2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) | 978-1-7281-1056-1/20/$31.00 ©2020 IEEE | DOI: 10.1109/ASONAMA49781.2020.9381293

Discovering Interesting Subgraphs in Social Media
Networks

Subhasis Dasgupta
San Diego Supercomputer Center
University of California San Diego
La Jolla, USA
sudasgupta@ucsd.edu

Abstract—Social media data are often modeled as heteroge-
neous graphs with multiple types of nodes and edges. We present
a discovery algorithm that first chooses a ‘“background” graph
based on a user’s analytical interest and then automatically dis-
covers subgraphs that are structurally and content-wise distinctly
different from the background graph. The technique combines
the notion of a group—-by operation on a graph and the notion
of subjective interestingness, resulting in an automated discovery
of interesting subgraphs. Our experiments on a socio-political
database show the effectiveness of our technique.

Index Terms—social network, interesting subgraph discovery,
subjective interestingness

I. INTRODUCTION

Social media is often modeled as graphs — graphs where
the nodes represent entities (e.g., users. geographic objects),
themes (e.g., hashtags), content (e.g., posts, URLs) and so
forth, while the edges represent relationships such as “a post
commenting on another”, “a user having a friendship with
another”, “a post containing a hashtag” and so forth. For
some applications, computationally derived edges are used —
for example, hashtag co-occurrence (i.e., the fact that a pair
of hashtags has appeared in the same post) is a commonly
used derived edge [1]. A typical social media graph has both
node properties (e.g., date of a post) and edge properties (e.g.,
co-occurrence count, the time-interval over which a friendship
relationship holds). In addition, a social media graph may have
named subgraphs such as user-defined sub-communities (e.g.,
a Facebook group) which may have their own properties (e.g.,
the “privacy level” of the group). This paper investigates a
technique to discover “interesting subgraphs” from a Social
Media Graph. We formalize the notion of “interestingness” in
Section II. Informally, a subgraph of a social media network
is “interesting” if the subgraph has a structure and content that
is sufficiently different from the rest of some reference social
media network. There are many reasons why a subgraph would
be different from the overall tweet graph. Consider the first
tweet shown in Table I — the entire tweet has no content, only
five mentioned users. When viewed as graph, the tweet nodes
have five mention edges but content value is null. This
single tweet is interesting because contentless tweets are sta-
tistically rare. Now imagine that a larger tweet graph has small
pockets of dense subgraphs consisting of contentless tweets.
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These subgraphs can be considered “interesting” because they
represent a statistically unusual density of statistically unusual
content. In contrast, the second tweet in Table I has content
discussing the rapper “TI” in a closed group. Even if there are
similarly dense subgraphs representing an intense discussion
on the theme, it is not necessarily interesting, unless the
content of the conversation is very different from the content of
the conversation of the graph surrounding it. Thus, the notion
of interestingness depends both on the content and structure
of the subgraph and can only be interpreted in the context of
a reference network as determined by an analyst’s need.

II. INTERESTING SUBGRAPHS OF A SOCIAL NETWORK

Related Work. The problem of finding interesting subgraphs
has been investigated from several different viewpoints. One of
the earliest “graph mining” approaches focused on discovering
the most frequently occurring subgraphs [2]. A second ap-
proach considers interesting subgraphs as a subgraph matching
problem [3]. Their general approach is to compute all match-
ing subgraphs that satisfy a user the query and then ranking the
results based on the rarity and the likelihood of the associations
among entities in the subgraphs. A third approach [4] uses
the notion of “subjective interestingness” which roughly cor-
responds to finding subgraphs whose connectivity properties
(e.g., the average degree of a vertices) are distinctly different
from an “expected” background graph. This approach uses a
constrained optimization problem that maximizes an objective
function over the information content and the description
length of the desired subgraph pattern. Qur Approach. We
assume that the social media is represented by a social media
graph (more generally, any heterogeneous network) Go. We
initiate the discovery process by a user-specified query @
to specify an initial subnetwork G' = Q(G)), called the
initial background graph over which the discovery process
is conducted. Over G’ we discover subgraphs S; C G’ whose
content and structure are distinctly different that of G’. How-
ever, unlike previous approaches, we apply a generate-and-
test paradigm for discovery. The generate-step (Section III-A)
uses a graph cube like [5] technique to generate candidate
subgraphs that might be interesting and the test-step (Section
III-B) computes if (a) the candidate is sufficiently distinct from
the G’, and (b) the collection of candidates are sufficiently
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Interesting Text from Tweets

