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Abstract

We study how optimal interventions in response to a shock with limited informa-
tion depend on the complexity of the system. We show that as the complexity
of the system grows, the optimal intervention shrinks to zero.
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1. Introduction

We model the problem of a decision maker faced with limited information
who has the opportunity to intervene in a system that has received a shock as
the choice of a location in n-dimensional Euclidean space. The loss is measured
by the Euclidean distance from the optimum, which was at 0 before the shock.
The decision maker knows how large the shock is, but not the direction in
which the optimum has moved. They do, however, have partial information
about this: they know a direction in which the loss is decreasing. In this setting
complexity is measured by the dimension of the system n. We show that in a
one-dimensional system the full optimum is obtained, and that as the dimension
increases optimal interventions become smaller and the optimized loss grows.
The intuition is that with more directions it is more likely that an intervention
in a randomly chosen direction will “overshoot” and lead to an additional loss.
In the limit as n ! 1 it is optimal not to intervene at all and simply accept
the loss. In addition, following Stokey (2009), if there is a small fixed cost of
making adjustments, then it is best not to respond to the shock at all. Moreover,
in more complex systems the shock must be bigger before it is worthwhile to
intervene.

Imagine, for example, that while driving a car you hear a large bang, the car
no longer accelerates properly, and the engine starts to make loud noises. Should
you get out of the car and try to fix it, or simply struggle on? You are not an
automobile mechanic, and do not know how engines work, but you are aware of
basic facts, for example, that breaking parts of the engine with a hammer will
make things worse. In settings of aiding others there is a substantial literature
arguing that non-intervention is generally thought to be better.5 However, we
expect that someone’s perceived obligation to intervene depends on the amount
of information they have relative to the difficulty of the problem. For example,
in a health emergency on an airplane a doctor would be expected to intervene
when an ordinary passenger would not. By contrast if an elderly person drops a
bag of groceries even an ordinary passer-by might be expected to help. Similar
issues arise with respect to economic systems: How much should policy makers
intervene in response to a pandemic? How should rich countries intervene to
help a developing country facing a crisis?6 How should business firms faced with
unexpected systems failures or by competition from new products respond?

Our result also has implications for the evolution of a firm, organization,
or organism: as the environment grows more complex, evolution will slow to a
halt unless the available information becomes richer. This is because our result
shows that with limited information a single “experiment” or “mutation” is likely
to yield little gain over the status quo.7

5
Spranca, Minsk and Baron (1991) and Cushman, Young and Hauser (2006), for example,

provide experimental evidence that this is a widely held view and review other evidence and

literature.
6
Easterly (2002) discusses some of the ways such interventions can backfire.

7
We are grateful to a referee for this interpretation.
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The problem of intervention with limited information as we formulate it ap-
pears to be new. It is connected to Samuelson (1947)’s LeChatelier principle,
which shows that in a setting of certainty, where the location of the optimum
is known, the size of intervention is strictly smaller when intervention is pos-
sible in a subset of the dimensions instead of all of them. We extend this to
the case where the location of the optimum is unknown, and show that this
effect increases as the complexity of the system does. Our setup has also some
similarities to Ely (2011), who also uses the number of control dimensions as
a measure complexity. Our results are also, in a certain sense, a counterpoint
to the “curse of dimensionality” (see, for example, Bellman (1957)) that states
that the time it takes to reach the optimum increases exponentially with the
dimension of the problem. Here we show that incomplete optimization also does
less well as the dimension of the problem increases. We relate this to results
about the rate of convergence of gradient descent algorithms.

2. The Model

A decision maker must choose an action x in <n to minimize a quadratic
loss function (1/2)

Pn
i=1(xi � x̂i)2. The decision maker knows the magnitude

|x̂| of the bliss point x̂, but not its location: They know only that it is drawn
from a distribution that is spherically symmetric around 0, and that there is a a
direction d in which the loss is decreasing. It is best to choose x lying in direction
d, so the problem of the decision maker reduces to choosing a non-negative real
number � and setting x = �d. The corresponding loss is (1/2)|x̂� �d|2, so the
expected loss is this amount integrated with respect to x̂ according to a uniform
distribution over the surface of the n-dimensional half-sphere x1 � 0 of radius
|x̂|.

