)

where (a) follows from the variational characterization of the
trace norm %Hp — 0|} = maxo<r<1 tr(I'(p — 0)).

b) Proof of step 2: The proof is in [25], but we provide the
proof for completeness We first define pj; = p(9 ®---®py" and
lef (¥) £ leg' (1)) ®- - - ®ley" (yn)). We have Eq. (144) on the
bottom of thls page, where (a) follows since (1—T") > (1—T")2
forall 0 < T' < 1, and (b) follows from |x|>+[y[> > [x+y|?/2

for any two complex numbers x and y.

1 u u
> @ max ZPU(U)< 3 H'OBI@ — Phjor

= ek = b ], = i (o) + o i) (139)
= inf | Zp3<y><ez<y>|r|e3<y)> + Zpg&yxeg/(yn(l - F>|eg,<y>>} (140)
(i_)o <nrlf<1 Zp9<y)||r|e9<y> ||2+Zp9,(y>||<1 D)leg ) | } (141)
Uy
=0<irllf<1 Zp9<y)|<e9/ )ITled )| +§p9,(y)| (el 1A —D)led(y)) [ (142)
> inf mm(p9<y> P (V) (| (el ()Tl + e ()11 = Dlebn*)  (143)
y
223 min(. ()bl (¥)) (144

vy
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c) Proof of step 3: Deploying standard method of type
arguments, we have

> " min(Py(v). P3(v)) (145)
v
> max min(Py (v), P (V) (146)
TypePa(Viw) 2 ( V)
veTryy (W)
(§) max (n+ 1)_|V”u|
TyjyePn(VIu)

X exp( — nmax

x (D(TviolPviolTo). D(TyvulPyolTy)))
(147)
=+ 1)—\V||U\

X exp(—n

(D(rviullPviulTw), D(TVUHPVUHU))),
(148)

where (a) follows from [33, eq. (2.8)]. Next note that for an
arbitrary conditional distribution Qy)y, there exists Ty|y €
P,(V|u) such that A, £ %”TVIU u — OV|U=u Hl < nle(‘u) for
all u € supp(Ty). Thus, for such a Ty,y, we have Eq. (155)
on the bottom of this page, where (a) follows from Fannes’

inequality, (b) follows since Hp(x) < xlog ¢ <, and (c) follows

min
TV\UGIPH(V‘H)

max

Finally, [16, eq. (39)] implies that

min ma. ) P T ,D P~ T

OviwePVIU) X( (QviwllPyiulTy) (QV\U” viul U))

I log(z TU(M)E Pyiy(v|u)’ Py U(v|u)l_5).
s€[0,1]

(157)

d) Proof of step 4: Combining the result of step one and
two, we have

1 u u
=i —eio

> exp| —n sup
s€[0,1]

x log| 3" Tuw x 3 (P les el 0)))
u Yy
1—s
X(pz/(y’)}(ez(y)lezf(y’))lz) )
+ o(l"ﬂ))
n
Note that

Z(p 0 lehless 6 (o 0 e ey 6O))

(158)

(159)

since A, < 5 Vu by our choice of Ty y. u sl u u 2
Hence, Tut | = ZP@ (Y)sz(y/)l S|(€9 (y)leg/()/)” (160)
. gjin(w“) max(]D)(TV|U||PV|U|TU),
VIUEP )
=tr JZIGREAGNEAG]
D<TV|U||P\7|U|TU)) Xy:
>  min  max{D(QviullPviulTu), ;
QvivePVIU) ( (@uulPyiTy) < Db ) el D) el O (161)
logn 4
D(QVUHPVUWU))—O( - ) AN
(156) :tr((pBle) (#h0) ) (162)
[D(Tviul1Py01T0) = D(QviulPyITy)| (149)
= > o [D(Tviv=ulPrius) — P(Qvio=ullPriu—,) (150)
1
T H(Ty =) — H(Qy|U—u T — Ovu log ———— 151
< Xu: U(M)<| (Tviu=u) (Qviu=u)| +;| viu(Wlu) — Quu(vlu) | log PVU(vlu)) (151)
. 1
ED ) (Au log/V| + Hj(A,) + max log —Au> (152)
- v Pyy(viu)
®) e 1
< T, (u)(Aulo [V| + A, log — + max lo —Au> (153)
; u & gAu v gPV\U(VW)
() V| V| nTy(u)e 1 V]
< T (u)( log|V| + lo + max lo ——) (154)
A VT P07 RS (T RV 8 Py (v nTu(w)
_ IVIIU|log|V| + VU logn + max o LV _ 0 logn (155)
- n n v,n gPV|U no n
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Substituting Eq. (162) into Eq. (158), we have

1
|- zHpgl@ Ry )1 (163)

K ;N\ 1—s
won{on g (e <o{ () 0) )
+ (9<loﬂ>)
n

- exp(—n(C(9||9|TU) + 0(105"».

