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Abstract—The optimal power flow (OPF) problem contains many
constraints. However, equality constraints and a limited set of
inequality constraints encompass sufficient information to
determine the problem feasible space. This paper presents a hybrid
supervised regression-classification learning-based algorithm to
predict active and inactive inequality constraints before solving
AC OPF solely based on nodal power demand information. The
proposed algorithm is structured using a mixture of classifiers and
regression learners. Instead of directly mapping OPF results from
demand, the proposed algorithm removes inactive constraints to
construct a truncated AC OPF. This truncated optimization
problem can be solved faster than the original problem with less
computational resources. Numerical results on several test systems
show the proposed algorithm’s effectiveness for predicting active
and inactive constraints and constructing a truncated AC OPF.
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NOMENCLATURE
g Index for generators.
i,j Index for buses.
l Index for branches.
k Index for demand samples.
n Number of buses.
D Nodal power demand vector.
Frax Maximum branch flow.
G Actual generation vector.
P;, Q; Real and reactive power demand.
pk; Minimum value of load at bus i.
pd; Maximum value of load at bus i.
Pg>qg  Actual real and reactive power generation.
S Complex power.
Vin Voltage magnitude.
0; Voltage angle of bus i.
NIp, N1y Actual net real and reactive power injection.
h,(x)  Set of voltage constraints.
hy(x) Set of branch flow constraints.
A() Set of true active constraints.
A Set of predicted active constraints by classifiers.
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x Predicted x values by learners.
Agyi Maximum perturbation range for demand at bus i.

L INTRODUCTION

PTIMAL power flow (OPF) is one of the main energy

management functions that is solved every 5~15 minutes

for power system scheduling and analysis [1, 2]. The size
of the OPF problem depends on multiple factors, such as the
number of buses and branches. Equality and inequality
constraints represent power system characteristics and
equipment. These constraints form the OPF feasible space (also
known as feasible design space, feasible region, or design
space).

Because of the nonconvex and complex nature of AC OPF,
solving this problem for large systems is computationally
expensive and time-consuming. Various approaches have been
proposed in the literature to reduce the computational cost of
OPF. Since most OPF inequality constraints are inactive in most
cases, one potential approach for relieving computational costs
is to identify inactive constraints and omit them from the
optimization. There are a few papers for the identification of
active and inactive constraints for OPF applications. Most of
these papers rely on mathematical and optimization approaches
to identify OPF inactive constraints.

As reported in [3], over 85% of branch constraints are
inactive in security-constrained unit commitment (SCUC)
problems. An analytical condition is developed to identify the
set of inactive branch constraints for DC optimal power flow
formulation. The concept of umbrella constraints is presented in
[4] to describe the feasible set of DC OPF with necessary and
sufficient constraints aiming at reducing the size of the problem.
This reference presents a mathematical optimization method
that finds the umbrella constraints. A method is proposed in [5]
to reduce the number of security constraints in SCUC. An
optimization-based bound tightening scheme is presented that
solves multiple linear programs in parallel to identify redundant
linear security constraints. Each linear program contains fewer
constraints than the original SCUC. It is observed that roughly
99% of constraints are redundant in real-world scenarios. The
proposed algorithm requires network topology information and
upper and lower bounds of nodal injection and branch flow
limits. The algorithm is independent of unit commitment
parameters and uncertain load values. Moreover, [6] proposes
an iterative contingency search algorithm that can remove most



inactive transmission constraints from the SCUC problem.
Linear sensitivity factors are used to find violated constraints.

These approaches either solve sub-optimization problems or
implement iterative search techniques to find active constraints.
Some of these approaches, however, might be more
computationally expensive than the original optimization
problem. Also, they are mainly developed based on convex DC
OPF, not nonconvex AC OPF. Solving AC OPF is becoming of
more interest in the power system community. Hence,
innovative approaches are required for active/inactive
constraints identification for the AC OPF problem.

This paper presents a combined learning and model-based
algorithm to predict inequality constraints’ status before solving
AC OPF and drop them from the optimization model to speed
up the solution time. A hybrid supervised regression-
classification-based approach is proposed to identify active and
inactive bus voltage and branch flow constraints of AC OPF in
the learning phase. The proposed algorithm reads nodal real and
reactive power demand as inputs and predicts a subset of
inequality constraints with the aim of reducing the size of OPF.
One regression learner is trained to project generating units’
production by reading demand information. The outputs of
these learners are used along with demand information to train
two classifiers, one for voltage constraints and another for
branch flow constraints. As shown in Fig. 1, the proposed
algorithm constructs a truncated AC OPF with a subset of
inequality constraints predicted to be active at the optimal point.
This makes the proposed algorithm different than several
existing methods that directly predict OPF results from demand.
The truncated and original AC OPF problems’ solutions are
almost the same while solving the truncated optimization is
much faster and needs less computational resources. The
simulation results show the proposed algorithm’s effectiveness
for identifying active constraints and constructing a truncated
AC OPF.

