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Abstract—The optimal power flow (OPF) problem contains many 

constraints. However, equality constraints and a limited set of 

inequality constraints encompass sufficient information to 

determine the problem feasible space. This paper presents a hybrid 

supervised regression-classification learning-based algorithm to 

predict active and inactive inequality constraints before solving 

AC OPF solely based on nodal power demand information. The 

proposed algorithm is structured using a mixture of classifiers and 

regression learners. Instead of directly mapping OPF results from 

demand, the proposed algorithm removes inactive constraints to 

construct a truncated AC OPF. This truncated optimization 

problem can be solved faster than the original problem with less 

computational resources. Numerical results on several test systems 

show the proposed algorithm’s effectiveness for predicting active 

and inactive constraints and constructing a truncated AC OPF.  

 

Keywords—Optimal power flow, machine learning, active 

constraint identification. 

NOMENCLATURE 

𝑔  Index for generators.  

𝑖, 𝑗 Index for buses. 

𝑙 Index for branches. 

𝑘 Index for demand samples. 

𝑛 Number of buses. 

𝐷 Nodal power demand vector. 

𝐹𝑚𝑎𝑥 Maximum branch flow. 

𝐺 Actual generation vector. 

𝑃𝑑, 𝑄𝑑 Real and reactive power demand. 

𝑝𝑑𝑖
𝐿  Minimum value of load at bus 𝑖. 

𝑝𝑑𝑖
𝑈  Maximum value of load at bus 𝑖. 

𝑝𝑔, 𝑞𝑔 Actual real and reactive power generation. 

𝑆 Complex power. 

𝑉𝑚 Voltage magnitude. 

𝜃𝑖 Voltage angle of bus 𝑖. 

𝑁𝐼𝑃, 𝑁𝐼𝑄 Actual net real and reactive power injection. 

ℎ𝑣(𝑥) Set of voltage constraints. 

ℎ𝑙(𝑥) Set of branch flow constraints. 

𝐴(⋅) Set of true active constraints. 

𝐴̃(⋅) Set of predicted active constraints by classifiers. 

𝑥̃ Predicted 𝑥 values by learners. 

𝛥𝑑𝑖 Maximum perturbation range for demand at bus 𝑖. 

I. INTRODUCTION 

PTIMAL power flow (OPF) is one of the main energy 

management functions that is solved every 5~15 minutes 

for power system scheduling and analysis [1, 2]. The size 

of the OPF problem depends on multiple factors, such as the 

number of buses and branches. Equality and inequality 

constraints represent power system characteristics and 

equipment. These constraints form the OPF feasible space (also 

known as feasible design space, feasible region, or design 

space). 

Because of the nonconvex and complex nature of AC OPF, 

solving this problem for large systems is computationally 

expensive and time-consuming. Various approaches have been 

proposed in the literature to reduce the computational cost of 

OPF. Since most OPF inequality constraints are inactive in most 

cases, one potential approach for relieving computational costs 

is to identify inactive constraints and omit them from the 

optimization. There are a few papers for the identification of 

active and inactive constraints for OPF applications. Most of 

these papers rely on mathematical and optimization approaches 

to identify OPF inactive constraints.  

As reported in [3], over 85% of branch constraints are 

inactive in security-constrained unit commitment (SCUC) 

problems. An analytical condition is developed to identify the 

set of inactive branch constraints for DC optimal power flow 

formulation. The concept of umbrella constraints is presented in 

[4] to describe the feasible set of DC OPF with necessary and 

sufficient constraints aiming at reducing the size of the problem. 

This reference presents a mathematical optimization method 

that finds the umbrella constraints. A method is proposed in [5] 

to reduce the number of security constraints in SCUC. An 

optimization-based bound tightening scheme is presented that 

solves multiple linear programs in parallel to identify redundant 

linear security constraints. Each linear program contains fewer 

constraints than the original SCUC. It is observed that roughly 

99% of constraints are redundant in real-world scenarios. The 

proposed algorithm requires network topology information and 

upper and lower bounds of nodal injection and branch flow 

limits. The algorithm is independent of unit commitment 

parameters and uncertain load values. Moreover, [6] proposes 

an iterative contingency search algorithm that can remove most 
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inactive transmission constraints from the SCUC problem. 

Linear sensitivity factors are used to find violated constraints. 

These approaches either solve sub-optimization problems or 

implement iterative search techniques to find active constraints. 

Some of these approaches, however, might be more 

computationally expensive than the original optimization 

problem. Also, they are mainly developed based on convex DC 

OPF, not nonconvex AC OPF. Solving AC OPF is becoming of 

more interest in the power system community. Hence, 

innovative approaches are required for active/inactive 

constraints identification for the AC OPF problem. 

This paper presents a combined learning and model-based 

algorithm to predict inequality constraints’ status before solving 

AC OPF and drop them from the optimization model to speed 

up the solution time. A hybrid supervised regression-

classification-based approach is proposed to identify active and 

inactive bus voltage and branch flow constraints of AC OPF in 

the learning phase. The proposed algorithm reads nodal real and 

reactive power demand as inputs and predicts a subset of 

inequality constraints with the aim of reducing the size of OPF. 

One regression learner is trained to project generating units’ 

production by reading demand information. The outputs of 

these learners are used along with demand information to train 

two classifiers, one for voltage constraints and another for 

branch flow constraints. As shown in Fig. 1, the proposed 

algorithm constructs a truncated AC OPF with a subset of 

inequality constraints predicted to be active at the optimal point. 

This makes the proposed algorithm different than several 

existing methods that directly predict OPF results from demand. 

The truncated and original AC OPF problems’ solutions are 

almost the same while solving the truncated optimization is 

much faster and needs less computational resources. The 

simulation results show the proposed algorithm’s effectiveness 

for identifying active constraints and constructing a truncated 

AC OPF.  