Why These Tweets are Interesting

@rooseveltinst @JusticedADOS @SandyDarity @IrstenKMullen @MusicNegrito

Creating a strongly connected network by mentioning only users like
a robot.

@noirdosser @chelleter_d @SandyDarity @quantumblackne2 @Tip @KeishaBottoms @es-
glaude I think TI is fake shook..... typical move celebrities play.

Creating a close issue centric network by adding known and focused
users.

@princss6 @DerrickNAACP 1 agree. At this critical juncture when the natl attention is on
injustice to #ADOS he is “all black lives” mattering our justice claim. This makes no sense.
#ResignDerrick

While the content is simple, this tweet bridges two different dense
subnetworks by co-mentioning two popular users from these two
networks.

@Hub_Libertarian @davidenrich @realDonaldTrump @DeutscheBank Love how ignored the
facts about Supreme Court decisions...lol. 9-0, the most common decision is facts you can’t
ignore.

Tweets like this are not interesting. They create a focused but broad
network by mentioning all related users, some of whom are very
popular.

@grey_geena @obiora_odi @KHiveQueenBee @livemusic4me @Cat_MarqueeLV @ Unkn-
wnstuntman @EIMcClelland @annableigh @thatboybesangin @fourgunfire @moshimisen
@sheanabana @twobesure @Alysson @NancyTabak @JoeBiden We have no choice but to
let it play out, however, white folks out her writing letters to the manager and equating life
long Black public servants to “cosmetics” and “tokens”, sooo yeah my trust in “the process”
is minimal, right about now.

Creating a broad network by mentioning as many users as possible.

@KBULTRAO @KamalaHarris Tomorrow I will conduct myself the way an old Italian Catholic
nona in Napoli celebrates Shivaratri “this is the only resistance” possible. In fact I've already

These types of tweet are interesting because they gain attention by
mentioning popular users who are fairly unrelated to the content of

partially ruined it

the tweet

TABLE I: Some types of tweets that are more “interesting” than others because the network around these tweets show some

unusual phenomena (see text for more explanation).

distinct from each other. Subgraph Interestingness. For a
subgraph S; to be considered as a candidate, it must satisfy
the following conditions. C1. S; must be connected and should
satisfy a size threshold 6,, the minimal number of nodes.
C2. Let A;; (resp. B;) be the set of local properties of
node j (resp. edge k) of subgraph S;. A property is called
“local” if it is not a network property like vertex degree. All
nodes (resp. edges) of S; must satisfy some user-specified
predicate ¢ (resp. ¢g) specified over A;; (resp. Bjj). For
example, a node predicate might require that all “post” nodes
in the subgraph must have a re-post count of at least 300,
while an edge predicate may require that all hashtag co-
occurrence relationships must have a weight of at least 10. A
user defined constraint on the candidate subgraph improves the
interpretability of the result. Typical subjective interestingness
techniques [4], [6] use only structural features of the network
and do not consider attribute-based constraints, which limits
their pragmatic utility. C3. For each text-valued attribute a
of Aj;j, let C(a) be the collection of the values of a over
all nodes of S;, and D(C(a)) is a textual diversity metric
computed over C'(a). For S; to be interesting, it must have at
least one attribute a such that D(C(a)) does not have the usual
power-law distribution expected in social networks. Zheng et
al [7] used vocabulary diversity and topic diversity as textual
diversity measures.