Proposed hybrid

learning-based
algorithm

Truncated
ACOPF problem

Complete ACOPF problem

Fig. 1. The proposed active constrains filtering strategy.

The remainder of the paper is organized as follows. Section
II provides an overview of machine learning applications in
solving various OPF related problems. The proposed algorithm
is presented in Section III. The used learners are explained in
Section IV. Section V demonstrates the numerical simulation
results. Section VI provides concluding remarks, and future
work is discussed in Section VII.

1L RELATED WORK

Machine learning algorithms learn from observation and
analysis without any external influence and map a function
between input and target data [7]. Machine learning applications
to solve power systems problems [8, 9], particularly OPF, has
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gained a growing interest in recent years [10]. Most published
papers focus on the direct projection of OPF solution by
machine learning tools using demand information as inputs to
learners while ignoring the knowledge of the known
mathematical structure of the OPF problem [11-15]. This
approach works like a black-box that read demand and estimates
OPF results. A supervised machine learning-based security-
constrained OPF framework is developed in [11] that uses
multi-target regression to map the local information and
generation dispatches. This framework uses local features as
inputs to machine learning models. Reference [12] provides a
direct mapping of OPF results using gradient boosting
regression. Demand and production cost information is used as
inputs to learners that predict the power and voltage of each
generator. Nearest neighbor classification is used in [13] to
provide an approximate unit commitment solution for market-
clearing without the need for computationally expensive unit
commitment solvers. Demand and wind generation are inputs to
learners, and unit commitment decisions are outputs. In [14],
machine learning is applied to predict OPF results to regulate
voltage and power flow in distribution grids. In [14] and [15],
the proposed method implements a decentralized OPF based
reactive power controller using multiple linear regression
learners. This method is implemented on a system with multiple
controllable distributed energy resources (DERs). In [16], a
support vector machine (SVM) is used to implement the Volt-
VAR control scheme. Linear, polynomial, and radial basis
function SVM kernels are compared by the lowest sample mean
squared error. The OPF formulation considers the uncertainty
coming from renewable energy sources and load. In [17], the
authors have extended their work and presented a machine
learning-based method to predict optimal settings of a
centralized controller based on historical data. While only
inverter-based DER reactive power controller is considered in
[16], active power curtailment, controllable load shifting, and
battery storage are taken into consideration in [17]. Reference
[18] has proposed a machine learning-based approach for
transient stability constrained OPF based on critical clearing
time constraints. Multilayer feedforward neural network is used
to compute the critical clearing time of the formulated OPF
problem. Deep learning is used in [19] to predict OPF results.
This approach is applicable if information about the previous
system states is available to learners.

Such direct estimations, however, do not precisely match
with actual solutions. While a trained learner might provide
good estimations for many loading conditions, it might not
provide accurate enough solutions for many other demand
scenarios. An immense training dataset might be required to
reach an acceptable level of accuracy for learners. Even if the
accuracy of direct OPF solution estimation is high, a small
mismatch between projected and actual solutions may yield a
suboptimal or infeasible outcome for the nonlinear, nonconvex
AC OPF problem. This makes operators reluctant to deploy
them for power systems operation. One may use a combined
learning and model-based approach to reduce the possibility of
suboptimality and infeasibility. The benefits of learning based
warm start to solve AC OPF are presented in [20]. Instead of



solving OPF directly with machine learning, the demand
information is used as inputs to learners to estimate the OPF
solution. This solution is used as a starting point to solve the
OPF problem. Although having a warm start enhances solution
speed, this method does not reduce the size of the OPF problem
that significantly impacts the computational complexity of AC
OPF.

An idea recently presented in a few papers is to use machine
learning to predict inactive constraints rather than using
machine learning tools as black boxes to predict OPF results
directly [21-27]. In [21, 22], an approach is presented to learn
the mapping from uncertainty realization to the optimal
solution. This approach avoids directly mapping the input to the
optimal solution and instead uses active constraints at
optimality as the mapping output. Reference [23] presents
another approach to learn the set of active constraints at the
optimal point using classification algorithms. A neural network
classifier is used for learning the active sets. This paper deals
with DC OPF and uses only classification learners. The authors
of [24] have presented a learning-based method to predict
umbrella constraints for an OPF problem. The umbrella
constraints are necessary and sufficient constraints to cover the
OPF feasible solution. References [25] and [26] present a
learning-based chance-constrained approach to remove
constraints with zero probability events from the AC OPF
formulation for distribution networks. With statistical learning,
the proposed framework reduces the computationally
demanding joint chance constraints into a series of single
chance constraints. Reference [27], which serves as a modified
version of the algorithm presented in [6], uses machine learning
to predict redundant transmission constraints, warm start, and
an affine subspace that contains the optimal solution of SCUC.
A combined learning and analytical model-based scheme is
presented in [28] to predict congested transmission lines. A
learner predicts generation values, and using linear sensitivity
factors are used to estimate line flows.

