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On Covert Quantum Sensing and the

Benefits of Entanglement
Mehrdad Tahmasbi and Matthieu R. Bloch , Senior Member, IEEE

Abstract—Motivated by applications to covert quantum radar,
we analyze a covert quantum sensing problem, in which a legit-
imate user aims at estimating an unknown parameter taking
finitely many values by probing a quantum channel while remain-
ing undetectable from an adversary receiving the probing signals
through another quantum channel. When channels are classical-
quantum, we characterize the optimal error exponent under a
covertness constraint for sensing strategies in which probing sig-
nals do not depend on past observations. When the legitimate
user’s channel is a unitary depending on the unknown parame-
ter, we provide achievability and converse results that show how
one can significantly improve covertness using an entangled input
state.

Index Terms—Quantum sensing, covert communication.

I. INTRODUCTION

W
HILE much of the information-theoretic security lit-

erature focuses on ensuring secrecy and privacy, in

the sense of preventing or minimizing the information con-

tent leaked by signals, there have been recent efforts geared

at understanding the information-theoretic limits of covert-

ness, defined as the ability to avoid detection by hiding

the mere presence of signals themselves. In particular, such

information-theoretic limits have been successfully charac-

terized in the context of covert communication and covert

sensing. Covert communications describe situations in which

two legitimate parties attempt to communicate reliably over

a noisy channel while avoiding detection by a third party.

A problem closely related to covert communication is stealth

communication [1], [2], in which it is required that the adver-

sary’s observations be distributed according to a pre-specified

distribution, not necessarily associated to the absence of com-

munication. This different constraint could result in different

asymptotics of the optimal number of transmitted bits. Covert

communications are governed by a square-root law [3], which

limits the number of bits that can be reliably and covertly

transmitted to the square root of the block length, and the

channel-dependent pre-constant that governs the scaling is

known for classical discrete-memoryless channels [4], [5], [6],
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Gaussian channels [5], classical-quantum channels [7], [8],

and lossy bosonic channels [9]. Covert sensing, in contrast,

refers to scenarios in which the estimation of parameters of

interest requires the use of probing signals that emit energy

and are therefore detectable; if estimation could be achieved

through purely passive sensing, covertness would automati-

cally be guaranteed. Covert sensing is also governed by a form

of square-root law. Specifically, [10], [11] have considered

the problem of estimating an unknown phase over a bosonic

channel while keeping the sensing undetectable by a passive

quantum adversary. This operation is made possible by the

presence of thermal noise, which allows one to hide the use-

ful sensing signal in the background thermal noise and results

in a mean-square phase estimation error scaling as O( 1√
n
) if

n is the number of modes. Reference [12] has investigated a

slightly different model in which the objective is to covertly

estimate the impulse response of a linear system. One of the

main results obtained is that the bandwidth of sensing signals

must scale linearly with the time duration of these signals.

Potential applications of covert sensing include covert radar

and covert pilot estimation in wireless communications. We

note that for the latter application, other models such as com-

pound or arbitrarily varying channels have been studied [13]

to handle channel state uncertainty.

The present work studies covert sensing by drawing on

connections with active hypothesis testing [14], [15], also

known as controlled sensing [16]. Active hypothesis testing

differs from traditional hypothesis testing [17], by consid-

ering the possibility of changing the kernel through which

unknown parameters are observed, which leads to estima-

tion strategies that are potentially faster or more accurate.

Recent studies of active hypothesis testing have built upon

the pioneering work of Chernoff [18] on sequential design

of experiments to provide new insights into the problem,

including the benefits of sequentiality and adaptivity [14],

[16], [19], the role of extrinsic Jensen-Shannon Divergence

as an information utility metric [20], the unavoidable trade-

off between reliability and resolution of estimation [15], and

the identification of situations when pure (non-randomized)

policies are optimal [16]. Examples of recent applications of

active hypothesis testing include radar [21] and millimeter-

wave beam alignment [22]. Active hypothesis testing offers a

natural framework for studying covert sensing since covertness

effectively requires one to use different observation kernels to

hide the presence of probing signals.

The problem of quantum state or channel discrimination

without covertness constraint has been intensively studied,

see, e.g., [23, Ch. 3], [24]. The optimal error exponent
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of discrimination of finitely many quantum states has been

characterized [25], [26] and resembles the optimal error expo-

nent of classical states discrimination; this exponent is known

as the multiple quantum Chernoff distance. For quantum chan-

nel discrimination, as the probing signal can be any quantum

state and could be arbitrarily entangled with the environment

and previously received signals, several intriguing phenomena,

specific to the quantum world, could happen. For example,

the legitimate user can substantially decrease the probability

of estimation error by keeping its environment entangled with

the probing signals [23, Example 3.36] or quantum channels

that cannot be perfectly distinguished with a single probing can

be distinguished with multiple probing with zero probability

of error [27].

In a previous conference paper [28], we revisited the idea of

covert sensing put forward in [10], [11] from the perspective

of active hypothesis testing in a classical setting, which we

called active covert sensing. Therein, we have characterized

the exponent of the probability of detection error subject to

covertness constraints for non-adaptive non-sequential strate-

gies and illustrated the benefits of adaptive non-sequential

strategies. In the present work, we expand upon these results in

the quantum setting, in which the legitimate parties attempt to

discriminate quantum channels subject to a covertness con-

straint. Some of the results developed hereafter supersede

those in [28] but, unlike [28], we do not consider the adapta-

tion of the probing signals with respect to the previous outputs

of the quantum channel; instead, we explore the potential ben-

efits of using entanglement for covert sensing. Specifically,

we offer the following two contributions: i) when the legit-

imate user’s probing signals are classical, but the received

state by both the legitimate user and the warden are quan-

tum, we characterize the exact detection error exponent of

non-adaptive non-sequential strategies subject to a covertness

constraint; ii) when the legitimate user’s channel is a unitary

depending on the unknown parameter, we show that the legiti-

mate user can estimate the unknown parameter with zero error

while satisfying a stronger notion of covertness compared to

what we could achieve over classical-quantum (cq)-channels.

We also prove a converse result showing that the asymptotic

scaling of the covertness in our achievability result is optimal.

The remainder of this article is organized as follows.

We introduce our notation in Section II and formalize the

problem in Section III. We provide our main results for cq-

channels and unitary channels in Section IV and prove them

in Section V. We defer the most technical parts of the proofs

to the appendices to streamline the presentation.

II. NOTATION

We denote a vector of length n (e.g., (x1, . . . , xn) in X n)

by a boldface letter (e.g., x). We let Tx denote the type of the

vector x, which is a Probability Mass Function (PMF) over X

defined by

Tx(a) �

∣∣{i ∈ �1, n� : xi = a
}∣∣

n
, (1)

where �m, n� � {i ∈ Z : m ≤ i ≤ n}. We define Pn(X ) �

{Tx : x ∈ X n} and TQ � {x : Tx = Q} for Q ∈ Pn(X ). PX

denotes a probability distribution over the set X and PX⊗PY is

the product distribution over X ×Y induced by two marginals

PX and PY . P⊗n
X also denotes the n-fold product distribution of

PX over X n. We define Hb(x) � −x log x − (1 − x) log(1 − x)

for x ∈ [0, 1]. Let 1{·} denote the indicator function. We use

standard asymptotic notation O(·), o(·), ω(·), and �(·). To

emphasize that the constant hidden in O(·) could only depend

on a parameter θ , we write Oθ (·).
A quantum system A is described by a finite-dimensional

Hilbert space, which we also denote by A with a slight abuse

of notation. Let dim A be the dimension of A and 1A be the

identity map on A. We denote the tensor product of A and B by

A⊗B or AB. L(A) denotes the set of all linear operators from

A to A and D(A) denotes the set of all density operators acting

on A, which are the possible states of the quantum system A.

Given two density operators ρA ∈ D(A) and ρB ∈ D(B), we

denote the product state on AB by ρA ⊗ ρB. We also define

ρ⊗n
A as the n-fold tensor product of ρA. A pure state is of

the form |φ〉〈φ|A for a unit vector |φ〉A ∈ A. We use φA to

denote |φ〉〈φ|A when there is no confusion. For X ∈ L(A),

the trace norm of X is ‖X‖1 � tr(
√

X†X), and ν(X) denotes

the number of distinct eigenvalues of X. We also define the

support of X ∈ L(HA) as the subspace orthogonal to Ker(X),

which we denote by supp(X). We denote the adjoint of X by

X†. When X is Hermitian, i.e., X = X†, λmin(X) denotes the

minimum eigenvalue of X. The fidelity between two density

operators ρ and σ is defined as F(ρ, σ ) � ‖√ρ
√

σ‖2
1. A

quantum channel NA→B is a linear trace-preserving completely

positive map from L(A) to L(B). Given two quantum channels

N and M, we denote their tensor product by N ⊗ M. Let

idA be the identity channel on L(A). For two states ρ and σ

with supp(ρ) ⊂ supp(σ ), we define

χ2(ρ‖σ) � tr
(
ρ2σ−1

)
− 1, (2)

D(ρ‖σ) � tr(ρ(log ρ − log σ)). (3)

Additionally, given the spectral decomposition of a state σ =∑
i λiPi, we define

η(ρ‖σ) =
∑

i �=j

log λi − log λj

λi − λj

tr
(
(ρ − σ)Pi(ρ − σ)Pj

)

+
∑

i

1

λi

tr((ρ − σ)Pi(ρ − σ)Pi). (4)

Finally, we use standard notions from differential geom-

etry such as tangent space and derivative of a smooth

functions.

