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Abstract—Deep neural networks (DNNs) have recently been
applied in the classification of radio frequency (RF) signals.
One use case of interest relates to the discernment between
different wireless technologies that share the spectrum. Although
highly accurate DNN classifiers have been proposed, preliminary
research points to the vulnerability of these classifiers to ad-
versarial machine learning (AML) attacks. In one such attack,
a surrogate DNN model is trained by the attacker to produce
intelligently crafted low-power “perturbations” that degrade the
classification accuracy of the legitimate classifier. In this paper,
we design four DNN-based classifiers for the identification of
Wi-Fi, 5G NR-Unlicensed (NR-U), and LTE LAA transmissions
over the 5 GHz UNII bands. Our DNN models include both
convolutional neural networks (CNNs) as well as several recur-
rent neural networks (RNNs) models, particularly LSTM and
Bidirectional LSTM (BiLSTM) networks. We demonstrate the
high classification accuracy of these models under ‘benign”
(non-adversarial) noise. We then study the efficacy of these
classifiers under AML-based perturbations. Specifically, we use
the fast gradient sign method (FGSM) to generate adversarial
perturbations. Different attack scenarios are studied, depending
on how much information the attacker has about the defender’s
classifier. In one extreme scenario, called ‘“white-box” attack, the
attacker has full knowledge of the defender’s DNN, including
its hyperparameters, its training dataset, and even the seeds
used to train the network. This attack is shown to significantly
degrade the classification accuracy even when the FGSM-based
perturbations are low power, i.e., the received SNR is relatively
high. We then consider more realistic attack scenarios, where the
attacker has partial or no knowledge of the defender’s classifier.
Even under limited knowledge, adversarial perturbations can still
lead to significant reduction in the classification accuracy, relative
to classification under AWGN with the same SNR level.

Index Terms—Deep learning, signal classification, adversarial
machine learning, shared spectrum, wireless security

I. INTRODUCTION

Waveform discernment plays an important role in next-
generation wireless systems. It is used to identify the un-
derlying technologies in a spectrum-sharing scenario, e.g.,
coexisting Wi-Fi and cellular transmissions over the unlicensed
5/6 GHz bands [1] or LTE/radar transmissions over the CBRS
band [2]. It can also be used to identify (without signal
decoding) the nature of observed interference. Certain exoge-
nous interference is caused by spurious emissions of benign
effect; others may produce strong intentional (adversarial) or
unintentional interference. In particular, malicious parties can
generate many types of emissions, some aimed at disrupting
receptions (jamming attacks) while others aimed at imper-

sonating legitimate users [3]. In mission-critical applications,
such as military systems and autonomous vehicles, the ability
to discern between legitimate and rogue waveforms is quite
critical to the overall safety and security of the network.

Recently, deep neural networks (DNNs) have been applied
to RF signal classification problems, including modulation
and coding scheme (MCS) identification [4], [5], unknown
signal detection [6], and protocol classification [1]. In con-
trast to traditional feature-based spectrum sensing, DNN-based
classification is data driven, and does not require explicit
specification of any technology-dependent features. Different
types of DNNs have been considered, including convolutional
neural networks (CNNs) [7]-[9] and recurrent neural networks
(RNNs) [2], [10]. A CNN employs convolution layers to
extract features in multidimensional data. However, it is not
effective at capturing temporal dependencies. In contrast, an
RNN uses a recurrent structure to capture the memory (time
dependency) in the data, which explains its widespread use
in forecasting problems, such as language modeling, speech
recognition, and trajectory prediction of moving objects. In [7],
the authors used a CNN-based model to classify Wi-Fi devices
using a 2-by-N matrix as its input, where N is the number
of successively received and down-converted samples. Each
sample is associated with an in-phase (I) and a quadrature
(Q) components. The authors in [10] applied a multi-layer
long-short-term-memory (LSTM) network, a class of RNNs,
for automatic modulation classification. Their proposed design
outperforms the CNN model at high SNRs. In [2], the authors
used CNNs and LSTM networks to detect radar signals in the
3.5 GHz band. Their results show that both CNN and LSTM
models have the potential to achieve high signal classification
accuracy. A combined CNN/LSTM architecture was proposed
in [1] to identify Wi-Fi, 5G NR, and LTE signals over the
unlicensed 5 GHz bands.