Proposed hybrid 

learning-based 

algorithm

All constraints set 

Complete ACOPF problem

Truncated 

ACOPF problem

Active 

constraints set

Active 

constraints set

 
Fig. 1. The proposed active constrains filtering strategy. 

 

The remainder of the paper is organized as follows. Section 

II provides an overview of machine learning applications in 

solving various OPF related problems. The proposed algorithm 

is presented in Section III. The used learners are explained in 

Section IV. Section V demonstrates the numerical simulation 

results. Section VI provides concluding remarks, and future 

work is discussed in Section VII. 

II. RELATED WORK     

Machine learning algorithms learn from observation and 

analysis without any external influence and map a function 

between input and target data [7]. Machine learning applications 

to solve power systems problems [8, 9], particularly OPF, has 

gained a growing interest in recent years [10]. Most published 

papers focus on the direct projection of OPF solution by 

machine learning tools using demand information as inputs to 

learners while ignoring the knowledge of the known 

mathematical structure of the OPF problem [11-15]. This 

approach works like a black-box that read demand and estimates 

OPF results. A supervised machine learning-based security-

constrained OPF framework is developed in [11] that uses 

multi-target regression to map the local information and 

generation dispatches. This framework uses local features as 

inputs to machine learning models. Reference [12] provides a 

direct mapping of OPF results using gradient boosting 

regression. Demand and production cost information is used as 

inputs to learners that predict the power and voltage of each 

generator. Nearest neighbor classification is used in [13] to 

provide an approximate unit commitment solution for market-

clearing without the need for computationally expensive unit 

commitment solvers. Demand and wind generation are inputs to 

learners, and unit commitment decisions are outputs. In [14], 

machine learning is applied to predict OPF results to regulate 

voltage and power flow in distribution grids. In [14] and [15], 

the proposed method implements a decentralized OPF based 

reactive power controller using multiple linear regression 

learners. This method is implemented on a system with multiple 

controllable distributed energy resources (DERs). In [16], a 

support vector machine (SVM) is used to implement the Volt-

VAR control scheme. Linear, polynomial, and radial basis 

function SVM kernels are compared by the lowest sample mean 

squared error. The OPF formulation considers the uncertainty 

coming from renewable energy sources and load. In [17], the 

authors have extended their work and presented a machine 

learning-based method to predict optimal settings of a 

centralized controller based on historical data. While only 

inverter-based DER reactive power controller is considered in 

[16], active power curtailment, controllable load shifting, and 

battery storage are taken into consideration in [17]. Reference 

[18] has proposed a machine learning-based approach for 

transient stability constrained OPF based on critical clearing 

time constraints. Multilayer feedforward neural network is used 

to compute the critical clearing time of the formulated OPF 

problem. Deep learning is used in [19] to predict OPF results. 

This approach is applicable if information about the previous 

system states is available to learners. 

Such direct estimations, however, do not precisely match 

with actual solutions. While a trained learner might provide 

good estimations for many loading conditions, it might not 

provide accurate enough solutions for many other demand 

scenarios. An immense training dataset might be required to 

reach an acceptable level of accuracy for learners. Even if the 

accuracy of direct OPF solution estimation is high, a small 

mismatch between projected and actual solutions may yield a 

suboptimal or infeasible outcome for the nonlinear, nonconvex 

AC OPF problem. This makes operators reluctant to deploy 

them for power systems operation. One may use a combined 

learning and model-based approach to reduce the possibility of 

suboptimality and infeasibility. The benefits of learning based 

warm start to solve AC OPF are presented in [20]. Instead of 
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solving OPF directly with machine learning, the demand 

information is used as inputs to learners to estimate the OPF 

solution. This solution is used as a starting point to solve the 

OPF problem. Although having a warm start enhances solution 

speed, this method does not reduce the size of the OPF problem 

that significantly impacts the computational complexity of AC 

OPF.  

An idea recently presented in a few papers is to use machine 

learning to predict inactive constraints rather than using 

machine learning tools as black boxes to predict OPF results 

directly [21-27]. In  [21, 22], an approach is presented to learn 

the mapping from uncertainty realization to the optimal 

solution. This approach avoids directly mapping the input to the 

optimal solution and instead uses active constraints at 

optimality as the mapping output. Reference [23] presents 

another approach to learn the set of active constraints at the 

optimal point using classification algorithms. A neural network 

classifier is used for learning the active sets. This paper deals 

with DC OPF and uses only classification learners. The authors 

of [24] have presented a learning-based method to predict 

umbrella constraints for an OPF problem. The umbrella 

constraints are necessary and sufficient constraints to cover the 

OPF feasible solution. References [25] and [26] present a 

learning-based chance-constrained approach to remove 

constraints with zero probability events from the AC OPF 

formulation for distribution networks. With statistical learning, 

the proposed framework reduces the computationally 

demanding joint chance constraints into a series of single 

chance constraints. Reference [27], which serves as a modified 

version of the algorithm presented in [6], uses machine learning 

to predict redundant transmission constraints, warm start, and 

an affine subspace that contains the optimal solution of SCUC. 

A combined learning and analytical model-based scheme is 

presented in [28] to predict congested transmission lines. A 

learner predicts generation values, and using linear sensitivity 

factors are used to estimate line flows. 

While these approaches are promising, they mainly focus on 

DC OPF. More sophisticated yet efficient algorithms are needed 

to detect inactive constraints of the AC OPF problem. These 

papers use the demand information and train a classifier(s) to 

identify the status of constraints.  A combination of regression 

and classification learners may enhance the accuracy of the 

constraint identification process. Motivated by this, we develop 

a hybrid regression-classification-based algorithm to identify 

the status of bus voltage and line flow constraints before solving 

the AC OPF problem. 

