
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

VICE: Visual Identification and Correction of Neural Circuit Errors

Felix Gonda1 , Xueying Wang2 , Johanna Beyer1 , Markus Hadwiger3 , Jeff W. Lichtman2, and Hanspeter Pfister1

1Visual Computing Group, Harvard University, Cambridge, Massachusetts, United States
3Visual Computing Center, KAUST, Thuwal, Saudi Arabia

2Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States

Presynaptic Cell Postsynaptic Cell

Synapse

Neurites

Axons

Dendrites

Skeleton 1

Neurites

Axons

Dendrites

Miscellaneous

Skeleton 1
Skeleton 2

Skeleton 3

Miscellaneous

Skeleton 2
Skeleton 3

??

Figure 1: A local circuit of a presynaptic cell in targeted proofreading of structures with similar morphological features in the output portion
of the Drosophila melanogaster brain [XJL∗20]. VICE unravels connectivity pathways at the level of individual axons and dendrites where
the presynaptic and postsynaptic elements of synapses reside.

Abstract
A connectivity graph of neurons at the resolution of single synapses provides scientists with a tool for understanding the
nervous system in health and disease. Recent advances in automatic image segmentation and synapse prediction in electron
microscopy (EM) datasets of the brain have made reconstructions of neurons possible at the nanometer scale. However, au-
tomatic segmentation sometimes struggles to segment large neurons correctly, requiring human effort to proofread its output.
General proofreading involves inspecting large volumes to correct segmentation errors at the pixel level, a visually intensive
and time-consuming process. This paper presents the design and implementation of an analytics framework that streamlines
proofreading, focusing on connectivity-related errors. We accomplish this with automated likely-error detection and synapse
clustering that drives the proofreading effort with highly interactive 3D visualizations. In particular, our strategy centers on
proofreading the local circuit of a single cell to ensure a basic level of completeness. We demonstrate our framework’s util-
ity with a user study and report quantitative and subjective feedback from our users. Overall, users find the framework more
efficient for proofreading, understanding evolving graphs, and sharing error correction strategies.

CCS Concepts
• Human-centered computing → Web-based interaction; Scientific visualization;

1. Introduction

Connectomics is a sub-area of Neuroscience that seeks to recon-
struct the wiring diagram of the connectivity between individual
neurons in the brains of organisms. A complete wiring diagram of a

brain, also known as a connectome, is considered by scientists as an
essential step of understanding the brain [Seu12]. The information
contained in a connectome is critical for biologists to gain insights
into the brain’s functional structure, as demonstrated in efforts

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-1870-0905
https://orcid.org/0000-0002-2399-8083
https://orcid.org/0000-0002-3505-9171
https://orcid.org/0000-0003-1239-4871
https://orcid.org/0000-0002-3620-2582


F. Gonda et al. / VICE

Figure 2: A visualization of a Zebra finch brain’s reconstruction in
Neuroglancer [neu]. The density of cells makes it difficult to discern
connectivity between cells.

on Caenorhabditis elegans [WSTB86], Drosophila melanogaster
[TXL∗15], zebrafish [WGM∗16] and mice [BLK∗11].

However, reconstructing a connectome from high-resolution EM
images of brain tissue requires extensive human effort to proof-
read automatically generated segmentation and synapses. Recent
advancements in EM imaging [SLK∗16], segmentation [JKL∗18,
FTG∗19], and synapse prediction [HSP16] create new challenges
to accelerate proofreading. Biologists can now generate reconstruc-
tions from large datasets (in multi-terabytes) where the segmenta-
tion is largely correct, the morphological structures of neurons can
be very large, and the density of synapses can be high. At this scale,
proofreading by human experts becomes infeasible. For example,
in the Drosophila melanogaster brain [XJL∗20], synapse predic-
tion produces about 9 million presynaptic contacts and 60 million
post-synaptic-densities. It would take a trained person 230 working
years to manually validate each site at a rate of 1000 connections
per day. Furthermore, the density of neurons and synapses in neural
tissue pose great difficulties in presenting the connectome in a way
that is conducive to analysis. A simple visualization of reconstruc-
tion in 3D, such as in the Zebra finch brain in Figure 2, quickly
clutters the view and makes it challenging to discern connectivity.

This paper proposes a semi-automated approach to address
the proofreading and visualization of neural connectivity graphs
jointly. In most state-of-the-art methods, neurons are proofread in
parallel at the same time, usually by proofreading the volume slice
by slice. Our approach, which is based on dialog with neuroscien-
tists, employs a single-cell strategy to capture connectivity path-
ways. In this strategy, proofreading begins with the cellular com-
partments of a presynaptic cell, as shown in Figure 1, and pro-
gresses outward to capture its entire local circuit. This strategy has
several advantages over slice-based proofreading. First, it ensures
a basic level of completeness of each cell and enables scientists to
perform analysis tasks, such as the classification of cellular compo-
nents, on completed sub-graphs. Second, the strategy significantly
reduces the number of neurons to the single-cell and its immediate
partners, making it easier to visualize morphology and connections
jointly without clutter. Finally, the strategy reduces the memory
and speed requirements for visualizing large neurons at interactive
rates. We realized the single-cell strategy with a visual analytics
framework that detects likely connectivity errors in reconstructions
and aggregates co-located synapses into clusters to guide the proof-

reading effort. To interface with the framework, we design highly
interactive visualizations and editing tools to enable fast error cor-
rection and synapse validation. This approach enables us to acceler-
ate proofreading and present connectivity graphs in an uncluttered
and conducive way for proofreading and analysis.

We make the following contributions. Our first contribution is an
automatic error detection system for identifying likely connectiv-
ity errors in automatic neuron reconstructions. This error detection
system, based on heuristics elicited from domain experts, drives the
proofreading effort. Our second contribution is the VICE frame-
work’s design and implementation that manifests our single-cell
proofreading strategy with a top-down 3D visualization of a con-
nectivity graph, guided by the error detector. To enable rapid ex-
amination of synapse sites and fast correction of errors, we design
a scalable 3D inspection and editing tool that attaches to cellular
structures as our third contribution. This tool enables proofreading
of large volumes by supporting on-demand loading of segmenta-
tion and image data within a small region surrounding an attach-
ment point. For our final contribution, we conduct a user study to
assess our proposed method’s efficiency and usability compared to
the previous proofreading approach of our collaborators.

2. Related Work

In this section, we describe segmentation and visualization works
in connectomics that are related to our work.