While these approaches are promising, they mainly focus on
DC OPF. More sophisticated yet efficient algorithms are needed
to detect inactive constraints of the AC OPF problem. These
papers use the demand information and train a classifier(s) to
identify the status of constraints. A combination of regression
and classification learners may enhance the accuracy of the
constraint identification process. Motivated by this, we develop
a hybrid regression-classification-based algorithm to identify
the status of bus voltage and line flow constraints before solving
the AC OPF problem.

III.  HYBRID REGRESSION-CLASSIFICATION ALGORITHM

FOR INACTIVE CONSTRAINTS IDENTIFICATION

A. Classical AC OPF Formulation

The considered AC OPF problem, presented by (1a)-(11), is
adopted from [29]. The objective function is to minimize
generation costs. Nodal power balance constraints are given by
(1b) and (1c). Constraints (1d) and (1e) enforce flow limits at,
respectively, line sending and receiving terminals. The upper
and lower bounds of generating units are imposed by (1f) and
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(1g). Inequalities (1h) and (1i) are bus voltage magnitude and
angle limits.

minf(p)zZag-p§+bg-pg+cg (1a)
g
s.t.

gp(gi Vm: pg) = Pbus(gi Vm) + Pd - pg =0 (1b)
99(0. Vi, 4g) = Quus(0, V) + Qa —qg =0 (10)
his (8, Vi) = |Fis(0, V)| — Fpax < 0 (1d)
hlr(givm) = |Flr(9:Vm)| — Fnax <0 (16)
Py < pg < P Vg 1N

95" < qq < g3 Vg (19)

Vimin <V < Vimax Vi (1h)

0] <0, <6] Vi (1i)

B.  Constraints Status Identification

The status of inequality constraints is not known before
solving OPF. All inequality constraints are included in the
original OPF problem. The status of constraints will be known
after solving the problem. If at the optimal point x*, an inequity
h(x) < 0 is satisfied as h(x*) = 0, this constraint is called
active or binding, otherwise inactive. To construct a truncated
OPF, inactive inequality constraints should be detected and
omitted from the optimization problem before solving the
problem. Detecting active and inactive constraints can be cast
as a binary classification problem. If h(x*) =0, it can be
labeled as 1, and if h(x*) < 0, it can be labeled as 0.

Without loss of generality, we focus on identifying the status
of bus voltage magnitude and branch flow constraints. These
two sets of inequalities have high impacts on OPF computation
cost. The total number of voltage magnitude and branch flow
constraints is higher than that of other OPF inequalities, e.g.,
generators’ upper and lower bounds. The majority of these two
sets of constraints are inactive under various loading conditions.
This is not a valid argument for generator limits as many of
these controllable devices’ constraints might be active under
several loading conditions.

The goal is to predict constraints status before solving OPF
using only nodal demand values. For brevity, we represent
branch flow constraints (1d) and (le) and voltage magnitude
constraints (1h) in compact forms as follows:

hl (x): = {hls (9, Vm); hlr (9; Vm)}
h, (x): = {V/"" — v, < 0; V; — V" < 0}

(2)
(3)

Since the bus voltage and branch flow constraints are
inherently different, we train two separate classifiers with one
for bus voltage constraints and another for branch flow
constraints.

Dataset Preparation: Before solving OPF, demand
information is available. The following demand vector D is the
input for learners.

(42)
(4b)

Py = [Pa1, Dazs ---:pdn]T
Qa = 441,92, - qan] "
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To cover possible loading situations that may occur during
system operation in the training phase, we generate a set of
demand scenarios as follows:

P = [Pldi + 1, (k) 'Adi]
a5 = [‘Iéi + nqk) 'Adi]

Agi = D3 — Péi

vk (5a)
(5b)

(5¢)

vk

where 7, (+) and 14 (+) follows a uniform distribution between 0
and 1. The perturbation range A,; depends on the possible
minimum (P%) and maximum (PY) nodal demand values. For
each demand scenario, OPF is solved and active and inactive
bus voltage (A(h,(x))) and branch flow constraints (A (h;(x)))
are identified and stored for training. Demand scenarios
resulting in infeasible OPF are omitted.

Two different nonidentical demand datasets are generated. As
shown in Fig. 2, demand scenarios in dataset 1 are used to train
aregressor (Lg). Demand scenarios in dataset 2, along with their
predicted generation values obtained from Lg, are the training
set for classifiers (Le and Leg). Using one dataset for all
learners means that Lg; is trained and then utilized with the same
dataset, which is not logical.

Dataset 1

Input features
[P4; Q4]

Target features ]
[Pg; Q4] )

Training regression learner
(LR)for predicting p, and @,

A

"/_\

(a)

Dataset 2

Target features 1

Alh,@) Training classification
leamner 1 (Lev)for voltage

Input features . magnitude constraints

. Trained £z [—

[Pa; Qal Training classification
learner 2 (£Lep)for branch
Target features flow constraints
) f

(b)

Demand scenario Trained £
[Pd; Qd] rame R

Trained Lev A(hy(x)

Trained £Les A(hy(x)

()
Fig. 2. Block diagram of a) regressor (Lg) training procedure, b) classifiers (L¢y,
and Leg) training procedure and c) Utilization of trained learners.