III. THE GENERATE AND TEST PROCESS
A. Candidate Generation

Initial Query. The candidate generation process starts with
an initial query @) to the social network graph. The query
is placed against the original social media data without
considering their network structure. For example, a query
can select all tweets containing the hashtag #ADOS starting
in 2019. The resulting collection becomes the universe of
discourse for interestingness discovery. The initial background
graph G’ is constructed on the results of this query. Node
Grouping. Given the graph G’, the user specifies a grouping
condition over a node set of the graph. The grouping

condition may be specified in two ways: (1) Using a Boolean
condition over node properties, e.g., “tweet’ nodes can
be grouped based on tweetDate A favoriteCount
(binned by 100); (2) Using a grouping pattern, e.g.,
(:tweet{date})-[:uses]->(:hashtag{text})

states that all "tweet” nodes having the same posting date,
together with every distinct hashtag text will be placed in a
separate group. Notice that while (1) produces disjoint tweets,
(2) produces a “soft” partitioning on the tweets and hashtags
due to the many-to-many relationship between tweets and
hashtags. In either case, the result is a set of node groups,
designated here as N;. Graph Construction. The graph
construction phase constructs a subgraph S; by expanding on
the node set NN;. Different expansion rules can be specified,
leading to the formation of different graphs. Here we list three
rules that we have found fairly useful in practice. G1. Identify
all the tweet nodes in NNV;. Construct a relaxed induced
subgraph of the tweet-labeled nodes in IV;. The subgraph is
induced because it only uses tweets contained within /V;, and
it is relaxed because contains all nodes directly associated
with these tweet nodes, such as author, hashtags, URLs,
and mentioned-users. G2. Construct a mention network from
within the tweet nodes in N; — the mention network initially
connects all tweet and user-labeled nodes. Extend the
network by including all nodes directly associated with these
tweet nodes. G3. A third construction relaxes the grouping
constraint. We first compute either G1 or G2, and then
extend the graph by including the first order neighborhood
of mentioned users or hashtags. While this clearly breaks
the initial group boundaries, a network thus constructed
includes tweets of similar themes (through hashtags) or
audience (through mentions). Once these candidate graphs
are constructed, they are tested for criterion C3. In this paper,
we have directly applied the diversity metric proposed in [7].

B. Testing for Relative Interestingness

We compute the interestingness of a subgraph S in reference
to a background graph G}, and consists of a structural as
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well as a content component. We first discuss the structural
component. To compare a subgraph S; with the background
graph, we first compute a set of network properties P; (see
below) for nodes (or edges) and then compute the frequency
distribution f(P;(.S;)) of these properties over all nodes (resp.
edges) of (a) subgraphs S;, and (b) the reference graph
(e.g., G'). A distance between f(P;(S;)) and f(P;(Gs)) is
computed using Jensen—Shannon divergence (JSD). In the
following, we use A(f1, f2) to refer to the JS-divergence of
distributions f; and f5. High-Centrality Nodes: The testing
process starts by identifying the distributions of nodes with
high node centrality between the networks. While there is no
shortage of centrality measures in the literature, we choose
eigenvector centrality [8]. The rationale for this choice follows
from earlier studies in [9]-[11], who establish that it repre-
sents the true structure of the network more faithfully than
other centrality measures. Let the distributions of eigenvector
centrality of subgraphs A and B be [, and [, respectively,
and that of the background graph be f3;, then A.(8;, 8,) > 6
indicates that A is sufficiently structurally distinct from Gy
Ae(Br, Ba) > Ae(Bt, Bp) indicates that A contains more
influential nodes than B. Navigability: The second network
feature we consider is edge betweenness centrality [8]. Since
edge betweenness centrality of edge e measures the proportion
of paths that passes through e, a subgraph S with a higher
proportion of high-valued edge betweenness centrality implies
that S is more navigable than G} or another subgraph S’.
Let the distribution of the edge betweenness centrality of two
subgraphs A and B are ¢; and ¢, respectively, and that of the
reference graph is ¢o. Then, Ay(co,c1) < Ap(cg, c2) means
the second subgraph is more navigable than the first. Prop-
agativeness: Propagativeness refers to a measure to capture
how well information spreads through a subgraph S. Current
flow betweenness centrality [12], based on Kirchoff’s current
laws, is designed to capture this concept. We combine this
with the average neighbor degree of the nodes of S to measure
the spreading propensity of .S. Suppose the distribution of the
current flow betweenness centrality of two subgraphs A and
B is p; and p- respectively, and distribution of the reference
graph is p;. Also the distribution of the [,, the average
neighbor degree of the node n, for the subgraph A and B
is 1 and 7, respectively, and the reference distribution is ;.
If the condition A(pg, p1)+ Ay, 11) < APe, p2) + Ay, 72)
holds, we can conclude that subgraph B is a faster propagating
network than subgraph A. Subgroups within a Candidate
Subgraph: The purpose of the last metric is to determine
whether a candidate subgraph identified using the previous
measures need to be further decomposed into smaller sub-
graphs. We use subgraph centrality [13] and coreness of
nodes as our metrics. The subgraph centrality measures the
number of subgraphs a vertex participates in, and the core
number of a node is the largest value %k of a k-core containing
that node. So a subgraph for which the core number and
subgraph centrality distributions are right-skewed compared
to the background subgraph are (i) either split around high-
coreness nodes, or (ii) reported to the user as a mixture

