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Abstract—The ubiquity and vulnerability of computer applica-
tions make them ideal places for intrusion attacks increasing in
intensity and complexity. Computer applications have a relation-
ship with various networks, physical components, host devices,
and users with different roles and requirements. Therefore,
securing computer applications in such a complex and dynamic
cyberspace is urgent and challenging. This paper attempt to
tackle the challenges by proposing a Multi-Layer Abnormal
Behaviors Analysis (MLABA) framework for intrusion detection
associated with tri-layer (i.e., system, process, and network
layers) in cyberspace for characterizing their normal operations
and detect any abnormal behavior that might be triggered by
malicious activities. The proposed technique is evaluated on
several popular applications (i.e., Firefox, Opera, Chrome, and
Ruby). The experimental results demonstrate the feasibility of
MLABA framework that can detect the intrusion and abuse for
applications.

I. INTRODUCTION

The advancement of modern applications and software
have enabled the revolutionary capabilities that has served
many fields, such as healthcare systems, smart devices, and
the emerging of the Internet of Things (IoT). Users use
applications on different platforms to perform day-to-day
tasks including, accessing the webpage and emails through
web browsers, editing document through office suites, and
shopping online by e-banking. However, attackers have also
infected applications by performing malicious behaviors such
as breaching health data [1], attacking medical devices [1],
stealing privacy information [2], injecting malicious code,
exploiting vulnerabilities of executable file, and redirecting the
control-flow of program execution [3]. In addition, modern
applications cannot be bug-free due to their sheer size and
complexity [4]. As a result, many existences of faults and bugs
may create security vulnerability with potential risk exploited
by attackers to produce significant security concerns and finan-
cial losses [2]. Further, the attackers can be insiders who are
trusted and have full access to the computing system, rendering
applications susceptible to abuse and insider threats. Therefore,
computer application security is a critically important and
challenging task. Intrusion detection systems (IDS) are one of
the promising security solutions, which can be used to detect
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intrusion attacks and insider threats for protecting computer
systems and applications.

Traditional application IDS solutions have suffered prob-
lems such as (1) many of them are signature-based IDS
that result in assumptions by assuming that they know the
signatures and the attack patterns that cyber attackers might
leverage; however, signature-based detection cannot recognize
zero-day attacks and unknown attacks, i.e., attacks created
by exploiting unidentified or unknown vulnerabilities that no
patch is provided [5], [6]. (2) To imporve the IDS performance,
machine learning-based IDS has been proposed; however,
many solutions (i.e., that use supervised learning for training
classification model to identify the classes appearing in the
training data) with strong close-set assumption that needs se-
curity experts to collect and label both normal and attack data
for training detection model. Since it is unrealistic to collect
all the possible categories of attack data for training, it might
be better if the detection model can only use normal data to
be trained. Our previous work also suggests that a model that
learns the normal data distribution strictly is more robust than a
supervised model in IDS [7]. (3) Further, many of the current
efforts of application-level IDS using the single application
data source for anomaly detection may not enough for suc-
cessfully detecting planned and motivated attacks that leverage
vulnerabilities from multiple layers of the host machine [6],
[8], [9]. In order to tackle the limitations mentioned above of
traditional techniques, we propose MLABA methodology that
is based on a holistic approach that will continuously monitor,
analyze, and diagnose the operations of three cyberspace layers
(i.e., system layer, process layer, and network layer) through
denoising autoencoder (DAE) neural network in an integrated
manner.

The main contributions of this paper are listed as follows:
(1) We propose a novel MLABA framework that integrates
process layer, system layer, and network layer to achieve
decent application-level intrusion detection results based on
training detection model only with normal data. (2) We imple-
ment the proposed MLABA framework and conduct the case
studies on popular web browser and software development
tool including Firefox, Opera, Chrome, and Ruby. (3) We
benchmark the performance of MLABA on real-world datasets
containing multiple attacks (i.e., Fork Bomb, Infinite Loop,



Infinite Array, Ransomware, Brute Force Password Cracking,
and Rainbow Table Attack) targeting the normal opearations
of web browsers and software development tool. Through
the experimental datasets, we address the effectiveness of the
MLABA framework.