III. HYBRID REGRESSION-CLASSIFICATION ALGORITHM 

FOR INACTIVE CONSTRAINTS IDENTIFICATION 

A. Classical AC OPF Formulation  

The considered AC OPF problem, presented by (1a)-(1i), is 

adopted from [29]. The objective function is to minimize 

generation costs. Nodal power balance constraints are given by 

(1b) and (1c). Constraints (1d) and (1e) enforce flow limits at, 

respectively, line sending and receiving terminals. The upper 

and lower bounds of generating units are imposed by (1f) and 

(1g). Inequalities (1h) and (1i) are bus voltage magnitude and 

angle limits.  

min 𝑓(𝑝) =∑𝑎𝑔 ⋅ 𝑝𝑔
2 + 𝑏𝑔 ⋅ 𝑝𝑔 + 𝑐𝑔

𝑔

                  (1𝑎) 

𝑠. 𝑡. 

𝑔𝑝(𝜃, 𝑉𝑚, 𝑝𝑔) = 𝑃𝑏𝑢𝑠(𝜃, 𝑉𝑚) + 𝑃𝑑 − 𝑝𝑔 = 0        (1𝑏) 

𝑔𝑞(𝜃, 𝑉𝑚, 𝑞𝑔) = 𝑄𝑏𝑢𝑠(𝜃, 𝑉𝑚) + 𝑄𝑑 − 𝑞𝑔 = 0       (1𝑐) 

ℎ𝑙𝑠(𝜃, 𝑉𝑚) = |𝐹𝑙𝑠(𝜃, 𝑉𝑚)| − 𝐹𝑚𝑎𝑥 ≤ 0                      (1𝑑) 

ℎ𝑙𝑟(𝜃, 𝑉𝑚) = |𝐹𝑙𝑟(𝜃, 𝑉𝑚)| − 𝐹𝑚𝑎𝑥 ≤ 0                    (1𝑒) 

𝑝𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔 ≤ 𝑝

𝑔
𝑚𝑎𝑥                    ∀𝑔             (1𝑓) 

𝑞𝑔
𝑚𝑖𝑛 ≤ 𝑞𝑔 ≤ 𝑞𝑔

𝑚𝑎𝑥                    ∀𝑔             (1𝑔) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥                    ∀𝑖              (1ℎ) 

𝜃𝑖
𝑟𝑒𝑓

 ≤ 𝜃𝑖 ≤ 𝜃𝑖
𝑟𝑒𝑓

                     ∀𝑖               (1𝑖) 

B. Constraints Status Identification  

The status of inequality constraints is not known before 

solving OPF. All inequality constraints are included in the 

original OPF problem. The status of constraints will be known 

after solving the problem. If at the optimal point 𝑥∗, an inequity 

ℎ(𝑥) ≤ 0 is satisfied as ℎ(𝑥∗) = 0, this constraint is called 

active or binding, otherwise inactive. To construct a truncated 

OPF, inactive inequality constraints should be detected and 

omitted from the optimization problem before solving the 

problem. Detecting active and inactive constraints can be cast 

as a binary classification problem. If  ℎ(𝑥∗) = 0, it can be 

labeled as 1, and if ℎ(𝑥∗) < 0, it can be labeled as 0.  

Without loss of generality, we focus on identifying the status 

of bus voltage magnitude and branch flow constraints. These 

two sets of inequalities have high impacts on OPF computation 

cost. The total number of voltage magnitude and branch flow 

constraints is higher than that of other OPF inequalities, e.g., 

generators’ upper and lower bounds. The majority of these two 

sets of constraints are inactive under various loading conditions. 

This is not a valid argument for generator limits as many of 

these controllable devices’ constraints might be active under 

several loading conditions.  

 The goal is to predict constraints status before solving OPF 

using only nodal demand values. For brevity, we represent 

branch flow constraints (1d) and (1e) and voltage magnitude 

constraints (1h) in compact forms as follows: 

ℎ𝑙(𝑥): = {ℎ𝑙𝑠(𝜃, 𝑉𝑚); ℎ𝑙𝑟(𝜃, 𝑉𝑚)}                         (2) 

ℎ𝑣(𝑥): = {𝑉𝑖
𝑚𝑖𝑛 − 𝑉𝑖 ≤ 0; 𝑉𝑖 − 𝑉𝑖

𝑚𝑎𝑥 ≤ 0}        (3)  

Since the bus voltage and branch flow constraints are 

inherently different, we train two separate classifiers with one 

for bus voltage constraints and another for branch flow 

constraints.  

Dataset Preparation: Before solving OPF, demand 

information is available. The following demand vector 𝐷 is the 

input for learners.      

𝑃𝑑 = [𝑝𝑑1, 𝑝𝑑2 , … , 𝑝𝑑𝑛]
𝑇                     (4a) 

𝑄𝑑 = [𝑞𝑑1, 𝑞𝑑2, … , 𝑞𝑑𝑛]
 𝑇                    (4b) 
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        𝐷 = [
𝑃𝑑
𝑄𝑑

]                                             (4c) 

To cover possible loading situations that may occur during 

system operation in the training phase, we generate a set of 

demand scenarios as follows: 

𝑝𝑑𝑖
𝑘 = [𝑝𝑑𝑖

𝐿 + 𝜂𝑝(𝑘) ⋅ 𝛥𝑑𝑖]       ∀𝑘              (5a) 

𝑞𝑑𝑖
𝑘 = [𝑞𝑑𝑖

𝐿 + 𝜂𝑞(𝑘) ⋅ 𝛥𝑑𝑖]       ∀𝑘              (5b) 

 𝛥𝑑𝑖 = 𝑝𝑑𝑖
𝑈 − 𝑝𝑑𝑖

𝐿                                       (5c) 

where 𝜂𝑝(⋅) and 𝜂𝑞(⋅) follows a uniform distribution between 0 

and 1. The perturbation range 𝛥𝑑𝑖 depends on the possible 

minimum (𝑃𝑑
𝐿) and maximum (𝑃𝑑

𝑈)  nodal demand values. For 

each demand scenario, OPF is solved and active and inactive 

bus voltage (𝐴(ℎ𝑣(𝑥))) and branch flow constraints (𝐴(ℎ𝑙(𝑥))) 
are identified and stored for training. Demand scenarios 

resulting in infeasible OPF are omitted.  