of diverse topics. The node grouping, per-group subgraph
generation and candidate subgraph identification process is
presented in Algorithm 1. In the algorithm, function cut2bin
extends the cut function, which compares the histograms of
the two distributions whose domains (X-values) must overlap,
and produces equi-width bins to ensure that two histograms
(i.e., frequency distributions) have compatible bins.

IV. THE DISCOVERY PROCESS

Algorithm 1: Graph Construction Algorithm

INPUT : Q0w+t Output of the query, L Graph construction rules, gv grouping
variable, thg;.. is the minimum size of the subgraph;
Function gmetrics (Qowut, L, groupVar)
G[]+— ConstructGraph(Q o+, L);
T« [
for g € G do
to < ComputeMetrics(g);
T-pUSh(talpha );

end

return 1"
end

Function ComputeMetrics (Graph g)

m <« [|;
m.push(eigenVectorCentrality(g));
......... m.push(coreNumber(g));

return m
en

Function CompareHistograms (List t1, List x3)

Sg + cut2bin(zz, binegges);

binegges — getBinEdges(x2);

tg < cut2bin(ti, bincdges);

Bjs < distance.jensenShannon(ty,sg);
h¢ < histogram(ty, sg, binedges):

return B, ht, binedges:

end

Algorithm 2: Graph Discovery Algorithm

Input: Set of all subgraphs divergence o
Output: Feature vectors v1, v, vs, List for re-partition recommendations [
ev : eigenvector centrality;
ec : edge current flow betweenness centrality;
nc : current flow betweenness centrality;
4 : core number;
z @ average neighbor degree;
Function discover (o)
for any two set of divergence from o1 ans o2 do
if o2(ev) > o1(ev) then
vi(o2) =v1(o2) + 1;
if o2(ec) > o1(ec) then
va(o2) = va(o2) + 1;
if (02 (nc) + 02(1)) > (01 (ec) + oa(u)) then
| ws(o2) =v3(o2) + 13

end
if (02(sc) + 02(2)) > (01(sc) + 02(z)) then
‘ l(o2) = 1;
end
end
end
end
end

The discovery algorithm’s input is the list of divergence
values of two candidate sets computed against the same
reference graph. It produces four lists at the end. Each of the
first three lists contains one specific factor of interestingness
of the subgraph. The most interesting subgraph should present
in all three vectors. In the algorithm vy, vy and vs are the three
vectors to store the interestingness factors of the subgraphs,
and [ is the list for repartitioning. For two subgraphs, if one
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Description |
A #ADOS Movement Related Group
B American Political Group
C General Black Related Issue
D
E
F

HIV, Drug etc. related
LGBT and Gay Issues
Random terms from Google top trends

QNN B W | —

TABLE II: List of Candidates with domain descriptions.

of them qualified for v; means, the subgraph contains high
centrality than the other.

