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Abstract

Advances in memory technology have made it feasible for database
management systems (DBMS) to store their working data set in
main memory. This trend shifts the bottleneck for query execution
from disk accesses to CPU efficiency. One technique to improve
CPU efficiency is batch-oriented processing, or vectorization, as it
reduces interpretation overhead. For each vector (batch) of tuples,
the DBMS must track the set of valid (visible) tuples that survive all
previous processing steps. To that end, existing systems employ one
of two data structures, or filter representations: selection vectors
or bitmaps. In this work, we analyze each approach’s strengths
and weaknesses and offer recommendations on how to implement
vectorized operations. Through a wide range of micro-benchmarks,
we determine that the optimal strategy is a function of many factors:
the cost of iterating through tuples, the cost of the operation itself,
and how amenable it is to SIMD vectorization. Our analysis shows
that bitmaps perform better for operations that can be vectorized
using SIMD instructions and that selection vectors perform better
on all other operations due to cheaper iteration logic.
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1 Introduction

Modern DBMSs utilize the vectorized processing model pioneered
by Vectorwise [17] to improve query execution performance. In
this model, relational operators implement a uniform interface to
iterate over its results in a Volcano-style manner [3]. However, un-
like the original Volcano model, in a vectorized engine, relational
operators exchange small vectors of typically 1-2k tuples in each in-
vocation of the iterator. This simple enhancement (1) amortizes the
iteration overhead across all tuples in the vector and (2) maximizes
computation on tuple data while it is in the CPU’s cache.
Vectorized relational operators exchange batches of tuple where
each tuple attribute is stored separately in a compact vector. For
instance, a filter operator applies a predicate on each input tuple
and copies its attributes into an output vector if successful. This
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Figure 1: Motivating Example — We evaluate the time to apply a simple
predicate filtering an arithmetic column with a constant value.

approach incurs memory overhead due to data copying. A com-
mon technique to overcome this is to augment batches with a data
structure that logically masks out invalid tuples (i.e., a logical filter).
We refer to this data structure as a filter representation. Two com-
mon representations are (1) Selection Vectors (SVs) and (2) Bitmaps
(BMs). A SV is a dense sorted list of tuple identifiers (TID) indicating
which tuples in the batch are valid during processing. With BMs,
each tuple in the batch is assigned a positionally aligned bit; valid
tuples have their bit set to 1. The DBMS marks tuples as invalid by
modifying the filter representation alone without copying data.

Interestingly, previous works choose a representation strategy
without providing a clear (or empirical) justification. Vectorwise
and its derivatives rely selection vectors [6, 14, 15, 17]. IBM DB2’s
BLU [12] and the more recent VIP [11] rely on bitmaps for the
intermediary results of a table scan’s filters and selection vectors for
other relational operators. In this work, we find that supporting both
representations and dynamically choosing between them results
in better performance than static implementations. Depending on
the specific primitive and the selectivity (i.e., the ratio of selected
tuples) of its input vector, selection vectors can outperform bitmaps
and vice-versa.

To illustrate the need for a deeper exploration of the impact of a
chosen filter representation strategy, we present an experiment that
measures the performance of evaluating a WHERE during a sequential
table scan over a table composed of a single 64-bit integer column.
For this experiment, we generate the column’s data using a uniform
distribution, and vary the input filter’s selectivity between 0 and 1.
We defer the full description of our experimental setup to Section 3.

We implement and measure five different execution strategies.
BMPartial, BMFull, and BMFullManual all use bitmaps. BMPartial
applies the operation only on selected tuples, while BMFull applies
it on all tuples. Likewise, BMFullManual uses a hand-written SIMD
kernel to apply the operation to all tuples in each vector. SVPartial
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Figure 2: Operations on Filtered Vectors — Updates change the set of
selected tuple. Maps apply a function to the set of selected tuples without
updating the set. Selected input tuples are in green. Selected output tuples
are in blue.

and SVManual both use selection vectors, but SVManual uses a
custom hand-written SIMD kernel.

The results in Figure 1 show that no one strategy is globally
optimal. In selectivity range [0.00,0.15], SVManual and SVPartial
perform the best overall, with the latter being preferred due to
simpler engineering overhead. Beyond 0.15, a hand-written SIMD
kernel using bitmaps for the filter performs the best, up to 3-11x
faster than the alternatives. If not relying on custom SIMD code
at all, BMFull performs the best beyond a selectivity of 0.35 and
is up to 2-7X faster than the alternatives. It also requires the least
engineering effort to implement.