This manuscript is organized as follows: Section II covers
related work in machine learning for IDS, Section III presents
the multi-Layer mapping of cyberspace, Section IV presents
the experiments and the key findings, and Section V provides
a discussion of the work.

II. RELATED WORK

In this section, we briefly introduce the IDS and the related
work of IDS with machine learning.

A. Intrusion Detection Systems

According to the types of detection method, IDS can
be classified into signature-based IDS, anomaly-based IDS,
specification-based IDS, and hybrid-based IDS [10] [11]. The
signature-based detection uses the predefined library of attack
signatures to model the attack of the monitored object. An
alarm is generated whenever those signatures are matched
and detected. A match indicates a possible known attack
for signature-based detection solutions while other operations
are classified as normal. Hence, the signature-based detection
techniques have a low false positive alarm rate. However, its
major drawback is that it cannot detect unknown or zero-
day attacks [11]. Anomaly-based detection does not need
data of known attacks and recognizes abnormal behaviors
through modeling normal behaviors. Therefore, it can identify
unknown and zero-day attacks. However, one downside is
that anomaly-based detection suffers from high false alarms
if the model is not fine-coarse-grained [12]. The specification-
based IDS also called stateful protocol analysis (SPA), since
this mechanism allows the IDS to know the state of the
protocol. It uses the mechanism by setting thresholds and
rules regulated by behavior of protocols, nodes, and routing
tables [13]. According to the deviation of system behavior,
this type of IDS alarm intrusion behaviors, similar to anomaly
detection. However, the significant difference between them
is that the rules are manually set for each specification by
security expert. Therefore, this type of IDS creates lower false
positives than anomaly detection-based IDS due to manually
setting specifications. However, this approach suffered time-
consuming problems and created significant delays [14]. The
hybrid-based IDS usually combines two or three IDS such as
signature-based, anomaly-based, and specification-based IDS
[15]. With combing different IDS, several things need to be
considered. First, how to solve the conflicts between different
predictions of IDS. Second, the architecture that is either lay-
ered or parallel has to be preliminarily determined. Moreover,
selecting the correct order of multiple IDS components for
processing is also a challenge [16].

B. IDS with Machine Learning

The research of IDS with machine learning has been exten-
sively studied in the security domain [2], [17]. Paulauskas et

al. [18] present a network intrusion detection system (NIDS)
to detect the network flow anomalies using Local Outlier
Factor (LOF). LOF is an anomaly detection method computing
the local density deviation of a given sample concerning its
local neighborhood.In Bhattacharjee et al. [19], an intrusion
detection scheme based on LOF is proposed to detect the
spectrum sensing data falsification attack. Montero et al. [20]
propose an IDS called self-protection agent whose core algo-
rithms are error correcting output codes and Support Vector
Machine (SVM). The work of Khreich et al. [21] presented
an One-Class SVM (OCSVM) model-based IDS to detect
system abnormal behaviors at the host level. They performed
substantial feature engineering for OCSVM by segmenting the
system call traces into multiple n-grams of variable length and
mapping them to fixed-size sparse feature vectors. Hess et al.
[7] developed an IDS that can identify malicious HTML files.
In the experiment, different classifiers, including AdaBoost,
GentleBoost, RobustBoost, RusBoost, random forest, and iso-
lation forest (iForest), were compared on a high imbalance
dataset. The finding suggests that it might be better to use
detection model that can only learn the data distribution of the
majority class, such as iForest that is an anomaly detection
model by isolating anomalies. Tao et al. combine isolation
forest and Spark to implement a NIDS that can leverage
Spark’s benefit and run iForest in a parallel manner [22]. In
recent years, deep learning is also used to perform intrusion
detection. One of the superiority of deep learning is that it can
learn complicated concepts well. Ferrag et al. [23] perform a
general assessment for a number of deep learning models using
two datasets: Bot-IoT and CSE-CIC-IDS2018. Regarding the
studies of using the autoencoder-based deep learning model
for IDS, Farahnakian and Heikkonen [24] develop a deep
autoencoder approach for intrusion detection. The experiments
show that deep autoencoder is superior to deep belief network
on the KDD-Cup’99 dataset. Mirsky et al. [25] develop an
anomaly detection-based NIDS using autoencoder ensembles
on the local network. Shone et al. [26] propose a stacked
nonsymmetric deep autoencoder for NIDS and evaluated it
by KDD-Cup’99 and NSL-KDD datasets.