Despite their advantages, DNN-based classifiers are prone
to adversarial machine learning (AML) attacks [11]. Such
attacks have been studied in object classification/recognition
problems (e.g., [12], [13]), and more recently in RF signal
classification (e.g., [14]-[16]). The general idea is to train
a surrogate DNN classifier, henceforth called the attacker’s
classifier, to produce properly crafted perturbations. When
combined with a test input, these perturbations mislead the
legitimate classifier, henceforth called the defender’s classifier,
into incorrect labels; see Figure 1. Note that in an object
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Fig. 1. AML-based attack on the signal classifier of a legitimate receiver.

recognition application, the same training dataset is used at
both the attacker’s and defender’s classifiers. In contrast, for
the RF signal classification problem, different datasets may
be used to account for differences in the channel conditions
between the attacker and defender (“legitimate receiver"). The
authors in [14] designed various AML attacks that take into
account channel conditions. In [16], the authors showed that
the accuracy of a CNN-based classifier used for modulation
classification drops tremendously when receiving a slightly
perturbed input. In our paper, we study four CNN- and RNN-
based classifiers for Wi-Fi, LTE, and 5G NR signals that
oexi over e unlice ed (] band. We . verifv -
high accuracy of these classifiers under noisy but benign
perturbations (i.e., AWGN). We then study the impact of
AML-based perturbations on their classification accuracy.

II. SYSTEM MODEL

We consider a wireless system that consists of a legiti-
mate transmitter-receiver pair and an adversarial device. The
transmitter randomly generates waveforms according to one of
several possible protocols in an interleaved manner, (i.e., one
transmission at a time). The defender’s classifier resides at the
legitimate receiver and is trained to identify waveforms based
on the received baseband I/Q samples. The attacker eavesdrops
on ongoing transmissions (called benign data) and uses them
to train its own classifier. Subsequently, the attacker transmits
its perturbations that interfer with the defender’s classifier,
pushing it into wrongly classifying the received samples.
We refer to the combined benign data plus perturbations as
adversarial data.

Consider the defender’s classifier. Its output can be rep-
resented as z = f(z;60), where x is the input and 6 is the
set of learnable DNN parameters, i.e., weight matrix and
bias vectors. The input = is a 2-by-N matrix, where N is
the window size (number of consecutive samples) and the
first (second) row represents the sequence of I (Q) values.
By applying an activation function o, we have the numerical
output vector z according to the class number K: o(z) C R,
After that, the classifier assigns the label to the received input
[(x;0) = argmaxy(o(z)x), where k € K. In this formulation,
o(2)g is the numerical output of classifier f corresponding to
the kth protocol type.
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Fig. 2. DNN structures used for waveform classification. Structure (a)-(c) are
RNN-based classifiers, whereas structures (d) is a CNN-based classifier.

We define H;; as the channel matrix from the legitimate
transmitter to the defender, H;, as the channel matrix from the
legitimate transmitter to the attacker, and H,4 as the channel
matrix from the attacker to the defender. We assume AWGN
(n) at any receiving device. In the absence of AML perturba-
tions, the defender receives xﬁl = H;qx, + n, where x, is the
transmitted waveform. The attacker receives x!, = Hy,x, +n.
To launch an AML attack, the adversary uses its received
signal x! to generate and transmit the perturbations 7. Under
this attack, the defender receives x’;’“ =H;yx, + Hogn + n.

To generate 7, we consider the fast gradient sign method
(FGSM) [11], which has been widely applied in AML-based
attacks on image classifiers. Specifically, the attacker solves
the following problem for 7:

max I{i(zf;0) # (x5 0)}

st Inll <€

(D

where € is a preset parameter that is used to limit the power
of the perturbations and ensure that the attack is hard to
detect. I is an indicator function that reflects the number of
misclassified labels in a given training set. We assume the
attacker is close to the defender, hence, H,qn ~ n.