Two different nonidentical demand datasets are generated. As 

shown in Fig. 2, demand scenarios in dataset 1 are used to train 

a regressor (ℒℜ). Demand scenarios in dataset 2, along with their 

predicted generation values obtained from ℒℜ, are the training 

set for classifiers (ℒ𝒞𝒱 and ℒ𝒞ℬ). Using one dataset for all 

learners means that ℒℜ is trained and then utilized with the same 

dataset, which is not logical. 

 

Training regression learner          

.      for predicting       and      .

[𝑷𝒈;𝑸𝒈] 

[𝑷𝒅;𝑸𝒅] 
(𝓛𝓡) 

Input features 

Target features 

𝑷𝒈 𝑸𝒈 

Dataset 1

 
(a) 

 

Training classification 

learner 1          for voltage 

magnitude constraints

Training classification 

learner 2          for branch 

flow constraints

𝑨(𝒉𝒍(𝒙)) 

𝑨(𝒉𝒗(𝒙)) 

[𝑃 𝑔 ;𝑄 𝑔] 

Target features 

Target features 

[𝑷𝒅;𝑸𝒅] 

Input features 
𝓛𝓡 Trained 

Dataset 2

(𝓛𝓒𝓥) 

(𝓛𝓒𝓑) 

 
(b) 

𝑨 (𝒉𝒗(𝒙)) 

𝑨 (𝒉𝒍(𝒙)) 

𝓛𝓡 Trained 
[𝑷𝒅;𝑸𝒅] 

Demand scenario 
[𝑷 𝒈;𝑸 𝒈] 

Trained 𝓛𝓒𝓥 

Trained 𝓛𝓒𝓑 

 
(c) 

Fig. 2. Block diagram of a) regressor (ℒℜ) training procedure, b) classifiers (ℒ𝒞𝒱 

and ℒ𝒞ℬ) training procedure and c) Utilization of trained learners. 

Proposed Training Structure: The status of voltage and 

branch flow constraints depends on demand values and 

generating units’ production. Generation values are not known 

before solving OPF. As shown in Fig. 2a, regression learner ℒℜ 

is dedicated to predicting generation values by reading power 

demand. The input and target vectors of ℒℜ are demand vector 

𝐷 and [𝑃𝑔; 𝑄𝑔], ∀𝑔. Several buses have neither load nor 

generation. Having these buses in nodal demand and generation 

vectors provides no meaningful information for the learner as 

their corresponding entries are always zero. Only demand buses 

are used to form input vector 𝐷.  

By training one regressor for predicting both 𝑃 𝑔 and 𝑄 𝑔, the 

learner may capture the interaction between real and reactive 

powers and better understand generator dynamics. Once trained, 

ℒℜ will predict real (𝑃 𝑔) and reactive (𝑄 𝑔) power generated by 

each unit for each demand scenario.  

𝑃 𝑔 = [𝑝̃𝑔1, 𝑝𝑔2, ⋯ , 𝑝𝑔𝑛]
𝑇
                     (6a) 

𝑄 𝑔 = [𝑞̃𝑔1, 𝑞̃𝑔2, ⋯ , 𝑞̃𝑔𝑛]
𝑇
                    (6b) 

    𝐺 = [
𝑃 𝑔

𝑄 𝑔
]                                             (6c) 

Vector 𝐷 and predicted nodal power generation 𝐺  are used 

to form a net nodal power injection vector (𝑁𝐼̃). 

𝑁𝐼̃𝑃 = [𝑝𝑔1 − 𝑝𝑑1, 𝑝𝑔2 − 𝑝𝑑2 , … , 𝑝𝑔𝑛 − 𝑝𝑑𝑛]
𝑇
     (7a) 

𝑁𝐼̃𝑄 = [𝑞̃𝑔1 − 𝑞𝑑1, 𝑞̃𝑔2 − 𝑞𝑑2, … , 𝑞̃𝑔𝑛 − 𝑞𝑑𝑛]
𝑇
    (7b) 

𝑁𝐼̃ = [
𝑁𝐼̃𝑃
𝑁𝐼̃𝑄

]                              (7c) 

We train two classifiers for each system, a bus voltage 

constraint classifier (classifier 1 or ℒ𝒞𝒱 in Fig. 2b) and a branch 

constraint classifier (classifier 2 or ℒ𝒞ℬ in Fig. 2b). The input 

vector to  ℒ𝒞𝒱 and ℒ𝒞ℬ  is 𝑁𝐼̃, and their targets are 𝐴(ℎ𝑣(𝑥)), and 
𝐴(ℎ𝑙(𝑥)). As shown in Fig. 2 (c), classifiers read the regressor 

predicted generations to predict constraints’ status. The regressor 

predicts generation values 𝐺  for each demand scenario in dataset 

2. The predicted generation values and demand scenarios in 

dataset 2 are used to form the net injection vector  𝑁𝐼̃ = [
𝑁𝐼̃𝑃
𝑁𝐼̃𝑄

] =

[
𝑃 𝑔 − 𝑃𝑑

𝑄 𝑔 − 𝑄𝑑

] for training ℒ𝒞𝒱 and ℒ𝒞ℬ. By doing so, the classifiers 

are trained and also utilized by predicted generation values rather 

than become trained with actual generation and then utilized with 

predicted generation values. This procedure would enhance the 

accuracy of ℒ𝒞𝒱 and ℒ𝒞ℬ. The pseudocode to train the learners 

is represented in Algorithm I.  