Proposed Training Structure: The status of voltage and
branch flow constraints depends on demand values and
generating units’ production. Generation values are not known
before solving OPF. As shown in Fig. 2a, regression learner Ly
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is dedicated to predicting generation values by reading power
demand. The input and target vectors of Ly are demand vector
D and [Pg ; Qg], Vg. Several buses have neither load nor
generation. Having these buses in nodal demand and generation
vectors provides no meaningful information for the learner as
their corresponding entries are always zero. Only demand buses
are used to form input vector D.

By training one regressor for predicting both ﬁg and Q g the
learner may capture the interaction between real and reactive
powers and better understand generator dynamics. Once trained,
Lg will predict real (139) and reactive (@g) power generated by
each unit for each demand scenario.

Pg = [ﬁgl! ﬁgZ! "'!ﬁgn]T (68.)

Q~g = [qglx qut"'xqgn]T (6b)
p

G=|7 ] 6
[Qg (6¢)

Vector D and predicted nodal power generation G are used
to form a net nodal power injection vector (NT).

ATT ~ ~ ~ T
NIp = [Pg1 — Par, Pgz — Pazs —»Pgn — Pan]  (72)

ATT ~ ~ ~ T
NIy = [Gg1 — a1, Gg2 — Gazs ~rAgn — dan]  (7b)

— [NI
N,

We train two classifiers for each system, a bus voltage
constraint classifier (classifier 1 or L¢y, in Fig. 2b) and a branch
constraint classifier (classifier 2 or Leg in Fig. 2b). The input
vector to Ly and Leg is N1, and their targets are A(h,,(x)), and
A(hy(x)). As shown in Fig. 2 (c), classifiers read the regressor
predicted generations to predict constraints’ status. The regressor
predicts generation values G for each demand scenario in dataset
2. The predicted generation values and demand scenarios in

IWP]
Ni,

(7c)

dataset 2 are used to form the net injection vector NI = [

—Qa
are trained and also utilized by predicted generation values rather
than become trained with actual generation and then utilized with
predicted generation values. This procedure would enhance the
accuracy of L and Leg. The pseudocode to train the learners
is represented in Algorithm I.

B —p
[Qg ¢ ] for training Ly, and Leg. By doing so, the classifiers
g

Algorithm I Pseudocode for training learners

Dataset 1: Generate a set of demand scenarios Pp(1,,) and @p(14) by

(5), and form D, = [IQJZ]
2. Solve original OPF for each scenario in D, and drop infeasible cases
3. FormG = [Pg ]
Q

4.  Train Lg using D (input) and G (target) in dataset 1




5. Dataset 2: Generate a set of new Pp(1,) and Qp(14) by (5) and form
P
D, = [ &
> Qg
6.  Solve original OPF for each scenario in D, and drop infeasible cases

7. Identify A(h,(x)) and A(h;(x)) corresponding to each scenario in D,

. [P
8. Use Ly to predict G = [Qg] to each scenario in D,
g
— [N], P,—-P
9.  Form NI = [.J’] = [.g d]
NIQ Qg - Qd
10.  Train L¢y using NT as input and A(h, (x)) as target

11.  Train Lep using NT as input and A(hy(x)) as target

Utilization Procedure: The utilization procedure of the
proposed algorithm is demonstrated in Fig. 2c. For a given
demand, P, and Q are determined by the trained Lg. The given
D and the predicted G will be used to form vector N1 that is the
input of the trained Lz and Le5. The output of Lz, is active
bus voltage constraints (A(h,(x))), and Leg predicts active
branch flow constraints (A(h;(x))). A(h,(x)) and A(h;(x))
will be used to construct a truncated optimization design space
and consequently a truncated OPF problem as:

minz ag ps+by-pg+cy (8a)
g
s.t.
A(h,(x)) <0 (8b)
A(hy(x)) <0 (8¢)

XEY

where y represents all other constraints except for bus voltage
magnitude and branch flow constraints. Suppose all required
inequality constraints are predicted correctly. In that case, the
truncated OPF problem is equivalent to the original OPF while
its size is smaller. The pseudocode to utilize the proposed
regression-classification technique to form the truncated OPF is
as follows.

Algorithm II Utilization Algorithm

. P < [P
1. For a given demand vector D = [ Qd], run Ly to determine G = [Q‘q]
d g

— [NT B —P
2. FormNI=[~P]=[:q 4
NIQ Qg_Qd

3. Use NI as input to Ley, and Lep and identify A(h, (x)) and A(h,(x))

] using D and G

4. Formulate truncated AC OPF using A(h, (x)), A(h;(x)), and
5. Minimize (8a) subject to (8b), (8c), and y

One may use Lg of Fig. 2 to predict ﬁg and Qg and then
formulate and solve a modified AC power flow instead of a
truncated AC OPF. Although solving AC power flow is easier
than solving the truncated AC OPF, even a slight error in 13g and
Qg might make AC power flow results suboptimal and, more
importantly, endanger power flow feasibility.