APPENDIX E
PROOF OF LEMMA 1

(164)

(165)

We divide the proof into four steps.
a) Step 1: By the observation || X, < [IX||; < vdimA|X]||,
for all X € L£(A), it holds that
llo —10){0lll
sup
peDAN(0yon 1€(0) —E0) 0D,

if and only if

(166)

Il — 10) (01l
sup
peD(A\{|0)(0]} 1€(p) — EU0YOD,

b) Step 2: We state a result that relates the norm of the out-
put of a linear operator to the norm of the output of projection
onto the kernel of the linear operator. This implies that one
only needs to know Ker(&) to verify (167).

Proposition 1: Let V and W be Hilbert spaces and A:V —
W be a non-zero linear map. Let P be the projection onto
Ker(A). There exist positive constants By and B; such that for
allveV,

(167)

Bi[|Av]l = |y — P)v|| < Bz2||Av]l. (168)
Proof: See Appendix E-A |
By Proposition 1, we have
—10)(0
sup o —10){Olll (169)
peD(A)\{|0)(0]} 1€(p) = E0)ODII,
if and only if
—10)(0
sup e —10)(0lll, <o, (170)

peDAN(0)op 1(da — P)(p —10)(0D I,

where P is the projection onto Ker(E).
a) Step 3: It will be more convenient in the sequel to con-
sider linear operators acting on A as points in R24 . We use
the function f defined in Definition 2, for which we list here
some useful properties.
Proposition 2: The function f defined in Definition 2 sat-
isfies the following properties.
1) f is bijective
2) f(aX +bY) = af(X) + bf (Y) for all X,Y € L(A) and
for all a, b € R

3) IFCOl, = 1X]l, for all X € X

4) If Q is a projection onto a linear subspace E C
L(A), then f(E) is also a linear subspace of R24* and
f(OX) = Q' (f(X)) where Q' denotes the projection
onto f(E).

C C

Fig. 2. Tllustration of Proposition 3: On the left, ||x||» cannot be uniformly
bounded by |[(1 — P)x|l, when x is close to the origin, while on the right,
|x]l2 can be uniformly bounded by |[(1 — P)x||, when x is close to the origin.

5) If X is a compact convex subset of L£L(A), then f(X) is
a compact convex subset of R2% and of X) = f(0X)
where df(X) and 0X denote the boundaries of f(X) and
X, respectively.

Proof: We only prove item 4 and the other items are straight-
forward consequence of the definition of f. We havef (Q(X)) =
flargminy pllY — X|l,) = f(argminyg gllf(Y) —fXl,) =
argminy: ) | Y = X0 |, = Q' (FX)). u

Proposition 2 implies that

—10)(0
sup o —10){O[ll c0  (171)

peD@N [0y 1Gda — P)(p — 10){0D I,

if and only if

llxll»
sup —= < 00,

/ (172)
xef(D@A—[0yop\(oy 1 = PH@)

where P’ is the projection onto f(Ker(£)).

a) Step 4: We now provide a geometric characterization for
Eq. (172) (See Fig. 2).

Proposition 3: Let C be a compact convex subset of RF
containing the origin on its boundary and E be a linear sub-
space of R¥ such that C N E = {0}. We assume that the
boundary of C, dC, is a smooth manifold embedded in RF
and the tangent space of dC at the origin is 7. Then, upon
denoting the projection onto E by P,

llxIl,
xec\(o) (1 = P)xll,

if and only if TN E = {0}.

Proof: See Appendix E-B. |

a) Step 5: We show here that the tangent space at the origin
of the boundary of f(D(A) — |0)(0]) is span(ay, ..., az4—2),
where {aj};c[1 24-2] is defined in Definition 2. First, note that
the boundary of f(D(A) \ [0)(0]) is f({l¢)(¢] : llpll = 1} \
|0)(0]) because the boundary of D(A) are pure states and
because of item 5 of Proposition 2. We define two map
g: 1) — |p) (@] and h : R2~1 5 A as

(173)

(X1, X2, ¥2, X3, Y3, - - Xd» Yd)
d
> xiler) + (5 + ivj)lep). (174)
=2

Note that the coefficient of |eq) is always real for all vectors
in the range of 4 as we have freedom to choose the phase of
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a quantum state. Following our definition of f, g, and A, the
2(G—1) xd+k)—1 and 2(G — 1) x d 4+ k) components
of (fogoh)(x1,x2,¥2,%3,¥3,...,X4, ya) are xjxx — y;y; and
YjXk + X;jyk, respectively. Thus, f o g o i is a smooth function.
We also calculate the derivative of fogo h at (1,0,...,0),
which is represented by the matrix [aglai] - - - |a2g—2], where
ag is a vector and ay, ..., axy_» are as in Definition 2.