III. MULTI-LAYER MAPPING OF CYBERSPACE

The structure of MLABA framework is shown in Figure 1.
First, using our continuous monitoring tool, we monitor the
cyber infrastructure consist of system, data, application, and
users. The cyberspace footprint (i.e., selected measurements
from cyber infrastructure) extractor then extracts the system
footprint, application footprint, and network footprint. Here,
the system footprint, application footprint, and network foot-
print refer to the selected measurements that can respectively
record system, application, and network behaviors in the
appropriate and informative manner. After that, the footprints
of three layers are transformed to feature vectors and combined
to form the MLABA feature representation model which is
used to learn DAE for anomaly behaviors analysis.



Fig. 1. The structure of the MLABA framework.

A. Data Collection and Feature Representation Model

Modern applications are complicated, highly customized,
and many of them facilitate the interaction between appli-
cation sessions and user sessions. Thus, the attack surface
consists of a wide range of components, including logical
components, network components, and physical components
[27]. Therefore, we aim to create an application IDS for
detecting suspicious activities using a comprehensive feature
representation rather than the representation designed to only
focus on the application level in many previous work [6],
[8], [9]. For example, the malicious behavior of stolen SSH
credentials from application is hard to identify only from
the application data, but abnormal traffic such as unusual
interaction between user and computer in the network traffic
might expose this malicious activity. Therefore, we aim to
combine data from multiple layers of monitored hosts to
develop an IDS that is capable of detecting sophisticated
attacks having characteristics across different layers. To this
end, the MLABA feature representation model built on the
data from multiple sources using process data, system data,
and network data, is developed. To profile the tri-layer feature
representation model, our framework collects the system foot-
print, application footprint, and network footprint, then convert
to the feature vectors. Table I lists the cyberspace footprint
from three layers for designing the feature representation
model.

The system layer maps hardware and physical objects onto
the cyberspace through the system footprint that contains
system-wide measurements of CPU time, disk usage statistics,
disk I/O statistics, CPU utilization, CPU frequency, CPU per-
cent, CPU statistics, and memory information. These system
footprints are a numeric system activity measurements that
represents states, resource consumption, behaviors of the entire
host, and benefits for understanding its interaction with other
layers. In addition, these measurements change frequently,
even imperceptible activities in the host system are reflected by
them. Therefore, it is possible to identify abnormal behaviors
of the host fast with system footprint.

The process layer maps the target running processes using
the application footprint including the process measurements
such as the process CPU-related measurements, the process
memory-related measurements, the process I/O-related mea-
surements, the process threads, the process handles, and so on
(see Table I). For an application that has multiple processes

running simultaneously, we average the measurements of its
processes recorded at the same time. The CPU-related mea-
surements were chosen since abnormal CPU measurements
can occur when encountering anomalous conditions. For ex-
ample,the process may consume unusual amounts of CPU
power when it fell in with impossible termination conditions
due to malicious code injection, resulting in infinite loop
and deadlock. The memory-related information can reflect
the abnormal memory consumption of a poisoned process
whose allocated chunks of memory could not be freed. The
anomalous high number of the process I/O within a short
amount of time may reveal the system call of the process
often fail. This may also be brought about by application abuse
or malicious code injection. Therefore, these collected appli-
cation footprint can be utilized for identifying the abnormal
states and behaviors of the process.