Segmentation for Connectomics
In connectomics, segmentation involves processing EM data to ex-
tract the morphology of individual neurons and the synapses be-
tween them. Automatic algorithms such as Flood Filling Networks
[JKL∗18] have been shown to perform the segmentation task well
[XJL∗20]. However, irrespective of data size, current segmentation
algorithms generalize poorly in regions with low contrast, low res-
olution, or image artifacts. This is especially the case for small
neurites where synapses often reside [PF18]. Addressing this is-
sue typically requires extensive manual proofreading by human ex-
perts. The most common approaches to proofreading utilize desk-
top applications such as VAST [BSL18], collaborative tools such
as CATMAID [SCHT09], Dojo [HKBR∗14], EyeWire [Seu20],
and Neutu [ZOYP18], and active learning approaches [HKT∗17].
These tools operate on dense segmentation and fix errors either at
the pixel level on a slice-by-slice basis (e.g., VAST, Dojo), object-
level (e.g., Neutu), or by separating data into smaller blocks and
proofreading each block individually (e.g., EyeWire). In the ac-
tive learning approach [HKT∗17], a machine learning algorithm
is used to detect merge and split errors in segmentation. The errors
are then corrected by prompting the user to make binary decisions.
The amount of manual human effort required to correct errors in
these tools remains an issue as the size of data increases.

Unlike the general proofreading approaches that focus on cor-
recting errors to reconstruct neurons’ anatomical structures, our ap-
proach focuses on correcting and validating connectivity pathways.
This approach is advantageous to our collaborators because it en-
ables them to trace the pathways of a single cell and perform anal-
ysis on sub-graphs. As such, we detect likely connectivity errors
in segmentation as a first step and use these error locations to drive

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

proofreading. Unlike the guided proofreading approach of Haehn et
al. [HKT∗17] which detects segment errors using a boundary de-
tector and prompt users for binary decisions, our approach is based
on heuristics derived from actual proofreading scenarios and gen-
erates likely connectivity errors by taking into account predicted
synapse locations and does not prompt users for decisions.

Visualization for Connectomics.
In connectomics, visualization focuses on the exploration of seg-
mented data and analysis of neuronal connectivity [HHM∗17].
An overview of existing tools for visualization in connectomics is
given by Pfister et al. [PKB∗12], covering multiple scales of con-
nectivity. Current visualization techniques in connectomics either
follow 2D, 3D, or a hybrid approach. 2D visualization is typically
employed for dense pixel-level proofreading when it is necessary to
verify if some inconsistency is caused by reconstruction errors or
random structures in the EM data [BSL18]. 3D visualization is em-
ployed for neuron morphology, such as in Neuroglancer [neu], and
ConnectomeExplorer [BAAK∗13]. Neuroglancer provides a web-
based viewer for volumetric data with support for arbitrary cross-
sectional views without connectivity. For large-scale exploration,
ConnectomeExplorer provides a sophisticated query system for an-
alyzing objects on multiple domains. Connectivity, in Connectome-
Explorer, is limited to a node-based abstract graph representation.
An approach that combines structure and connectivity exploration
at the synapse level is NeuroLines [ABS∗14]. In NeuroLines, struc-
ture and connectivity information is abstracted to a 2D represen-
tation using a visual subway map metaphor that honors relative
distances between structures and branches to preserve topological
correctness. A more recent work, neuPrint [CDU∗20], organizes a
connectome’s data into a repository and provides connectivity vi-
sualization with an adjacency matrix. A complementary approach
to our work is NeuroBlocks [AABH∗15], which provides auditing
and provenance management of segmentation data to help scien-
tists manage a large proofreading project. NeuroBlocks provides a
pixel view that gives an overview of the proofreading progress of
structures in terms of completion status and date. However, Neu-
roBlocks itself does not perform proofreading; it provides an API
for connecting external applications. Therefore, even if our frame-
work were integrated into NeuroBlocks, our collaborators would
still have to switch between slice-based proofreading in VAST and
separate tools for 3D visualization and connectivity exploration.

In our approach, we visualize local connectivity graphs of neu-
rons in 3D. This approach is critical for our collaborators as it en-
ables them to scrutinize connectivity pathways and rapidly resolve
errors in a global context.

3. Design Process

Our design process consists of working with domain experts from
the Center for Brain Science at Harvard University. For 20 weeks,
we engaged in a user-centered iterative design process where we
met with domain experts on a bi-weekly basis. Our meetings typi-
cally lasted 30 minutes. The first eight weeks were dedicated to re-
quirements gathering and prototyping, while the remaining weeks
were used to show updates and collect feedback from experts. Re-
quirements gathering consisted of semi-structured interviews that
were conducted at a proofreader’s office. The interviews consisted

of demonstrations of actual proofreading scenarios and discussion
of bottlenecks. Some sessions involved eliciting expert heuristics
for identifying errors that could be automated to accelerate proof-
reading. For design iterations, we first demonstrated the most recent
updates and asked experts to test the system and provide feedback.
We used the feedback from these sessions to refine the design and
address problems.

3.1. Domain Experts

Our domain experts consist of one post-doctoral researcher and
six proofreaders (four undergraduate students and two graduate
students). The researcher provides data and biological knowledge
for neuron and synapse reconstruction. Three students are trained
to proofread morphology reconstruction, and three are trained on
synapses validation. All proofreaders were recruited and trained by
the researcher.

3.2. Goals

This work’s motivation stems from dialog with domain experts, in-
cluding one of the authors, on the challenges of proofreading con-
nectome reconstructions. When working with a new reconstruction,
our collaborators often explore the data in Neuroglancer to identify
suspicious structures. This process involves scrolling through lay-
ers of image data and peering at predicted structures from multiple
angles to determine errors. Coordinates of suspicious structures are
then manually transferred to a separate tool, VAST, for dense cor-
rection. For synapse validation, each site is visually inspected in
VAST and documented in a spreadsheet. At a large scale, this pro-
cess becomes infeasible.

Our interaction with domain experts also included an investiga-
tion into the precise nature of the data used in proofreading, its
scale, and the properties necessary for constructing connectivity
graphs in 3D. An immediate concern was that early experiments
in standard 3D graph layout tools such as graphs with 3D force-
directed layouts [Vas20] in Three.Js [ica20] had produced poor
results due to the density of nodes. We initially visualized con-
nections between cells to investigate the problems with 3D force
graphs but quickly abandoned the layout as it led to illegible hair-
balls. Visualizing neurons in Neuroglancer led to a cluttered view
that obscured connectivity between cells, as depicted in Figure 2.
These experiments pointed to several challenges that make proof-
reading and visualizing connectivity graphs problematic.

C1 The density and complexity of neurons in EM reconstruc-
tions makes it challenging to visualize neurons in 3D space
simultaneously without clutter.

C2 Automatic reconstruction typically generates partial neu-
rons; as such, a single neuron could span multiple volumes
before it is fully reconstructed.

C3 Most reconstructed neurons have a large number of
synapses, making it difficult to visualize them without clut-
ter. Furthermore, automatic reconstruction methods typically
generate spatially unsorted synapses, leading to the redundant
inspection of image data.