Algorithm I Pseudocode for training learners 
1. Dataset 1: Generate a set of demand scenarios 𝑃𝐷(𝜂𝑝) and 𝑄𝐷(𝜂𝑞) by 

(5), and form 𝐷1 = [
𝑃𝑑
𝑄𝑑

] 

2. Solve original OPF for each scenario in 𝐷1 and drop infeasible cases   

3. Form 𝐺 = [
𝑃𝑔
𝑄𝑔

] 

4. Train ℒℜ using 𝐷 (input) and 𝐺 (target) in dataset 1 
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5. Dataset 2: Generate a set of new 𝑃𝐷(𝜂𝑝) and 𝑄𝐷(𝜂𝑞) by (5) and form 

𝐷2 = [
𝑃𝑑
𝑄𝑑
] 

6. Solve original OPF for each scenario in 𝐷2 and drop infeasible cases   

7. Identify 𝐴(ℎ𝑣(𝑥)) and 𝐴(ℎ𝑙(𝑥)) corresponding to each scenario in 𝐷2 

8. Use ℒℜ to predict 𝐺 = [
𝑃 𝑔

𝑄 𝑔
] to each scenario in 𝐷2 

9. Form  𝑁𝐼̃ = [
𝑁𝐼̃𝑃
𝑁𝐼̃𝑄

] = [
𝑃 𝑔 − 𝑃𝑑

𝑄 𝑔 − 𝑄𝑑

] 

10. Train ℒ𝒞𝒱 using  𝑁𝐼̃ as input and 𝐴(ℎ𝑣(𝑥)) as target 

11. Train ℒ𝒞ℬ using 𝑁𝐼̃ as input and 𝐴(ℎ𝑙(𝑥)) as target 

Utilization Procedure: The utilization procedure of the 

proposed algorithm is demonstrated in Fig. 2c. For a given 

demand, 𝑃 𝑔 and 𝑄 𝑔 are determined by the trained ℒℜ. The given 

𝐷 and the predicted 𝐺  will be used to form vector 𝑁𝐼̃ that is the 

input of the trained ℒ𝒞𝒱 and ℒ𝒞ℬ. The output of ℒ𝒞𝒱 is active 

bus voltage constraints (𝐴̃(ℎ𝑣(𝑥))), and ℒ𝒞ℬ predicts active 

branch flow constraints (𝐴̃(ℎ𝑙(𝑥))). 𝐴̃(ℎ𝑣(𝑥)) and 𝐴̃(ℎ𝑙(𝑥)) 
will be used to construct a truncated optimization design space 

and consequently a truncated OPF problem as: 

min∑𝑎𝑔 ⋅ 𝑝𝑔
2 + 𝑏𝑔 ⋅ 𝑝𝑔 + 𝑐𝑔

𝑔

                  (8𝑎) 

𝑠. 𝑡. 

      𝐴̃(ℎ𝑣(𝑥)) ≤ 0                                            (8𝑏) 

𝐴̃(ℎ𝑙(𝑥)) ≤ 0                                              (8𝑐) 

𝑥 ∈ 𝜒 

where 𝜒 represents all other constraints except for bus voltage 

magnitude and branch flow constraints. Suppose all required 

inequality constraints are predicted correctly. In that case, the 

truncated OPF problem is equivalent to the original OPF while 

its size is smaller. The pseudocode to utilize the proposed 

regression-classification technique to form the truncated OPF is 

as follows.  

Algorithm II Utilization Algorithm 

1. For a given demand vector 𝐷 = [
𝑃𝑑
𝑄𝑑

], run ℒℜ to determine 𝐺 = [
𝑃 𝑔

𝑄 𝑔
] 

2. Form  𝑁𝐼̃ = [
𝑁𝐼̃𝑃
𝑁𝐼̃𝑄

] = [
𝑃 𝑔 − 𝑃𝑑

𝑄 𝑔 − 𝑄𝑑

]  using 𝐷 and 𝐺   

3. Use 𝑁𝐼̃ as input to ℒ𝒞𝒱 and ℒ𝒞𝐵 and identify 𝐴̃(ℎ𝑣(𝑥)) and 𝐴̃(ℎ𝑙(𝑥)) 

4. Formulate truncated AC OPF using 𝐴̃(ℎ𝑣(𝑥)), 𝐴̃(ℎ𝑙(𝑥)), and 𝜒 

5. Minimize (8a) subject to (8b), (8c), and 𝜒 

One may use ℒℬ of Fig. 2 to predict 𝑃 𝑔 and 𝑄 𝑔 and then 

formulate and solve a modified AC power flow instead of a 

truncated AC OPF. Although solving AC power flow is easier 

than solving the truncated AC OPF, even a slight error in 𝑃 𝑔 and 

𝑄 𝑔 might make AC power flow results suboptimal and, more 

importantly, endanger power flow feasibility. 

IV. SELECTING LEARNING APPROACH AND ALGORITHM 

Supervised learning approaches are selected to train ℒℛ, 

ℒ𝒞𝒱, and ℒ𝒞ℬ in Fig. 2. Various supervised machine learning 

approaches are available. Among them, neural networks (NNs) 

have shown promising performance. NNs have outperformed 

many other machine learning algorithms in recommendation 

systems, speech and image recognition, natural language 

processing, etc. Support vector machine (SVM) with quadratic 

and Gaussian functions, Gaussian process regression with 

exponential and quadratic kernels, and ensemble learning with 

bagging and boosting methods are examined for regression 

learners. Also, SVM with coarse quadratic and Gaussian 

functions, the k-nearest neighbor with coarse and weighed 

techniques, discriminant analysis with linear and quadratic 

functions, and Naïve Bayes are tested for classification learners. 

It is observed that while the performance of these approaches is 

suitable for small power systems, their performance degrades 

by increasing the size of the system. Also, cases are observed in 

which these learners failed to map a function between the input 

and output AC OPF training datasets (these tests and analyses 

are performed using MATLAB machine learning toolbox). 

