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Abstract. Segmenting 3D cell nuclei from microscopy image volumes
is critical for biological and clinical analysis, enabling the study of cellu-
lar expression patterns and cell lineages. However, current datasets for
neuronal nuclei usually contain volumes smaller than 10 mm?® with
fewer than 500 instances per volume, unable to reveal the complexity
in large brain regions and restrict the investigation of neuronal struc-
tures. In this paper, we have pushed the task forward to the sub-cubic
millimeter scale and curated the NucMM dataset with two fully anno-
tated volumes: one 0.1 mm? electron microscopy (EM) volume contain-
ing nearly the entire zebrafish brain with around 170,000 nuclei; and one
0.25 mm?® micro-CT (uCT) volume containing part of a mouse visual
cortex with about 7,000 nuclei. With two imaging modalities and signif-
icantly increased volume size and instance numbers, we discover a great
diversity of neuronal nuclei in appearance and density, introducing new
challenges to the field. We also perform a statistical analysis to illustrate
those challenges quantitatively. To tackle the challenges, we propose a
novel hybrid-representation learning model that combines the merits of
foreground mask, contour map, and signed distance transform to pro-
duce high-quality 3D masks. The benchmark comparisons on the NucMM
dataset show that our proposed method significantly outperforms state-
of-the-art nuclei segmentation approaches. Code and data are available at
https://connectomics-bazaar.github.io/proj/nucMM/index.html.
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1 Introduction

Segmenting cell nuclei from volumetric (3D) microscopy images is an essential
task in studying biological systems, ranging from specific tissues [21] to entire
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Fig.1: Overview of the NucMM dataset. NucMM contains two large vol-
umes for 3D nuclei instance segmentation, including (left) the NucMM-Z elec-
tron microscopy (EM) volume covering nearly a whole zebrafish brain, and
(right) the NucMM-M micro-CT volume from the visual cortex of a mouse.

organs [29] and developing animals [19,26]. There has been a great success in
benchmarking 2D and 3D nuclei segmentation methods using datasets covering
samples from various species [4,34,28,31]. However, existing datasets only have
relatively small samples from brain tissues (e.g., volumes from mouse and rat
brains [24] smaller than 1073 mm?3, with less than 200 instances each), restricting
the investigation of neuronal nuclei in a larger and more diverse scale. Besides,
most of the images are collected with optical microscopy, which can not reflect
the challenges in other imaging modalities widely used in studying brain tissues,
including electron microscopy (EM) [15,13,25] and micro-CT (uCT) [9].

To address this deficiency in the field, we have curated a large-scale 3D nuclei
instance segmentation dataset, NucMM, which is over two magnitudes larger
in terms of volume size and the number of instances than previous neuronal
nuclei datasets [4,24] and widely-used non-neuronal benchmark datasets [1,34].
Our NucMM consists of one EM image volume covering a nearly entire larval
zebrafish brain and a uCT image volume from the visual cortex of an adult
mouse, facilitating large-scale cross-tissue and cross-modality comparison. Chal-
lenges in the two volumes for automatic approaches include the high density of
closely touching instances (Fig. 1, left) and low contrast between object and non-
object regions (Fig. 1, right). We also perform a statistical analysis to provide a
quantitative justification of the challenges in these two volumes (Fig. 2).

To tackle the challenges introduced by the large-scale NucMM dataset, we
propose a new hybrid-representation model that learns foreground mask, in-
stance contour map, and signed distance transform simultaneously with a 3D
U-Net [5] architecture, which is denoted as U3D-BCD. At inference time, we
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utilize a multi-target watershed segmentation algorithm that combines all three
predictions to separate closely touching instances and generate high-quality in-
stance masks. Under the average precision (AP) metric for evaluating instance
segmentation approaches, we show that our USD-BCD model significantly out-
performs existing state-of-the-art approaches by 22% on the NucMM dataset.
We also perform ablation studies on the validation data to demonstrate the
sensitivity of segmentation parameters.

To summarize, we have three main contributions in this paper. First, we col-
lected and densely annotated the NucMM dataset, which is one of the largest
public neuronal nuclei instance segmentation datasets to date, covering two
species with two imaging modalities. Second, we propose a novel hybrid represen-
tation model, USD-BCD, to produce high-quality predictions by combining the
merits of different mask representations. Third, we benchmark state-of-the-art
nuclei segmentation approaches and show that our proposed model outperforms
existing approaches by a large margin on the NucMM dataset.