C4 Managing the sheer amount of EM data, including raw im-
age data, segmentation data, and metadata, is challenging and

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

Inspect

Synapses

Inspect

Neurite

Inspect 

Error

3

5

4

Selected Cell

errors

neurites

synapses

cell circuit

cell

cell

Number of Errors

Segmentation & 

Synapse

Detect

Errors

Cell Bodies

1

Proofread

Cell

2

Pr
op

os
ed

 W
or

kfl
ow


(V
IC

E)

Neuroglancer SpreadsheetVAST

Pr
ev

io
us

 W
or

kfl
ow


(V
A

ST
++

)

Segmentation & 

Synapse

Figure 3: Compared to the previous workflow (gray), our approach consists of five steps: (1) error detection, (2) single cell proofreading
initiation, (3) synapse inspection and validation, (4) error inspection and correction, and (5) neurite inspection. The previous workflow runs
three applications simultaneously to manually proofread reconstructions.

requires special consideration when creating interactive visu-
alizations.

C5 The use of multiple applications to carry out proofreading
tasks demands greater concentration when from users, leading
to unintended errors.

3.3. Domain Specific Tasks

Motivated by an apparent need for a tool to address the challenges
described in Section 3.2, we worked with our domain experts to
identify the key tasks that such a tool should support.

T1 Identify connectivity errors in automatic reconstructions.
The locations of these error sites should guide proofreading.

T2 Optimize synapse validation by emphasizing the joint-
proofreading of co-located synapses along cell branches. This
will eliminate redundant inspection of image data.

T3 Examine connectivity graphs at: (a) the global level, in terms
of the distribution of cell bodies, synapses, and errors; and (b)
the local level in terms of connectivity pathways to immediate
partners.

T4 Reduce the manual documentation of cellular components
by removing redundant and unnecessary manual inputs. This
improvement will help users to focus on fixing errors.

T5 Generate an overview of the reconstruction data to help users
navigate cellular compartments.

4. Visual Identification and Correction of Connectivity Errors

We now describe the design of our analytics framework for visual
identification and correction of connectivity errors (VICE), which
aims to help users with the tasks defined in Section 3.3. VICE con-
sists of two parts. An automatic part that detects errors, clusters
synapses, classifies neurites, and an interactive part that visualizes
and edits a connectivity graph. The automatic part’s output drives
the interactive part to enable fast proofreading of problematic areas
of the graph with highly interactive 3D interfaces. We first describe
the basic workflow and visual components of our framework. Then,

we describe a sequence of strategies and design choices to address
the tasks and challenges described in Section 3.3 and 3.2. We fi-
nally discuss our implementation.

4.1. Workflow

Figure 3 shows a comparison of our proposed workflow to our
collaborators’ previous workflow for proofreading. Previously, our
collaborators ran three applications: VAST, Neuroglancer, and a
spreadsheet editor side-by-side, referred to as VAST++. Proofread-
ing in VAST++ involves iteratively using these applications to man-
ually identify and correct errors, validate synapses, and document
cellular structures. Our proposed workflow is structured into five
steps.

Detect Errors. In the first step, we detect likely connectivity errors
in automatic reconstruction.

Proofread Cell. In the second step, a user initiates proofreading
by selecting a cell body, shown in red in Figure 3, to load cellular
compartments.

Inspect Error. To inspect an error, a user selects its region of in-
terest to launch the inspection and correction tool described in Sec-
tion 4.2.

Proofread Synapses. To inspect synapses, a user selects a synapse
cluster to inspect its individual synapses using the inspection and
correction tool.

Proofread Neurite. To proofread a neurite, the user can select its
surface to launch the inspection and correction tool.

4.2. Visual Components

We design the interactive part of VICE as a single interface follow-
ing Shneiderman’s principle: overview first, zoom and filter, then
details on demand [Shn96]. The interface consists of a neural cir-
cuit browser, a viewer, and an inspector (C5). Each of these visual
components provides a different level of detail. The browser al-
lows quick exploration based on a circuit’s structural components.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

a b d

c

c

Figure 4: VICE’s interactive part consists of three visual components. (a) A circuit browser that decomposes a circuit into cellular com-
partments for rapid exploration and classification. (b) A 3D viewer that renders the local circuit of a cell. And, (c) an inspector tool for
scrutinizing and correcting problematic areas of the circuit and exploring the original EM data. (d) A slice view of the current volume at
large scale.

The viewer is for exploration of the 3D morphology and spatial
distribution of synapses. The inspector is for error correction and
detailed exploration of the original EM data. These visual compo-
nents, shown in Figure 4, are synchronized to reflect user choices.

The Circuit Browser, shown in Figure 4 (a), is a tree view that
represents a hierarchical decomposition of a circuit into cellular
compartments (T5). This representation serves several purposes.
First, it gives an overview of the reconstructed circuit at a glance,
allowing users to quickly navigate cellular compartments and com-
ponents. Second, it supports on-demand loading and unloading of
cellular compartments, enabling efficient exploration of large re-
constructions. Third, it supports documentation and classification
of cellular components using bulk operations - for instance, a group
of synapses or neurites can be classified jointly by multi-selecting
from the browser and applying a label. This bulk operation capabil-
ity enables users to significantly reduce turnaround time for proof-
reading (T4). Finally, the browser supports global and local explo-
ration modes. At the global level, users can examine the distribution
of cell bodies and the concentration of synapses and errors. At the
local level, users can examine connectivity pathways at the cellular
level (T3).

The Circuit Viewer, shown in Figure 4 (b), displays the local cir-
cuit of a single cell in 3D in support of tasks T1-T4. Limiting
the display to the local circuit of a single cell ensures that users
can explore and examine cellular components without visual clut-
ter, and large neurons can be visualized efficiently at interactive
rates. The viewer renders cellular components (errors, skeletons,
and synapses) in 3D and enables user interaction through simple
point-and-click mouse interaction and surface selection. We com-
plement the user interaction with a third-person camera that at-
taches to object surfaces on selection. This type of camera is ideal

for our application because it provides the user with a means for
scrutinizing 3D bodies of cellular components from different an-
gles. Finally, the viewer provides a set of tools, shown at the bottom
of Figure 4 (b), to enable users to control the camera, toggle object
visibility, and add custom annotations.

The Circuit Inspector, shown in Figure 4 (c), is the most criti-
cal component of VICE to enable targeted proofreading with on-
demand details. The inspector attaches to the 3D body of a cellular
component and enables users to examine and scrutinize the compo-
nent with a global context from different angles or local context at
the pixel level. In the global context, users can resolve errors by tag-
ging surfaces of 3D objects, while at the pixel-level, users can edit
the segmentation of an object by painting with a 3D brush on an in-
place 2D cross-section plane. To enable inspection and to edit at the
pixel-level across slices, the user can scroll the inspection volume
with a slice navigator, shown to the right of Figure 4(b). We link the
2D cross-section plane to a 2D cross-section view of the volume
at scale, as shown in Figure 4(d), to allow users to quickly deter-
mine whether a segmentation error is caused by an image artifact
or some randomness in the EM data. This 3D-to-2D cross-section
linkage helps the user to view the inspected-object relative to other
objects in the volume and identify other errors in its vicinity. On at-
tachment, the inspector loads data and automatic segmentation on a
small region centered on the attachment point. The small region is
limited to 512×512×100 pixels3 to ensure efficient inspection of
large neurons at interactive rates. This region may contain multiple
structures depending on the dataset.