Let S £ {xeR*!: x|, =1} be the unit sphere in
R?4=1. The restriction of f o g o h is also a smooth func-
tion. The tangent space of S at (1,0,...,0) is the span of
(ba, ..., bra_1), where by, ..., by form the standard basis
for R24~!. Therefore, the image of the derivative of f o go h
restricted to the tangent space of S at (1,0, ..., 0) is the space
of (ay,...,axs—>). Since ay, ..., ar4—7 are linearly indepen-
dent and the dimension 0ff({|¢)(¢| el = 1} \ 10)(0]) is
2d — 2, the whole tangent space of f({|¢)(¢| ol = 1} \
|0)(0]) at the origin should be the span of ay, ..., axj—>.

A. Proof of Proposition 1

Let V/Ker(V) be the quotient space and & : V — V/Ker(A)
be the quotient map. We can define a norm on V/Ker(A) by
W = infrekera) Ilv — xIl = llv — Pyl = [y — P)v||. By
the first isomorphism theorem of linear algebra, there exists a
linear isomorphism A:V /Ker(A) — W such that Av = (Aom)v.
Since any linear operator from a finite dimensional space is
bounded, we have

lavl = [A@ o) | < A1zl = [A] 1Ay — Pyl
and [|(1y — P)v|| < ||A IJ |Av|| The result therefore holds for
By = 1/|A| and B, = |A~!].
B. Proof of Proposition 3

a) Step 1: We first show that
llxll»

—_— (175)
xec\(oy 1A — P)xll,
if and only if
llxIl, . (176)
xeac\(o) I(L = P)xll,
If Px = 0 for x € C\ {0}, we have % = 1, which

is bounded. Let x € C\ {0} such that Px # 0 and define
¢ :[0,11 > R by ¢(r) & (1 — 1)x + tPx. We know that
¢~1(C) is closed and connected, because C is closed and con-
nected (as a convex set) and ¢ is continuous. The only closed
and connected subsets of [0, 1] are of closed intervals and as
#(0) = x € C, we have ¢~ 1(C) = [0, a] for some a € [0, 1].
Since Px # 0 and E N C = {0}, we have Px ¢ C and there-
fore a < 1. ¢ (a) is on the boundary of C because a is on the
boundary of ¢~!(C) = [0, a] and ¢ is continuous. Now note

that
Po(a) = P((1 — a)x + aPx)

=({1—-aPx+ aP?x = Px.

(177)
(178)

Hence,

1A =P)p@ll, = (1 —a)x+ aPx — Pxl|,
= (1 = a)ll(1 = P)xlly = [I(I = P)xll,

Therefore,
10— P3P o)
(A — P)xll, (X = P)xll,
@ JIa = Pp@13 + 1Po @13 150
h 1A =Pl
__Is@ly ash)
1A= P)p(a)ll,
This completes the proof of the first step.
b) Step 2: We now show that
Ixll> 0, (182)

xeac\joy 11 = P)x|l,

if and only if ENT = {0}.

First suppose that v € E N T is non-zero. We will find
x € 9C \ {0} such that ||x||/||(1 —P)x|| = K for a given
K > 0. By definition of tangent space, there exists a smooth
curve y : (—=1,1) — 9C such that y(0) = 0 and y'(0) = v,
i.e., lim;—oy(¢)/t = v. There exists some fy > 0 such that
ly @)/t —v| <|v||/2 for all 0 < |f| < ty. We therefore have
ly O = tl|v]l/2. Additionally, lim;—.o(1 — P)yt = 0 because
1 — P is continuous and (1 — P)v = v — Pv = 0. Thus, there
exists #; > 0 such that ||(1 — P)y (®)|| < 2/(K|v|]). For any ¢
such that 0 < ¢ < min(fg, t;), we have

t t 2
ly@®ll . vil/ _K (183)
I(L=Py®I — 2/KlvI)
as claimed.
We now prove the other direction. Let B(e) £

{x € R* : ||x|| < €} denote the open ball of radius e at the ori-
gin. To show (182), it is enough to check for arbitrary small
€e>0
sup & < 00 (184)
xe@cnBen oy I —P)xll,

because dC \ B(e) is a compact set, on which the distance
from E is non-zero and varies continuously. Let Q denote the
projection onto 7 the tangent space of dC at the origin. We
know that for a point x on dC close to origin we have |x| =
1Ox|| + o(J|x||). We can hence find an € > 0 such that for
x € 9C N B(e)) \ {0} we have x| < 2|Qx||. Furthermore,
considering the linear map A : T — E' defined by x +—
(1—P)x, it is injective. Therefore, for some constant B > 0, we
have ||Ax|| = ||(1 — P)x|| > B||x|| for all x € T. We can also
choose € > 0 such that ||(1 — Q)x|| < B/2||Qx||. Therefore,
we have for all x € 3(C N B(e)) \ {0}

I 2/1x
1A =Pl = 1A= Pyl
B 2/ 04
1A =P)xl = 1= P)(1 = O]
3 2/ 04
1A =P)ox] = 1= P)(1 = O]
2]104

< <4/C.
C|l Ox|| —CIIQxII/2
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