V. EXPERIMENTS AND RESULTS

DATASET: The experimental dataset was gathered in the
following manner. 1) We collected a set of tweets over a period
of six months, such that the tweets use the the hashtag #ADOS,
usually associated with Black American issues; 2) We adopt
a snowball sampling strategy by which we identify the most
very active users based on the number of tweets they author; 3)
We collect all tweets from these users regardless of the topic
content; 4) This process is performed for two more rounds.
The size of the accumulated dataset is 9,780,590 tweets, and
the number of unique users mentioned is 89,8850. A list of
the keywords and the name of the collection is given in in
Table II. The first column of the table is the group’s name,
and the second column represents the group’s descriptions.
In the candidate formation query, each group is represented
by a set of keywords selected based on Google Trends such
that these keywords cooccur with our seed keyword ADOS.
Node Grouping: Initially, for each candidate, we grouped them
using the popularity count of the tweet and the followers’
count of the user. We have explored 10 different node groups,
and the graph graphs are checked against our interestingness
criteria. Furthermore, we empirically determine that attributes
the tweet-popularity is a suitable the soft grouping variable
is significant and practical to analyze because the followers
count does not relate the content or the event directly. Hence
we continue the experiment with tweet’s popularity number as
the grouping variable.

Experiments: We conducted experiments on the keyword

categories shown in Table II. The first is directly related to the
keywords used for data collection and the last one is randomly
picked from Google trends with no relationship with the first.
The remaining four have been selected as increasingly general
issues found in Google Trends.
RESULTS: The primary observation about these graphs is
that although they do have a perceptible nucleus-periphery
structure, the width of the “peripheral ring” is thick and the
space between the nucleus and the periphery is fairly crowded.
The sample network in Figure 1b illustrates that some parts
of the graph almost does not show any distinct peripheral
boundary that establishes the strong edge formation probability
between nucleus and non-nucleus nodes as well between a
random pair of non-nucleus nodes. Given this backdrop, let us
examine the subgraphs shown in Figure 1 — they are examples
of positive and negative results from our algorithm.

Subgraph 1. The subgraph shown in Figure 1d, character-
ized by a tight, strong core and a very scant periphery, is
structurally interesting because it is significantly isolated from
the rest of the network. Content analysis shows it is strongly
focused on “Black” issues with extremely high interactions
amongst users who have very little interest outside this narrow
scope. The third tweet from Table I is the example of such
tweets. In order to build a strong network community, they
mention a small set of users numerous times, even without
any content (first tweet of the same table). The network
shows right-skewed eigenvector centrality distribution, high
navigability (Group A in Figure 2a), but low propagativeness
(Group A in Figure 2b). Therefore Subgraph 1 is interesting.
Subgraph 2. Figure le is an extensive network with a large
and dense nucleus and a less dense but thicker periphery not
very strongly connected to the nucleus. Like tweet 4 from
Table I, people in the center wish to connect to strongly
connected and focused network by mentioning other connected
users and issues. As in tweet 5, people mention random
unrelated users purposefully because it boosts their tweets’
reach with loosely connected users, which creates a thick ring
outside the kernel. From figures 2a, 2b, and 2c, we can see that
it has very high navigability and propagativeness compared to
the other groups. Subgraph 2 is interesting as it discovers
users who build bridges to promote message propagation.
Subgraph 3. Figure 1f shows a network related to black issues
(like healthcare) without specific focus on political issues.
Hence, the network is not very intense (has a lighter nucleus),
a peripheral density like Subgraph 2, and a diffuse space
between then. Curiously, all our interestingness metrics score
this subgraph highly. Upon closer inspection from Figures 2a,
2b, and 2c, we can see it has a spike on navigability, is well
connected, and has a high propagativeness. The network also
exhibits a high number of cores and subgroups Hence we label
this subgraph as interesting but not readlily interpretable. So
this network is considered for further partitioning. Subgraphs
4 and 5.. The networks shown in 1g and lh are based on
a deliberate choice of “general purpose” topics. Clearly, they
have a lighter nucleus with a diffused ring, and fairly close
to the random networks shown in the top 3 figures. This is
confirmed by the low JS-divergence values for the navigability,
propagativeness, and subgroup measures. Hence we conclude
these candidates are not interesting subgraphs. Subgraph
6. Finally, Figure 1i produced from random set of keywords
shows inconsistent results from our algorithm as the measures
show no conclusive score on any metric that make it a proper
interestingness candidate. We therefore conclude that these
subgraphs are not interesting.