4.3. Identifying Connectivity Errors

In this section, we describe our workflow for identifying connec-
tivity errors. We address four types of errors based on heuristics

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

Segmentation Skeletons

Synapse 

Clusters

Classified Neurites Error Detector

a b

c

e

Broken

Neurite

Merged 

Neurites

Disconnected

Neurite

Invalid

Branch

d

f

CL1

CL2

CL3

Figure 5: We accelerate proofreading by automatically: (a) transforming segmentation into skeletons, (b) associating synapses with skele-
tons, (c) aggregating synapses into clusters, (d) classifying skeleton branches, and (e) detecting errors to guide proofreading. (f) Errors are
detected by a module based on a recurrent network that detects inconsistencies between an object’s mask and its skeleton.

from our collaborators: broken neurite, merged neurites, discon-
nected neurite, and invalid branch, as shown in Figure 5. These
errors only represent a subset of all possible errors.

Skeleton Construction: We extract the skeleton of a neuron for
efficient visualization, error detection, and proofreading along cell
branches (T1, T2). We compute the skeleton of a cell using the
Kimimaro skeletonization framework [Sil], as shown in Figure
5(a). Each skeleton is a tree-like structure consisting of branching
center-lines and radii, which are represented with pixels. This rep-
resentation is compact and memory-friendly and enables us to load
large cells from dense reconstructions (C1). We classify the skele-
ton branches according to neighboring synapses, as shown in Fig-
ure 5(d). Branches where presynaptic contacts reside, are classified
as axons, those with postsynaptic contacts are dendrites, and the
rest are miscellaneous. These classifications are based on feedback
from our collaborators and can be overridden by the user. The final
skeleton is visualized as a hierarchy of interactive 3D lines.

Broken Neurites Detection: Broken neurites are commonly
caused by artifacts in images or unexpected appearance changes
that cause automation to make wrong segment predictions. To de-
tect these errors, we have implemented an error detection module,
shown in Figure 5(f), that analyzes every object in a volume to flag
errors (T1). This module incorporates our previous recurrent neu-
ral network [GWP21]. The module detects inconsistencies between
the mask and the skeleton of a single object. The error detector
takes neuron’s skeleton and its synapses as input and retraces the
neurite from the cell body to its endpoint. Tracing is performed with
a small sliding window of ten images. On each trace, we sequen-
tially analyze the predicted object mask and flag an error when a
missing segment is detected, i.e., when the predicted object extends
beyond the skeleton endpoints.

Unlike the original network, which extracts multiple object
masks, we train the error detection network to extract single object
masks from sequences of images. We use images and ground-truth

labels from the JWR and FIB25 datasets, described in Section 5.1,
to train our network. Our collaborators manually created the ground
truth labels for the JWR dataset. We optimized our network’s pa-
rameters using the Adam optimizer with a learning rate of 10−6

and a batch size of 1 over 30 epochs. The training was carried out
on a single NVIDIA Titan X GPU with 12GB RAM for 36 hours.
We conduct an evaluation of our error detector module on multiple
datasets and report its performance in Section 5.2.

Disconnected Neurites Detection: The second source of errors is
skeleton endpoints that terminate within a volume, typically for
dendritic structures. These endpoints are expected to connect to
other cells. Therefore, we perform a radial check to detect synapses
in the neighborhood of skeletal endpoints. We generate an error
ROI at the endpoint if no synapse is detected (T1).

Invalid Branch Detection: The third source of errors is neurites
that branch in the wrong direction, as shown in Figure 5. Most neu-
rites typically diverge once they branch, like a tree. An exception to
the divergence is neurites that branch and then come back together,
a rare case. To detect branching errors, we compute a dot product
between the forward vectors of the branching neurite and its stem
at the branching point. Branches that flow in the opposite direction
of a stem are flagged as errors.

Merged Neurites Identification: Merge errors are challenging to
detect automatically. Instead, we assist the visual search of merge
errors by enabling the inspector tool to snap to a neurite and move
along its path. This allows users to examine suspicious segments
along the neurite’s path and flag an error if necessary. We enable
this capability by allowing users to select cellular branches using
the mouse. To inspect the branch, users simply drag the inspector’s
handle or scroll with the mouse to move along the skeleton of the
neurite, as shown in Figure 6 (d).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

a

b

d

e

f

c

Movement

Figure 6: (a) Synapse cluster inspection. (b) The neural circuit inspector enables: (c) 3D error correction, (d) neurite inspection, (e) Hybrid
2D-3D segmentation inspection, and (f) pixel-level error correction via a 2D cross-section plane editor using a 3D paint brush.

4.4. Resolving Connectivity Errors

To fully satisfy the task (T1), we visually expose errors in the
browser by name and in the viewer as spheres. Our collaborators
preferred a single visual encoding for all errors instead of distin-
guishing them by type. To resolve errors, we provide the inspector
tool, shown in Figure 6, enabling users to examine errors from dif-
ferent angles to resolve them. For broken neurites, users can tag
their endpoints to reconnect them at the object level. For merged
neurites and invalid branches, users can mark surface points on the
neurite to split it into two. These errors can also be corrected by
painting on the 2D cross-section plane of the inspector, as shown in
Figure 6 (c). Invalid errors can be deleted from the circuit browser
using the delete key. All segmentation changes are saved as edits,
separate from the original segmentation, to enable simple version-
ing and rollbacks.

4.5. Optimizing Synapse Proofreading

In this section, we describe our strategies to deal with the density
of synapses (C3) to accelerate synapse validation (T2).

Synapse Clusters Formation To enable proofreading of synapses
at scale, we form clusters that group co-located synapses along neu-
rite paths into non-overlapping sets that can be proofread jointly.
Cluster formation is performed by traversing each neurite’s skele-
ton path at equal intervals and aggregating synapses within prox-
imity of a traversal point into clusters. The interval and proximity
are based on an application-defined radius. The Euclidean distance
between each synapse and the traversal point determines to which
cluster the synapse belongs. For example, in Figure 5(b), cluster
CL1 is formed first, followed by CL2, then CL3. Each synapse be-
longs to only one cluster, and the cluster’s location is the average
position of all synapses contained. These clusters make it possible
to visualize dense synapses efficiently (C3). The clusters are ren-
dered as spheres, and when selected, the corresponding synapses
are displayed, as depicted in Figure 6 (a).