The previous results highlight that the choice of filter representa-
tion is not clear cut. This work’s main contribution is a methodology
on how to optimize the performance of arbitrary vectorized primi-
tives by taking into account filter representation, selectivity, and
loop optimizations. We also provide recommendations for develop-
ers working on vectorized query engines on how to best implement
primitives. To evaluate our approach, we implement our frame-
work into the NoisePage DBMS [1] and measure its performance
on OLAP workloads.

2 Background

Figure 2 shows the two primitives for processing filters: (1) Update
and (2) Map. With Update, the DBMS applies a filter to the vector
and modifies the set of selected tuples accordingly. The example in
Figure 2a shows the DBMS applying the WHERE clause to update the
result set during a scan on a table. With Map the DBMS does not
modify the input selected set, but computes a new data vector using
a mapping function. A projection (i.e., SELECT clause) is an example
of a map operation. Although there are other types of primitives,
they often have side-effects (e.g., insertion in a hash table for joins
or an array for sorting) and are, therefore, not amenable to our
optimizations for correctness reasons.

In this section, we first discuss the factors that influence the
performance of these primitives and the approaches for the DBMS
to execute them. We then provide an analytical construct to explain
these implementations’ performance.

2.1 Compute Strategies

There are three approaches for the Map and Update primitives: (1)
SELECTIVE, (2) FuLL, and (3) Mixed compute. With SELECTIVE, the
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DBMS only applies the given functions on selected input tuples; the
non-selected tuples have undefined values in the output. Contrast
this with the FuLL approach, where the DBMS computes updated
values in its output for all input tuples regardless of whether they
are selected or not. Although this seems wasteful, FuLL benefits
from SIMD vectorization, simple loop structure that enables better
loop unrolling, interleaving, and easier branch prediction. To exploit
this trade-off, the MIxED strategy switches from FULL to SELECTIVE
when the selectivity (i.e., the ratio of selected tuples) goes below a
threshold. We discuss how to derive this threshold in Section 3.

For Update primitives, FuLL first finds the set of tuples in the
vector that pass the predicate, regardless of the input filter. The final
filter is the intersection of this intermediary filter and the input filter.
BM intersection is an efficient operation because the DBMS can use
the AVX512 AND instruction to intersect 512 bits in one cycle [5].
On the other hand, SVs require a slower sorted-set intersection
algorithm [4]. Thus, the FuLL approach is not compatible with SVs
using Update primitives.

For Updates with SVs another decision is whether to use branch-
ing or branchless evaluation [13]. We do not focus on this as it
has been studied extensively before [13-15]. Prior work identified
branch misprediction cost as the main factor. Thus, a branching
implementation is competitive when the same branch is taken ~90%
of the time, meaning that less than 10% or more than 90% of the
tuples satisfy the condition. We use the optimal strategy for Update
primitives that use SVs in the rest of this paper.

2.2 Primitive Performance

We next analyze the primitives’ performance according to their
implementations. Our primitive implementations follow one of the
patterns shown in Appendix A. These listings show various strate-
gies to multiply a vector by a constant (a Map primitive) along with
their optimized versions using SIMD instructions: FuLL (which does
not depend on representation), SELECTIVE with SVs, and SELECTIVE
with BMs. In each instance, the code is a loop divided in two parts:
the iteration logic , and the core operation. The core operation (e.g.,
multiplication by a constant) is independent of the strategy. On the
other hand, the iteration logic is strategy dependent; it determines
how to iterate through tuples — whether selected ones in the case
of SELECTIVE or all tuples in the case of FuLL- to perform the core
operation and store its result.

The following equation computes the expected runtime R of
a primitive where N is the number of tuples processed, I is the
iteration logic time per tuple, and O is the operation time per tuple:

R=Nx(I+0) (1)

This formula provides a framework to analyze any vectorized
primitive. Let us consider how an implementation strategy influ-
ences each of the three factors.

Number of Tuples Processed: SELECTIVE processes only selected
tuples while FULL processes every tuple. Thus, FULL performs worse
at lower selectivity (i.e., ratio of selected tuples) due to wasted work.