VI. CONCLUSION

Our experiments show that the subgraphs that our algo-
rithms report are indeed interesting. Our future work would
involve making the algorithms more robust and devise a more
elaborate evaluation methodology to validate the interesting-
ness of the subgraphs recognized by our technique.
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(a) Random Sample of the graph 1

(d) #ADOS Movement Related Network(e) Political campaign-related network Based
filtered using #ADOS related Keywords. on the Presence of Political Personality.

(g) HIV, Drug and PrEP relates Issues.

(b) Random Sample of the graph 2

(h) LGBTQ Community Related Group.

(c) Random Sample of the graph 3
(f) Black Social Issues Network.
a4y

(i) Random Terms from Google Trend

Fig. 1: User-Mention Network of Three different Data sets.
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Fig. 2: Comparative Distributions of all Candidates.

Acknowledgment. Partially funded by NSF grants 1909875
and 1738411.

[6]

[71
REFERENCES
[1]1 S. Sedhai and A. Sun, “An analysis of 14 million tweets on hashtag- [8]
oriented spamming,” Journal of the Association for Information Science
and Technology, vol. 68, no. 7, pp. 1638-1651, 2017.
V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of algorithms
for dense subgraph discovery,” in Managing and Mining Graph Data.

[2] [9]

Springer, 2010, pp. 303-336. [10]
[3] X. Shan, C. Jia, L. Ding, X. Ding, and B. Song, “Dynamic top-k
interesting subgraph query on large-scale labeled graphs,” Information, [11]
vol. 10, no. 2, p. 61, 2019.
[4] F. Adriaens, J. Lijffijt, and T. De Bie, “Subjectively interesting connect-
ing trees and forests,” Data Mining and Knowledge Discovery, vol. 33, [12]
no. 4, pp. 1088-1124, 2019.
[5] P. Zhao, X. Li, D. Xin, and J. Han, “Graph cube: on warehousing
and olap multidimensional networks,” in Proc. of the Int. Conf. on [13]
Management of Data (SIGMOD), 2011, pp. 853-864.
109

M. van Leeuwen, T. De Bie, E. Spyropoulou, and C. Mesnage, “Subjec-
tive interestingness of subgraph patterns,” Machine Learning, vol. 105,
no. 1, pp. 41-75, 2016.

X. Zheng and A. Gupta, “Social network of extreme tweeters: A case
study,” in Proc. of the IEEE/ACM Int. Conf. on Advances in Social
Networks Analysis and Mining (ASONAM), 2019, pp. 302-306.

K. Das, S. Samanta, and M. Pal, “Study on centrality measures in social
networks: a survey,” Social network analysis and mining, vol. 8, no. 1,
p. 13, 2018.

P. Bonacich, “Some unique properties of eigenvector centrality,” Soc.
Networks, vol. 29, no. 4, pp. 555-564, Oct. 2007.

B. Ruhnau, “Eigenvector-centrality—a node-centrality?” Soc. Networks,
vol. 22, no. 4, pp. 357-365, 2000.

X. Yan, Y. Wu, X. Li, C. Li, and Y. Hu, “Eigenvector perturbations of
complex networks,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 408, pp. 106-118, Aug. 2014.

U. Brandes and D. Fleischer, “Centrality measures based on current
flow,” in Annual symposium on theoretical aspects of computer science.
Springer, 2005, pp. 533-544.

E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph centrality in
complex networks,” Physical Review E, vol. 71, no. 5, p. 056103, 2005.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 03,2022 at 00:29:30 UTC from IEEE Xplore. Restrictions apply.