Synapse Clusters Sorting To enable efficient proofreading of
synapses along cell branches (T2), we sort the clusters spatially to
synchronize the order in which they appear in the circuit browser to
the viewer. We perform sorting by ordering clusters based on their
distance from the skeleton’s root to the skeleton branches’ end-
points. This ordering ensures that synapse clusters of each skeleton
branch are contiguously positioned in the browser. As such, users
can navigate the clusters sequentially to ensure completeness of one
branch before proofreading the next, thus alleviating the mental de-
mand incurred by switching between random synapse locations in
VAST++ (T2).

Synapse Validation To validate synapses, we use the inspector tool
to examine a cluster of synapses jointly, as shown in Figure 6 (b).
This strategy enables the user to quickly perform bulk operations
such as invalidating or classifying a group of synapses at once,
thus dramatically reducing turnaround time. When a synapse clus-
ter is selected, as shown in Figure 6 (a), we display its correspond-
ing synapses to enable examination in 3D or 2D with a 2D cross-
section plane at a pixel level, as shown in Figure 6 (b). Users can
also edit synapses with the 2D plane. Users can add synaptic ele-
ments at any position, connect or disconnect elements, or remove
or move elements. Finally, synapses can be classified in bulk by
multi-selecting and assigning the corresponding class (T4).

4.6. Examining Connectivity Graphs

To enable exploratory analysis and targeted proofreading, we pro-
vide global and local exploration modes in the circuit browser.

At the Global Connectivity level, our collaborators can exam-
ine the distribution and the concentration of errors and synapses
in a volume. Our collaborators often use the cell body as the
starting point of proofreading and the reference point of analy-
sis. Therefore, we encode the cell body as a sphere that is shaded
based on the proofreading objective. For proofreading neurites, we

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

a b c

Figure 7: (a) Global connectivity level showing the spatial distribution of cell bodies and synapse density. Local connectivity level showing
(b) connectivity and cellular compartments, and (c) structures with similar morphological features.

shade the cell bodies red to signify the number of errors, while
for synapse validation, we shade them green to signify density, as
shown in Figure 7(a). Darker shades signify a greater number of
errors or synapses. Our collaborators use these shading schemes to
quickly examine areas of the circuit where proofreading resources
are needed most (T3).

At the Local Connectivity level, we visualize the compartments
of a cell and its local circuit, as shown in Figures 7 (b). This level
enables users to examine connection properties and the morpholog-
ical structures on which presynaptic and postsynaptic elements re-
side. The local level also enables users to carry-out targeted proof-
reading of cells with similar morphological features, as shown in
Figure 7 (c). Researchers often look for new prominent features or
patterns in the data and pick cells or certain cellular compartments,
such as a group of axons, for detailed analysis. Users can examine
and isolate similar cells by grouping them into new sub-graphs and
proofreading them separately (T3).

4.7. Implementation

We implemented VICE as a three-tiered architecture consisting of
a web-based front-end, an application logic layer, and a central
repository where segmentation revisions and graph data is saved.
The front-end is developed using HTML5 and the Three.Js library.
The application logic layer is written in python using the Pytorch
library. The webserver used Flask [Pal]. We implemented two ren-
dering modes for 3D graph components. In proofreading mode,
we render 3D elements in low resolution without shaders to en-
sure maximum performance. In presentation mode, we render 3D
elements with custom shaders to generate high-quality images and
videos. We further improve performance by excluding 3D elements
of postsynaptic cells from ray-testing since only presynaptic ele-
ments are selectable in the viewer.

5. Evaluation

5.1. Data

We use three large-scale connectomic datasets (volumes), de-
scribed in Table 1. The first dataset, JWR (106× 106× 93µm3),

Name Species No. Neurons No. Synapses

JWR Rat 6 10,203
FIB25 Fruit Fly 491 63,258
Drosophila Fly 25K 9.6M

Table 1: List of datasets used to develop VICE.

Dataset Pre-Proofreading (ARI) Post-Proofreading (ARI)
JWR 0.25 0.02
FIB25 0.31 0.05

Table 2: Reported accuracy results in terms of ARI (lower is bet-
ter), before and after proofreading with our error detection.

is from our collaborators. The second dataset, FIB-25 (36× 29×
69µm3), and the third dataset, a reconstruction of the Drosophila
melanogaste fruit fly brain [XJL∗20] (250× 250× 250µm3), are
from Janelia Research Campus.

5.2. Error Detector Evaluation

We assess our error detector’s accuracy with six neurons per
dataset, each from the JWR and FIB25 datasets. We first detect er-
rors, which a proofreader then corrects. We then compare the cor-
rected segmentation to the ground truth using the Adaptive Rand
Index (ARI) [UPH07], a metric commonly used for connectomics
data. The ARI measures the similarity between two data clusters.
The error is defined as one minus the Rand index’s maximal F-
score, where a lower score corresponds to better segmentation. In
Table 2, the ARI results show that our system can identify suspi-
cious locations that lead to better segmentation when proofread by
a human expert. Our results do not account for merged neurites,
which require visual search by a human expert.

5.3. User Study

This section evaluates the effectiveness, efficiency, and satisfaction
of using our method on our collaborators’ use cases. To that end,
we report on a user study that focuses on four questions:

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

Q1 Can users with expertise in proofreading EM data learn to use
the proposed system to perform proofreading tasks?

Q2 Does the unified interface of VICE improve usability over the
use of multiple applications in VAST++?

Q3 While we know VAST++ demands extensive time to inspect
image data and correct errors, can we quantify time spent
proofreading neurites and synapses?

Q4 Finally, we are interested in users’ subjective preferences be-
tween VICE and VAST++.

5.3.1. Proofreading Tasks

We selected eight tasks that represent our collaborator’s most com-
mon proofreading tasks.

S1 Identify and group cells with similar morphological features.
S2 Mark endpoints of broken neurites to reconnect them.
S3 Mark surface point of merged neurites to split them apart.
S4 Inspect endpoints of disconnected neurites for synapses.
S5 Assign labels to groups of neurites to classify them.
S6 Inspect and validate all synapses.
S7 Assign labels to groups of synapses to classify them.
S8 Inspect connectivity pathways to partner cells.

5.3.2. Participants and Setup

We recruited five participants from the Center for Brain Science at
Harvard University, consisting of one neuroscientist (a co-author)
and four trained proofreaders. We used a low number of experts
instead of many novice users to evaluate the usability and per-
formance improvements of our system compared to the previous
workflow. All participants were highly familiar with VAST++ but
had never used VICE. The investigator reviewed the study plans
with participants and instructed them to complete the study within
20 hours per system. Participants first completed all tasks in VICE
before starting the same tasks in VAST++. For each task, users had
to complete a test example first, ensuring they understood the task
correctly. Then, they completed the eight proofreading tasks (S1-
S8). Participants started a task by selecting a cell and recording the
starting time of the task. Participants then performed the task and
recorded their completion time. Participants then answered post-
task questions and could choose to have a break before starting the
next task. The investigator observed the study over a video con-
ference. After completing the tasks, participants completed a post-
study questionnaire and gave feedback to the investigator.