The network layer maps the data communication into
cyberspace using the network I/O measurements from the
network footprint. The activity of applications such as web
browsers significantly related to Internet usage for diverse
purposes, e.g., for watching streaming video, using social
network platforms, and viewing news. In addition, the traffic
density of network I/O reflects how active the background
processes connecting to other hosts. Therefore, the network
layer could establish the connection between the application
and the network resources, providing the capability to capture
the application behaviors and preferences reflected by network
I/O. We partition complicated network I/O information into
different measurements related to the transmission of bytes,
packets, and errors.

The richness of cyberspace footprints from three layers
captures a wide spectrum of possible behaviors of appli-
cations since application-level cyber-attacks perhaps reflect
their impact by the monitored measurements at each layer.
Therefore, we convert cyberspace footprints from three lay-
ers into system layer feature vectors, process layer feature
vectors, and network layer feature vectors. For each feature
obtained from the cyberspace footprints including system disk
I/O count, system disk I/O time, system disk I/O merged
count, system disk usage, system CPU statistics, system CPU
times, system memory, process CPU times, process I/O count,
various process memory information, Network I/O bytes, and
Network I/O packets, we calculate the difference of the feature
value compared with the feature value in the previous sample.
We then combine the feature vectors from three layers and
used as input for anomaly detection model.

B. Intrusion Detection Framework

We denote the monitored samples represented by feature
representation model as X = {x1,z0,z3,...,2;}, where
x; represents i*" sample. Then the problem of the intrusion

detection can be defined as follows:
Score; = F(x;) (1)

where F' is an evaluation function that uses anomaly detector
to evaluate anomaly score of sample x;, and Score; denotes



TABLE I
THE DESCRIPTION OF MLABA CYBERSPACE FOOTPRINTS.

Cyberspace Footprints

Description

System Layer

System disk I/O count
System disk I/O time

System disk I/O merged count
System disk usage

System CPU utilization

System CPU frequency
System CPU statistics

System CPU times

System Memory

The measurements of the system’s disk I/O, measured by the count numbers of reads and writes, and

the bytes number of read and written, respectively. ) . )
The time has spent on reading from disk and writing to disk, respectively. The time has spent on

performing actual I/Os.

The respective numbers of merged reads and writes.
The measurements of the system’s hard disk usage, measured by the bytes of total space, used space,

free space, and percentage usage, respectively. o
The percentage of system’s whole CPU utilization. The percentage of system’s each CPU utilization. The

number of logical CPU in the system. The number of physical CPU in the system.
The current CPU frequencies. The maximum and minimum CPU frequencies since boot.
The number of context switches. The number of interrupts. The number of software interrupts. The

number of system calls. ) . . . )

The CPU times has spent from the given mode including user, system, and idle. The CPU time has spent
by fields including nice, iowait, irq, softirq, steal, guest, and guest nice, respectively.

The percentage of system’s virtual memory utilization. The system’s used virtual memory. The system’s
used swap memory.

Process Layer

Process CPU times

Process 1/0 count

Process CPU utilization
Various process memory information

Process memory percent
Process file descriptors
Process threads

Process handles

Process niceness

The process times in the given mode including user and system. The user time and the system time of

all child processes. The process time of waiting for the completion of blocking 1/0.
The respective numbers of bytes read and written. The respective numbers of operations of read and

write. The respective numbers of bytes which process transmit to the system calls of read function and
pread function. The respective numbers of bytes which process transmit to the system calls of write
function and pwrite function.

The percentage of process CPU utilization.

The process memory information of RSS (resident set size), VMS (virtual memory size), shared (memory
shared with other processes), TRS (text resident set), DRS (data resident set), lib (memory of shared
libraries), dirty (number of dirty pages).

The percentage of the process memory utilization.

The number of file descriptors currently opened by the process.
The number of threads currently used by the process.

The number of handles currently used by the process.

The priority number of the process.

Network Layer

Network I/O bytes
Network I/O packets
Network I/O error
Network I/O drop

The numbers of bytes has sent and received, respectively.
The numbers of packets has sent and received, respectively.
The numbers of errors while receiving and sending.