Neural networks are used to train ℒℛ, ℒ𝒞𝒱, and ℒ𝒞ℬ for 

power systems with different sizes, and promising results are 

obtained for the regressor and classifiers.  Hence, we have 

selected NN for regression and constraints classification. Using 

activation functions, NN can effectively capture the 

nonlinearity and complexity of problems, such as AC OPF. A 

fully connected NN with mini-batch gradient descent is used for 

ℒℛ, ℒ𝒞𝒱, and ℒ𝒞ℬ. For ℒℛ, rectified linear units (ReLU) are used 

in hidden layers, and linear activation functions are used for the 

output layer. For ℒ𝒞𝒱, and ℒ𝒞ℬ, ReLU is used in hidden layers, 

and the sigmoid function is used for the output. In the case of 

linear activation function, the output is proportional to the 

provided input (𝑋(𝑧) = (𝑚𝑍)) whereas, based on the input, the 

sigmoid activation function provides the output between 0 and 

1 (𝑋(𝑧) =
1

1+𝑒−𝑍
). The derivative of the activation function is 

used in the error backpropagation algorithm, which is a process 

to optimize each neuron’s weights. The loss function of ℒℛ is 

the mean squared error (MSE).  

𝑀𝑆𝐸 =
∑ (𝑋𝑘 − 𝑋 𝑘)

2𝐾
𝑘=1

𝐾
                        (9) 

Both real and reactive power are combinedly used to update 

the weights (
∑ [(𝑃𝑔

𝐾−𝑃 𝑔
𝐾)

2
+(𝑄𝑔

𝐾−𝑄 𝑔
𝐾)]𝐾

𝑘=1

𝐾
). Adam optimizer is used 

to find the optimal weight values and train the learners. Various 

architectures are tested with different numbers of layers, epochs, 

and batch sizes. Figure 3 illustrates the results obtained by 

regressors with different numbers of hidden layers. Merely 

increasing the number of layers does not improve the prediction 

accuracy for all systems. One hidden layer is selected for 

minimalistic learners. Table I depicts the learners’ architecture 

and hyperparameters used in this paper. Although we have 

obtained promising results with these simple architectures, one 

can use more complex architectures to obtain better results. 
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Fig. 3. Root mean square (RMS) error comparison of different NN regression 

architectures. 

 

Classifier Loss Function: Training a neural network is based 

on solving an optimization problem to find a loss function’s best 

weights. For a typical binary classification problem, the 

conventional loss function is binary cross-entropy. Although 

this function works well for many problems, it may not show 

good performance for imbalanced datasets [30]. Since most 

voltage and line flow constraints are inactive, the percentage of 

inactive constraints in dataset 2 is much higher than that of 

active constraints. Due to this imbalance, the model tends to be 

overfitted to the class with a higher percentage in the dataset, 

i.e., inactive class.  

To avoid this bias, 𝐹𝛽 score is used as the classification loss 

function. Hyperparameter 𝛽 controls the importance of 

precision and recall. Maximizing recall minimizes the number 

of false negatives (FNs), and maximizing precision reduces 

false positives (FPs). The objective is to improve recall without 

hurting precision, which is conflicting. As reliability is critical 

for power, reducing the percentage of FN is desirable. We set 

𝛽=2.  
 

𝐹𝛽 = (1 + 𝛽2)
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙

=
(1 + 𝛽2) ⋅ 𝑇𝑃

(1 + 𝛽2) ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝛽2 ⋅ 𝐹𝑁)
(10) 

 

where  

Precision / Positive predictive value (PPV) =
𝑇𝑃

𝐹𝑃+𝑇𝑃
      (11a) 

Recall / True positive rate (TPR) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
.                     (11𝑏) 

 

Data Scaling: An important preprocessing step before 

training the learners is data scaling, e.g., normalization and 

standardization. This step improves the numerical stability of 

calculations and enhances the prediction accuracy. The data are 

normalized by (12).  

 

𝑋𝑛𝑜𝑟𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                        (12) 

V. NUMERICAL RESULTS 

The proposed algorithm’s effectiveness for detecting active 

and inactive constraints is tested on several small, medium, and 
 

TABLE I 

ARCHITECTURE OF TRAINED NNS 

Learner Training parameters 
Activation 

function 

Loss 

function 
Optimizer 

Regressor 

ℒℛ 

Hidden layer=1 

Neuron=256 

Epochs=1000 (with 

early stopping and 

patience =100), 

Batch size=100 

Validation split=20% 

ReLU 

& 

Linear 

MSE Adam 

Classifier 

ℒ𝒞𝒱, ℒ𝒞ℬ 

Hidden layer=1 

Neuron=256 

Epochs=1000 (with 

early stopping and 

patience =100), 

Batch size=100 

Validation split=20% 

ReLU 

& 

Sigmoid  

F2 Loss Adam 

 

large systems. Test systems are adopted from the standard 

PGLib-OPF benchmark library [31]. MATPOWER interior 

point solver is used to solve OPF [29]. Python (v3.7.3) based 

Keras framework (v2.3.1) is used with TensorFlow to trained 

learners. Simulations are carried out on a personal computer 

with a 3.70 GHz Intel(R) Xeon(R) CPU, eight cores, and 16 GB 

of RAM. We have posted our code on GitHub and have 

uploaded the data used in numerical studies to IEEE DataPort 

as an open access dataset (DOI: 10.21227/kege-qv50). 

A.  Average Number of Active and Inactive Constraints 

Table II shows the number of voltage and branch constraints 

for the original OPF and truncated OPF problems. The second 

column shows the total number of voltage and branch 

constraints, and the third column depicts the average number of 

active voltage and branch constraints under various loading 

conditions. For the 39-bus system, for instance, the total number 

of voltage and branch constraints are 78 and 92, respectively, 

out of which, on average, five voltage constraints and two 

branch flow constraints are active. It is observed that larger 

systems have a higher percentage of inactive constraints. This 

shows the potential advantage of detecting active constraints to 

construct a truncated OPF problem instead of the original OPF. 