III. PROBLEM FORMULATION

Let A, B, and W be quantum systems and � be a

finite set of parameters.1 As illustrated in Fig. 1, let

{Nθ : L(A) → L(B)}θ∈� and {Eθ : L(A) → L(W)}θ∈� be

two families of quantum channels. Alice’s estimation strategy

consists of the following. Alice prepares a possibly entangled

1We only consider classical parameters, estimating an unknown quantum
parameter is of interest for certain applications but is outside the scope of this
article.
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Fig. 1. Model for quantum covert sensing.

state |φ〉RAn , where R is a reference system with dim R =
dim An, and transmits the subsystem An in the quantum state

φAn . Alice then receives ψθ,RAn � (idR ⊗ N⊗n
θ )(|φ〉〈φ|RAn),

on which Alice performs a POVM {Ŵθ }θ∈� to estimate

the unknown parameter θ . We measure the estimation error

through2

max
θ∈�

(
1 − tr
(
ψθ,RAnŴθ

))
. (5)

Let S(n, ǫ) denote the set of all states |φ〉RAn such that the

estimation error is not greater than ǫ for some POVM. The

strategy is called non-sequential because the parameter n is

fixed, and non-adaptive because the probing signals are not

adapted to past observations.

Willie observes what Alice transmits through the memory-

less channel Eθ when the parameter is θ , i.e., Willie receives

E⊗n
θ (φAn). One of the input vectors is denoted by |0〉 ∈ A

and corresponds to Alice being “inactive,” i.e., Willie expects

Alice to transmit |0〉⊗n when no estimation strategy is run.

This allows us measure the inability of Willie to detect probing

signals through the covertness metric

max
θ∈�

D
(
E

⊗n
θ (φAn)‖E⊗n

θ

(
|0〉〈0|⊗n

))
. (6)

We refer the reader to [4], [6] for a discussion on how upper-

bounding (6) yields a bound on the probability of error of

any strategy employed by Willie to detect the presence of an

estimation strategy.

We finally define the quantities

C(n, ǫ) � min
|φ〉RAn∈S(n,ǫ)

max
θ∈�

D
(
E

⊗n
θ (φAn)‖E⊗n

θ

(
|0〉〈0|⊗n

))
,

(7)

E(n, δ) � inf {ǫ ∈ ]0, 1[: C(n, ǫ) ≤ δ}, (8)

which will be useful to express the fundamental limits of

Alice’s performance.

Remark 1: To ensure that our model is physically realiz-

able, the whole process from Alice to herself and Willie should

be described by a completely positive trace-preserving map as

required by the laws of quantum mechanics. We also allow the

systems received by Alice and Willie have some sub-system

in common. This assumption is necessary because we shall

study the scenario in which Alice’s channel is unitary and

the complementary channel of a unitary channel is constant.

If Alice and Willie’s systems were disjoint, Willie would not

obtain any useful information. Formally, we state our require-

ment as follows. There should exist quantum systems B′
θ ,

2Note that this definition of estimation error is only meaningful for finite
parameter sets.

W ′
θ , and Cθ , isomorphic isometries Vθ,B : B′

θ Cθ → B and

Vθ,W : W ′
θ Cθ → W (i.e., B′

θ Cθ
∼= B and W ′

θ Cθ
∼= W) and a

quantum channel Mθ : L(A) → L(B′W ′C) such that

Nθ (X) = Vθ,BtrW ′
θ
(Mθ (X))V

†
θ,B ∀X ∈ L(A) (9)

Eθ (X) = Vθ,W trB′
θ
(Mθ (X))V

†
θ,W ∀X ∈ L(A). (10)

Because some parts of Alice’s and Willie’s output systems

could be in common, the order in which Alice and Willie

observe their outputs matters. We assume that Willie first

observes his outputs and, should he decide to disturb

the systems, Alice is notified through another means of

communication.

IV. MAIN RESULTS

A. Cq-Channels

We first provide the full asymptotic characterization of

Alice’s optimal performance for covert sensing over cq-

channels. Although the cq channels we consider here have

finite dimension, cq channels are good models for those chan-

nels that arise in quantum optics, such as bosonic channels

in which the input is a classical parameter of the transmitted

states, see, e.g., [10]. In particular, we assume that both Nθ

and Eθ are cq for all θ . That is, there exist an orthonormal

basis {|au〉A : u ∈ U} for A and two sets of quantum states

{ρu
B|θ }u∈U ,θ∈� and {ρu

W|θ }u∈U ,θ∈� such that

Nθ (|au〉〈au′ |) = 1
{
u = u′}ρu

B|θ ∀u, u′ ∈ U (11)

Eθ (|au〉〈au′ |) = 1
{
u = u′}ρu

W|θ ∀u, u′ ∈ U . (12)

Note that Eθ and Nθ are uniquely characterized by the linear-

ity of quantum channels. We finally assume that 0 ∈ U and

that |a0〉 is the innocent state |0〉. We also impose some mild

restrictions on the cq-channels that are required to make the

problem meaningful.

1) �̃ � {θ ∈ � : ∃θ ′ ∈ � \ {θ} : ρ0
B|θ = ρ0

B|θ ′} �= ∅. This

ensures that Alice cannot distinguish all parameters by

sending only 0, which would result in perfect covertness.

2) There exists θ ∈ � such that no distribution P over U \
{0} is such that

∑
u P(u)ρu

W|θ = ρ0
W|θ . This ensures that

Alice cannot simulate sending 0 by a random selection

of other inputs.

3) For all θ ∈ � and for all u ∈ U supp(ρu
W|θ ) ⊂

supp(ρ0
W|θ ). This ensures that Willie cannot detect the

estimation with non-vanishing probability when a state

with support not included in supp(ρ0
W|θ ) is transmitted.

We introduce the notion of conditional Chernoff information

to state our main result.

Definition 1: Let θ and θ ′ be two parameters in � and P be

a distribution over U . The conditional Chernoff information is

C
(
θ‖θ ′|P

)
� sup

s∈[0,1]

−
∑

u

P(u)

× log

(
tr

((
ρu

B|θ

)s(
ρu

B|θ ′

)1−s
))

. (13)

Theorem 1: Under the assumption on the cq-channel dis-

cussed above, we have − log E(n, δn) = �(
√

nδn) for any
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sequence {δn}n≥1 = O(1) ∩ ω(
log n

n
), and in particular,

lim
n→∞

−
log E(n, δn)√

nδn

= sup
P

√
2 minθ �=θ ′:ρu

B|θ=ρ0
B|θ

C
(
θ‖θ ′|P

)

√
maxθ η

(∑
u P(u)ρu

W|θ‖ρ
0
W|θ

) , (14)

where the supremum is taken over all probability distributions

P over U \ {0}.
Remark 2 [28, Th. 1]: can be obtained as a special case

of Theorem 1, corresponding to the situation in which all

operators in {ρu
B|θ }u∈U ,θ∈� and all operators in {ρu

W|θ }u∈U ,θ∈�

mutually commute.

B. Unitary Channels: The Power of Entanglement

We now consider a situation in which {Uθ }θ∈� is a family

of unitaries acting on A such that Nθ (ρ) = UθρU
†
θ for all

θ ∈ �. This corresponds to an ideal situation in which Alice

is able to receive all transmitted signals without any loss. We

also assume that Eθ is independent of θ , i.e., there exists a

quantum channel E : L(A) → L(W) such that Eθ = E for all

θ ∈ �. The latter assumption helps us simplify the expression

of our results but our proof does not exploit this assumption.

Also note that this assumption does not trivialize the problem

since we still require the sensing to be covert.

1) Achievability: We require again mild assumptions in our

achievability result to make the problem meaningful.

1) Uθ �= Uθ ′ for all θ �= θ ′. Without this assumption Alice

would be unable to distinguish at least two parameters.

2) supp(E(ρ)) ⊂ supp(E(|0〉〈0|)) for all ρ ∈ D(A). Without

this assumption, the transmission of such ρ would allow

Willie to systematically detect Alice.

Theorem 2: Under the above assumptions, there exists a

positive integer N depending on {Uθ }θ∈� such that for all

n ≥ N

C(n, 0) ≤ O{Uθ },E

(
1

n

)
. (15)

Note that there is a significant difference between the optimal

performance of unitary channels and cq-channels. Indeed,

according to Theorem 1, we have C(n, exp(−O(
√

nδ)) ≥ δ

for all δ > 0 and for all cq-channels, while C(n, 0) ≤ O(1/n)

when Alice’s channel is a unitary for all parameters θ . As we

show next, the rate of decay of the covertness metric with n

is optimal under mild assumptions.

2) Converse: Our converse result holds under the following

mildly restrictive assumptions.

1) Uθ |0〉 = Uθ ′ |0〉 for some θ �= θ ′, i.e., Alice cannot

distinguish all parameters by always sending |0〉 and

trivially ensuring covertness.