One way to think about one-dimensional adjustment is to imagine the system
as a mechanical machine controlled by dials, with each dial corresponding to a
coordinate axis. Being restricted to a single dimension corresponds to partial
ignorance, in the sense of being aware of only one dial. A decision maker who
knew the system better might be aware of more dials/dimensions. For example,
in trying to help a person with a severe leg wound a typical person might think
that putting pressure on the wound is a good idea, while a doctor might know
also that it is possible to use a tourniquet above the wound (a second dial).

The assumption that intervention is only contemplated in a single dimension
is a good approximation in many settings with partial ignorance. For example,
the EU debate over pandemic aid focused on a single dimension: the division of
aid between grants and loans. A less well known example is that of the Wright
brothers. An airplane is a complex system, and marketing one is complicated
as well. Faced with competition from Glenn Curtiss’ airplanes built using the
superior aileron technology, the Wrights did not consider redesigning their air-
plane or change their marketing practices: the only dimension in which they
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responded was in the filing of patent lawsuits.8
It should be clear as well that some tinkering in other dimensions does take

place. For example, in the EU pandemic package, the pro-grant countries agreed
to decrease the total size of the aid package and increase the rebates of the
“Frugal Four.” These other dimensions typically are limited to small changes.
Subsequently we consider the robustness of our results to the possibility that
the decision maker might have some idea of a slightly better direction than d.

Preliminary Analysis

The problem is homogeneous, so the optimal solution �̂n is independent
of |x̂|, and if the minimum expected loss corresponding to |x̂| = 1 is Ln, the
corresponding expected loss for general |x̂| is Ln|x̂|2. With this in mind, we
normalize |x̂| = 1. It is convenient moreover to use coordinates in which x̂ =
(1, 0, 0, . . . , 0)T , so that d rather than x̂ is random and uniformly distributed over
the unit half-sphere d1 � 0. We subsequently study this normalized problem.

In the one dimensional case, n = 1, the true optimum lies at x1 = 1 so
that the optimal choice of � is �̂1 = 1 with corresponding loss L1 = 0. The
key point is that in higher dimensions there is a tradeoff. If d = x̂ it would be
best to choose � = 1. If d is orthogonal to x̂ it would be best to choose � = 0.
Hence the optimal choice of � is a compromise: a large � works well for “good”
directions r close to x̂ but poorly in “bad” directions far from x̂. The intuition
we would like to establish is that in higher dimensions there are relatively more
“bad” directions so smaller � should be chosen.

3. The Main Result

Theorem 1. The optimal solution �̂n
and corresponding loss Ln

satisfies �̂n+1 <
�̂n

, Ln+1 > Ln
with �1 = 1, L1 = 0 and limn!1 �̂n = 0, limn!1 Ln = 1/2.

This says that given a shock that without intervention would result in a half
unit loss, if the system has high complexity, as measured by n, it is better to
intervene very little with the result that almost the entire loss must be swallowed.
If the system has low complexity, a substantial intervention is optimal, resulting
in a substantial mitigation of the loss.

The case n = 1 was proven above. The remainder of the proof follows from
several intermediate results which we now prove.

Lemma 2. The loss function is (1/2)(1 � 2an� + (�)2) with 0 < an  1 and

a1 = 1.

Proof. Fix d. Using the fact that |d| = 1 we can compute the loss as Ln(d,�) =
(1/2)[(1� �d1)2 +

Pn
i=2(�di)

2] = (1/2)[1� 2d1�+
Pn

i=1(�di)
2] = 1/2� d1�+

(�)2/2. Hence an is the integral of d1 with respect to d which is distributed
uniformly over the unit half-sphere |d| = 1 and d1 � 0. As d1 is strictly positive

8
A good account of the sad saga of the Wright brothers can be found in Shulman (2002).
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with probability 1 and d1  1 on the unit half-sphere it follows that 0 < an  1,
and the result for n = 1 is immediate.

Corollary 3. �n = an and Ln = 1/2� (an)2/2.

The theorem will follow if we can show thatan+1 < an and limn!1 an = 0.
This we show next.
Lemma 4. Let h(n, ✓) be the density function

h(n, ✓) =
(sin ✓)n�2

´ ⇡/2
0 (sin!)n�2d!

on [0,⇡/2]. Then for n > 1 we have an =
´ ⇡/2
0 h(n, ✓) cos ✓d✓.