5.3.3. Results

In Figure 8, we report the performance comparison of VICE and
VAST++ in terms of accuracy, completion time, and the number
of edit operations required to proofread a single neuron fully. We
counted the number of edit operations automatically when partici-
pants modified the graph with add, update, or delete operations. Six
neurons were used in the study consisting of 2500 synapses on av-
erage. Due to the limited number of participants, we do not report
on statistical significance.

Completion Time
Since the distribution of completion time can vary by participants,
we report the average time of all participants for proofreading the

Neurite Synapse Neurite Synapse

VICE VAST++

N
um

be
r o

f E
di

ts

2000

1500

1000

500

0

(b) Average Number 
of Edit Operations
(    Segmentation)

(a) Average Completion 
Time

Neurite Synapse Neurite Synapse

VICE VAST++

0

2

4

6

8

10
12

14

Ti
m

e 
(h

ou
rs

)

VICE VAST++
0.0

(d) Average Synapse 
Accuracy

Pe
rc

en
t C

or
re

ct
 S

yn
ap

se
s

0.2

0.6

0.8

1.0

0.4

VICE VAST++
0.00A

da
pt

iv
e 

R
an

d 
In

de
x 

(A
R

I)

0.01

0.02

0.03

0.05

0.06

(c) Average Segmentation 
Accuracy

0.04

Figure 8: Completion time, number of edit operations, and accu-
racy for proofreading neurites and synapses. Lower ARI is better.

same neuron in Figure 8 (a). A pairwise comparison indicates
that our approach significantly outperforms the previous work-
flow. On average, participants spend 1 hour (SE=0.09) and 6.5
hours (SE=1.3) proofreading neurites in VICE and VAST++, re-
spectively. For synapse validation, participants spend on average 2
hours (SE=0.64) and 13.5 hours (SE=1.1) in VICE and VAST++,
respectively. The completion time results confirm that the error
ROIs, synapse clusters, and automatic neurites’ classification accel-
erate proofreading tasks. Particularly for synapse validation, partic-
ipants visit synapse locations randomly in VAST++, leading to re-
dundant visual inspections (Q3). The completion time results also
confirm that centralizing proofreading tasks in a common interface
could alleviate users’ mental demand previously incurred by using
multiple applications in VAST++.

Number of Edit Operations
In Figure 8 (b), we report the average number of edit operations
initiated by participants to proofread the same neuron fully. As
the results demonstrate, our approach requires fewer edits than
VAST++. On average, participants initiated 200 (SE=15) and 620
edits (SE=21) proofreading neurites in VICE and VAST++, respec-
tively. For synapse validation, participants initiated 380 (SE=37)
and 2200 edits (SE=156) in VICE and VAST++, respectively. We
highlight the number of segmentation edits in yellow. In VAST++,
most time is spent visually inspecting data and entering information
into a spreadsheet. Whereas in VICE, the clustering of synapses
and the use of bulk operations drastically reduces classification
tasks. The results also confirm that resolving neurite errors at the
object level (VICE) is faster than at the pixel level (VAST++).

Accuracy
In Figure 8 (c), we report the mean accuracy for segmentation
changes from all participants in terms of the ARI metric described

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



F. Gonda et al. / VICE

V
IC

E

VA
ST++

Completness

0
1
2
3
4
5

V
IC

E

Confidence

VA
ST++

V
IC

E

VA
ST++

Learnability

V
IC

E

VA
ST++

Clutter-free

V
IC

E

VA
ST++

Overall

Figure 9: Reported user subjective preferences.

in Section 5.2. On average, the participant’s segmentation accu-
racy is similar for both methods, with 0.038 (SE=0.004) and 0.052
(SE=0.012) for VICE and VAST++, respectively. For synapse val-
idation, we report the average percentage of correctly identified
synapses compared to the ground truth, as shown in Figure 8 (d).
On average, participant’s synapse accuracy was 0.97 (SE=0.01) and
0.84 (SE=0.06) for VICE and VAST++ respectively. We hypothe-
size the lower accuracy for synapse validation in VAST++ is partly
due to the time limit imposed on the study and the random inspec-
tion of synapse in VAST++.

Subjective User Feedback
After the user study, we asked users to rate VICE and VAST++ on
a 0 (very bad) - 5 (very good) Likert scale and provide additional
comments. We used the following questions:

• How confident did you feel with the technique? (Confidence)
• How easy was the user interface to learn? (Learnability),
• How clutter-free was the technique? (Clutter-free),
• Does the system support proofreading tasks? (Completeness)
• How would you rate the system overall? (Overall)

Figure 9 shows the ratings provided by participants to our ques-
tions. We now report salient insights from participant’s answers.
Mostly, participants agreed on the clutter-free and overall assess-
ment of the systems but diverged on confidence and learnability.
On completeness, participants indicated that both systems provided
the necessary tools for accomplishing proofreading tasks.

(Q4) In terms of learnability, participants’ answers indicated that
they considered VICE easier to learn even though a user guide was
not provided. We think this is because of the clean interface de-
sign of VICE. In contrast, VAST++ requires participants to learn
three separate tools. On clutter-free, we expected participants to
rate VAST++ lower (especially regarding 3D inspection) since it re-
quires participants to disable cells to de-clutter views manually. The
most interesting result is about confidence in completing a task with
each approach. While we expected participants to have high confi-
dence in VICE, we didn’t expect a lower rating for VAST++. This
may be partially explained by ratings in learnability since VAST++
was generally found the most difficult to understand by participants
since it requires learning three separate tools.

6. Discussion and Future Work

The results of our study indicate that VICE is an understandable
tool for new users (Q1), and has some advantages over VAST++:

it allows for similar proofreading tasks but faster completion time
and is generally preferred by participants, particularly for the uni-
fied interface and the inspection tool. The analysis of the number
of editing operations pointed to the high degree of manual classi-
fication and documentation inherent in the VAST++ approach. In
our VICE approach, the synapse clustering and automatic classifi-
cation of neurites allowed participants to perform bulk documen-
tation and classification, thus significantly reducing the number of
edits. The results also confirmed that VAST++ was less effective
(Q2) in terms of task completion. Participants noted that they often
took breaks when using VAST++ due to exhaustion from context-
switching between applications and random inspection of synapses.

To conclude our study: our proposed approach proved to be most
effective in reducing the time to perform proofreading tasks (Q3).
However, it is essential to note that our approach requires initial
learning to exploit its most performant features, such as the in-place
editing in 3D and the bulk classification of cellular components
(Q1). VICE integrates several tools into one, which helps reduce
the mental overload otherwise incurred by VAST++.