2) E(ρ) �= E(|0〉〈0|) for all ρ ∈ D(A) \ {|0〉〈0|}, i.e., Alice

cannot simulate sending |0〉 using other quantum states.

3) There exists no sequence {ρn}n≥1 ⊂ D(A) \ |0〉〈0| such

that

lim
n→∞

‖ρn − |0〉〈0|‖1

‖E(ρn) − E(|0〉〈0|)‖1

= ∞. (16)

This last assumption prevents Alice to send states whose

image under E is close to E(|0〉〈0|). We show that testing

this assumption is possible by providing a computable

equivalent form in Lemma 1.

Theorem 3: Under the above assumptions, for all ǫ ∈ [0, 1],

we have

C(n, ǫ) ≥ OE

(
(1 − ǫ)4

n

)
. (17)

Remark 3: Note that Theorem 2 and Theorem 3 require dif-

ferent assumptions because we need to restrict Willie’s power

for achievability and Alice’s power for converse.

We now provide a computable equivalent form of our last

assumption in the converse result. We first need the fol-

lowing definition, which introduces a map from L(A) to a

Euclidean space.

Definition 2: Let d � dim A and {|a1〉, . . . , |ad〉} be an

orthonormal basis for A such that |a1〉 = |0〉. We define a

function f : L(A) → R
2d2

which maps X ∈ L(A) to the vector

(Re(〈ai|X|aj〉), Im(〈ai|X|aj〉))i,j∈�1,d�.

We also define 2d − 2 vectors a1, . . . , a2d−2 ∈ R
2d2

such

that the jth component of ai is 1{i = j} + 1{j = ⌈i/2⌉d + 1}.
We show in Appendix E that the vectors a1, . . . , a2d−2 ∈

R
2d2

form a basis for the tangent space of

f (
{
|φ〉〈φ| : φ ∈ A, ‖φ‖ = 1

}
\ |0〉〈0|) (18)

at the origin.

Lemma 1: Let E : L(A) → L(B) be a quantum channel and

|0〉 ∈ A be a unit vector. Suppose that E(ρ) �= E(|0〉〈0|) for

all ρ ∈ D(A) \ {|0〉〈0|}. We then have

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖1

‖E(ρ) − E(|0〉〈0|)‖1

< ∞ (19)

if and only if f (Ker(E)) ∩ span(a1, . . . , a2d−2) = {0} where

the function f and the vectors a1, . . . , a2d−2 are defined in

Definition 2.

Proof: See Appendix E.

Remark 4: If E : L(A) → L(E) is an invertible map (as

a linear map), there exists no sequence satisfying the above

conditions, which is consistent with our result as Ker(E) =
{0}. However, there might be some quantum channels E that

are not invertible, but for which we still have f (Ker(E)) ∩
span{a1, . . . , a2d−2} = {0}.

V. PROOFS

A. Achievability Proof of Theorem 1

We first derive a general bound on the reliability of a

strategy when the input is generated according to PU.

Lemma 2: Let PU be any distribution over Un. There exists

an (n, ǫ, δ) non-adaptive strategy with

log ǫ = max
θ �=θ ′

log

⎛
⎝ ∑

Q∈Pn(U)

PU

(
TQ

)
exp
(
−nC
(
θ‖θ ′|Q

))
⎞
⎠

+ Odim B,|U |,|�|(log n) (20)
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and

δ = max
θ∈�

D

(
∑

u

PU(u)ρu
W|θ‖ρ

0
W|θ

)
. (21)

Proof: See Appendix B.

Deterministic strategies, for which PU is positive only on

one input sequence, cannot achieve any positive exponent as

shown next. Let �̃ be as defined in Section IV-A and θ ∈
�̃ be such that no distribution P over U \ {0} is such that∑

u P(u)ρu
W|θ = ρ0

W|θ . If Alice transmits a fixed sequence u,

we have

δ ≥ D

(
ρu

W|θ‖ρ
0
W|θ

)
(22)

≥
∣∣{i ∈ �1, n� : ui �= 0

}∣∣ min
u∈U\{0}

D

(
ρu

W|θ‖ρ
0
W|θ

)
. (23)

By our assumption on θ , minu∈U\{0} D(ρu
W|θρ

0
W|θ ) is positive.

Therefore, the number of non-zero elements of u is uniformly

bounded. By definition of �̃, there also exists θ ′ ∈ �\{θ} such

that ρ0
B|θ = ρ0

B|θ ′ . Thus, even when restricting the parameter

set to {θ, θ ′}, the estimation error cannot vanish. Hence, no

positive exponent is achievable.

Furthermore, independent and identically distributed (i.i.d.)

actions cannot achieve the optimal exponent since, with expo-

nentially small probability, the type of the input sequence

largely deviates from the typical input type and affects the

achievable exponent.

We now introduce an input probability distribution PU that

circumvents the challenges discussed above. Intuitively, PU

should be such that 1) we can control the type of the sequences

in its support and 2) we can ensure covertness. Let P be any

distribution over U and define α � 1−P(0). We set for ζ > 0,

Q � {Q ∈ Pn(U) : |Q(u) − P(u)| ≤ αζ ∀u ∈ U \ {0}},
(24)

A � ∪Q∈QTQ, (25)

PU(u) �

{
P⊗n(u)
P⊗n(A)

u ∈ A,

0 u /∈ A.
(26)

Intuitively, the parameter α allows us to finely control the

type of sequences in A with α possibly depending on n. In

the following lemma, we provide bounds on (20) and (21) for

this specific choice of PU.

Lemma 3: Let θ and θ ′ be two distinct elements of �. We

have

log

⎛
⎝ ∑

Q∈Pn(U)

PU

(
TQ

)
exp
(
−nC
(
θ‖θ ′|Q

))
⎞
⎠

≤ min

(
−nC
(
θ‖θ ′|P

)
− O{

ρu
B|θ

}(nαζ |U |),

n

(
1 − α(1 + ζ |U |)

)

× inf
s∈[0,1]

log

(
tr

((
ρ0

B|θ

)s(
ρ0

B|θ ′

)1−s
)))

. (27)

In addition, we have

D

(
∑

u

PU(u)ρu
W|θ‖ρ

0
W|θ

)
≤ nD

(
∑

u

P(u)ρu
W|θ‖ρ

0
W|θ

)

+ 2|U | exp

(
−

αnζ 2

3

)

× log

⎛
⎝ dim W

λmin

(
ρ0

W|θ

)

⎞
⎠n

+ Hb

(
2|U | exp

(
−

αnζ 2

3

))
.

(28)

Proof: See Appendix C.

We are now ready to prove the achievability of the exponent

in (14). Let P be any distribution over U \ {0} (not depending

on n) and {λn}n≥0 be a vanishing sequence specified later. We

define

αn �

√√√√
2δn(1 − λn)

n maxθ η

(∑
u P(u)ρu

W|θ‖ρ
0
W|θ

) , (29)

P(u) �

{
1 − αn u = 0,

αnP(u) u �= 0.
(30)

We then choose PU according to (26), for which we have

D

(
∑

u

PU(u)ρu
W|θ‖ρ

0
W|θ

)
(31)

(a)
≤ nD

(
∑

u

P(u)ρu
W|θ‖ρ

0
W|θ

)
+ 2|U | exp

(
−

αnnζ 2

3

)

× log
dim W

λmin

(
ρ0

W|θ

)n + Hb

(
2|U | exp

(
−

αnnζ 2

3

))
(32)

(b)= nD

(
∑

u

P(u)ρu
W|θ‖ρ

0
W|θ

)
+ exp(−ω(log n)) (33)

(c)= n

(
α2

n

2
η

(
∑

u

P(u)ρu
W|θ‖ρ

0
W|θ

)
+ O
(
α3

n

))

+ exp(−ω(log n)) (34)

(d)
≤ (1 − λn)δn + O

(
α3

nn
)

+ exp(−ω(log n)) (35)

= (1 − λn)δn + O

⎛
⎝ δ

3
2
n√
n

⎞
⎠+ exp(−ω(log n)) (36)

where (a) follows from (28), (b) follows since we are choosing

δn = ω(
log n

n
), (c) follows from Lemma 5 in Appendix A and

(d) follows from (29). We set

λn = O

⎛
⎝ δ

1
2
n√
n

⎞
⎠+

1

δn

exp(−ω(log n)), (37)

which is vanishing and ensures that

D

(∑
u PU(u)ρu

W|θ‖ρ
0
W|θ

)
≤ δn. Therefore, by Lemma 2,
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there exists an (n, ǫn, δn) with

log ǫn = max
θ �=θ ′

log

⎛
⎝ ∑

Q∈Pn(U)

PU

(
TQ

)
exp
(
−nC
(
θ‖θ ′|Q

))
⎞
⎠

+ Odim B,|U |,|�|(log n). (38)

To upper-bound ǫn, we consider two cases for θ and θ ′. If

ρ0
B|θ = ρ0

B|θ ′ , then (27) yields that

− log

⎛
⎝ ∑

Q∈Pn(U)

PU(TQ) exp
(
−nC
(
θ‖θ ′|Q

))
⎞
⎠ (39)