Proof. For n > 1 we do the integration by taking r1 = cos ✓ where ✓ 2 [0,⇡/2].
For given ✓ the density is given by the surface area Sn�2 of the n�2 dimensional
sphere with radius equal to r1, which is Sn�2 = c(n�2)(sin ✓)n�2 where c(n�2)
is positive, known, and irrelevant. Hence we can compute

an =

´ ⇡/2
0 c(n� 2)(sin ✓)n�2 cos ✓d✓´ ⇡/2

0 c(n� 2)(sin ✓)n�2d✓
.

The final step of proving the theorem is then
Lemma 5. an+1 < an and limn!1 an = 0.

Proof. To show an+1 < an note that since cos ✓ is strictly decreasing9 in ✓ it
suffices to prove that h(n + 1, ✓) first order stochastically dominates h(n, ✓).
Observe that if ✓0 > ✓ since sin ✓ is strictly increasing we have

h(n+ 1, ✓0)

h(n+ 1, ✓)
=

✓
sin ✓0

sin ✓

◆n�1

>

✓
sin ✓0

sin ✓

◆n�2

=
h(n, ✓0)

h(n, ✓)
.

Hence as both are density functions it must be that h(n + 1, 0) < h(n, 0) and
there is a unique value ✓ 2 [0,⇡/2] where h(n + 1, ✓) = h(n, ✓) which implies
stochastic dominance.

To show limn!1 an = 0, let " > 0, and observe that there is ✓" 2 [0,⇡/2]
such that for all ✓ 2 [✓",⇡/2,], cos(✓) < ". Moreover, since sin ✓ is strictly
increasing on [0,⇡/2] for any M 2 (✓",⇡/2) we have

lim
n!1

´ ✓"
0 c(n� 2)(sin ✓)n�2d✓´ ⇡/2
0 c(n� 2)(sin ✓)n�2d✓

 lim
n!1

✓"(sin ✓")n�2

´ ⇡/2
M (sin ✓)n�2d✓

 lim n!1
✓"(sin ✓")n�2

(⇡/2�M)(sinM)n�2
= 0

9
Note that the only facts we use about cos ✓ is that on [0,⇡/2] it is strictly decreasing from

one to zero.
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Since cos ✓  1

lim
n!1

an  lim
n!01

´ ✓"
0 c(n� 2)(sin ✓)n�2d✓´ ⇡/2
0 c(n� 2)(sin ✓)n�2d✓

+

´ ⇡/2
✓✏

c(n� 2((sin ✓)n�2"d✓´ ⇡/2
0 c(n� 2)(sin ✓)n�2d✓

 ".

Since ✏ was arbitrary it follows that in fact limn!1 an = 0.

Remark. We include a direct proof that limn!1 an = 0 since it is straightfor-
ward, but it follows from more general known results. The fact that limn!1 an =
0 follows from the fact that the first coordinate of a uniform distribution on the
sphere converges in probability to 0, which in turn follows from a stronger result
attributed to PoincarÃ©: 10 The first coordinate of a uniform distribution on
an n dimensional sphere of radius n converges in probability to the standard
normal.

Results of a similar flavor can be found in convex geometry. It is well known
that11 as n grows large most of the volume of a ball is concentrated near any
n � 1 dimensional hyperplane through the origin, so that the first coordinate
of a uniform distribution over the ball is concentrated near the origin. While a
uniform distribution over a ball is different than a uniform distribution over the
sphere, in high dimensions the two are approximately the same.12

We note also that a rather different set of results apply if we replace the
sphere with the surface of a hypercube. A hypercube in dimension n has 2n
faces and projecting onto an axis collapses exactly two of them, so the projection
of the uniform distribution with probability 1/(2n) is a point mass at each of
the two endpoints and with probability 1�1/n is uniform over the line segment
between those endpoints. Hence as n ! 1 the probability mass does not
collapse to the origin but approaches the uniform distribution. If the decision
maker could choose directions randomly over the surface of a hypercube this
would then imply that in high dimensions the optimal intervention would be
approximately �̂n = 1/2. In order to properly orient the hypercube, however,
the decision maker would have to know that the optimal solution lay along one
of the coordinate axes. This shows that if the problem has additional structure
that is known to the decision maker, the dimensionality n may not be a good
measure of complexity.