Future Studies
While we tested only six neurons in our study, the local connec-
tivity pathways and pathways-preserving structures are what we
wanted to explore in this study. Future studies should investigate
connectivity beyond the local circuit of a cell and especially fo-
cus on higher-level tasks such as identifying repeated patterns (mo-
tifs). In general, higher-level exploration tasks such as comparing
local circuits, understanding the evolution of a circuit over time
are under-explored. We also envision further studies on the classifi-
cation of cellular components based on biological function. These
classifications could be derived from heuristics and automated to
help further reduce manual efforts.

7. Conclusion

We conclude that our proposed local-circuit proofreading approach
assisted with automated detection of likely errors presents an effec-
tive approach to reducing human effort in proofreading neuronal
pathways. With increasing advances in segmentation algorithms,
automation can capture most neuronal structures and synapses,
and with our approach, users only need to focus on connectivity-
preserving errors. In providing a working implementation, we ob-
served usage patterns and understood the potentials and drawbacks
of our approach. We found that our approach works best when a
high degree of synapses is known, enabling bulk proofreading and
automatic classification. Our single-cell approach also reduces vi-
sual clutter by rendering only the local circuit of a cell. We aim to
contribute to the neuroscience community and make the application
available here: https://fegonda.github.io/vice.

8. Acknowledgments

We wish to thank all participants from our user studies who helped
us evaluate VICE. This work was partially supported by NSF NCS-
FO grant IIS-1835231.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://fegonda.github.io/vice


F. Gonda et al. / VICE

References

[AABH∗15] AL-AWAMI A., BEYER J., HAEHN D., KASTHURI N.,
LICHTMAN J., PFISTER H., HADWIGER M.: Neuroblocks - vi-
sual tracking of segmentation and proofreading for large connectomics
projects. IEEE Transactions on Visualization and Computer Graphics
(Proceedings IEEE SciVis 2015) 22, 1 (2015), 738–746. 3

[ABS∗14] AL-AWAMI A. K., BEYER J., STROBELT H., KASTHURI N.,
LICHTMAN J. W., PFISTER H., HADWIGER M.: NeuroLines: A subway
map metaphor for visualizing nanoscale neuronal connectivity. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014),
2369–2378. 3

[BAAK∗13] BEYER J., AL-AWAMI A., KASTHURI N., LICHTMAN
J. W., PFISTER H., HADWIGER M.: ConnectomeExplorer: Query-
guided visual analysis of large volumetric neuroscience data. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (Dec.
2013), 2868–2877. URL: http://dx.doi.org/10.1109/TVCG.
2013.142, doi:10.1109/TVCG.2013.142. 3

[BLK∗11] BOCK D., LEE W.-C., KERLIN A., ANDERMANN M.,
HOOD G., WETZEL A., YURGENSON S., SOUCY E., KIM H., REID
R. C.: Network anatomy and in vivo physiology of visual cortical neu-
rons. Nature 471 (03 2011), 177–82. doi:10.1038/nature09802.
2

[BSL18] BERGER D. R., SEUNG H. S., LICHTMAN J. W.: Vast (volume
annotation and segmentation tool): Efficient manual and semi-automatic
labeling of large 3D image stacks. Frontiers in Neural Circuits 12
(2018), 88. URL: https://www.frontiersin.org/article/
10.3389/fncir.2018.00088, doi:10.3389/fncir.2018.
00088. 2, 3

[CDU∗20] CLEMENTS J., DOLAFI T., UMAYAM L., NEUBARTH N. L.,
BERG S., SCHEFFER L. K., PLAZA S. M.: neuPrint: Analysis tools for
em connectomics. bioRxiv (2020). URL: https://www.biorxiv.
org/content/early/2020/01/17/2020.01.16.909465,
arXiv:https://www.biorxiv.org/content/early/
2020/01/17/2020.01.16.909465.full.pdf, doi:
10.1101/2020.01.16.909465. 3

[FTG∗19] FUNKE J., TSCHOPP F. D., GRISAITIS W., SHERIDAN A.,
SINGH C., SAALFELD S., TURAGA S. C.: Large scale image segmenta-
tion with structured loss based deep learning for connectome reconstruc-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence
41 (2019), 1669–1680. 2

[GWP21] GONDA F., WEI D., PFISTER H.: Consistent recurrent neural
networks for 3d neuron segmentation, 2021. arXiv:2102.01021. 6

[HHM∗17] HAEHN D., HOFFER J., MATEJEK B., SUISSA-PELEG A.,
AL-AWAMI A. K., KAMENTSKY L., GONDA F., MENG E., ZHANG
W., SCHALEK R., WILSON A., PARAG T., BEYER J., KAYNIG V.,
JONES T. R., TOMPKIN J., HADWIGER M., LICHTMAN J. W., PFISTER
H.: Scalable interactive visualization for connectomics. Informatics 4, 3
(2017). doi:10.3390/informatics4030029. 3

[HKBR∗14] HAEHN D., KNOWLES-BARLEY S., ROBERTS M., BEYER
J., KASTHURI N., LICHTMAN J. W., PFISTER H.: Design and evalu-
ation of interactive proofreading tools for connectomics. IEEE Trans-
actions on Visualization and Computer Graphics 20, 12 (2014), 2466–
2475. URL: http://rhoana.org/dojo/. 2

[HKT∗17] HAEHN D., KAYNIG V., TOMPKIN J., LICHTMAN J. W.,
PFISTER H.: Guided proofreading of automatic segmentations for con-
nectomics. CoRR abs/1704.00848 (2017). URL: http://arxiv.
org/abs/1704.00848, arXiv:1704.00848. 2, 3

[HSP16] HUANG G. B., SCHEFFER L. K., PLAZA S. M.: Fully-
automatic synapse prediction and validation on a large data set. CoRR
abs/1604.03075 (2016). URL: http://arxiv.org/abs/1604.
03075, arXiv:1604.03075. 2

[ica20] ICARDO CABELLO: Three.js, 2020. https://github.com/
mrdoob/three.js, Last accessed on 2020-03-09. 3

[JKL∗18] JANUSZEWSKI M., KORNFELD J., LI P. H., POPE A.,

BLAKELY T., LINDSEY L., MAITIN-SHEPARD J. B., TYKA M.,
DENK W., JAIN V.: High-precision automated reconstruction
of neurons with flood-filling networks. Nature Methods 15
(2018), 605–610. URL: https://www.nature.com/articles/
s41592-018-0049-4. 2

[neu] Neuroglancer: WebGL-based viewer for volumetric data. https:
//github.com/google/neuroglancer. Accessed: 2019-03-09.
2, 3

[Pal] PALLETS: Flask. https://flask.palletsprojects.
com/en/1.1.x/. Accessed: 2020-01-03. 8