≥ nC
(
θ‖θ ′|P

)
+ O{

ρu
W|θ

}(nαnζ |U |) (40)

(a)
≥ nαn

(
1 + ζ |U |O{

ρu
W|θ

}(1)

))
C
(
θ‖θ ′|P

)
, (41)

where (a) follows from the definition of P and since all terms

in the definition of C
(
θ‖θ ′|P

)
are non-negative. If ρ0

B|θ �=
ρ0

B|θ ′ , we have

− log
(
PU

(
TQ

)
exp
(
−nC
(
θ‖θ ′|P

)))

≥ −(1 − αn(1 + ζ |U |))

× n inf
s∈[0,1]

log

(
tr

((
ρ0

B|θ

)s(
ρ0

B|θ ′

)1−s
))

(a)= �(n), (42)

where (a) follows since infs∈[0,1] log(tr((ρ0
B|θ )

s(ρ0
B|θ ′)

1−s)) <

0 when ρ0
B|θ �= ρ0

B|θ ′ . Therefore, we can exclude all pairs

(θ, θ ′) with ρ0
B|θ �= ρ0

B|θ ′ from the maximization in (38) for

large enough n. Thus, using Lemma 2 and (41), we have

− log ǫn ≥ nαn

(
1 + ζ |U |O{

ρu
W|θ

}(1)

)

× min
θ,θ ′:ρ0

B|θ=ρ0
B|θ ′

C
(
θ‖θ ′|P

)

+ Odim B,|U |,|�|(log n). (43)

Using the definition of αn in (29), we obtain

lim inf
n→∞

−
log ǫn√

δnn
≥

√
2 minθ �=θ ′:ρ0

B|θ=ρ0
B|θ ′

C
(
θ‖θ ′|P

)

√
maxθ η

(∑
u P(u)ρu

W|θ‖ρ
0
W|θ

) . (44)

B. Converse Proof of Theorem 1

Let us consider a sequence of (n, ǫn, δn) non-adaptive strate-

gies, for which the input is generated according to a PMF PU

over Un in the nth strategy. We define

P �
1

n

n∑

i=1

PUi , (45)

αn � 1 − P(0), (46)

P̃(u) �

{
P(u)
αn

u �= 0,

0 u = 0.
(47)

Lemma 4: We have

− log ǫn ≤ min
θ �=θ ′:ρ0

B|θ=ρ0
B|θ ′

nαnC
(
θ‖θ ′ |̃P

)

− Odim B,|U |,|�|

(
log n

n

)
. (48)

As n goes to infinity, αn tends to zero and we have

δn

n
≥

α2
n

2
max

θ
η

(
∑

u

P̃(u)ρu
W|θ‖ρ

0
W|θ

)
+ O{

ρ0
W|θ

}
(
α3

n

)
. (49)

Proof: See Appendix D.

We therefore have Eq. (52) on the bottom of the next page,

where (a) follows from (48), and (b) follows from (49) and

the constraint δn = ω(log n/n). Taking the limit as n goes to

infinity, we obtain the desired converse bound.

C. Proof of Theorem 2

We first recall from [27] that given a unitary U �= 1A acting

on A, one can find a positive integer m and a pure state |ν〉Am

such that 〈ν|U⊗m|ν〉 = 0. Applying this result to the unitary

U
†
θ Uθ ′ �= 1A, there exist a positive integer mθ,θ ′ and pure state

|νθ,θ ′〉A
m

θ,θ ′ in Amθ,θ ′ such that 〈νθ,θ ′ |(U†
θ Uθ ′)

⊗mθ,θ ′ |νθ,θ ′〉 = 0.

Let m �
∑

θ �=θ ′ mθ,θ ′ and |ν〉Am be a pure state in Am defined

as the tensor product of all |νθ,θ ′〉A
m

θ,θ ′ in an arbitrary order.

Let ℓ � ⌊n/m⌋. Alice decomposes the first mℓ channel uses

into ℓ sub-blocks of length m, selects one sub-block at random,

transmits |ν〉Am on that sub-block, and transmits |0〉 for any

other channel use. By transmitting |ν〉Am , Alice can estimate

θ without error.

We now analyze the covertness. Let us denote the state

transmitted through the channels by

φAn �
1

ℓ

ℓ∑

i=1

(|0〉〈0|)⊗(i−1)m ⊗ |ν〉〈ν|Am ⊗ (|0〉〈0|)n−im. (53)

Note that

D
(
E

⊗n(φAn)‖E⊗n
(
|0〉〈0|⊗n

))
(54)

(a)
≤

χ2

(
E⊗m(|ν〉〈ν|Am)‖E⊗m

(
|0〉〈0|⊗m

))

ℓ
(55)

≤
1

ℓλmin(E(|0〉〈0|))m (56)

(b)
≤

m

(n − m)λmin(E(|0〉〈0|))m , (57)

where (a) follows from [29, eq. (B144)], and (b) follows since

ℓ > (n − m)/m. Since m is a constant independent of n, we

obtain the desired bound on the covertness.

D. Proof of Theorem 3

We consider a general strategy, in which Alice initially pre-

pares |φ〉RAn and, after receiving |ψθ 〉RAn �
(
1R ⊗ U⊗n

θ

)
for

an unknown parameter θ , performs a POVM to estimate θ .

We assume that the estimation error as defined in (5) is ǫ

and the covertness as defined in (6) is δ. We desire to prove

that δ ≥ OE

(
(1 − ǫ)4/n

)
. We show this result in three steps

sketched as follows.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2022 at 10:26:06 UTC from IEEE Xplore.  Restrictions apply. 



358 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

1) We first use the assumption that Uθ |0〉 = Uθ ′ |0〉 for

some θ �= θ ′ to show that ǫ ≥ 1−2‖φAn − (|0〉〈0|)⊗n‖1.

2) We upper-bound ‖φAn − (|0〉〈0|)⊗n‖1 by

OE ((n
∑n

i=1 D
(
E(φAi)‖E(|0〉〈0|)

)
)

1
4 ). The proof of

this step relies on both our assumptions on E , i.e.,

E(ρ) �= E(|0〉〈0|) for all ρ ∈ D(A) \ {|0〉〈0|} and

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖1

‖E(ρ) − E(|0〉〈0|)‖1

< ∞. (58)

3) We use standard converse argument for covert commu-

nication to show that

n∑

i=1

D
(
E
(
φAi

)
‖E(|0〉〈0|)

)
≤ δ. (59)

Combining these three steps yields that ǫ ≥ 1 − OE ((nδ)
1
4 ),

which is equivalent to δ ≥ OE ((1 − ǫ)4/n) as desired. We

now prove each step.

a) Proof of step 1: The estimation error, ǫ, is lower-

bounded by

max
θ �=θ ′

|〈ψθ |ψθ ′〉|2 (60)

= max
θ �=θ ′

∣∣∣∣〈φ|
(

1R ⊗
(

U
†
θ Uθ ′

)⊗n
)

|φ〉
∣∣∣∣
2

(61)

= max
θ �=θ ′

∣∣∣∣tr
(

φAn

(
U

†
θ Uθ ′

)⊗n
)∣∣∣∣

2

(62)

= max
θ �=θ ′

∣∣∣∣tr
((

(|0〉〈0|)⊗n − φAn

)(
U

†
θ Uθ ′

)⊗n
)∣∣∣∣

− tr

(
(|0〉〈0|)⊗n

(
U

†
θ Uθ ′

)⊗n
)∣∣∣∣

2

(63)

(a)
≥ min

θ �=θ ′

∣∣∣∣tr
((

φAn − (|0〉〈0|)⊗n
)(

U
†
θ Uθ ′

)⊗n
)

− 1

∣∣∣∣
2

(64)

(b)
≥ min

θ �=θ ′
1 − 2

∣∣∣∣tr
((

φAn − (|0〉〈0|)⊗n
)(

U
†
θ Uθ ′

)⊗n
)∣∣∣∣ (65)

(c)
≥ 1 − 2

∥∥φAn − (|0〉〈0|)⊗n
∥∥

1
(66)

(67)

where (a) follows because Uθ |0〉 = Uθ ′ |0〉 for some θ �= θ ′,
(b) follows from |1−z|2 = 1−2Re(z)+|z|2 ≥ 1−2|z| for any

complex number z, and (c) follows from |tr(XY)| ≤ ‖X‖‖Y‖1

for all X, Y ∈ L(An) and ‖(U†
θ Uθ ′)⊗n‖ = 1.

b) Proof of step 2: We have

∥∥φAn − (|0〉〈0|)⊗n
∥∥

1

(a)
≤
√

1 − F
(
φAn , (|0〉〈0|)⊗n

)
(68)

=
√

1 − 〈0|⊗nφAn |0〉⊗n (69)

(b)
≤

√√√√
n∑

i=1

(
1 − 〈0|φAi |0〉

)
(70)