More Directions

As we indicated earlier, the decision maker might have some ability to slightly
improve the direction d. For example, the decision maker might be limited not

10
See Diaconis and Friedman (1987) for a discussion of the history of the result and stronger

versions.
11

See Ball (1997). We are grateful to an anonymous referee for this reference.
12

To see this, observe that, since volume is of order Rn
where R is the radius of the ball,

the volume of a ball of radius 1 � ✏ for large n is much smaller than the volume of a ball of

radius 1. Hence most of the mass of a uniform over a ball in high dimensions is concentrated

near the surface, which is to say, is approximately a uniform distribution over the boundary

sphere.
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just to the coordinate axis, but to directions that lies within an angle ✓ of the
coordinate axis, where ✓ is relatively small. This corresponds to directions d̃
lying on the unit sphere with |d̃0d| � cos ✓. The most information that the
decision-maker could have is to know the best direction within that cone. As
long as ✓ < ⇡/2 this does not effect the monotonicity result which did not
depend on the range over which the integrals are taken, but rather on the fact
that worse directions are more likely in higher dimensions.

Knowing the best direction in a cone does change the asymptotic results:
with ✓ = 0 as in our base model, the optimal �̂(d) on the boundary where
d0x̂ = 0 is �̂(d) = 0 with corresponding loss L(d) = 1. With ✓>0 weight is
still pushed towards the boundary as n increases, but now when d is orthogonal
to x̂ the direction of adjustment d̃ now has an angle ⇡/2 � ✓/2 lying closer
to the optimum. This implies a boundary optimum of �̂(d̃) = cos(⇡/2 � ✓/2)
with corresponding boundary loss of 1/2 � cos(⇡/2 � ✓/2)2/2. In practice, the
decision maker is unlikely to know the best direction in the cone, and indeed
our results argue it will be more difficult in higher dimensions. Hence these
should be viewed as upper bounds on the size of the optimal intervention �̂ and
a lower bound on the loss L. The key point is that even for these bounds, if ✓ is
small the asymptotic intervention �̂(d̃) = cos(⇡/2 � ✓/2) is small, and the loss
1/2� cos(⇡/2� ✓/2)2/2 is close to 1/2.

4. Quantitative Information and Gradient Descent

In the base model only qualitative information about the improvement is
available: It is known only that in the direction d the loss is decreasing, but
not how rapidly. We now consider the implications of quantitative information.
Specifically, we ask what happens if the decision maker can move in a given
direction d where the loss is decreasing, and in addition observe the derivative
of the objective function in that direction. In this case the exact optimum in
direction d can be obtained, though not necessarily the overall optimum because
d will typically not be the best direction.13

For any given dimension n the quantitative information helps. However,
as n grows, this advantage shrinks, and the loss converges to the same limit
as in the base model without the quantitative information. Denote the loss in
the direction d as �n(d) = min� 1/2 � d1� + (�)2/2, and let En denote the
expectation operator with respect to the direction d, so that integrating over
directions the expected loss is En�n.

Theorem 6. The optimal solution '̂n
and corresponding loss �n

satisfies En'̂n =
�̂n

, Ln+1 > En+1�n+1 > En�n
with �1 = 0 and limn!1 En�n = 1/2.

Proof. From the proof of Lemma 2 the objective function is 1/2�d1�+(�)2/2.
Hence '̂n(d) = d1. It follows that En'̂n = �̂n = End1, which is clear since the

13
Note that if the decision maker could use knowledge of the derivative to choose a better

direction this would lead to an even greater improvement, but we do not allow this.
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best response is linear, so it does not matter if we first compute the optimum
and then take the expectation as here, or first take the expectation and then
compute the optimum as in the base model.

Substituting back into the objective function we have �n(d) = 1/2 � d21/2
so that En�n = 1/2 � Ed21/2. Since Ln = 1/2 � (Ed1)2/2 the result Ln+1 >
En+1�n+1 follows from Jensen’s inequality. The remaining results follow from
Lemma 5 which as observed in footnote 9 holds not only for computing End =
En cos ✓ but also for computing End21 = En(cos ✓)2.

Gradient Descent

The availability of quantitative information about the direction d creates a
link between our results and the method of gradient descent. We can index
a problem of gradient descent by choosing a non-singular symmetric matrix A
and a starting point y0 with the objective function (1/2)y0A0Ay. The first step
of gradient descent computes the gradient g = Ay0 at y0, and then conducts a
line search to find the optimum y1 in along that line. The improvement made
in this first step can be analyzed using our methods.