The numbers of dropped incoming packets and dropped outgoing packets.

the anomaly score of the monitored application’s observation.
An abnormal sample of the monitored application is one whose
anomaly score exceeds a threshold, while a normal sample is
one whose anomaly score is less than a threshold. For getting
a function F', not only do we analyze the monitored process
mapped at the process layer for extracting features for the
application, but we also consider the behaviors of the system
layer and network layer. With tri-layer (i.e., system layer,
process layer, and network layer) features, we can evaluate
the impact of monitored application across three layers. For
example, consider that web browser application’s memory
utilization and system-wide memory utilization are dramati-
cally increased while the network traffic is not increased or
even decrease. This may indicate the web browser application
gets stuck in a Fork-Bomb (i.e., an attack makes the browser
constantly open tabs and thus attempts to exhaust the system’s
resources). According to the above considerations, MLABA,

a knowledge-based multi-layer mapping of cyberspace in-
trusion detection framework, is proposed. The overview of
the machine learning framework of MLABA is shown in
Figure 2. On the collected cyber footprint, the objective is to
extract the features for data mining. Then, the extracted feature
from three layers are concatenated to form tri-layer feature
representation stored in database for training anomaly detec-
tion model. The machine learning pipeline leverages anomaly
detection model for the anomaly behaviors analysis. The stage
for training anomaly detection model requires that MLABA’s
machine learning pipeline observes previous normal behaviors
represented by tri-layer feature representation model. This
allows the anomaly detection model to model normal behavior.
The anomaly detection model is only trained on the normal
sample. After finish the training stage, the anomaly detection
model can distinguish the behaviors of normal and abnormal
behaviors.



Fig. 2. Overview of the machine learning framework for MLABA.

C. Automated Intrusion Detection with Denoising Autoen-
coders

The DAE is selected as the anomaly detection algorithm.
A basic autoencoder is a feedforward artificial neural net that
learns a map from the input to itself through a pair of encoding
and decoding phases. A DAE is a variant form from a basic
autoencoder, that adds noise to the input. The DAE can be
trained to reconstruct an uncorrupted input x € R"™ according
toz € R™ (i.e., a corrupted version of z € R™). The corrupted
input & is mapped into the hidden layer h € R™ by the
encoding phase, as given by:

h= f(W2 +b) )

where f(-) is an activation function, W € R™*™ is a weight
matrix, and b € R"™ is a bias matrix. The hidden layer ~ maps
the coding information into the output layer by a decoding
phase to the output representation y € R™, which are given
by:

y=f (Wh+v) 3)

where f'(-) is another activation function, W' € R™*n
is a weight matrix, and b € R"™ is a bias matrix in the
decoding phase. Unlike basic autoencoder that minimizes the
reconstruction error between the input £ and output y, a basic
DAE is trained to minimize the reconstruction error between
uncorrupted input x and output y. Therefore, the root mean
square error (RMSE) between uncorrupted input 2 and output
representation y is used as the objective function defined as:

RMSE(z,y) = @)

A deeper DAE used as anomaly detector for MLABA can
be formed by adding more hidden layers, which allows DAE
to learn complex concept through layer-by-layer processing.
Mini-batch gradient descent is applied to learn the parameters
of the weight matrices and bias matrices. We use a DAE
with three hidden layers. The detailed parameters of DAE are
shown in Table II. Concretely, the dimensionality of MLABA
input feature space is 87 after concatenating the features
from three layers. The dimensionality of the output layer is
also 87 since the purpose is to reconstruct the input. The