(c)
≤

√√√√
n∑

i=1

∥∥|0〉〈0| − φAi

∥∥
1
, (71)

where (a) follows from [30, Th. 1], (b) follows from (classical)

union bound, and (c) follows since 1 − F(ρ, σ ) ≤ ‖ρ − σ‖1

when ρ is pure. We now state a lemma that allows us to bound

‖ρ − |0〉〈0|‖1 using ‖E(ρ − |0〉〈0|)‖1 By our assumption on

E there exists B > 0 such that for all i ∈ �1, n�,

∥∥|0〉〈0| − φAi

∥∥
1

≤ B
∥∥E(|0〉〈0|) − E

(
φAi

)∥∥
1

(72)

≤ B

√
D
(
E
(
φAi

)
‖E(|0〉〈0|)

)
. (73)

This implies that

∥∥φAn − (|0〉〈0|)⊗n
∥∥

1
(74)

≤
√

B

√√√√
n∑

i=1

√
D
(
E
(
φAi

)
‖E(|0〉〈0|)

)
(75)

≤
√

B

√√√√√√
n

√√√√
n∑

i=1

D
(
E
(
φAi

)
‖E(|0〉〈0|)

)
(76)

c) Proof of step 3: We have

D
(
E

⊗n(φAn)‖E⊗n
(
|0〉〈0|⊗n

))
(77)

= −H
(
E

⊗n(φAn)
)
+ tr
(
E

⊗n(φAn) log
(
(E(|0〉〈0|))⊗n

))

(78)

= −H
(
E

⊗n(φAn)
)
+

n∑

i=1

tr
(
E
(
φAi

)
log(E(|0〉〈0|))

)
(79)

≥ −
n∑

i=1

H
(
E
(
φAi

))
+

n∑

i=1

tr
(
E
(
φAi

)
log(E(|0〉〈0|))

)
(80)

=
n∑

i=1

D
(
E
(
φAi

)
‖E(|0〉〈0|)

)
. (81)

−
log ǫn√

δnn

(a)
≤

nαn minθ �=θ ′:ρ0
B|θ=ρ0

B|θ ′
C
(
θ‖θ ′ |̃P

)
− Odim B,|U |,|�|

(
log n

n

)

√
δnn

(50)

(b)
≤

√
2nδn(1+o(1))

maxθ η

(∑
u P̃(u)ρu

W|θ‖ρ0
W|θ

) minθ �=θ ′:ρ0
B|θ=ρ0

B|θ ′
C
(
θ‖θ ′ |̃P

)

√
δnn

(51)

=
√√√√

2(1 + o(1))

maxθ η

(∑
u P̃(u)ρu

W|θ‖ρ
0
W|θ

) min
θ �=θ ′:ρ0

B|θ=ρ0
B|θ ′

C
(
θ‖θ ′ |̃P

)
(52)
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APPENDIX A

APPROXIMATION OF QUANTUM RELATIVE ENTROPY

We characterize in the next lemma the expansion of

D(αρ1 + (1 − α)ρ0‖ρ0) in α around zero.

Lemma 5: Let ρ1 and ρ0 be two density operators on A

such that ρ0 is invertible. We have for small α > 0

D(αρ1 + (1 − α)ρ0‖ρ0) =
1

2
α2η(ρ1‖ρ0) + Oρ0

(
α3
)
. (82)

Remark 5: This result is similar to [8, Lemma 1], but the

expression for η(ρ1‖ρ0) in [8] is

tr

(∫ ∞

0

ρ1(ρ0 + s)−1ρ1(ρ0 + s)−1ds

)
− 1, (83)

which involves an integration. In addition, in Lemma 5, the

constant behind the higher order term is independent of ρ1,

which is not shown in [8, Lemma 1] and which is crucial in

our converse argument.

We first recall two results from functional calculus before

proving Lemma 5.

Lemma 6: Let X be a positive operator in L(H) with eigen-

decomposition X =
∑q

i=1 λiPi, where λ1, . . . , λq are distinct

eigenvalue of X and Pi is the projection onto the eigen-

subspace corresponding to λi. There exists ǫ > 0 such that

for all Y with ‖X − Y‖ ≤ ǫ, X + Y is positive and

log(X + Y) = log(X) +
∑

i,j

Di,jPiYPj + OX

(
‖Y‖2
)
, (84)

where

Di,j =
{

log λi−log λj

λi−λj
i �= j

1
λi

i = j.
(85)

Proof: It follows from applying [31, Th. 4.2] to the function

log(·).
Lemma 7: Let I ⊂ R be an open interval in R and

f : I → R be a smooth function. Let A and B be two self-

adjoint operator in L(H). We define g(t) � tr(f (A + tB)) for

all t such that all eigenvalues of A + tB are in I. Then, the

domain of g is open and for each t in the domain of g,

g′(t) = tr
(
f ′(A + tB)B

)
. (86)

Proof: See [32, eq. (11.176)].

We now prove Lemma 5. Let ρ0 has eigen-decomposition∑
i λiPi and define

Di,j =
{

log λi−log λj

λi−λj
i �= j

1
λi

i = j.
(87)

We also define � � ρ1 − ρ0 and

g(α) � D(αρ1 + (1 − α)ρ0‖ρ0) (88)

= D(ρ0 + α�‖ρ0) (89)

= tr((ρ0 + α�) log(ρ0 + α�))

− tr((ρ0 + α�) log(ρ0)). (90)

Note that

g′(α) (91)

(a)= tr(�(log(ρ0 + α�) + 1)) − tr(� log ρ0) (92)

= tr(�(log(ρ0 + α�) − log(ρ0))) (93)

(b)= tr

⎛
⎝�

⎛
⎝∑

i,j

Di,jPi(α�)Pj + Oρ0

(
‖α�‖2

)
⎞
⎠
⎞
⎠ (94)

= tr

⎛
⎝�

⎛
⎝∑

i,j

Di,jPi(α�)Pj + Oρ0

(
‖α�‖2

)
⎞
⎠
⎞
⎠ (95)

= α
∑

i,j

Di,jtr
(
�Pi�Pj

)
+ tr
(
�Oρ0

(
‖α�‖2

))
(96)

(c)= α
∑

i,j

Di,jtr
(
�Pi�Pj

)
+ Oρ0

(
α2
)

(97)

= αη(ρ1‖ρ0) + Oρ0

(
α2
)

(98)

where (a) follows from Lemma 7, (b) follows from Lemma 6,

and (c) follows since the norm of � = ρ1 − ρ0 is bounded

for all density operators ρ0 and ρ1. We then have
∣∣∣∣g(α) −

1

2
α2η(ρ1‖ρ0)

∣∣∣∣
(a)=
∣∣∣∣
∫ α

0

(
g′(β) − βη(ρ1‖ρ0)

)
dβ

∣∣∣∣
(99)

≤
∫ α

0

∣∣g′(β) − βη(ρ1‖ρ0)
∣∣dβ (100)

(b)=
∫ α

0

Oρ0

(
β2
)

dβ (101)

= Oρ0

(
α3
)

(102)

where (a) follows from the fundamental theorem of calculus

and (b) follows from Eq. (98).

APPENDIX B

PROOF OF LEMMA 2

We first recall a result from [26] on the optimal performance

of discriminating multiple quantum states.

Lemma 8: Let {ρθ }θ∈� be a finite family of density oper-

ators acting on a finite dimensional space. There exists a

Positive Operator Valued Measurement (POVM) {Ŵθ }θ∈� such

that

max
θ∈�

tr(ρθ (1 − Ŵθ )) ≤ 10(|�| − 1)2

× max
θ∈�

ν(ρθ )
∑

θ �=θ ′

inf
s∈[0,1]

tr
(
ρs

θρ
1−s
θ ′

)
.

(103)

Proof: It follows from combining [26, Th. 2] and

[26, eq. (35)].

Alice samples the input sequence u according to PU and

receives ρu
B|θ � ρ

u1

B|θ ⊗ · · · ⊗ ρ
un

B|θ . Alice then performs the

POVM {Ŵu
θ : θ ∈ �} given by Lemma 8 for the states

{ρu
B|θ }θ∈�, resulting in estimation error

10(|�| − 1)2 max
θ∈�

ν

(
ρu

B|θ

)

×
∑

θ �=θ ′

inf
s∈[0,1]

tr

((
ρu

B|θ

)s(
ρu

B|θ ′

)1−s
)

. (104)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 03,2022 at 10:26:06 UTC from IEEE Xplore.  Restrictions apply. 



360 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Note that maxθ∈� ν(ρu
B|θ ) ≤ (n + 1)dim B|U | and

inf
s∈[0,1]

tr

((
ρu

B|θ

)s(
ρu

B|θ ′

)1−s
)

(105)

= inf
s∈[0,1]

n∏

i=1

tr

((
ρ

ui

B|θ

)s(
ρ

ui

B|θ ′

)1−s
)

(106)

= exp

(
− sup

s∈[0,1]

−
n∑

i=1

× log

(
tr

((
ρ

ui

B|θ

)s(
ρ

ui

B|θ ′

)1−s
)))

(107)

= exp

(
−n sup

s∈[0,1]

−
∑

u∈U
Tu(u)

× log

(
tr

((
ρu

B|θ

)s(
ρu

B|θ ′

)1−s
)))

(108)

= exp
(
−nC
(
θ‖θ ′|Tu

))
. (109)

This concludes the proof.