1.1 Related Works

Nuclei Segmentation Datasets. Automatic cell nuclei segmentation is a long-
lasting problem that is usually the first step in microscopy image analysis [20].
There has been a great success in benchmarking nuclei segmentation algorithms
in 2D images across various types and experimental conditions [4]. However,
2D images can not completely display the structure and distribution of nuclei.
Therefore, several 3D nuclei segmentation datasets have been collected, includ-
ing the Parhyale dataset showing the histone fluorescent protein expression of
Parhyale hawaiensis [1,34], the BBBC050 dataset showing nuclei of mouse em-
bryonic cells [28], and multiple 3D volumes recording human cancer cells and
animal embryonic cells [31]. However, there are few datasets covering neuronal
nuclei in brain tissues, and the volumes collected from brain tissue usually con-
tain less than 200 instances per volume [4,24]. Besides, most public datasets men-
tioned above only have fluorescence images obtained with optical microscopy.
The NucMM dataset we curated contains two volumes from animal brain
tissues and covers two imaging modalities widely used in neuroscience, including
EM [15,25] and uCT [9]. In addition, our dataset is over two magnitudes larger
than previous neuronal nuclei volumes [24] in terms of size and instance number.
Instance Segmentation in Microscopy Images. Instance segmentation re-
quires assigning each pixel (voxel) not only a semantic label but also an in-
stance index to differentiate objects that belong to the same category. The
permutation-invariance of object indices makes the task challenging. For seg-
menting instances in microscopy images, recent learning-based approaches first
train 2D or 3D convolutional neural network (CNN) models to predict an inter-
mediate representation of the object masks such as boundary [6,23] or affinity
maps [30,17]. Then techniques including watershed transform [8,36] and graph
partition [16] are applied to convert the representations into object masks. Since
one representation can be vulnerable to some specific kinds of errors (e.g., small
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Table 1: NucMM dataset characteristics. We collected and fully annotated
a neuronal nuclei segmentation dataset at the sub-cubic millimeter scale. The
two volumes in the dataset cover two species and two imaging modalities.

Name ‘ Sample Modality Volume Size Resolution (um) #Instance

NucMM-Z |Zebrafish SEM  397x1450x2000 (0.14mm?) 0.48x0.51x0.51 170K
NucMM-M| Mouse Micro-CT 700x996x968 (0.25mm®) 0.72x0.72x0.72 7K

mispredictions on the affinity or boundary map can cause significant merge er-
rors), some approaches also employ hybrid-representation learning models that
learn multiple representations and combine their information in the segmenta-
tion step [27,34,33]. However, those approaches only optimize 2D CNNs [27] or
learn targets that may not be suitable for nuclei segmentation [33], which leads
to unsatisfactory results for down-stream analysis. Thus we propose a 3D hybrid-
representation learning model that predicts foreground mask, instance contour,
and signed distance to better capture nuclei with different textures and shapes.

2 NucMM Dataset

Dataset Acquisition. The EM dataset was collected from an entire larval
zebrafish brain with serial-section electron microscopy (SEM) [22]. The original
resolution is 30nm x4nm x4nm for z-, y-, z-axis. We downsample the images to
480nm x512nmx512nm (Table 1) to make the resolution close to other imaging
modalities for nuclei analysis. The micro-CT dataset was collected from layer
II/III in the primary visual cortex of an adult male mouse using 3D X-ray
microscopy. The images have an isotropic voxel size of 720nm?® (Table 1).
Dataset Annotation. For annotating both volumes, we use a semi-automatic
pipeline that first applies automatic algorithms to generate instance candidates
and then asks neuroscientists to proofread the masks. Since EM images have
high contrast and the object boundaries are well-defined (Fig. 1), we apply fil-
tering and thresholding to get the binary foreground mask and run a watershed
transform to produce the segments. For the uCT data, we iteratively enlarge the
labeled set by alternating between manual correction (annotation) and auto-
matic U-Net [23] prediction. Both volumes are finally proofread by experienced
neuroscientists using VAST [2]. We also provide a binary mask for each volume
to indicate the valid brain region for evaluation.

Dataset Statistics. The EM data has a size of 397x1450x2000 voxels, equiv-
alent to a physical size of 0.14mm?; the uCT data has 700x996x 968 voxels,
equivalent to 0.25mm? (Table 1). Although the zebrafish volume is physically
smaller, it contains significantly more objects than the mouse volume, showing
the distinction between brain structures. We show the distribution of nuclei size
(Fig. 2a) and the nearest-neighbor distance between nuclei centers (Fig. 2b). The
density plots illustrate that objects in the zebrafish volume are smaller and more
densely packed, which poses challenges in separating closely touching nuclei.
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Fig.2: NucMM dataset statistics. We show the distribution of (a) instance
size (in terms of number of voxels) and (b) the distance between adjacent nuclei
centers. The density plots are normalized by the total number of instances in each
volume. We also show (c) the voxel intensity distribution in object (foreground)
and non-object (background) regions for both volumes.