III. NEURAL NETWORK STRUCTURES

We consider four DNN structures for the defender’s and
attacker’s classifiers, as shown in Figure 2. To train and
test these networks, we generate a dataset of 15,000 inputs
(see Section VI-A), each of which containing 512 noisy
I/Q samples. Approximately 60% of the dataset is used for
training, 20% for validation and early stopping, and 20% for
testing the network. To reduce overfitting, we monitor the
categorical cross-entropy with patience of three in the early
stopping for all the proposed models.



A. Recurrent Neural Networks

We consider a stacked RNN architecture where the output
of one RNN layer is used as input to the next-outer RNN
layer. The inner layer can be any RNN structure, such as a
standard RNN (i.e., the SimpleRNN in TensorFlow [17]), a
Long Short-Term Memory (LSTM), or a Gated Recurrent Unit
(GRU). During training, the various classification outcomes
of the inner layer are used as inputs to train the outer layer.
Thus, the output at the final layer (i.e., classification layer)
is expected to achieve higher classification accuracy than any
inner-layer network. This stacked architecture captures tem-
poral correlations at different time scales without using many
input samples. To further improve the classification accuracy,
we also consider a bidirectional RNN structure for the inner
layers [18]. These bidirectional layers connect two hidden
layers of opposite directions to receive information from the
past (backward) and future (forward) states simultaneously.
This layer of bidirectionality makes the network non-causal,
where future information can influence the current decision;
however, this non-causality is applied only during the training
of the RNN network and is not required when the network is
evaluated.

There are several considerations that guided the selection
of a RNN layer within the architecture. LSTM networks have
been widely used for many sequential prediction tasks, due to
the efficiency of their gated structure and high accuracy [2],
[10]. Therefore, we consider applying the bidirectional stacked
LSTM network to classify the RF signals. Such a structure
allows the lower layer to transform the raw input into a
more suitable feature representation (e.g., removing unrelated
samples and disturbances). The higher layers can make a
more precise prediction by learning the dependencies in both
directions from the refined sequence data. Figure 2(a)-(c)
shows three network configurations that are used in Section
VI

B. Convolutional Neural Network

We also use a CNN that has been modified from LeNet [19]
to benchmark against the RNNs. The original CNN was
designed for image classification. Hence, it will not work prop-
erly for our task of sequence classification. Therefore, we use
a ConviD layer to transform the sequence data. The sequences
may need to be padded with zeros depending on the length of
the data that are sampled; however, our experiments showed
that padding the input sequence at the convolutional layer
does not improve the performance. Therefore, we removed
the padding layer from LeNet and only reported the results
for the better-performing CNN. The final CNN configuration
is summarized in Figure 2(d). Note that the kernel size for
ConviD layer is 2, and its stride is set to 1. The activation
functions are scaled exponential linear units for all the ConviD
and fully-connected layers. The output layers for all networks
in Figure 2 are soft-max.
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Fig. 3. Confusion matrices for DNN structure (b).

IV. WHITE-BOX ADVERSARIAL ATTACK

The neural networks in the previous section can be used
to generate adversarial perturbations that fool either the same
network or the other networks. In the latter situation, the attack
samples are transferable if the attacker does not know the
defender’s network but still negatively impacts the defender’s
performance. If the attacker knows the defender’s data and
network, then the attack is known as white-box and is the
worst-case scenario for the defender. To generate the adversar-
ial perturbations, we first considered using the FGSM attack
[11]. This technique uses the gradients of a neural network
to generate a perturbation 7 and, subsequently, the adversarial
data x.4,. The defender expects to predict the same class for x
and its adversarial perturbation x,4, = x + 7 if every element
of 7 is less than the given precision. Hence, a classifier can
assign the same class to = and z 44y if ||7]|cc < €; however, the
adversary’s goal is to make sure the classifier cannot accurately
predict on the perturbed data.