Iteration Logic Time per Tuple: Although FuLL processes more
tuples, it also has the simplest iteration logic. For SELECTIVE, iterat-
ing over a BM is more expensive than iterating over a SV because
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Strategy | Filter | Compute | SIMD Compatibility
SVPartial | SV Selective None Update, Map
SVManual | SV Selective Manual Update, Map
BMPartial | BM Selective None Update, Map
BMFull | BM Full Automatic | Update, Map
BMFullManual | BM Full Manual Update, Map
Full | Either | Full Automatic | Map
FullManual | Either | Full Manual Map

Table 1: Implemented Strategies

of the extra operations required to identify set bits (i.e., valid tu-
ples). Optimizations like loop unrolling and SIMD vectorization can
further decrease the iteration logic time per tuple, but they are only
available for FuLL and SVs. The BM’s selective iteration logic is too
complex to perform such optimizations.

Core Operation Time per Tuple: The core operation is the same
across all strategies. The only way to reduce its contribution to the
running time is through data-parallel SIMD instructions, which
are only available with FurL and SELECTIVE with SVs. There are,
however, situations where SIMD vectorization provides little gain
or even hurts performance as is the case when the core operations
contains complex memory accesses and/or branching code. In gen-
eral, core operations benefit most from SIMD vectorization when
they only contain straight-line (i.e., no branches), arithmetic, and
bitwise instructions.

3 Optimal Strategies

In this section, we experimentally derive the optimal execution
strategy for any given primitive. Table 1 summarizes all the strate-
gies we implemented. As noted before, there is no FuLL strategy for
Updates that works with SVs. Update experiments will thus always
use a BM for FurL. For Maps, FULL neither reads nor updates the
filter, so the representation is irrelevant. In addition to relying on
compiler auto-vectorization, we also experimented with manual
vectorization (e.g., with SVManual) for straight-line arithmetic and
bitwise operations (as in Section 3.3).

We run the experiments on an Intel Xeon Platinum 8124M CPU @
3.00GHz with AVX512. We use the in-memory NoisePage DBMS [1]
with a read-only column store tables[7], compiled with Clang v9.

In each experiment, we generate a synthetic data set and manu-
ally vary the selectivity of each primitive’s input vector from 0.0 to
1.0 in increments of 0.05 to show the impact of selectivity on optimal
strategy. Each experiment executes its primitive on enough vectors
to obtain a stable average running time. For example, fast primitives
are executed in the order of 10° times, whereas the slower ones are
executed in the order of 10* or 10° times. Map primitives material-
ize their results on a vector in-memory, but Update primitives only
modify the input filter without materializing a new vector.

3.1 Non Data-Parallel Core Operations

We first consider core operations that are not data-parallel. We
evaluate two kinds of operations: (1) those that operate on variable-
length data (e.g., string operations) and (2) those that use instruc-
tions without a SIMD counterpart (e.g., integer division, modulo).

Variable-Length Data: We first analyze the performance of op-
erations on variable-length data, as is often the case for string
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operations (e.g., string comparison, sub-string). Let us consider the
factors in Equation (1). The core operation executes a variable num-
ber of instructions depending on the length of the input strings. As
we show in the next experiment, it dominates the iteration logic
time, even for short strings. Because data parallelism is not available,
the core operation time per tuple is the same across all strategies.
The principal factor that differentiates strategies is the number of
tuples processed, which favors SELECTIVE strategies over FULL.

To confirm this intuition, we run a micro-benchmark using sim-
ple operations on short strings. The Update micro-benchmark per-
forms string comparison, and the Map micro-benchmark performs
character location. The strings are all short country names (e.g.,
USA, Senegal, China). The purpose is to show that the number
of tuples processed is the principal performance factor, even for
relatively cheap variable-length operations.

The results are shown in Figure 3. We see that FULL consistently
performs worst when it processes more tuples. At full selectivity,
FuLL and SELECTIVE process the same number of tuples, but the
former slightly benefits from a simpler iteration logic. We also see
that the performance of SVPartial is similar to that of BMPartial,
despite the former’s simpler iteration logic, meaning that the core
operation is the dominating cost.