APPENDIX C

PROOF OF LEMMA 3

We introduce a notation that simplifies our expressions. Let

us define for u ∈ U and s ∈ [0, 1],

f (s; u) � log

(
tr

((
ρu

W|θ

)s(
ρu

W|θ

)1−s
))

, (110)

which is always non-positive and

Lf � min
u′∈U\{0}

min
s′∈[0,1]

f
(
s′; u′) > −∞. (111)

We then have

log

⎛
⎝ ∑

Q∈Pn(U)

PU

(
TQ

)
exp
(
−nC
(
θ‖θ ′|Q

))
⎞
⎠ (112)

≤ max
Q∈Pn(U):PU(TQ)>0

[
−nC
(
θ‖θ ′|Q

)]
(113)

= max
Q∈Pn(U):PU(TQ)>0

[
−n sup

s∈[0,1]

−
∑

u∈U
Q(u)f (s; u)

]
(114)

(a)
≤ max

Q∈Pn(U):PU(TQ)>0

⎡
⎣−n sup

s∈[0,1]

−
∑

u∈U\{0}
Q(u)f (s; u)

⎤
⎦

(115)
(b)
≤ −n sup

s∈[0,1]

−
∑

u∈U\{0}
(P(u) − ζα)f (s; u) (116)

≤ C
(
θ‖θ ′|P

)
− nαζ |U |Lf , (117)

where (a) follows since f (s; 0) ≤ 0, and (b) follows since

PU(TQ) > 0 if and only if |P(u) − Q(u)| ≤ αζ for all

u ∈ U \ {0} (see Eq. (24)-(26)). Note also that Q(0) = 1 −∑
u∈U\{0} Q(u) ≥ 1−

∑
u∈U\{0}(P(u)+αζ) ≥ P(0)−αζ |U | =

1 − α(1 + ζ |U |) for all Q ∈ Q. The same line of reasoning as

in Eq. (112)-(117) then provides that

log

⎛
⎝ ∑

Q∈Pn(U)

PU

(
TQ

)
exp
(
−nC
(
θ‖θ ′|Q

))
⎞
⎠

≤ −n(1 − α(1 + ζ |U |)) inf
s∈[0,1]

f (s, 0), (118)

which yields Eq. (27) together with Eq. (117).

Let U be distributed according to P⊗n and TU denote its

type, which is a random element of Pn(U). We have

1 − P
⊗n(A)

(a)
≤
∑

u∈U\{0}
P(|TU(u) − P(u)| ≥ ζα) (119)

(b)=
∑

u∈U\{0}:P(u)>0

P(|TU(u) − P(u)| ≥ ζα)

(120)

(c)
≤

∑

u∈U\{0}:P(u)>0

2 exp

(
−

α2nζ 2

3P(u)

)
(121)

(d)
≤ 2|U | exp

(
−

αnζ 2

3

)
, (122)

where (a) follows from the union bound, (b) follows since

TU(u) = 0 with probability one when P(u) = 0, (c) follows

from a Chernoff bound, and (d) follows since P(u) ≤ 1 −
P(0) = α for all u ∈ U \ {0}. Note that 1

2
‖PU − P⊗n‖1 =

1−P⊗n(A) ≤ 2|U | exp(−αnζ 2

3
) by the definition of PU. Hence,

the data processing inequality implies that

1

2

∥∥∥∥∥
∑

u

PU(u)ρu
W|θ −

∑

u

P
⊗n(u)ρu

W|θ

∥∥∥∥∥
1

≤ 2|U | exp

(
−

αnζ 2

3

)
. (123)

Finally, the following continuity result for the relative

entropy completes the proof of (28).

Lemma 9: Let ρB and σB be two density operators over Bn

such that 1
2
‖ρB − σB‖1 ≤ ǫ. We then have

∣∣∣D
(
ρB‖ρ0

W|θ

)
− D

(
σB‖ρ0

W|θ

)∣∣∣

≤ ǫ log

⎛
⎜⎝

dim B
(
λmin(ρ

0
W|θ )
)2

⎞
⎟⎠n + Hb(ǫ). (124)

Proof: Note that
∣∣∣D
(
ρB‖ρ0

W|θ

)
− D

(
σB‖ρ0

W|θ

)∣∣∣ (125)

=
∣∣∣H(ρB) − H(σB) + tr

(
(ρB − σB) log

(
ρ0

W|θ

))∣∣∣ (126)

≤ |H(ρB) − H(σB)| +
∣∣∣tr
(
(ρB − σB) log

(
ρ0

W|θ

))∣∣∣ (127)

(a)
≤ ǫ log(dim B)n + Hb(ǫ) +

∣∣∣tr
(
(ρB − σB) log

(
ρ0

W|θ

))∣∣∣
(128)

≤ ǫ log(dim B)n + Hb(ǫ) + ‖ρB − σB‖1

∥∥∥log
(
ρ0

W|θ

)∥∥∥
(129)
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≤ ǫ log(dim B)n + Hb(ǫ) + 2ǫ log

⎛
⎝ 1

λmin

(
ρ0

W|θ

)

⎞
⎠n

(130)

where (a) follows from Fannes’ inequality.

APPENDIX D

PROOF OF LEMMA 4

Eq. (49) follows from the same argument used to obtain [8,

eq. (39)], except using Lemma 5 instead of [8, Lemma 1]. We

prove Eq. (48) in four steps as summarized below.

• Step 1: We lower-bound the estimation error of this

strategy by

max
θ∈�

∑

u

PU(u)tr
(
Ŵu

θ ρu
B|θ

)

≥
1

|�|
max
θ �=θ ′

∑

u

PU(u)

(
1 −

1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

)
.

(131)

• Step 2: Let us now consider the spectral decomposition of

ρu
B|θ =
∑

y∈Y pu
θ (y)|e

u
θ (y)〉〈e

u
θ (y)|, where Y is a set of size

dim B, pu
θ is a PMF over Y , and

{
|eu

θ (y)〉 : y ∈ Y
}

forms

an orthonormal basis for B. We also define qu
θ,θ ′(y, y′) �

pu
θ (y)
∣∣〈eu

θ (y)|e
u
θ ′(y

′)
〉∣∣2, which is a PMF over Y × Y , and

qu
θ � q

u1

θ ⊗· · ·⊗q
un

θ , which is a PMF over (Y ×Y)n. We

shall show that

1 −
1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

≥
1

2

(
1 −

1

2

∥∥∥qu
θ,θ ′ − qu

θ ′,θ

∥∥∥
1

)
.

(132)

• Step 3: Let PV|U and PṼ|U be two conditional distribu-

tions, u ∈ Un be a sequence with type TU , and V and Ṽ

be distributed according to PV = PV|U=u1
⊗· · ·⊗PV|U=un

and PṼ = PṼ|U=u1
⊗· · ·⊗PṼ|U=un

, respectively. We shall

show that
∑

v

min
(
PV(v), PṼ(v)

)

≥ exp

(
−n sup

s∈[0,1]

log

×
(
∑

u

TU(u)
∑

v

PV|U(v|u)sPṼ|U(v|u)1−s

)

+ O

(
log n

n

))
. (133)

• Step 4: We show that

1 −
1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

= exp

(
−nC(θ‖θ |TU) + O

(
log n

n

))
, (134)

which concludes the proof together with Jensen’s inequal-

ity and the convexity of the exponential function.

We now provide the detailed proof of each step.

a) Proof of step 1: Note that

max
θ∈�

∑

u

PU(u)tr
(
Ŵu

θ ρu
B|θ

)
(135)

≥
1

|�|
∑

u

PU(u)
∑

θ

tr
(
Ŵu

θ ρu
B|θ

)
(136)

(a)
≥

1

|�|
∑

u

PU(u) max
θ �=θ ′

(
1 −

1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

)
(137)

≥
1

|�|
max
θ �=θ ′

∑

u

PU(u)

(
1 −

1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

)
, (138)

where (a) follows from the variational characterization of the

trace norm 1
2
‖ρ − σ‖1 = max0≺Ŵ≺1 tr(Ŵ(ρ − σ)).

b) Proof of step 2: The proof is in [25], but we provide the

proof for completeness. We first define pu
θ � p

u1

θ ⊗· · ·⊗p
un

θ and

|eu
θ (y)〉 � |eu1

θ (y1)〉⊗· · ·⊗|eun

θ (yn)〉. We have Eq. (144) on the

bottom of this page, where (a) follows since (1−Ŵ) ≻ (1−Ŵ)2

for all 0 ≺ Ŵ ≺ 1, and (b) follows from |x|2 +|y|2 ≥ |x+y|2/2

for any two complex numbers x and y.