We simplify the NN’s mapping function f with parameters
as f(x;0). Even though the difference between the adversarial
input z,4, and benign input = is a small perturbation 7, the
output difference § = f(x + 7;0) — f(x;6) is not a linear
increase with 7. In fact, the impact of & can be learned by
AML techniques and change the label sign by calculating
back-propagated gradients. Therefore, we can expect that small
perturbations in the input add up to change the expected label
of the original output. The adversarial perturbation is formally
given by

n = esign(VyL(x,y;0)). (2)

where L(x,y;6) is the loss function of the model with
parameters 6 [11]. The adversarial data are generated by max-
imizing the loss function with respect to the classifier’s input
x based on the gradients V,L(z,y;6). The final adversarial
perturbation is given by:

Tadv = T + €Sign(v$L(x7 Y; 9)) (3)

The gradient V,, can be computed via back-propagation, where
the loss function of the perturbed signal is L(x;’a, yue; ) ~
L(zl, y§"; 0) + 0"V 4o L(xl, y§™; 0). The final optimization
of the adversarial perturbation becomes one to maximize the
loss function subject to 7 = €V, L(x}, yie; 0).



The scaling factor e controls the power of the perturbation.
If € is increased then the perturbation can have larger impact
on the input z!, which will result in a poor accuracy on
the adversarial dataset xfi’a. To show the energy level of the
proposed perturbations, we define the Signal to Perturbation
Ratio (SPR) between the received signal and the perturbation
as E(z4)/E(n) in dB. We will estimate the relationship
between e and SPR in the next section. As an example for the
classification of the perturbed signal, Figure 3 shows the con-
fusion matrix of the proposed bidirectional LSTM structure (b)
on the benign and adversarial datasets. The neural network can
successfully classify the waveforms from LTE, 5G NR, and
Wi-Fi signals on the benign dataset. This model can achieve a
relatively high classification performance on each category of
waveforms. However, the performance of the same networks
drops to 8.3% by adding the FGSM based perturbations with
€ = 0.3! The confusion matrix in Figure 3(b) shows that the
legitimate user classifies the waveforms into the wrong labels
on the adversarial dataset. For example, 92% of the received
LTE signals are labeled as the 5G NR signals. Moreover, all
the Wi-Fi waveforms are classified into the LTE and 5G NR
signals. Such misclassification results in a poor accuracy for
the legitimate user and increase the packet loss.

V. ADVERSARIAL ATTACKS WITH LIMITED KNOWLEDGE

The white-box attack scenario, while the most effective
attack, is not realistic. Therefore, we consider scenarios where
the attacker only has access to partial information from the
defender. We divide such knowledge into classifier and data
domains. The white-box attack is performed when the adver-
sary knows all the information needed in the classifier and
data domain. However, the defender can protect some of their
information, and it becomes challenging to eavesdrop. We con-
sider the different levels of knowledge for the attacker in both
domains to evaluate the accuracy under limited information
leakage scenarios.

A. Limited Knowledge of Defender’s Classifier

In real-world environments, the attacker tries to eavesdrop
to obtain the information about the classification model so
they can generate attacks. When all the information has eaves-
dropped, it becomes a white-box attack. White-box attacks
are a strong assumption of the knowledge of the attacker.
Therefore, we consider a more realistic situation, where the
attacker learns a classifier f,(x;6,) based on different knowl-
edge levels of the defender’s classifier fq(x;60;).

Attack Scenario (a): The attacker knows all the hyperparam-
eters of the defender but does not know the trained weights.
The classifier is trained with the same architecture for the
defender and adversary; however, the final trained classifiers
will be different even under the same hyperparameter setting
and the same training dataset (i.e., due to random initialization,
etc.). As a result, the two classifiers will have different weights
even they have similar classification performances. In this case,
we use two different random seeds to initialize the models
before the training.

Attack Scenario (b): In this attack, the adversary knows
the overall structure of the DNN but does not know the
other hyperparameters. It is a more realistic attack, where the
attacker eavesdrops on the defender and learns the structure
instead of all the settings of a model. For example, the attacker
may know the defender is using a seven-layer CNN model with
ConviD as the first two layers but does not know the filter
numbers of these layers. However, such filter number (or the
unit number for RNN) can significantly impact gradient back-
propagation, forcing the DNN to end up with different weights
after the training. Therefore, we consider the attack that knows
the layer numbers, types, and orders but does not know the
filter numbers of the layers.

Attack Scenario (c): The attacker knows the classifier type
(CNN or RNN) but does not know the structure. In this attack,
we use a differently structured classifier at the attacker side
to generate the adversarial perturbations. Mostly, we consider
using the same type of the DNN model but with different layer
numbers (e.g., we use a three-layer RNN structure (a) for the
defender but use a two-layer structure (c) for the attacker).