We further show the voxel intensity distribution of object and non-object
regions (Fig. 2¢). The boxplots demonstrate that objects in the EM volume are
better separated from the background than the uCT volume. To quantify the
separation, we calculate the Kullback—Leibler (KL) divergence between the fore-
ground and background intensity distributions in the two volumes. The results
are Dg = 3.43 and 1.33 for the zebrafish and mouse data, respectively, showing
the foreground-background contrast is significantly lower in the uCT data.
Dataset Splits & Evaluation Metric. We split each volume into 5%, 5%, and
90% parts for training, validation, and testing. The limited training data makes
the task more challenging, but it is also closer to the realistic annotation budget
when neuroscientists handle newly collected data. Besides, to avoid sampling
data in a local region without enough diversity, we follow previous practice [14]
and sample 27 small chunks of size 64 x 64 x 64 voxels from the zebrafish volume
for training. Since the nuclei in the mouse uCT volume are sparser (Fig. 1 and
Fig. 2b), we sample 4 chunks of size 192 x 192 x 192 voxels for training.

For evaluation, we use average precision (AP), a standard metric in assessing
instance segmentation methods [7,18]. Specifically, we use the code optimized
for large-scale 3D image volumes [33] to facilitate efficient evaluation.

3 Method

3.1 Hybrid-Representation Learning

Recent 3D instance segmentation methods for microscopy images, including Cell-
pose [27], StarDist [34] and U3D-BC [33], all use a single model to learn multiple
mask representations simultaneously. Specifically, Cellpose [27] regresses the hor-
izontal and vertical spatial gradients of the instances; StarDist [34] learns object
probability and the star-convex distance within the masks; U3D-BC [33] learns
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Fig.3: Hybrid-representation learning model. (a) Our U3D-BCD model
learns a set of hybrid representations simultaneously, including foreground mask,
instance contour, and signed distance transform map calculated from the seg-
mentation. (b) The representations are combined in seeding and watershed
transform to produce high-quality segmentation masks.

the foreground mask with the instance contour map. By analyzing the repre-
sentations used in those models, we notice that all the targets emphasize the
learning of object masks (foreground), but the structure of the background of
the segmentation map is less utilized. That is, pixels close to and far away from
the object masks are treated equitably.

Therefore based on the U3D-BC model that predicts both the binary fore-
ground mask (B) and instance contour map (C), we develop a U3D-BCD model
that in addition predicts a signed Euclidean distance map (Fig. 3a). Let x; de-
note a pixel in the image, we have:

fli) = {+diSt(xivB)/Oé, if x € F.

—dist(z;, F)/B8, ifx € B. e

where F' and B denote the foreground and background masks, respectively. The
scaling parameters a and ( are applied to control the range of the distance.
Compared with the U3SD-BC baseline, the signed distance map is more infor-
mative in capturing the shape information of masks. In comparison with all
discussed approaches [27,34,33], the signed distance map also model the land-
scape of background regions. In implementation, we apply a tanh activation to
restrict the range to (—1,1) and directly regress the target with a 3D U-Net [5]. A
similar learning target has been used for semantic segmentation of synapses [12],
but it has not been integrated into a multi-task learning model nor has it been
explored for 3D instance segmentation. Specifically, the loss we optimize is

Lica = h(o(y1),y) + Mo (y2), ye) + 9(d(y3), ya) (2)

where y; (i = 1,2,3) denote the three output channels, while o and ¢ denote
the sigmoid and tanh function. The foreground (y;) and contour (y.) maps are
learned by optimizing the binary cross-entropy (BCE) loss (h), while the signed
distance map (yq) is learned with the mean-squared-error (MSE) loss (g).
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3.2 Instance Decoding

In this part, we describe how to combine all three model predictions in the
U3D-BCD model to generate the segmentation masks. We first threshold pre-
dictions to locate seeds (or markers) with high foreground probability and dis-
tance value but low contour probability, which points to object centers. We then
apply the marker-controlled watershed transform algorithm (in the scikit-image
library [32]) using the seeds and the predicted distance map to produce masks
(Fig. 3b). There are two advantages over the U3D-BC [33] model, which also
uses marker-controlled watershed transform for decoding. First, we make use of
the consistency among the three representations to locate the seeds, which is
more robust than U3D-BC that uses two predictions. Furthermore, we use the
smooth signed distance map in watershed decoding, which can better capture
instance structure than the foreground probability map in U3D-BC. We also
show the sensitivity of decoding parameters in the experiments.