[PF18] PLAZA S. M., FUNKE J.: Analyzing image segmentation
for connectomics. Frontiers in Neural Circuits 12 (2018), 102.
URL: https://www.frontiersin.org/article/10.3389/
fncir.2018.00102, doi:10.3389/fncir.2018.00102. 2

[PKB∗12] PFISTER H., KAYNIG V., BOTHA C. P., BRUCKNER S.,
DERCKSEN V. J., HEGE H., ROERDINK J. B. T. M.: Visualiza-
tion in connectomics. CoRR abs/1206.1428 (2012). URL: http:
//arxiv.org/abs/1206.1428, arXiv:1206.1428. 3

[SCHT09] SAALFELD S., CARDONA A., HARTENSTEIN
V., TOMANCAK P.: CATMAID: collaborative annota-
tion toolkit for massive amounts of image data. Bioin-
formatics 25, 15 (04 2009), 1984–1986. URL: https:
//doi.org/10.1093/bioinformatics/btp266,
arXiv:https://academic.oup.com/bioinformatics/
article-pdf/25/15/1984/555362/btp266.pdf,
doi:10.1093/bioinformatics/btp266. 2

[Seu12] SEUNG S.: Connectome: How the Brain’s Wiring Makes Us Who
We Are. HMH, 2012. 1

[Seu20] SEUNG S.: eyewire, 2012 (accessed April 16, 2020). URL:
http://eyewire.org. 2

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type tax-
onomy for information visualizations. In Proceedings of the 1996 IEEE
Symposium on Visual Languages (USA, 1996), VL ’96, IEEE Computer
Society, p. 336. 4

[Sil] SILVERSMITH W. M.: Kimimaro. https://github.com/
seung-lab/kimimaro. Accessed: 2020-03-09. 6

[SLK∗16] SCHALEK R., LEE D., KASTHURI N., SUISSA-PELEG A.,
JONES T. R., KAYNIG V., HAEHN D., PFISTER H., COX D., LICHT-
MAN J. W.: Imaging a 1 mm3 volume of rat cortex using a multibeam
sem. In Microscopy and Microanalysis (26 July 2016), vol. 22, Cam-
bridge Univ Press, pp. 582–583. 2

[TXL∗15] TAKEMURA S.-Y., XU C. S., LU Z., RIVLIN P. K., PARAG
T., OLBRIS D. J., OTHERS.: Synaptic circuits and their varia-
tions within different columns in the visual system of Drosophila.
Proceedings of the National Academy of Sciences 112, 44 (2015),
13711–13716. URL: https://www.pnas.org/content/112/
44/13711, arXiv:https://www.pnas.org/content/112/
44/13711.full.pdf, doi:10.1073/pnas.1509820112. 2

[UPH07] UNNIKRISHNAN R., PANTOFARU C., HEBERT M.: Toward
objective evaluation of image segmentation algorithms. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 29, 6 (June 2007),
929–944. doi:10.1109/TPAMI.2007.1046. 8

[Vas20] VASCO ASTURIANO: 3D force directed graph, 2020. https:
//github.com/vasturiano/3d-force-graph, Last accessed
on 2020-03-09. 3

[WGM∗16] WANNER A. A., GENOUD C., MASUDI T., SIKSOU L.,
FRIEDRICH R. W.: Dense EM-based reconstruction of the interglomeru-
lar projectome in the zebrafish olfactory bulb. Nature Neuroscience 19
(2016), 816–825. 2

[WSTB86] WHITE J., SOUTHGATE E., THOMSON J. N., BRENNER S.:
The structure of the nervous system of the nematode C. elegans. Philo-
sophical transactions Royal Society London 314 (1986), 1–340. 2

[XJL∗20] XU C. S., JANUSZEWSKI M., LU Z., TAKEMURA S.-
Y., HAYWORTH K. J., HUANG G., SHINOMIYA K., ET AL.:

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1109/TVCG.2013.142
http://dx.doi.org/10.1109/TVCG.2013.142
https://doi.org/10.1109/TVCG.2013.142
https://doi.org/10.1038/nature09802
https://www.frontiersin.org/article/10.3389/fncir.2018.00088
https://www.frontiersin.org/article/10.3389/fncir.2018.00088
https://doi.org/10.3389/fncir.2018.00088
https://doi.org/10.3389/fncir.2018.00088
https://www.biorxiv.org/content/early/2020/01/17/2020.01.16.909465
https://www.biorxiv.org/content/early/2020/01/17/2020.01.16.909465
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/01/17/2020.01.16.909465.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/01/17/2020.01.16.909465.full.pdf
https://doi.org/10.1101/2020.01.16.909465
https://doi.org/10.1101/2020.01.16.909465
http://arxiv.org/abs/2102.01021
https://doi.org/10.3390/informatics4030029
http://rhoana.org/dojo/
http://arxiv.org/abs/1704.00848
http://arxiv.org/abs/1704.00848
http://arxiv.org/abs/1704.00848
http://arxiv.org/abs/1604.03075
http://arxiv.org/abs/1604.03075
http://arxiv.org/abs/1604.03075
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://www.nature.com/articles/s41592-018-0049-4
https://www.nature.com/articles/s41592-018-0049-4
https://github.com/ google/neuroglancer
https://github.com/ google/neuroglancer
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://www.frontiersin.org/article/10.3389/fncir.2018.00102
https://www.frontiersin.org/article/10.3389/fncir.2018.00102
https://doi.org/10.3389/fncir.2018.00102
http://arxiv.org/abs/1206.1428
http://arxiv.org/abs/1206.1428
http://arxiv.org/abs/1206.1428
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1093/bioinformatics/btp266
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/555362/btp266.pdf
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/555362/btp266.pdf
https://doi.org/10.1093/bioinformatics/btp266
http://eyewire.org
https://github.com/seung-lab/kimimaro
https://github.com/seung-lab/kimimaro
https://www.pnas.org/content/112/44/13711
https://www.pnas.org/content/112/44/13711
http://arxiv.org/abs/https://www.pnas.org/content/112/44/13711.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/112/44/13711.full.pdf
https://doi.org/10.1073/pnas.1509820112
https://doi.org/10.1109/TPAMI.2007.1046
https://github.com/vasturiano/3d-force-graph
https://github.com/vasturiano/3d-force-graph


F. Gonda et al. / VICE

A connectome of the adult Drosophila central brain. bioRxiv
(2020). arXiv:https://www.biorxiv.org/content/
early/2020/01/21/2020.01.21.911859.full.pdf,
doi:10.1101/2020.01.21.911859. 1, 2, 8

[ZOYP18] ZHAO T., OLBRIS D. J., YU Y., PLAZA S. M.: Neutu: Soft-
ware for collaborative, large-scale, segmentation-based connectome re-
construction. Frontiers in Neural Circuits 12 (2018), 101. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/01/21/2020.01.21.911859.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/01/21/2020.01.21.911859.full.pdf
https://doi.org/10.1101/2020.01.21.911859