Attack Scenario (d): The attacker does not know the clas-
sifier type. We use f(x;6) to present the DNN. The mapping
function f can differ significantly with classifier types, espe-
cially if a CNN represents features much differently than an
RNN. In this scenario, we consider the situation when the
attacker uses RNN based classifier to generate the adversarial
perturbations, but the defender uses the CNN-based classifier
as the detector and vice versa.

B. Limited Knowledge of Defender’s Training Data

In the real environment, benign waveforms received by the
attacker are xfl = H,;,x, + n, and signals received by the
defender are xfi = H,4z,+n. Considering the channel impact,
the transmissions received by the attacker and the receiver
are different. Therefore, the attacker needs to train its own
classifier f, based on the dataset x%. Due to the training data
being different from the defender’s, the trained parameters 6,
will be different even with the same hyperparameter setting. As
a result, the adversarial perturbations must to be generated with
fa(;0,). The loss function L(z%*, y®; 64) is approximated
by L(zl,yme;:0,) + n Vae Lzl yte;6,). We denote this
type of adversarial signal as Attack Scenario (e): The attacker
gains a different dataset to train its classifier. The signal is
broadcasted by the legitimate transmitter, so the attacker and
the defender will receive the waveforms that contain the same
bit-level information. Due to the channel impact and the noise,
datasets are different in baseband waveforms. We consider the
AWGN channel between all the communication nodes, and
same levels of SNR for the transmission received defender
and the attacker.

VI. PERFORMANCE EVALUATION

A. Data Generation

The Matlab Communication and the 5G Toolboxes are used
to generate the waveforms of the LTE, Wi-Fi, and 5G NR
signals. A set of signal features, including channel bandwidth,



100, & A----A----&----4

LEERER LEEEE o= Pa===p

—&— Structure (a) on adversarial test

80 = B = Structure (a) on benign test
4 Structure (b) on adversarial test

= © = Structure (b) on benign test
60 on adversarial test

Structure
—&— Structure

on benign test
on adversarial test

(
(
(
(
—&— Structure (c
(
(
(

(3
d
d

Classification Accuracy (%)

401 = A - Structure (d) on benign test
N
o\
20
']
0 L L L +
0.05 0.1 0.15 0.2 0.25 0.3
Value of €

Fig. 4. Accuracy of proposed DNN classifiers under benign and AML-based
perturbations (white-box attack).

modulation schemes, I/Q imbalance, DC offset, and subcarrier
spacing can be adjusted by the protocols. By knowing these
features, we simulate waveforms of the three technologies
under different parameter settings supported by the standards.
Of the various possible features, we consider the baseband
I/Q samples at the receiver (with added noise) as input to the
classifier. I/Q samples are obtained before decoding the signal,
and they provide a rich representation of the actual waveform.

These samples are divided into multiple sequences by apply-
ing a sliding window with a step size of one, each consisting
of 512 I/Q pairs. These sequences are used as datasets to
train and test the classifiers. In this paper, we assume all
protocols are transmitted in the same center frequency and
have a channel bandwidth of 20 MHz. In addition, we consider
the LTE, Wi-Fi, and 5G NR signals that are transmitted
under an AWGN channel with SNR = 15 dB. The Wi-
Fi waveform is transmitted by generating baseband samples
of 802.11 ac (VHT) with BPSK modulation and 1/2 rate.
The LTE waveform is generated by downlink RMC with the
reference channel of R.9, which has a 64 QAM modulation.
We also generate 5SG waveforms using 5G DL FRC with QPSK
modulation, a rate of 1/3 with a subcarrier spacing of 15 kHz.