TABLE II
THE DETAILED PARAMETERS OF THE DENOISING AUTOENCODER

Layer Type Output Shape #Parameters
Input (B, 87) 0
Dense (B, 64) 5,632
Dropout (B, 64) 0
Dense (B, 32) 2,080
Dropout (B, 32) 0
Dense (B, 64) 2,112
Dropout (B, 64) 0
Dense (B, 87) 5,655

compression network structure of DAE is set as 64-32-64. The
first dimension B of the output shape is the size of mini-batch,
and the second dimension of the output shape is the number of
features output by this layer. The dense (fully-connected) layer
is used to construct the hidden layer and output layer. ReLU
is used as the activation function for each hidden layer, and
linear function is used at the output layer. We train our DAE
by adding dropout regularization with probability 0.1 to reduce
the overfitting in anomaly detector learning. The learned free
parameters of DAE for each dense layer are 5,632, 2,080,
2,112, 5,655, respectively. After completing the autoencoder
learning phase with denoising Gaussian noise, our DAE can
detect the anomalies. An observation that belongs to normal
or abnormal is determined by RMSE. During the test phase,
an observation is normal if it has a low RMSE while it is
abnormal if its RMSE is larger than the anomaly threshold.

IV. EXPERIMENTAL RESULTS
A. Experiment Setup and Parameterization

To demonstrate the feasibility of MLABA, we evaluated it
through web browser applications including Firefox, Chrome,
Opera, and software development application Ruby. They are
conducted as use cases due to three reasons: (1) All of these
web browsers are widely used computer applications. (2) The
increasing number of web attacks has made web application
security one of the foremost issues in cybersecurity [27] (3)
Ruby is a popular development tool and considered as one
of the most used programming languages for building web
applications [28].In preparation for experiments, we run these
four applications on an Ubuntu 18.04 OS PC machine using
i7-3770 CPU (4 cores 8 threads) and 16 GB memory. The
total hours of collected data from Firefox, Chrome, Opera,
and Ruby are 29 hours, 38 hours, 39 hours, and 7 hours,
respectively. For the web browser applications, we collected
normal operational data when the user has visited regular
websites and perform normal operations. We collected the
web browser’s abnormal operational data for several web
browser application attacks that were performing. For the
dataset of Ruby application, we collect normal data by per-
forming regular developing behaviors such as running machine
learning tests and experiments through Ruby. We also collect
its abnormal behavior through running several Ruby scripts for
abuse and malicious purpose. The following types of attacks
are used in our experimental results and evaluation:



TABLE III
DESCRIPTION OF THE EXPERIMENTAL DATASETS

Operation Firefox-AD Chrome-AD Opera-AD Ruby-AD
Normal 40,717 54,314 55,399 9,270
Fork Bomb 1,074 1,095 1,031 0
Infinite Loop 1,226 1,215 1,100 0
Infinite Array 1,047 1,546 1,041 0
Ransomware 0 0 0 685
Brute Force Password Cracking 0 0 0 554
Rainbow Table Attack 0 0 0 648

o Fork Bomb Attack: This attack opens tab continuously,
results in a very high number of tabs and consumption
of the hardware resources for that web browser.

« Infinite Loop Attack: This attack runs an infinite loop,
making the web browser running the script hang.

o Infinite Array Attack: It creates a dynamic array and adds
random data to the end of the array during the execution.
Hence, until crashes, the web browser application aims
consuming all memory in the system.

« Ransomware: A Ruby script encrypts files on a computer,
rendering files unusable, and affecting the application
relying on the encrypted files.

o Brute Force Password Cracking: A Ruby script involves
trying an exhaustive search to find the plain text of the
hash text for cracking password.

« Rainbow Table Attack: A Ruby script uses the time-
memory trade-off technique by loading a huge table filled
with hash values, attempting to crack passwords quickly.

One of the important reasons for choosing these attacks
because none of them are detectable by web browsers, Ruby,
and Ubuntu operating systems. The descriptions of four AD
(anomaly detection) datasets including Firefox-AD, Chrome-
AD, Opera-AD, and Ruby-AD are summarized in Table III.

We wuse Isolation Forest (iForest), One-Class SVM
(OCSVM), Local Outlier Factor (LOF), and Elliptic Envelope
(EE) as baselines of anomaly detection model compared
to DAE: (1) iForest: An ensemble-based anomaly detection
method of detecting anomalies using the mean path length
of trees within forest [29]. (2) OCSVM: A kernel-based
anomaly detection method of estimating the support of a
high-dimensional distribution [30]. (3) LOF: A density-based
anomaly detection method by comparing the local deviations
of density [31]. (4) EE: An anomaly detector based on
estimating covariance on Gaussian distribution data [32].