The optimal strategy in this scenario is SVPartial. It processes
fewer tuples than FuLL strategies and has a slightly cheaper iteration
logic than BMPartial (though the performance difference is small).
FuLt is only marginally competitive at full selectivity. Its benefits
are mostly negligible: the more expansive the core operation, the
worse FULL becomes.
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Integer Division: We next analyze the integer division instruc-
tion as it does not have a SIMD counterpart. Integer division is so
expensive that the iteration logic time is negligible compared to
the core operation time. Because data parallelism is not available,
its cost per tuple is the same across all strategies. Once again, the
main factor that differentiates strategies is the number of tuples
processed, which favors SELECTIVE.

The results for the micro-benchmarks that evaluate an Update
and a Map primitive that both use integer division are shown in
Figure 4. Our analysis is similar to Figure 3: the cost of the integer
division and the unavailability of data-parallelism make FuLL inef-
ficient. SVPartial is again the optimal strategy, but only has a slight
edge over BMPartial due to the former’s simpler iteration logic.

We conclude that the number of tuples processed is the dominant
factor for non-data-parallel primitives, making FuLL impractical.
Because of the small impact of iteration logic time, SVPartial has a
performance edge over BMPartial, but developers can choose either
representation without much affecting performance.

3.2 Inefficient Data Parallelism

To study the effect of inefficient use of SIMD instructions, we con-
sider core operations with branching code. Section 4 will discuss
primitives that contain pointer manipulation and memory accesses.
Here, SIMD strategies benefit from processing multiple tuples at
a time, but suffer from executing more code than SISD strategies.
In some cases, core operation time per tuple may even increase
depending on the branching structure (e.g., having to execute all
branches of a switch statement). Thus, if FuLL can outperform Sk-
LECTIVE at all, it will only do so at the highest selectivities because
the small reduction in time spent per tuple cannot compensate for
the higher number of tuples processed.

To determine the impact of a single branch within the core op-
eration, we implemented primitives that perform logical and/or
operations. Due to boolean short-circuiting, these primitives will
contain exactly one branch. We confirmed that the compiler cor-
rectly auto-vectorizes the FULL strategies.

The results are shown in Figure 5. We can see that FuLL is either
always the worst strategy in Figure 5a, or only competitive at high
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selectivities (>= 0.85) in Figure 5b. The next section shows that
branchless primitive are competitive at much lower selectivities
( >=0.2). Although FuLL is competitive at the highest selectivities,
we recommend, for the sake of simplicity, the SVPartial strategy.

3.3 Straight-Line & Data-Parallel Operations

We now consider core operations with straight-line and data-parallel
(SLDP) code (i.e., non-branching code that leverages SIMD instruc-
tions). Primitives that only perform arithmetic (without integer
division) and bitwise instructions fall under this category. We use
Equation (1) to analyze the performance of each strategy in this
scenario. FULL strategies (e.g., BMFull) leverage SIMD instructions
to reduce the iteration logic and core operation time per tuple.
For example, AVX512 integer addition instructions perform eight
64-bit additions in a single cycle [5]. Therefore, we expect SELEC-
TIVE strategies to only be competitive when the selectivity is low,
meaning that FULL processes far more tuples. SVManual is the ex-
ception: it is a SELECTIVE strategy that uses SIMD instructions. Its
gain in iteration logic time is, however, not as high as that of FuLL
strategies because it uses a gather instruction [5] to collect the
elements at the selected indices (see Figure 10). The higher the core
operations time per tuple, the less important the gather overhead
because iteration logic time becomes more insignificant. Thus, we
expect SVManual to be competitive with FurL at medium or below
selectivities depending on the core operation. The next experiments
will quantify the differences between each strategy.

We implemented Update and Map primitives in which the core
operation contains single-cycle arithmetic and bitwise instructions.
We progressively increase the number of such instructions to in-
crease the core operations time per tuple and quantify the selectivity
thresholds above which Full Compute strategies become faster than
SELECTIVE ones. The results are shown in Figures 6 and 7 (for Up-
dates and Maps). The selectivity thresholds for each operation type
are respectively in Figures 8a and 8b.

In all experiments, SVPartial performs better than BMPartial.
As explained in the previous section, this is only due to a simpler
iteration logic. SVManual is always the best SELECTIVE strategy
because it uses data-parallelism to reduce the time spent per tuple.