1 −
1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

= inf
0≺Ŵ≺1

[
tr
(
Ŵρu

B|θ

)
+ tr
(
(1 − Ŵ)ρu

B|θ ′

)]
(139)

= inf
0≺Ŵ≺1

[
∑

y

pu
θ (y)〈eu

θ (y)|Ŵ|eu
θ (y)〉 +

∑

y

pu
θ ′(y)〈eu

θ ′(y)|(1 − Ŵ)|eu
θ ′(y)〉
]

(140)

(a)
≥ inf

0≺Ŵ≺1

[
∑

y

pu
θ (y)
∥∥Ŵ|eu

θ (y)〉
∥∥2

2
+
∑

y

pu
θ ′(y)
∥∥(1 − Ŵ)|eu

θ ′(y)〉
∥∥2

2

]
(141)

= inf
0≺Ŵ≺1

⎡
⎣∑

y,y′

pu
θ (y)
∣∣〈eu

θ ′
(
y′)|Ŵ|eu

θ (y)〉
∣∣2 +
∑

y,y′

pu
θ ′(y)
∣∣〈eu

θ ′(y)|(1 − Ŵ)|eu
θ

(
y′)〉
∣∣2
⎤
⎦ (142)

≥ inf
0≺Ŵ≺1

∑

y,y′

min
(
pu
θ (y), pu

θ ′
(
y′))(∣∣〈eu

θ ′
(
y′)|Ŵ|eu

θ (y)〉
∣∣2 +
∣∣〈eu

θ ′
(
y′)|(1 − Ŵ)|eu

θ (y)〉
∣∣2
)

(143)

(b)
≥

1

2

∑

y,y′

min
(
pu
θ (y), pu

θ ′
(
y′))∣∣〈eu

θ (y)|eu
θ ′
(
y′)〉∣∣2 (144)
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c) Proof of step 3: Deploying standard method of type

arguments, we have
∑

v

min
(
PV(v), PṼ(v)

)
(145)

≥ max
TV|U∈Pn(V |u)

∑

v∈TTV|U (u)

min
(
PV(v), PṼ(v)

)
(146)

(a)
≥ max

TV|U∈Pn(V |u)
(n + 1)−|V ||U |

× exp
(

− n max

×
(
D
(
TV|U‖PV|U|TU

)
,D

(
TV|U‖PṼ|U|TU

)))

(147)

= (n + 1)−|V ||U |

× exp

(
−n min

TV|U∈Pn(V |u)
max

(
D
(
TV|U‖PV|U|TU

)
,D

(
TV|U‖PṼ|U|TU

)))
,

(148)

where (a) follows from [33, eq. (2.8)]. Next note that for an

arbitrary conditional distribution QV|U , there exists TV|U ∈
Pn(V|u) such that �u � 1

2

∥∥TV|U=u − QV|U=u

∥∥
1

≤ |V |
nTU(u)

for

all u ∈ supp(TU). Thus, for such a TV|U , we have Eq. (155)

on the bottom of this page, where (a) follows from Fannes’

inequality, (b) follows since Hb(x) ≤ x log e
x
, and (c) follows

since �u ≤ |V |
nTU(u)

by our choice of TV|U .

Hence,

min
TV|U∈Pn(V |u)

max
(
D
(
TV|U‖PV|U|TU

)
,

D

(
TV|U‖PṼ|U|TU

))

≥ min
QV|U∈P(V |U)

max
(
D
(
QV|U‖PV|U|TU

)
,

D

(
QV|U‖PṼ|U|TU

))
− O

(
log n

n

)
.

(156)

Finally, [16, eq. (39)] implies that

min
QV|U∈P(V |U)

max
(
D
(
QV|U‖PV|U|TU

)
,D

(
QV|U‖PṼ|U|TU

))

= − sup
s∈[0,1]

log

(
∑

u

TU(u)
∑

v

PV|U(v|u)sPṼ|U(v|u)1−s

)
.

(157)

d) Proof of step 4: Combining the result of step one and

two, we have

1 −
1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

≥ exp

(
−n sup

s∈[0,1]

× log

⎛
⎝∑

u

TU(u) ×
∑

y,y′

(
pu
θ (y)
∣∣〈eu

θ (y)|e
u
θ ′(y

′)
〉∣∣2
)s

×
(

pu
θ ′(y

′)
∣∣〈eu

θ (y)|e
u
θ ′(y

′)
〉∣∣2
)1−s
)

+ O

(
log n

n

))
. (158)

Note that
∑

y,y′

(pu
θ (y)
∣∣〈eu

θ (y)|e
u
θ ′(y

′)
〉∣∣2)s
(

pu
θ ′(y

′)
∣∣〈eu

θ (y)|e
u
θ ′(y

′)
〉∣∣2
)1−s

(159)

=
∑

y,y′

pu
θ (y)

spu
θ (y

′)1−s
∣∣〈eu

θ (y)|e
u
θ ′(y

′)
〉∣∣2 (160)

= tr

⎛
⎝
⎛
⎝∑

y

pu
θ (y)

s|eu
θ (y)〉〈e

u
θ (y)|

⎞
⎠

×

⎛
⎝∑

y′

pu
θ ′(y

′)1−s|eu
θ ′(y

′)〉〈eu
θ ′(y

′)|

⎞
⎠
⎞
⎠ (161)

= tr

((
ρθ

B|θ

)s(
ρθ ′

B|θ

)1−s
)

. (162)

∣∣∣D
(

TV|U‖PṼ|U|TU

)
− D

(
QV|U‖PṼ|U|TU

)∣∣∣ (149)

≤
∑

u

TU(u)

∣∣∣D
(

TV|U=u‖PṼ|U=u

)
− D

(
QV|U=u‖PṼ|U=u

)∣∣∣ (150)

≤
∑

u

TU(u)

(
∣∣H(TV|U=u) − H(QV|U=u)

∣∣+
∑

v

∣∣TV|U(v|u) − Qv|u(v|u)
∣∣ log

1

PV|U(v|u)

)
(151)

(a)
≤
∑

u

TU(u)

(
�u log|V| + Hb(�u) + max

v
log

1

PV|U(v|u)
�u

)
(152)

(b)
≤
∑

u

TU(u)

(
�u log|V| + �u log

e

�u

+ max
v

log
1

PV|U(v|u)
�u

)
(153)

(c)
≤
∑

u

TU(u)

(
|V|

nTU(u)
log|V| +

|V|
nTU(u)

log
nTU(u)e

|V|
+ max

v
log

1

PV|U(v|u)

|V|
nTU(u)

)
(154)

≤
|V||U | log|V|

n
+

|V||U | log n

n
+ max

v,n
log

1

PV|U

|V|
n

= O

(
log n

n

)
(155)
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Substituting Eq. (162) into Eq. (158), we have

1 −
1

2

∥∥∥ρu
B|θ − ρu

B|θ ′

∥∥∥
1

(163)

≥ exp

(
−n sup

s∈[0,1]

log

(
∑

u

TU(u) × tr

((
ρθ

B|θ

)s(
ρθ ′

B|θ

)1−s
))

+ O

(
log n

n

))
(164)

= exp

(
−nC(θ‖θ |TU) + O

(
log n

n

))
. (165)

APPENDIX E

PROOF OF LEMMA 1

We divide the proof into four steps.

a) Step 1: By the observation ‖X‖2 ≤ ‖X‖1 ≤
√

dim A‖X‖2

for all X ∈ L(A), it holds that

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖1

‖E(ρ) − E(|0〉〈0|)‖1

< ∞ (166)

if and only if

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖2

‖E(ρ) − E(|0〉〈0|)‖2

< ∞. (167)

b) Step 2: We state a result that relates the norm of the out-

put of a linear operator to the norm of the output of projection

onto the kernel of the linear operator. This implies that one

only needs to know Ker(E) to verify (167).

Proposition 1: Let V and W be Hilbert spaces and A:V →
W be a non-zero linear map. Let P be the projection onto

Ker(A). There exist positive constants B1 and B2 such that for

all v ∈ V ,

B1‖Av‖ ≤ ‖(1V − P)v‖ ≤ B2‖Av‖. (168)

Proof: See Appendix E-A

By Proposition 1, we have

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖2

‖E(ρ) − E(|0〉〈0|)‖2

< ∞ (169)

if and only if

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖2

‖(idA − P)(ρ − |0〉〈0|)‖2

< ∞. (170)

where P is the projection onto Ker(E).

a) Step 3: It will be more convenient in the sequel to con-

sider linear operators acting on A as points in R
2d2

. We use

the function f defined in Definition 2, for which we list here

some useful properties.

Proposition 2: The function f defined in Definition 2 sat-

isfies the following properties.

1) f is bijective

2) f (aX + bY) = af (X) + bf (Y) for all X, Y ∈ L(A) and

for all a, b ∈ R

3) ‖f (X)‖2 = ‖X‖2 for all X ∈ X

4) If Q is a projection onto a linear subspace E ⊂
L(A), then f (E) is also a linear subspace of R

2d2
and

f (Q(X)) = Q′(f (X)) where Q′ denotes the projection

onto f (E).

Fig. 2. Illustration of Proposition 3: On the left, ‖x‖2 cannot be uniformly
bounded by ‖(1 − P)x‖2 when x is close to the origin, while on the right,
‖x‖2 can be uniformly bounded by ‖(1 − P)x‖2 when x is close to the origin.

5) If X is a compact convex subset of L(A), then f (X) is

a compact convex subset of R
2d2

and ∂f (X) = f (∂X)

where ∂f (X) and ∂X denote the boundaries of f (X) and

X, respectively.

Proof: We only prove item 4 and the other items are straight-

forward consequence of the definition of f . We havef (Q(X)) =
f (argminY∈E‖Y − X‖2) = f (argminY∈E‖f (Y) − f (X)‖2) =
argminY ′∈f (E)

∥∥Y ′ − f (X)
∥∥

2
= Q′(f (X)).