For the 39-bus and 118-bus systems, for instance, the number 

of constraints of the truncated OPF problem is on average 55% 

(including all equality and inequality constraints of (1)) less 

than that of the original OPF.  

 

TABLE II 

NUMBER OF TOTAL CONSTRAINTS AND ACTIVE CONSTRAINTS FOR SEVERAL 

TEST SYSTEMS 

 

System 

Original OPF 

(Voltage, 

Branch flow) 

Truncated 

OPF 

(Active 

Voltage, 

Branch flow) 

Inactive, Active 

case39_epri 78, 92 5, 2 96%, 4 % 

case118_ieee 236, 372 12, 2 99%, 1 % 

case300_ieee 600,822 32,3 97.5%,2.5% 

case500_tamu 1000,1192 16,4 99%,1% 

case1354_pegase 2708, 3982 50, 20 99%, 1% 
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B.  Inactive Constraints Identification by Proposed Hybrid 

Algorithm 

Training: Nodal power demand is varied using uniform 

random distribution to generate possible demand scenarios over 

a long operation horizon. Table III shows the load perturbation 

range (Δ𝑑) as compared to MATPOWER baseload. The range is 

obtained by monotonically decreasing and increasing the base-

case load until the simulation fails to converge. This range is 

narrower for the larger systems. OPF is solved for each demand 

scenario. One regression learner is trained for each system. As 

shown in Table IV, the length of the output of ℒℜ is equal to 

twice the number of generators, whereas the length of the output 

of  ℒ𝒞ℬ (ℒ𝒞𝒱 ) is equal to the number of branches (buses). Active 

voltage and branch flow constraints are labeled as ‘1’, and 

inactive constraints are labeled as ‘0’ during the preparation of 

datasets. Two classifiers are trained for each test system. We 

have used the same architecture for all learners for ease of 

replicating simulations and to show the proposed algorithm 

performance with simple machine learning architectures. 

 

TABLE III 

SYSTEM PARAMETERS AND RANGE OF VARIATION OF LOAD 

System 
 

NB/NL/NG 
Δ𝑑 

No. of scenarios 

Regressor 

(dataset1) 

Classifier 

(dataset2) 

Testing 

 

case39 39/46/10 
70% to 

130% 
2000 2000 882 

case118 118/186/54 
70% to 

130% 
2000 2000 2000 

case300 300/411/69 
92% to 

104% 
2000 2000 1641 

case500 500/597/90 
70% to 

109% 
2000 2000 3000 

case1354 
1354/1991/

260 

70% to 

110% 
1500 1500 1200 

* NB/NL/NG stands for number of Node, Branch, and Generator, respectively 

TABLE IV 

INPUT AND OUTPUT LENGTHS OF LEARNERS 

System 
Regressor (ℒℜ) Classifiers (ℒ𝒞𝒱, ℒ𝒞ℬ) 

𝐷 𝑃𝑔; 𝑄𝑔 𝑁𝐼 ℎ𝑣 ℎ𝑙 

case39_epri 42 10*2 78 39 46 

case118_ieee 189 54*2 236 118 186 

case300_ieee 374 69*2 600 300 411 

case500_tamu 400 90*2 1000 500 597 

case1354_pegase 1332 260*2 2708 1354 1991 

Testing: The size of training and test datasets for each studied 

system is provided in Table III. We use different train-test split 

ratios. Common ratios are 80%-20%, 70%-30%, and 50%-50%. 

We have used split ratios with more test scenarios to validate 

trained learners under various loading conditions. For each test 

scenario, the original OPF problem is solved to determine the 

actual active/inactive constraints. The proposed hybrid 

algorithm is also applied to predict active/inactive constraints. 

Four primary indices are introduced to interpret predicted results 

and analyze the accuracy of the proposed algorithm. 

• True positives (TP) are cases in which a constraint is 

predicted to be ACTIVE and its actual status is also 

ACTIVE. 

• True negatives (TN) are cases in which the prediction is 

INACTIVE and the actual output is INACTIVE. 

• False positives (FP) are cases in which the prediction is 

ACTIVE but the actual output is INACTIVE (type I error). 

• False negatives (FN) are cases in which the prediction is 

INACTIVE but the actual output is ACTIVE (type II error). 

In addition, we use the following statistical metrics to analyze 

the quality of the truncated OPF in detail.  

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                 (13𝑎) 

Misclassification=
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                    (13𝑏) 

False negative rate (FNR)=1 − 𝑇𝑃𝑅                               (13𝑐) 

True negative rate (TNR)/specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
               (13𝑑) 

False positive rate (FPR)=1-TNR                                 (13𝑒) 

False discovery rate (FDR)=1-PPV                                (13𝑓)  

Negative predictive value, NPV=
𝑇𝑁

𝐹𝑁+𝑇𝑁
                    (13𝑔) 

 False omission rate (FOR)=1-NPV                              (13ℎ) 

Tables V and VI show these indices for several test systems. We 

have selected the Pegase 1354-bus test system and constructed a 

confusion matrix shown in Fig. 4. Each test scenario contains 

2708 upper/lower bus voltage magnitude constraints and 3982 

sending/receiving branch flow limits. Hence, for 1200 test 

scenarios, the actual and predicted status of 2708×1200 voltage 

and 3982×1200 branch flow constraints are observed to 

calculate the indices shown in Fig. 4. Green blocks in the second 

column of Figs. 4a and 4b show that 97.9% of bus voltage 

constraints and 96.4% of branch constraints are true negatives, 

which means they are correctly predicted to be inactive. In the 

third column, green blocks depict that 0.84% and 0.53% of 

voltage and branch constraints are true positives, which means 

they are correctly predicted to be active. As shown in orange 

blocks in the second column, 1.2% of voltage constraints and 

3.1% of branch constraints are misclassified to be active. This is 

the type I error (false positives), meaning these actual inactive 

constraints are predicted to be active and included in the 

truncated OPF. This is not critical as these few constraints do not 

change the truncated feasible space (i.e., do not change the OPF 

solution) and have no considerable impact on the computational 

burden of the truncated OPF. The type II error (false negative), 

meaning actual active constraints are predicted to be inactive, is 

undesirable. As shown in orange blocks in the third column of 

confusion matrices, the type II error is close to zero percent. TPR 

for voltage and branch flow constraints is 97.9% and 100%, 

showing that roughly most actual active constraints are 

predicted to be active. TNR pertaining to voltage and branch 

constraints is 98.8% and 96.9%, respectively, showing the 

percentage of actual inactive constraints predicted to be 

inactive. NPV for both voltage and branch flow constraints is 

roughly 100% showing that most predicted inactive constraints 

are truly inactive. The misclassified constraints are mainly FP 

that means no important information is lost from the feasible 

space of the truncated OPF. Therefore, the solution of the 

https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values
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constructed truncated OPF will be similar to the solution of the 