Manual Vectorization sometimes performs better than Auto-
Vectorization with FurL and BMFull. For example, the results in
Figure 7a show that BMFullManual is 1.8x faster than BMFull. Upon
investigation of the generated code, we discovered that the compiler
is overly conservative when it comes to using AVX512. AVX512
registers result in decreased CPU frequency [10], so the compiler
does not always use them. It often uses AVX2 registers instead. We,
on the other hand, always use AVX512. As we will see in the next
section, the decreased CPU frequency can slow down the query.
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The thresholds for SVPartial and BMPartial, shown in Figures 8a
and 8b, prove that these strategies are only competitive with FurLr
at low selectivities (<= 0.2) because, as explained above, they do
not use SIMD instructions.

The threshold for SVManual, on the other hand, increases with
the number of operations because its iteration logic overhead be-
comes more and more insignificant as the core operation time
increases. SVManual thus benefits from data-parallelism while pro-
cessing fewer tuples than FuLL strategies. The iteration logic differ-
ence is never entirely negligible, though; the threshold is medium
at best (0.5 at 15 operations in Figure 8a).

Our analysis shows the importance of MIxep: a DBMS should
use SELECTIVE below the selectivity thresholds, and FuLL otherwise.
The next section details our implementation of the MIXED strategy.

3.4 Implementing Mixed Compute

The previous section showed that for a given SLDP primitive,
there is a threshold below which SELECTIVE is optimal and above
which FuLL is optimal. To find this threshold, we can run a micro-
benchmark similar to the one in Figure 8. The lowest selectivity
at which the runtime of FuLL strategies exceeds that of SELECTIVE
strategies represents the Mixep threshold for a given primitive. In
summary, the optimal SLDP strategy is as follows:

For Maps: FuLL when the selectivity is above the threshold, and
SVManual when the selectivity is below the threshold.

For Updates: BMFull or BMFullManual when the selectivity is
above the threshold, and SVManual when the selectivity is below
the threshold. Note that the BMFull and SVManual have different
filter representations. There is a small cost associated with the con-
version from BM to SV, but, in practice, other operations always
follow an update (e.g., there is a projection after a scan filter). The
subsequent operations often amortize the conversion cost. For small
queries, in which the amortization does not neutralize the conver-
sion cost, BMPartial can slightly outperform SVManual because
it maintains the BM representation. Nonetheless, as we show in
Section 4, its gains are mostly negligible.

4 Experimental Evaluation

We now evaluate the conclusions of Section 3 in a full DBMS.
For this evaluation, we implemented the strategies for a subset of
queries from the TPC-H benchmark [16] in the in-memory NoiseP-
age DBMS [1, 8, 9]. Each query contains primitive with side-effects
(e.g., hash table insertion), and primitives without side-effects (e.g.,
multiplication of two columns).

We load a TPC-H database with scale factor 10 (~10 GB) into
NoisePage. The system stores data in the Apache Arrow format [7]
with dictionary compression for string columns. We run the bench-
mark workload on the same benchmark machine as in Section 3. If
the compiler fails to automatically vectorize a data-parallel primi-
tive or incorrectly uses AVX2, we hand-write an implementation
using AVX512 intrinsics [5].

4.1 Q1 - High Selectivity SLDP Primitives

Q1 consists of a set of SLDP operations on vectors with high se-
lectivity (>= 0.95) followed by a side-effect full aggregation that
dominates the running time.
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Figure 9a shows the performance measurements in NoisePage
for each of the strategies. We omit MIXED because no switching
occurs during execution. As predicted, BMFull performs the best
for the side-effect free primitives. It outperforms SVPartial and
SVManual by 1.6X and 1.3X, respectively.

The total running times are similar for all queries for two reasons.
First, the (side-effect) aggregation is the query’s dominant compo-
nent in its execution. Second, the usage of AVX512 instructions on
our benchmark machines incurs CPU throttling effects. Our version
of Intel’s Xeon slows down its clock speed when it executes AVX512
instructions [10]. The BMPartial and BMFull strategies have the
same code for the primitives with side-effects, but BMFull performs
them in 838 ms, whereas BMPartial performs them in 739 ms. A
more careful analysis is thus required to balance the benefits and
disadvantages of AVX512 instructions.