Recall that in our normalized coordinate system the origin has been moved
to x0 = �(1, 0, 0, . . . , 0)T . Let B be a nonsingular linear transformation such
that By0 = x0 and (AB�1)TAB�1 = I. In the coordinate system x = By,
the loss function is (1/2)xTx, and the initial condition is x0. The direction
of search is the transformed gradient d = �Bg. Random choice of gradient
descent problems, that is (A, y0, B) then maps to random choices of d in our
environment. This enables us to translate our results into conclusions about
the first step of randomly chosen gradient descent problems. In particular, in
the Appendix we show that if the probability distribution over gradient descent
problems satisfies a symmetry and monotonicity condition then as the dimension
of the problem increases the step size and gain from the first steps grow smaller
and in the limit approach zero.

This result is about the first step of gradient descent algorithm, while the
existing literature has focused on its rate of convergence. There is a standard
convergence bound (see, for example, Meza (2010)) for the method. If the
matrix A is randomly chosen by independently choosing the diagonal and upper
triangle elements from a suitable distribution and filling in the rest by symmetry,
a result on the distribution of eigenvalues by Wigner (1958) implies, as explained
in the Appendix, that the convergence bound deteriorates as the dimension
increases. Our result complements this by showing that as n increases not only
does the algorithm perform more poorly in the limit of many iterations, but it
performs more poorly in the first step as well.

Finally, we observe that when the decision maker observes the magnitude of
the derivative, we can model decision makers who are less ignorant by supposing
they can adjust the first m coordinates rather than just the first. We conjecture
that similar results hold provided that m/n goes to 0.
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5. Conclusion

We have have defined and studied the “optimal intervention problem with
limited information.” We modeled the complexity of a problem by its dimen-
sionality, and found that as dimension increases it is optimal to make smaller
interventions. Our proof follows the intuition that with more directions in which
to move there is greater opportunity for mistake, and hence greater need for cau-
tion.

We consider two notions of limited information, both corresponding to what
the decision maker knows about moving in any arbitrarily-chosen direction. In
one formulation, only the sign of the derivative is known, and in the other its
magnitude is known as well. In both cases we assume that the magnitude of
the loss from non-intervention is known. In the “magnitude” case if line search
is possible we show that this does not matter. More generally, while it may
not be the case in practice that the magnitude of the loss is known, in more
complex systems this information is likely to be more difficult to come by, which
reinforces our results.

It is important to note that our result depends on the decision maker only
observing the magnitude of the derivative in a fixed and small number of di-
mensions. In particular, if the decision maker observes the magnitude of the
derivative in as few as n linearly independent directions then the full optimum
is achieved.14

There is another point worth emphasizing. If n > 1 since �̂n > 0 it follows
that while the expected loss is less than in the absence of intervention, there is
still a positive probability that intervention will make the realized loss worse:
Sometimes the intervention will make things worse rather than better.15

What do our theoretical results tell us? One case in point is that firms who
do not respond to competition from complicated new products are sometimes
criticized for doing nothing. However, if a firm lacks the technical expertise to
locate the new “optimum,” and are limited to adjustments in a single dimension
such as price, our results show that it may indeed be optimal to respond only
slightly if at all. The responses of WordPerfect to the Windows 3.0 shock in
1990 and of Nokia and Blackberry to the iPhone shock in 2007 all fit into
this category. In all three cases, firms did little to respond to the shock, and
subsequent events showed that all indeed lacked the technical expertise to build
competitive products.

One way to read our theory is that even in time of crisis large interventions
are a bad idea. This is not the case. Instead, our model says that large ill-
considered interventions are a bad idea. One example is that of the failure of
NASDAQ computer systems during the Facebook IPO. Rather than study the

14
This follows from the fact that the problem is quadratic, that the second derivatives are

known, and that the distance to the optimum is known.

15
This can be seen from the fact that if d is orthogonal to x̂ the fact that �̂n > 0 implies

a strictly greater loss than in the absence of intervention, hence the same must be true for d
that are nearly orthogonal to x̂.



system to understand the reason for the failure, programmers were instructed
simply to make a large intervention in a single direction, namely to remove a
validation check that had caused the system to shut down. The consequences
were catastrophic: There was a cascading series of failures and “traders blamed
NASDAQ for hundreds of millions of dollars of losses, and the mistake exposed
the exchange to litigation, fines, and reputational costs.”16
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Appendix: Gradient Descent

First Step of Gradient Descent

Recall that we have translated the coordinate system by subtracting the
location of the optimum, so that the optimum x̂ is at the origin and the sta-
tus quo x0 = �(1, 0, 0, . . . , 0)T . We describe a gradient descent problem as a
non-singular symmetric matrix A and a starting point y0 with the objective
function (1/2)yTATAy. We map this into our setting with a nonsingular linear
transformation B such that By0 = x0 and (AB�1)TAB�1 = I. The direction
of gradient descent, that is the negative of the gradient �g = Ay0 maps to
d = BAy0.