Iv.

Supervised learning approaches are selected to train Ly,
Ley, and Leg in Fig. 2. Various supervised machine learning
approaches are available. Among them, neural networks (NNs)
have shown promising performance. NNs have outperformed
many other machine learning algorithms in recommendation
systems, speech and image recognition, natural language
processing, etc. Support vector machine (SVM) with quadratic
and Gaussian functions, Gaussian process regression with
exponential and quadratic kernels, and ensemble learning with
bagging and boosting methods are examined for regression
learners. Also, SVM with coarse quadratic and Gaussian
functions, the k-nearest neighbor with coarse and weighed
techniques, discriminant analysis with linear and quadratic
functions, and Naive Bayes are tested for classification learners.
It is observed that while the performance of these approaches is
suitable for small power systems, their performance degrades
by increasing the size of the system. Also, cases are observed in
which these learners failed to map a function between the input
and output AC OPF training datasets (these tests and analyses
are performed using MATLAB machine learning toolbox).

Neural networks are used to train Lg, Ley, and Leg for
power systems with different sizes, and promising results are
obtained for the regressor and classifiers. Hence, we have
selected NN for regression and constraints classification. Using
activation functions, NN can effectively capture the
nonlinearity and complexity of problems, such as AC OPF. A
fully connected NN with mini-batch gradient descent is used for
Lp, Loy, and Leg. For Ly, rectified linear units (ReLLU) are used
in hidden layers, and linear activation functions are used for the
output layer. For Ley, and Leg5, ReLU is used in hidden layers,
and the sigmoid function is used for the output. In the case of
linear activation function, the output is proportional to the
provided input (X (z) = (mZ)) whereas, based on the input, the
sigmoid activation function provides the output between 0 and
1 (X(2) = 1+Z—Z)' The derivative of the activation function is
used in the error backpropagation algorithm, which is a process
to optimize each neuron’s weights. The loss function of Ly is
the mean squared error (MSE).

Thea (X - %)
K

Both real and reactive power are combinedly used to update

SE (P -PE) " + (0 -]
K
to find the optimal weight values and train the learners. Various

architectures are tested with different numbers of layers, epochs,
and batch sizes. Figure 3 illustrates the results obtained by
regressors with different numbers of hidden layers. Merely
increasing the number of layers does not improve the prediction
accuracy for all systems. One hidden layer is selected for
minimalistic learners. Table I depicts the learners’ architecture
and hyperparameters used in this paper. Although we have
obtained promising results with these simple architectures, one
can use more complex architectures to obtain better results.

SELECTING LEARNING APPROACH AND ALGORITHM

MSE = 9)

the weights ( ). Adam optimizer is used
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Fig. 3. Root mean square (RMS) error comparison of different NN regression
architectures.

Classifier Loss Function: Training a neural network is based
on solving an optimization problem to find a loss function’s best
weights. For a typical binary classification problem, the
conventional loss function is binary cross-entropy. Although
this function works well for many problems, it may not show
good performance for imbalanced datasets [30]. Since most
voltage and line flow constraints are inactive, the percentage of
inactive constraints in dataset 2 is much higher than that of
active constraints. Due to this imbalance, the model tends to be
overfitted to the class with a higher percentage in the dataset,
i.e., inactive class.

To avoid this bias, Fg score is used as the classification loss
function. Hyperparameter [ controls the importance of
precision and recall. Maximizing recall minimizes the number
of false negatives (FNs), and maximizing precision reduces
false positives (FPs). The objective is to improve recall without
hurting precision, which is conflicting. As reliability is critical
for power, reducing the percentage of FN is desirable. We set

p=2.

Precision - Recall

Fs=(1 2
p=0+h ),82 - Precision + Recall
(1+82)-TP

“(1+p2-TP+FP+B%-FN)

(10)

where

Precision / Positive predictive value (PPV) = 7 (11a)
FP+TP
. TP
Recall / True positive rate (TPR) = P (11b)

Data Scaling: An important preprocessing step before
training the learners is data scaling, e.g., normalization and
standardization. This step improves the numerical stability of
calculations and enhances the prediction accuracy. The data are
normalized by (12).

X — Xmin

~ xymax _ ymin

Xnoralized (12)
V. NUMERICAL RESULTS

The proposed algorithm’s effectiveness for detecting active
and inactive constraints is tested on several small, medium, and

TABLE I
ARCHITECTURE OF TRAINED NNS
. Activation Loss .
Learner Training parameters function function Optimizer
Hidden layer=1
Neuron=256
Regressor Epochs=1000 (with ReLU
p) early stopping and & MSE Adam
® patience =100), Linear
Batch size=100
Validation split=20%
Hidden layer=1
Neuron=256
Classifier Epochs=1090 (with ReLU
Lo L early stopping and & F2 Loss Adam
cv> =B patience =100), Sigmoid
Batch size=100
Validation split=20%

large systems. Test systems are adopted from the standard
PGLib-OPF benchmark library [31]. MATPOWER interior
point solver is used to solve OPF [29]. Python (v3.7.3) based
Keras framework (v2.3.1) is used with TensorFlow to trained
learners. Simulations are carried out on a personal computer
with a 3.70 GHz Intel(R) Xeon(R) CPU, eight cores, and 16 GB
of RAM. We have posted our code on GitHub and have
uploaded the data used in numerical studies to IEEE DataPort
as an open access dataset (DOI: 10.21227/kege-qv50).