4.2 Q6 — Mixed Selectivity SLDP Primitives

Q6 contains five SLDP filters, an arithmetic SLDP projection, and a
final aggregation. Across all input vectors, the second filter leads to
a selectivity smaller than 0.15, triggering a threshold-based switch
in the filter’s representation.

For the results shown in Figure 9b, our first observation is that
BMFull+SVManual is slower than BMFull+BMPartial by 0.3% even
though SVManual performs better than BMPartial on the individual
primitives in this query. This difference is due to the cost of convert-
ing the representation from BM to SV (see Section 3.4). Similarly,
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BMFull+SVPartial also suffers from the conversion overhead, but
the difference only amounts to 2%.

Next, we observe that all mixed strategies perform better than
non-mixed ones. BMFull+BMPartial and BMFull+SVManual are
faster than BMFull by 1.3X because FuLL becomes wasteful after
the selectivity drops below 0.15. SVManual using explicit SIMD is
slower by 1.04x because it is only sub-optimal in the first two filters.
The SISD SELECTIVE strategies BMPartial and SVPartial are slower
by 1.6X and 1.4X, respectively, because they do not take advantage
SIMD instructions for SLDP operations.

Finally, the SLDP primitives dominate the total running time for
this query, so we do not observe the slowdown caused by AVX512
registers. Thus, for queries with a structure similar to Q6, the bene-
fits of AVX512 outweigh its disadvantages.

4.3 Q4 - Low Selectivity, Inefficient Parallelism

Q4 is a join of two tables (LINEITEM, ORDERS) followed an aggrega-
tion and an order-by operator. The join’s build side (i.e., ORDERS)
has two SLDP filters. The first filter induces a selectivity of 0.3
and the second further reduces it to 0.1. The join’s probe side (i.e.,
LINEITEM) has a filter with a selectivity >0.6 and a hash table probe
that contains the multiple primitives. Although the probe’s hashing
primitive is an SLDP operation, its other primitives contain multi-
ple indirect lookups (e.g., accessing hash table entries or the keys
within those entries for exact comparison). Because these opera-
tions are called in a loop to find all potential matches during the
join, they constitute the bulk of the running time. Unfortunately,
their data-parallel versions are inefficient. For example, the compar-
ison primitive, which we manually implemented for the SVManual
strategy, contains three GATHER instructions: one to collect the keys
from the right side of the join, one to collect the hash table entries,
and one to collect the keys within the hash table entries for com-
parison. SIMD instructions can cause performance degradations in
these primitives. Thus, we predict that a DBMS should use BMFull
to perform the SLDP filters and hashing, then switch to using SV-
Partial, not the SIMD SVManual, for the complex primitives within
the join probe.

The results are shown in Figure 9c. For the primitives we op-
timized, our predicted strategy, BMFull+SVPartial, is indeed the
optimal one. The second best choice is BMFull+BMPartial, which
also switches from SIMD to SISD code for complex primitives. No-
tice the performance degradation caused by SIMD vectorization,
as mentioned in Section 3.2. Unlike the previous queries’ results,
BMFull+SVPartial performs better than the BMFull+SVManual by
1.1x because the latter relies on SIMD vectorization for complex
primitives. BMFull is also slightly worse (by 1.04X).

Its performance degradation is attenuated because it requires
fewer gather instructions than SVManual (e.g., one instead of three
in the comparison primitive). Instead, it relies on faster vector_load
instructions to load all elements in a vector, regardless of whether
they are selected or not. The SISD SELECTIVE strategies BMPar-
tial and SVPartial are worse by 1.1x and 1.05X, respectively. This
degradation is because they do not optimize SLDP primitives.

When considering the total running time, AVX512 registers
cause a slowdown due to CPU frequency throttling. Thus, BM-
Full becomes slower than BMPartial despite sharing the same code
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for side-effect-full primitives. As such, the disadvantages that the
DBMS incurs with AVX512 outweigh its benefits on the full query.

5 Related Work

There has been previous work dedicated to optimizing primitives in
the Vectorization processing model [2]. They mostly differ from this
paper in that they do not consider the impact of filter representation
in their performance. We now discuss this work and how they relate
to our analysis.