Training methodology. Since evaluating our approach
through the one-class learning principle [33], we use the clean
normal training data for training anomaly detectors. More
specifically, we perform random sampling on normal data to
extract 60% of normal samples as the training data, and the
remaining 40% of normal samples are mixed with all abnormal
samples for testing. We repeat the random sampling 15 times
to generate 15 independent rounds of different combinations
of training set and test set for performance evaluation. The
min-max normalization is applied for feature scaling. '.

For the hyper-parameters of OCSVM with RBF
(radial basis function) kernel, we select the v from
v € {0.5,0.1,0.05,0.01} and RBF kernal coefficient
v from vy € {1071,1072,1072,10~*}. For the LOF,
we select the number of nearest neighbors from
ke {10,20,30,40,50,60,70,80,90,100}. The novelty
parameter is set to a boolean value of True. For the iForest,
we use the number of trees ¢ from ¢ € {50,100,3000}.
The bootstrap parameter is set to a boolean value of
True. As the sub-sampling size, we select it from
o€ {2829 210 211 912 913 9141 We also test the
iForest wusing all the training samples without sub-
sampling. For the EE, we select the support fraction u
from p € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. All other
parameters of iForest, LOF ,OCSVM and EE are taken from
the default setting of sklearn '. The structure of DAE with
MLABA feature representation model is described in Table
II. As for the other hyper-parameters, Adam [34] is leveraged
to optimize the model since DAE is neural networks requiring
iterative updating of the free parameters. The learning rate n
of Adam is selected from n € {1073,107*}. We train DAE
64 epochs, and 64 mini-batch size is used.

Evaluation metric. During the test stage, the labels of the
test data are used to measure the performance. The receiver
operator characteristic (ROC) curve and precision-recall (PR)
curve are used to perform a comprehensive evaluation for
all the anomaly detectors. ROC curve presents the tradeoff
between the true positive rate (TPR) and the false positive rate
(FPR), while PR curve plots the recall against precision. ROC
curve and PR curve are two important and complementary
evaluation metrics. ROC curve is commonly used because
it is easy to interpret. However, it is possible to give an
overly optimistic evaluation of the method’s performance when
dealing with highly class-imbalance datasets such as datasets
for anomaly detection [35]. A popular alternative is to use PR
curve for evaluation classification performance since it tends
to obtain a precise evaluation in the anomaly detection tasks,
though it also turns out to be a highly imprecise metric in
the tasks that encounter class imbalance problems with small
instances of negative instances [36]. Furthermore, we also
consider the evaluation metrics including Area Under ROC
curve (AUC-ROC) and Average precision (AP). AUC-ROC
can summarize the entire location of the ROC curve. AP can
summarize the PR curve as the weighted mean of precisions
achieved at each threshold. !.

B. Results

Figure 3 presents visualizations of the mean ROC curves
and the mean PR curves for all the anomaly detectors. The
standard deviation information is also included in these curves.
For the Firefox-AD dataset, the mean ROC curve and the mean
PR curve of DAE cover other anomaly detectors, showing the
superiors of DAE. For the Chrome-AD dataset, the mean ROC
curves and the mean PR curves of LOF and DAE present very

Uhttps://scikit-learn.org/stable/index.html



Fig. 3. ROC curves and PR curves for different anomaly detection models with MLABA feature representation.

TABLE IV
RESULTS OF MEAN AUC-ROC OF MLABA FEATURE REPRESENTATION MODEL WITH DIFFERENT ANOMALY DETECTORS

Dataset Layer #Sample  #Anomalies OCSVM iForest LOF EE DAE

Firefox-AD  Tri-layer 44,064 3,347 9629 £ 0.15  99.39 £0.05 98.21£0.19 98.77+0.36 99.77 +£0.04
Chrome-AD  Tri-layer 58,170 3,856 96.16 £0.16 97.89+0.15 99.73 +£0.03 99.36£0.15 99.55 + 0.07
Opera-AD Tri-layer 58,571 3,172 99.89 £0.02 99.944+0.01 99.75+0.13 98.62+0.20 99.82 4+ 0.09
Ruby-AD Tri-layer 11,157 1,887 97.11£0.20 88.41+1.03 97.29+0.68 94.890+0.43 96.43+0.16
Average 97.36 £0.13  96.41+0.31 98.75+£0.26 97.91+0.29 98.89 +0.09