A. Average Number of Active and Inactive Constraints

Table II shows the number of voltage and branch constraints
for the original OPF and truncated OPF problems. The second
column shows the total number of voltage and branch
constraints, and the third column depicts the average number of
active voltage and branch constraints under various loading
conditions. For the 39-bus system, for instance, the total number
of voltage and branch constraints are 78 and 92, respectively,
out of which, on average, five voltage constraints and two
branch flow constraints are active. It is observed that larger
systems have a higher percentage of inactive constraints. This
shows the potential advantage of detecting active constraints to
construct a truncated OPF problem instead of the original OPF.
For the 39-bus and 118-bus systems, for instance, the number
of constraints of the truncated OPF problem is on average 55%
(including all equality and inequality constraints of (1)) less
than that of the original OPF.

TABLE II
NUMBER OF TOTAL CONSTRAINTS AND ACTIVE CONSTRAINTS FOR SEVERAL
TEST SYSTEMS

Truncated
Original OPF OPF
System (Voltage, (Active Inactive, Active
Branch flow) Voltage,
Branch flow)
case39_epri 78,92 5,2 96%, 4 %
casel18 ieee 236,372 12,2 99%, 1 %
case300 ieece 600,822 32,3 97.5%,2.5%
case500 tamu 1000,1192 16,4 99%.,1%
casel1354 pegase 2708, 3982 50, 20 99%, 1%




B. Inactive Constraints Identification by Proposed Hybrid
Algorithm

Training: Nodal power demand is varied using uniform
random distribution to generate possible demand scenarios over
a long operation horizon. Table III shows the load perturbation
range (A,) as compared to MATPOWER baseload. The range is
obtained by monotonically decreasing and increasing the base-
case load until the simulation fails to converge. This range is
narrower for the larger systems. OPF is solved for each demand
scenario. One regression learner is trained for each system. As
shown in Table IV, the length of the output of L is equal to
twice the number of generators, whereas the length of the output
of Leg (Ley ) is equal to the number of branches (buses). Active
voltage and branch flow constraints are labeled as ‘1’°, and
inactive constraints are labeled as ‘0’ during the preparation of
datasets. Two classifiers are trained for each test system. We
have used the same architecture for all learners for ease of
replicating simulations and to show the proposed algorithm
performance with simple machine learning architectures.

TABLE IIT
SYSTEM PARAMETERS AND RANGE OF VARIATION OF LOAD

No. of scenarios

S e e e T
case39 39/46/10 710;3)020 2000 2000 882
casell8 118/186/54 710;(())(;00 2000 2000 2000
case300 300/411/69 912 (;)2)02)0 2000 2000 1641
case500 500/597/90 710(;)/90(;)0 2000 2000 3000
casel354 ! 35;/61099 1 710108)02)0 1500 1500 1200

* NB/NL/NG stands for number of Node, Branch, and Generator, respectively

TABLE IV
INPUT AND OUTPUT LENGTHS OF LEARNERS

Regressor (Lg) Classifiers (Ley, Leg)

System D P, Q, NI R Ry

case39 epri 42 10*2 78 39 46
casel 18 _ieee 189 54%2 236 118 186
case300_ieece 374 69%2 600 300 411
case500_tamu 400 90%2 1000 500 597
casel354 pegase 1332 260%2 2708 1354 1991

Testing: The size of training and test datasets for each studied
system is provided in Table III. We use different train-test split
ratios. Common ratios are 80%-20%, 70%-30%, and 50%-50%.
We have used split ratios with more test scenarios to validate
trained learners under various loading conditions. For each test
scenario, the original OPF problem is solved to determine the
actual active/inactive constraints. The proposed hybrid
algorithm is also applied to predict active/inactive constraints.
Four primary indices are introduced to interpret predicted results
and analyze the accuracy of the proposed algorithm.
o True positives (TP) are cases in which a constraint is
predicted to be ACTIVE and its actual status is also
ACTIVE.
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e True negatives (TN) are cases in which the prediction is
INACTIVE and the actual output is INACTIVE.

e False positives (FP) are cases in which the prediction is
ACTIVE but the actual output is INACTIVE (type I error).

e False negatives (FN) are cases in which the prediction is
INACTIVE but the actual output is ACTIVE (type II error).