Proposition 2 implies that

sup
ρ∈D(A)\{|0〉〈0|}

‖ρ − |0〉〈0|‖2

‖(idA − P)(ρ − |0〉〈0|)‖2

< ∞ (171)

if and only if

sup
x∈f (D(A)−|0〉〈0|)\{0}

‖x‖2

‖(1 − P′)(x)‖2

< ∞, (172)

where P′ is the projection onto f (Ker(E)).

a) Step 4: We now provide a geometric characterization for

Eq. (172) (See Fig. 2).

Proposition 3: Let C be a compact convex subset of R
k

containing the origin on its boundary and E be a linear sub-

space of R
k such that C ∩ E = {0}. We assume that the

boundary of C, ∂C, is a smooth manifold embedded in R
k

and the tangent space of ∂C at the origin is T . Then, upon

denoting the projection onto E by P,

sup
x∈C\{0}

‖x‖2

‖(1 − P)x‖2

< ∞ (173)

if and only if T ∩ E = {0}.
Proof: See Appendix E-B.

a) Step 5: We show here that the tangent space at the origin

of the boundary of f (D(A) − |0〉〈0|) is span(a1, . . . , a2d−2),

where {ai}i∈�1,2d−2� is defined in Definition 2. First, note that

the boundary of f (D(A) \ |0〉〈0|) is f (
{
|φ〉〈φ| : ‖φ‖ = 1

}
\

|0〉〈0|) because the boundary of D(A) are pure states and

because of item 5 of Proposition 2. We define two map

g : |φ〉 �→ |φ〉〈φ| and h : R2d−1 → A as

(x1, x2, y2, x3, y3, . . . , xd, yd)

�→ x1|e1〉 +
d∑

j=2

(
xj + iyj

)
|ej〉. (174)

Note that the coefficient of |e1〉 is always real for all vectors

in the range of h as we have freedom to choose the phase of
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a quantum state. Following our definition of f , g, and h, the

2((j − 1) × d + k) − 1 and 2((j − 1) × d + k) components

of (f ◦ g ◦ h)(x1, x2, y2, x3, y3, . . . , xd, yd) are xjxk − yjyl and

yjxk + xjyk, respectively. Thus, f ◦ g ◦ h is a smooth function.

We also calculate the derivative of f ◦ g ◦ h at (1, 0, . . . , 0),

which is represented by the matrix [a0|a1| · · · |a2d−2], where

a0 is a vector and a1, . . . , a2d−2 are as in Definition 2.

Let S �
{
x ∈ R

2d−1 : ‖x‖2 = 1
}

be the unit sphere in

R
2d−1. The restriction of f ◦ g ◦ h is also a smooth func-

tion. The tangent space of S at (1, 0, . . . , 0) is the span of

(b2, . . . , b2d−1), where b1, . . . , b2d−1 form the standard basis

for R
2d−1. Therefore, the image of the derivative of f ◦ g ◦ h

restricted to the tangent space of S at (1, 0, . . . , 0) is the space

of (a1, . . . , a2d−2). Since a1, . . . , a2d−2 are linearly indepen-

dent and the dimension of f (
{
|φ〉〈φ| : ‖φ‖ = 1

}
\ |0〉〈0|) is

2d − 2, the whole tangent space of f (
{
|φ〉〈φ| : ‖φ‖ = 1

}
\

|0〉〈0|) at the origin should be the span of a1, . . . , a2d−2.

A. Proof of Proposition 1

Let V/Ker(V) be the quotient space and π : V → V/Ker(A)

be the quotient map. We can define a norm on V/Ker(A) by

‖π(v)‖ = infx∈Ker(A) ‖v − x‖ = ‖v − Pv‖ = ‖(1V − P)v‖. By

the first isomorphism theorem of linear algebra, there exists a

linear isomorphism Ã:V/Ker(A) → W such that Av = (̃A◦π)v.

Since any linear operator from a finite dimensional space is

bounded, we have

‖Av‖ =
∥∥Ã(π(v))

∥∥ ≤
∥∥Ã
∥∥‖π(v)‖ =

∥∥Ã
∥∥‖(1V − P)v‖

and ‖(1V − P)v‖ ≤
∥∥Ã−1
∥∥‖Av‖ The result therefore holds for

B1 = 1/
∥∥Ã
∥∥ and B2 =

∥∥Ã−1
∥∥.

B. Proof of Proposition 3

a) Step 1: We first show that

sup
x∈C\{0}

‖x‖2

‖(1 − P)x‖2

< ∞ (175)

if and only if

sup
x∈∂C\{0}

‖x‖2

‖(1 − P)x‖2

< ∞, (176)

If Px = 0 for x ∈ C \ {0}, we have
‖x‖2

‖(1−P)x‖2
= 1, which

is bounded. Let x ∈ C \ {0} such that Px �= 0 and define

φ : [0, 1] → R
k by φ(t) � (1 − t)x + tPx. We know that

φ−1(C) is closed and connected, because C is closed and con-

nected (as a convex set) and φ is continuous. The only closed

and connected subsets of [0, 1] are of closed intervals and as

φ(0) = x ∈ C, we have φ−1(C) = [0, a] for some a ∈ [0, 1].

Since Px �= 0 and E ∩ C = {0}, we have Px /∈ C and there-

fore a < 1. φ(a) is on the boundary of C because a is on the

boundary of φ−1(C) = [0, a] and φ is continuous. Now note

that

Pφ(a) = P((1 − a)x + aPx) (177)

= (1 − a)Px + aP2x = Px. (178)

Hence,

‖(1 − P)φ(a)‖2 = ‖(1 − a)x + aPx − Px‖2

= (1 − a)‖(1 − P)x‖2 ≤ ‖(1 − P)x‖2

Therefore,

‖x‖2

‖(1 − P)x‖2

=

√
‖(1 − P)x‖2

2 + ‖Px‖2
2

‖(1 − P)x‖2

(179)

(a)
≤

√
‖(1 − P)φ(a)‖2

2 + ‖Pφ(a)‖2
2

‖(1 − P)φ(a)‖2

(180)

=
‖φ(a)‖2

‖(1 − P)φ(a)‖2

. (181)

This completes the proof of the first step.

b) Step 2: We now show that

sup
x∈∂C\{0}

‖x‖2

‖(1 − P)x‖2

< ∞, (182)

if and only if E ∩ T = {0}.
First suppose that v ∈ E ∩ T is non-zero. We will find

x ∈ ∂C \ {0} such that ‖x‖/‖(1 − P)x‖ ≥ K for a given

K > 0. By definition of tangent space, there exists a smooth

curve γ : (−1, 1) → ∂C such that γ (0) = 0 and γ ′(0) = v,

i.e., limt→0 γ (t)/t = v. There exists some t0 > 0 such that

‖γ (t)/t − v‖ ≤ ‖v‖/2 for all 0 < |t| < t0. We therefore have

‖γ (t)‖ ≥ t‖v‖/2. Additionally, limt→0(1 − P)γ t = 0 because

1 − P is continuous and (1 − P)v = v − Pv = 0. Thus, there

exists t1 > 0 such that ‖(1 − P)γ (t)‖ ≤ 2/(K‖v‖). For any t

such that 0 < t < min(t0, t1), we have

‖γ (t)‖
‖(1 − P)γ (t)‖

≥
t‖v‖/2

2/(K‖v‖)
= K, (183)

as claimed.

We now prove the other direction. Let B(ǫ) �{
x ∈ R

k : ‖x‖ < ǫ
}

denote the open ball of radius ǫ at the ori-

gin. To show (182), it is enough to check for arbitrary small

ǫ > 0

sup
x∈(∂C∩B(ǫ))\{0}

‖x‖2

‖(1 − P)x‖2

< ∞ (184)

because ∂C \ B(ǫ) is a compact set, on which the distance

from E is non-zero and varies continuously. Let Q denote the

projection onto T the tangent space of ∂C at the origin. We

know that for a point x on ∂C close to origin we have ‖x‖ =
‖Qx‖ + o(‖x‖). We can hence find an ǫ > 0 such that for

x ∈ ∂C ∩ B(ǫ)) \ {0} we have ‖x‖ ≤ 2‖Qx‖. Furthermore,

considering the linear map A : T → E⊥ defined by x �→
(1−P)x, it is injective. Therefore, for some constant B > 0, we

have ‖Ax‖ = ‖(1 − P)x‖ ≥ B‖x‖ for all x ∈ T . We can also

choose ǫ > 0 such that ‖(1 − Q)x‖ ≤ B/2‖Qx‖. Therefore,

we have for all x ∈ ∂(C ∩ B(ǫ)) \ {0}

‖x‖
‖(1 − P)x‖

≤
2‖Qx‖

‖(1 − P)x‖

≤
2‖Qx‖

‖(1 − P)Qx‖ − ‖(1 − P)(1 − Q)x‖

≤
2‖Qx‖

‖(1 − P)Qx‖ − ‖(1 − P)(1 − Q)x‖

≤
2‖Qx‖

C‖Qx‖ − C‖Qx‖/2
≤ 4/C.
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