Observe that

�xT
0 d = �xT

0 BAy0 = �xT
0 BB0x0 < 0

so that d is a direction of decrease for the objective function and lies on the half-
sphere defined by x0 and x̂. If we find �̂n(µ) and �n(µ) in our problem then
the optimum in the original problem is given by �n(µ)g and the loss relative to
|y0|2 is given by �n(µ).

Any distribution over (A, y0, B) induces a distribution of d over our half-
sphere. If the induced distribution over d is uniform describe the distribution
over (A, y0, B) as pseudo-uniform. Our main theorem then says that in this
case as the dimension increases the expected size of the first step of gradient
descent and expected gain from that step shrink to zero.

There are in general many pseudo-uniform choices of gradient descent prob-
lems. Here is one example: let e be uniform on our half-sphere and A =p
2
�
(2/e1)

�
(e� (e1x̂)/2)(e� (e1x̂)/2)T + (e21/4)I

��1/2, y0 = A�1x0, and B =
A. Then as x̂ = (1, 0, 0, . . . , 0)T

d = 2A�1(AT )�1x̂

=
�
(2/e1)

�
(e� (e1x̂)/2)(e� (e1x̂)/2)

T + (e21/4)I
��

x̂

= (2/e1)
�
(e� (e1x̂)/2)(e� (e1x̂)/2)

T x̂+ (e21/4)x̂
�

= (2/e1)
�
(e� (e1x̂)/2)(e1 � e1/2) + (e21/4)x̂

�

= (2/e1)
�
(e1/2)e� (e21x̂)/4) + (e21/4)x̂

�
= e

is also uniform on our half-sphere so this distribution is indeed pseudo uniform.
Note that since B = A we can easily extend this to a measure with full support
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over A. Take y0 = A�1x0. The mapping rd = BAy0 = A�1x0 induces equiva-
lence classes of matrices A with two matrices being equivalent the give rise to
the same value of r. Regardless of the distribution over matrices conditional
on equivalent class, the example given provides a probability distribution over
equivalence classes such that we get pseudo uniformity.

Note pseudo uniformity can be relaxed substantially. In proving Theorem 1
we conditioned on the angle ✓. For given ✓ we used the fact that the distribution
of directions d was symmetric. Let us say that a distribution over (A, y0, B) is
symmetric if this is the case. We view this as a fairly neutral assumption, that
the gradient descent problem does not favor any particular direction. Second
we used the fact that the distribution over angles gn(✓) is uniform on [0,⇡/2].
However: the proof only requires that it be strictly positive and independent of
n. Moreover, it is clear that if as we increase n the distribution for n+1 weakly
stochastically dominates that for n, then this enhances the results given. If this
is the case we say that the ensemble of distributions over (A, y0, B) is weakly

monotone. We conclude that symmetry plus weak monotonicity is sufficent for
our results.

Wigner’s Theorem and the Condition Number

A standard convergence bound (see, for example, Meza (2010)) shows that
the rate of convergence declines as the ratio of the largest to smallest eigenvalue
of A0A grows. If the matrix A is randomly chosen by independently choosing the
diagonal and upper triangle elements from a fixed and standardized distribution
with moments of all orders, and filling in the rest by symmetry Wigner (1958)’s
semi-circle law says that the fraction of normalized eigenvalues �j/n1/2 of A that
lie in an interval [�,�] ✓ [�1, 1] converges in probability to

(2/⇡)

ˆ �

�

p
(1� �2)d�.

Graphically on [�1, 1] the function
p

(1� �2) is a semi-circle, hence the name.
The implication for the ratio of the largest to smallest eigenvalue of AA0 is clear:
for any ✏ with high probability for large enough n there must be eigenvalues (and
indeed quite a few of them) in [0, 2✏] and in [1/2, 1/2 + 2✏] so that the ratio is
at least 1/✏. Hence, asymptotically, the convergence bound has no bite.