In addition, we use the following statistical metrics to analyze
the quality of the truncated OPF in detail.
TP+TN

Accuracy= —————— (13a)
TP+TN+FP+FN
Misclassification= ————" (13b)
TP+TN+FP+FN
False negative rate (FNR)=1 — TPR (13¢)
True negative rate (TNR)/specificity = TNTFP (13d)
False positive rate (FPR)=1-TNR (13e)
False discovery rate (FDR)=1-PPV 13
. L TN
Negative predictive value, NPV= v (139)
False omission rate (FOR)=1-NPV (13h)

Tables V and VI show these indices for several test systems. We
have selected the Pegase 1354-bus test system and constructed a
confusion matrix shown in Fig. 4. Each test scenario contains
2708 upper/lower bus voltage magnitude constraints and 3982
sending/receiving branch flow limits. Hence, for 1200 test
scenarios, the actual and predicted status of 27081200 voltage
and 3982x1200 branch flow constraints are observed to
calculate the indices shown in Fig. 4. Green blocks in the second
column of Figs. 4a and 4b show that 97.9% of bus voltage
constraints and 96.4% of branch constraints are true negatives,
which means they are correctly predicted to be inactive. In the
third column, green blocks depict that 0.84% and 0.53% of
voltage and branch constraints are true positives, which means
they are correctly predicted to be active. As shown in orange
blocks in the second column, 1.2% of voltage constraints and
3.1% of branch constraints are misclassified to be active. This is
the type I error (false positives), meaning these actual inactive
constraints are predicted to be active and included in the
truncated OPF. This is not critical as these few constraints do not
change the truncated feasible space (i.e., do not change the OPF
solution) and have no considerable impact on the computational
burden of the truncated OPF. The type Il error (false negative),
meaning actual active constraints are predicted to be inactive, is
undesirable. As shown in orange blocks in the third column of
confusion matrices, the type Il error is close to zero percent. TPR
for voltage and branch flow constraints is 97.9% and 100%,
showing that roughly most actual active constraints are
predicted to be active. TNR pertaining to voltage and branch
constraints is 98.8% and 96.9%, respectively, showing the
percentage of actual inactive constraints predicted to be
inactive. NPV for both voltage and branch flow constraints is
roughly 100% showing that most predicted inactive constraints
are truly inactive. The misclassified constraints are mainly FP
that means no important information is lost from the feasible
space of the truncated OPF. Therefore, the solution of the


https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values

TABLE V
PREDICTION ACCURACY MEASUREMENTS OF THE PROPOSED ALGORITHM FOR VOLTAGE CONSTRAINTS CLASSIFICATION
systems FN FP N TP NPV PPV TPR TNR Misclassification  Accuracy
case39 epri 0.01% 4.4% 88% 7.2% 99.8%  61.6%  98.3% 95.1% 4.6% 95.4%
casell8 ieee 0.001% 1.0% 9.2% 4.6% 99.8%  80.8%  97.7% 98.8% 1.2% 98.8%
case300 ieee 0.05% 1.7% 92.9% 5.3% 99.9%  75.8%  99.0% 98.2% 1.8% 98.2%
case500 tamu 0.02% 1.1% 97.2% 1.5% 99.9%  57.2%  98.8% 98.8% 1.2% 98.8%
casel354 pegase  0.01% 1.2% 97.9% 0.84% 99.9% 41.1%  97.9% 98.8% 1.2% 98.8%
TABLE VI
PREDICTION ACCURACY MEASUREMENTS OF THE PROPOSED ALGORITHM FOR BRANCH CONSTRAINTS CLASSIFICATION
systems FN FP N TP NPV PPV TPR TNR Misclassification  Accuracy
case39 epri 0% 0.03%  97.4% 2.5% 99.9%  98.5%  99.9% 99.9% 0.1% 99.9%
casell8 ieee 0.02%  0.09%  99.0% 0.84% 99.9%  90.1%  96.8% 99.9% 0.1% 99.9%
case300 ieee 0% 0.04%  99.3% 0.65% 100% 94.3% 100% 99.9% 0.1% 99.9%
case500 tamu 0% 0.58%  98.9% 0.41% 99.9% 41.7%  98.8% 99.4% 0.6% 99.4%
casel354 pegase 0% 3.1% 96.4% 0.53% 100% 14.7% 100% 96.9% 3.1% 96.9%

constructed truncated OPF will be similar to the solution of the
complete OPF formulation.

Actual inactive Actual active
3182349 et
Predicted 97.9% 0.01% NPV=99.9%
inactive S False FOR=0.1%
True negative .
negative
Predicted K2 AL PPV=41.1%
. 1.2% 0.84%
active " " FDR=58.9%
False positive True positive
— 0,
TNR=98.8% | TPR=97.9% ?\(/}fs;laacs}sll ﬁfjii rf‘
FPR=01.2% FNR=2.1% -
=12%
(@)
Actual inactive Actual active
Predicted L) g NPV=100%
. . 96.4% 0% _
inactive . . FOR=0.0%
True negative False negative
Predicted 100024 17314 PPV=14.7%%
. 3.1% 0.53% _
active .. .- FDR=85.3%
False positive True positive
— 0,
TNR=96.9% TPR=100% ﬁcufaa;i’?iffff
FPR=3.1% FNR=0% 5 °
=3.1%
(b)

Fig. 4. Confusion matrices for the Pegase 1354-bus system a) voltage constraints
and b) branch flow constraints.