B. Impact of White-box Adversarial Attack

We evaluate the four neural network architectures in Fig-
ure 2 and present the accuracy of the defender’s classifier un-
der the benign (i.e, AWGN) and adversarial perturbations. As
shown in Figure 4, the RNN-based models (a)-(c) achieve ap-
proximately 91% accuracy under benign perturbations, while
the CNN structure (d) can achieve 97% accuracy. The three
RNN structures (a) and (c) have comparable performance
because of their comparable bidirectional LSTM designs. We
also observe that structure (a) performs the best when € is
larger than 0.15. The accuracy drops for all four classifiers as
we increase the magnitude of the adversarial perturbations via
e. Even though the CNN achieves the best performance under
benign perturbations, it suffers more from the AML attacks.
When € is greater than 0.1, the CNN model performs the
least accurately among the different structures. All the models’
accuracy saturates when € is higher than 0.2, which indicates
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Fig. 5. Accuracy of RNN classifier (structure (a)) under different attacks.

the white-box attack can mislead the defender’s classifier with
very limited power control. To show the energy level of the
proposed perturbations, we calculate the SPR as shown in
Table I. The ratio drops faster with smaller €, and the trend
slows down when e becomes larger.

TABLE I
RELATIONSHIP BETWEEN E(z%)/E(n) AND €

€ 0.05 0.1
SPR (dB) | 24.14 18.32

0.15 0.2
1459  12.10

0.25 0.3
10.17  8.58

C. Impact of Limited-Knowledge Attacks

After testing the white-box attacks, we consider attack
scenarios where the attacker has incomplete knowledge of
the defender’s classifier and/or the training dataset used by
the defender. The attack scenarios (a)-(e) are as described
in Section V. As shown in Figure 4, structure (a) has the
best performance, so we explore its accuracy changes under
different attacks and use it to represent RNN models.

1) Attacks on the RNN model: The accuracy for structure
(a) is presented in Figure 5. The impact of attack (a) is close
to the white-box attack, and it is because the attacker has the
same hyperparameters as the defender. Although the classifiers
are trained with different seeds, one can still inherit most of
the properties from the other. Attack (b) exchanges the filter
number of the first two layers, and attack (c) uses one less layer
(e.g., remove the third layer of structure (a)) for the attacker.
Both of them show similar performance as the defender, which
means these hyperparameters have comparable influences.
Attack (d) has the worst attack effect. This is because that
the attacker applies the CNN structure (d) to generate the
adversarial signals for the RNN model. Even though both types
of the classifier can classify the received waveforms accurately,
the actual trained weights can differ significantly from the
other’s. Therefore, a well-crafted perturbation for the CNN
may not achieve the expected effect on RNNs. Attack (e) uses
the different training datasets to generate the perturbations.
Thus, it shows more variance than other attacks. It has an
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equivalent trend with the attack (b) and (c) but slows down
when e exceeds 0.15.

2) Attacks on the CNN Classifier: The accuracy for struc-
ture (d) is presented in Figure 6. Similar to what was observed
in the RNN model, the impact of the attack depends heavily
on the attacker’s knowledge levels. Attack (a) was the closest
one to the white-box attack. In the simulation, attack (b)
exchanges the filter number of the two ConvID layers, and
attack (c) removes the second ConvID layer at the attacker
side. Compared with the RNN model, the layer and filter
number setting play a more important role in CNNs. As a
result, attacks (c) and (d) show different trends with e. Attack
(e) shows strong similarity with the attack (a), which implies
the CNN model can have a more severe attack than the RNN
model even when the attacker has limited knowledge of the
data.

VII. CONCLUSIONS

We studied the vulnerability of DNN-based protocol clas-
sifiers to AML-based jamming attacks, considering a shared
spectrum scenario with Wi-Fi, LTE, and 5G NR transmissions.
Several DNN designs were proposed, including a CNN and
three RNN structures (with forward and bidirectional LSTM
networks). First, we showed that under “benign” (random)
noise, all four classifiers exhibit high classification accuracy
(above 90%). Replacing this random noise with adversarial
FGSM-based perturbations while maintaining almost the same
SNR level, all four DNNs were shown to suffer significant
reduction in the classification accuracy. The effectiveness of
the AML perturbations depends on the amount of information
the adversary has regarding the structure and training dataset
of the defender’s classifier. Accordingly, we studied different
attack scenarios with different levels of knowledge. In one
extreme, the attacker has full knowledge of the defender
(white-box attack). We observed that DNNs used for protocol
classification are vulnerable to these attacks even the attacker
has limited knowledge. Compared to traditional jamming,
where the attacker transmits only random noise, the proposed
FGSM based attack requires much less transmit power to
mislead the classifiers.
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