TABLE V
RESULTS OF MEAN AP OF MLABA FEATURE REPRESENTATION MODEL WITH DIFFERENT ANOMALY DETECTORS

Dataset Layer #Sample  #Anomalies OCSVM iForest LOF EE DAE

Firefox-AD  Tri-layer 44,064 3,347 7724 +£1.47 95.374+040 88.32+£1.17 91.79+190 97.87+0.43
Chrome-AD  Tri-layer 58,170 3,856 85.83+£0.33 85.74+0.86 98.14+0.27 94.28+1.92 97.324+0.32
Opera-AD Tri-layer 58,571 3,172 99.08 £0.37 99.07+£0.24 97.68+0.92 77.78£2.15 98.57 £0.68
Ruby-AD Tri-layer 11,157 1,887 96.60 £0.41 80.56£1.56 95.81+0.87 89.99+1.49 96.41 +0.39
Average 89.69 £0.65 90.194+0.77 94.99+0.81 88.46+1.87 97.54+0.46

close performance and cover other anomaly detectors. For the
Opera-AD, all the anomaly detectors attain similar shapes on
the mean ROC curves. However, the mean PR curve of EE
reveals that it has a significant recall drop when precision is
over 0.9. As for the mean ROC curve of Ruby-AD dataset,
LOF obtains the best coverage while OCSVM and DAE obtain
better coverage on the mean PR curve than other detectors.
However, LOF also shows higher standard deviations of true
positive rate and precision when the false positive rate is
low and precision is high, making its stability of prediction
somewhat unsatisfactory compared with OCSVM and DAE.

Tables IV and V show the results of all the anomaly detec-
tors in terms of mean AUC and mean AP of anomaly detectors
using MLABA feature representation model. In most cases,
they show good performance for anomaly detection, validating
the effectiveness of MLABA feature representation model.
Concretely, DAE attains the best performance on the Firefox-
AD dataset. LOF achieves the best results on the Chrome-
AD dataset. OCSVM and iForest perform better than other

anomaly detection methods on the Opera-AD dataset. OCSVM
approaches the best performance on the Ruby-AD dataset. As
for the average performance, DAE achieves the best results
in both tables. Therefore, the experimental results validate the
superiors of using DAE as the anomaly detector for MLABA
framework deployment since it shows satisfactory performance
on both measurements with respect to all the datasets. We also
observe that OCSVM and EE respectively perform unsatisfac-
torily on the mean AP evaluations of Firefox-AD and Opera-
AD, such that they are unsuitable for deployment. We also find
that AUC-ROC scores present more optimistic evaluations than
AP scores for all the anomaly detectors in the experimental
datasets, especially for OCSVM and EE. It is due to the fact
that AUC-ROC depends on both the performance of normal
and abnormal classes. Therefore, AUC-ROC can be biased
by the normal class performance because of the high class
imbalance nature in our intrusion detection task. However, AP
summarizes the PR curve, which assesses the proportions of
positive predictions that are truly positive and the proportion



of truly positive samples that are correctly detected. As a
result, AP cares more on the performance of the abnormal
class and does not concern too much about the normal class’s
performance compared to AUC-ROC.

V. CONCLUSION

To secure applications in the complex and dynamic cy-
berspaces, this paper presents a knowledge-based Multi-Layer
Abnormal Behaviors Analysis (MLABA) intrusion detection
framework. MLABA creates a novel feature representation
model through integrating the process data, system data,
and network data for application intrusion detection. Besides,
MLABA framework enables decent anomaly detection per-
formance only utilizing normal training data. Through the
experiments, we address the feasibility of our framework.
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