Tables V and VI show that the FN index for all cases is
negligible. We have observed a few misclassified voltage
constraints. A detailed analysis reveals that these constraints are
not heavily binding. Although no FN misclassification is
observed for most of the studied cases, it is not guaranteed that
the solution of truncated OPF always matches that of the original
OPF. In such cases with nonzero FN, the solution of truncated
OPF might be infeasible for the original OPF. An iterative
constraints generation approach can be used along with the
predicted constraints to ensure the solution feasibility.

The average cost gap is used as an index to measure how
close the truncated and original OPF solutions are.

|fT—0PF _ fOPFl

Cost Gap% = gz ——* 100 (14)

The smaller the index is, the more accurate the solution of the
truncated OPF will be. The values reported in Table VII show

that the truncated OPF (T-OPF) solution is very close to that of
the original OPF.

TABLE VII
CoST GAP OF TRUNCATED OPF

System Cost gap

case39_epri 4e-06%

casel 18 ieee 3e-07%

case300 ieee 5.9¢-05
case500 tamu 7.5e-07 %

casel354 pegase 3e-05%

Table VIII shows the number of iterations of the interior
point method and computation time. OPF is solved for all test
scenarios (the number of scenarios is given in Table III). The
total runtime, the average runtime, and the average number of
iterations per scenario are reported. The time for learners to
identify active/inactive constraints is comparatively much lower
than OPF runtime, and thus, is neglected. The time-saving
values are in comparison with the original OPF. The number of
iterations does not decrease significantly. However, since the
number of function evaluations per iteration reduces by
omitting inactive constraints, the solution time per iteration and
the total time decrease. The average time of each iteration can
be calculated by dividing the total time by the number of
iterations. For instance, for the IEEE 118-bus system, the
average time of each iteration of the interior point method
decreases from 6.7ms for the original OPF to 5ms for the
truncated OPF, a 30% time-saving.

In summary, Tables VII and VIII show the promising
advantage of the proposed algorithm for reducing the AC OPF
problem’s computation time while providing a very high
accurate solution.

TABLE VIII
ITERATION NUMBERS AND TIME-SAVING

Solution time (s) Number of Time-
Systems (Total/avg) iterations (Avg) saving
OPF T-OPF OPF T-OPF

case39 53/0.06 35/0.04 16 14 33%
casel18 200/0.10 140/0.07 15 14 30%
case300 583/0.355 361/0.22 35 25 38%
case500 1170/0.39 750/0.25 25 18 35%
casel354 2640/2.20  1800/1.50 42 38 32%




VL

This paper presents a hybrid regression-classification
algorithm to identify the active and inactive voltage and branch
flow constraints for OPF before solving the optimization
problem. It is observed that the majority of voltage and branch
flow constraints are inactive, even if the system load changes,
and have no impact on the OPF solution. The proposed learning
algorithm identifies inactive inequality constraints and creates a
truncated OPF problem. This algorithm reduces the size of the
OPF problem and its computation costs. The simulation studies
show that the proposed algorithm can efficiently and quickly
separate active and inactive bus voltage and branch flow
constraints based on reading the predicted nodal real and
reactive power demand. The results show that more than 99%
of voltage and branch constraints are predicted correctly, and
omitting them results in a significant time-saving for solving
AC OPF. Further analysis of the very small fraction (less than
1%) of misclassified constraints shows that they are not heavily
binding.

We have tested several learning algorithms, generated
diverse samples to ensure that the learners observe various
patterns in the training phase, and trained learners with different
hyperparameters to obtain high-quality results with a low false-
negative percentage. Another reason for the low false negative
percentage is the small number of active constraints in power
systems optimization problems.

CONCLUSION

VIL

Advanced approaches, such as generative adversarial
networks [32-34], can be used to produce more realistic
operating scenarios to form a training database. Other
constraints such as transformers constraints, phase shifter
constraints, load shedding constraints, power electronic
converter constraints, capacitor banks, FACTS devices, and
battery storage constraints can be included in OPF, and
classifiers can be used to identify inactive constraints and drop
them from the optimization formulation. In addition, the
proposed algorithm can be applied to other power system
scheduling problems, such as unit commitment, to reduce their
computational burden.

A research direction is to investigate strategies for
penalizing false-negative classes in learners’ objective
functions to reduce the possibility of misclassification of true
active constraints. This would be useful for problems with a
high percentage of active constraints as compared to total
constraints. Another research direction is to develop combined
learning techniques and system models to consider grid
topology and generation cost changes in active/inactive
constraints prediction. This direction is suitable for the
application of the proposed algorithm on electricity market
problems. In addition, to enhance the solution speed for DC
OPF, one may identify the status of all inequality constraints
and then solve the first-order optimality conditions based on the
system of linear equations instead of solving a truncated DC
OPF using optimization techniques. Predicting the sets of active

FUTURE WORK
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and inactive constraints in the presence of uncertainties, such as
renewable sources, is another interesting research path.
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