3.3 Implementation

We use a customized 3D U-Net model that substitutes the convolutional layers at
each stage with residual blocks [10]. We also change the concatenation operation
to addition to save memory. Since recent work [35] has shown that ADAM-alike
adaptive optimization algorithms do not generalize as well as stochastic gradient
descent (SGD) [3], we optimize our models with SGD and adopt cosine learning
rate decay [11]. We set the scaling parameters a and /3 of the signed distance
map to 8 and 50, respectively, without tweaking. We follow the open-source code
of U3D-BC! and apply data augmentations including brightness, flip, rotation,
elastic transform, and missing parts augmentations to U3D-BC [33] and our
U3D-BCD. We also use the official implementation of StarDist? and Cellpose®.

4 Experiments

4.1 Methods in Comparison

We benchmark state-of-the-art microscopy image segmentation models including
Cellpose [27], StarDist [34] and U3D-BC [33] based on their public implementa-
tions. Specifically, the Cellpose model is trained on the 2D xy, yz, and xz planes
from the image volumes, and the predicted spatial gradients are averaged to gen-
erate a 3D gradient before segmentation. For StarDist, we calculate the optimal
number of rays on the training data, which are 96 and 64 for the zebrafish and
mouse volumes, respectively. For U3D-BC, we use the default 1.0 weight ratio
between the losses of the foreground and contour map. Models are trained on a
machine with four Nvidia V100 GPUs.

! https://github.com/zudi-1lin/pytorch_connectomics
2 https://github.com/stardist/stardist
% https://github.com/MouseLand/cellpose
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Table 2: Benchmark results on the NucMM dataset. We compare state-
of-the-art methods on the NucMM dataset using AP score. Bold and underlined
numbers denote the 1st and 2nd scores, respectively. Our U3D-BCD model sig-
nificantly improves the performance of previously state-of-the-art approaches.

NucMM-Z NucMM-M
Method Overall
AP-50 AP-75 Mean AP-50 AP-75 Mean
Cellpose [27] 0.796 0.342 0.569 0.463 0.002 0.233 0.401
StarDist [34] 0.912 0.328 0.620 0.306 0.004 0.155 0.388
U3D-BC [33] 0.782 0.556 0.670 0.645 0.210 0.428 0.549

U3D-BCD (Ours) 0.978 0.809 0.894 0.638 0.250 0.444 0.669

4.2 Benchmark Results on the NucMM Dataset

After choosing hyper-parameter on the validation sets, we run predictions on
the 90% test data in each volume and evaluate the performance. Specifically,
we show the AP scores at intersection-over-union (IoU) thresholds of both 0.5
(AP-50) and 0.75 (AP-75), as well as their average (Table 2). The overall score is
averaged over two NucMM volumes. The results show that our U3D-BCD model
significantly outperforms previous state-of-the-art models by relatively 22% in
overall performance. Besides, our method ranks 1st in 6 out of 7 scores, show-
ing its robustness in handling different challenges. We argue that Cellpose [27]
trains 2D models to estimate 3D spatial gradient, which can be ineffective for
challenging 3D cases. The other two models use 3D models, but the represen-
tations StarDist [34] uses overlooks the background in the segmentation mask,
while U3D-BC [33] overlooks both foreground and background structures. Al-
though conceptually straightforward, introducing the signed distance on top of
the U3D-BC baseline gives a notable performance boost.

4.3 Sensitivity of the decoding parameters

We also show the sensitivity of the decoding hyper-parameters of our U3D-BCD
model. Specifically, there are 5 thresholds for segmentation: 3 values are the
thresholds of foreground probability (71), contour probability (72), and distance
value (73) to decide the seeds. The other 2 values are the thresholds of foreground
probability (74) and distance value (75) to decide the valid foreground regions.

The validation results show that the final segmentation performance is not
sensitive to the 71 and 72 in deciding seeds. When fixing 74 = 0.2 and 75 = 0.0
changing the foreground probability 71 from 0.4 to 0.8 only changes the AP-
50 score between 0.943 and 0.946. While changing the contour probability 72
from 0.05 to 0.30 only changes the scores from 0.937 to 0.946. However, when
changing 74 within the range of 0.1 to 0.4, the score changes from 0.872 to
0.946. Those results suggest that the signed distance transform map contains
important information about the object structures and performs an important
role in generating high-quality segmentation masks.
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5 Conclusion

In this paper, we introduce the large-scale NucMM dataset for 3D neuronal
nuclei segmentation in two imaging modalities and analysis the challenges quan-
titatively. We also propose a simple yet effective model that significantly outper-
forms existing approaches. We expect the densely annotated dataset can inspire
various applications beyond its original task, e.g., feature pre-training, shape
analysis, and benchmarking active learning and domain adaptation methods.
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