Sompolski et al. compared the cost of vectorization to data-
centric query compilation [15] and combined the two approaches to
generate new vectorized primitive at runtime, which is the method
we use in Section 3.3. Using only the SV representation, the authors
compare vectorized primitives’ performance under various com-
pute strategies (e.g., FULL versus SELECTIVE). They, however, do not
provide a way to switch between these strategies.

Kersten et al. performs a similar analysis for whole queries in
addition to individual primitives [6]. They developed a SIMD imple-
mentation of primitives using SVs, just like our SVManual strategy.
Like ours, their implementation was effective on compute-heavy
queries (e.g., Q6 in Section 4.2) and ineffective on memory access-
heavy queries (e.g., Q4 in Section 4.3).

Raducanu et al. recognized the importance of switching compute
strategy at run-time [14]. For each operation, the authors implement
several flavors (i.e., different ways to perform the same operations).
They then use reinforcement learning (RL) to switch between the
best flavors dynamically at runtime. This approach is more general
than our micro-benchmarks because it takes into account changes
in system load. SV is the only representation considered, limiting
the range of adaptivity on Update tasks. As future work, we could
employ a similarly dynamic strategy to determine our thresholds.

6 Conclusion

This work analyzed the impact of filter representation (i.e., Bitmap
vs. Selection Vector) and compute strategy (i.e., FULL vs. SELECTIVE)
on the performance of the vectorized primitives in an in-memory an-
alytical DBMS. We identified the factors that influence performance:
number of tuples processed, iteration logic, and core operation time
per tuple. We explained how each combination of representation
and compute strategy balances between these three factors. FuLL
has the cheapest iteration logic, processes all tuples, but spends less
time on each tuple when SIMD vectorization is possible. FULL is,
however, only available with Bitmaps on Update primitives. SELEC-
TIVE with SVs has a cheaper iteration logic than SELECTIVE with
Bitmaps, and is more amenable to SIMD vectorization. We con-
firmed these observations with several micro-benchmarks. Finally,
we showcased the benefits of our analysis on OLAP queries with
multiple primitives and consistently achieved the best performance.
Our performance gains over the best techniques that do not adapt
filter representation and compute strategy can be up to 1.3x.
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Code Examples
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MultVecByConst (Vec<double> in, double val,
Vec<double > out, SelVec sel):
// Assume size is multiple of 8
for (i = 0; i < sel.size; i += 8):
idxs = avx512_load(sel + i)
in_vec = avxb12_gather (in, idxs)
result = avx512_mul (in_vec, val)
avx512_store(out + i, result)
// Alternative:
// avx512_scatter (out,

result, idxs)

Figure 10: Multiply Vector by Constant with SV and SIMD - Reading
an element involves an indirection to first obtain its index using the GATHER
instruction. The last SCATTER instruction is only necessary to maintain
consistent indexes between the input and output vector during multi-step
Map operations. It should otherwise be avoided due to its slowness.

1
2
3
4
5
6

MultVecByConst (Vec<double> in, double val,
Vec<double > out, SelVec sel):
for (i = 0; i < sel.size; i++):
idx = sel[il]
result = val * in[idx]
out[idx] = result

Figure 11: Multiply Vector by Constant with SV and without SIMD
- Reading an element involves an indirection to first obtain its index.

1 MultVecByConst (Vec<double> in, double val,
2 Vec<double > out, Bitmap bitmap):
3 for (word in bitmap):
4 while (word != 0):
5 t = word & -word
6 r = __builtin_ctzl (word)
7 idx = k * 64 + r
8 result = in[idx] * val
9 out[idx] = result
10 word *= t
Figure 12: Multiply Vector by Constant with BM
1 MultVecByConst (Vec<double> in, double val,
2 Vec<double > out):
3 // Assume size is multiple of 8
4 for (i = 0; i < in.size; i += 8):
5 in_vec = avx512_load(in + i)
6 // Actual Operation
7 result = avx512_mul (in_vec, val)
8 avx512_store(out + i, out_vec)

Figure 13: Multiply Vector by Constant Full Compute + with SIMD
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1
2
3
4
5

MultVecByConst (Vec<double> in, double val,
Vec<double > out):

for (i = 0; i < in.size; i++):
result = val * in[idx] # Actual Operation
out[idx] = result

Figure 14: Multiply Vector by Constant Full Compute + without
SIMD
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