complete OPF formulation.  

 
 Actual inactive Actual active  

Predicted 

inactive 

3182349 

97.9% 

True negative 

588 

0.01% 

False 

negative 

NPV=99.9% 

FOR=0.1% 

Predicted 

active 

39280 

1.2% 

False positive 

27383 

0.84% 

True positive 

PPV=41.1% 

FDR=58.9% 

 
TNR=98.8% 

FPR=01.2% 

TPR=97.9% 

FNR=2.1% 

Accuracy = 98.8% 

Misclassification 

=1.2 % 

(a) 

 Actual inactive Actual active  

Predicted 

inactive 

3132262 

96.4% 

True negative 

0 

0% 

False negative 

NPV=100% 

FOR=0.0% 

Predicted 

active 

100024 

3.1% 

False positive 

17314 

0.53% 

True positive 

PPV=14.7%% 

FDR=85.3% 

 
TNR=96.9% 

FPR=3.1% 

TPR=100% 

FNR=0% 

Accuracy=96.9% 

Misclassification 

=3.1% 

(b) 

Fig. 4. Confusion matrices for the Pegase 1354-bus system a) voltage constraints 

and b) branch flow constraints. 

Tables V and VI show that the FN index for all cases is 

negligible. We have observed a few misclassified voltage 

constraints. A detailed analysis reveals that these constraints are 

not heavily binding. Although no FN misclassification is 

observed for most of the studied cases, it is not guaranteed that 

the solution of truncated OPF always matches that of the original 

OPF. In such cases with nonzero FN, the solution of truncated 

OPF might be infeasible for the original OPF. An iterative 

constraints generation approach can be used along with the 

predicted constraints to ensure the solution feasibility.  

The average cost gap is used as an index to measure how 

close the truncated and original OPF solutions are.  

Cost Gap% =
|𝑓𝑇−𝑂𝑃𝐹 − 𝑓𝑂𝑃𝐹|

𝑓𝑂𝑃𝐹
× 100         (14) 

The smaller the index is, the more accurate the solution of the 

truncated OPF will be. The values reported in Table VII show 

that the truncated OPF (T-OPF) solution is very close to that of 

the original OPF. 

 
TABLE VII 

COST GAP OF TRUNCATED OPF  

System Cost gap 

case39_epri 4e-06% 

case118_ieee 3e-07% 

case300_ieee 5.9e-05 

case500_tamu 7.5e-07 % 

case1354_pegase 3e-05% 

Table VIII shows the number of iterations of the interior 

point method and computation time. OPF is solved for all test 

scenarios (the number of scenarios is given in Table III). The 

total runtime, the average runtime, and the average number of 

iterations per scenario are reported. The time for learners to 

identify active/inactive constraints is comparatively much lower 

than OPF runtime, and thus, is neglected. The time-saving 

values are in comparison with the original OPF. The number of 

iterations does not decrease significantly. However, since the 

number of function evaluations per iteration reduces by 

omitting inactive constraints, the solution time per iteration and 

the total time decrease. The average time of each iteration can 

be calculated by dividing the total time by the number of 

iterations. For instance, for the IEEE 118-bus system, the 

average time of each iteration of the interior point method 

decreases from 6.7ms for the original OPF to 5ms for the 

truncated OPF, a 30% time-saving. 

In summary, Tables VII and VIII show the promising 

advantage of the proposed algorithm for reducing the AC OPF 

problem’s computation time while providing a very high 

accurate solution.  

 
TABLE VIII 

ITERATION NUMBERS AND TIME-SAVING  

Systems 

Solution time (s) 

(Total/avg) 

Number of 

iterations (Avg)  

 Time-

saving 

OPF T-OPF OPF T-OPF 

case39 53/0.06 35/0.04 16 14 33% 

case118 200/0.10 140/0.07 15 14 30% 

case300 583/0.355 361/0.22 35 25 38% 

case500 1170/0.39 750/0.25 25 18 35% 

case1354 2640/2.20 1800/1.50 42 38 32% 

TABLE V 

PREDICTION ACCURACY MEASUREMENTS OF THE PROPOSED ALGORITHM FOR VOLTAGE CONSTRAINTS CLASSIFICATION 

systems FN FP TN TP NPV PPV TPR TNR Misclassification Accuracy 

case39_epri 0.01% 4.4% 88% 7.2% 99.8% 61.6% 98.3% 95.1% 4.6% 95.4% 

case118_ieee 0.001% 1.0% 9.2% 4.6% 99.8% 80.8% 97.7% 98.8% 1.2% 98.8% 

case300_ieee 0.05% 1.7% 92.9% 5.3% 99.9% 75.8% 99.0% 98.2% 1.8% 98.2% 

case500_tamu 0.02% 1.1% 97.2% 1.5% 99.9% 57.2% 98.8% 98.8% 1.2% 98.8% 

case1354_pegase 0.01%  1.2% 97.9% 0.84% 99.9% 41.1% 97.9% 98.8% 1.2% 98.8% 

 
TABLE VI 

PREDICTION ACCURACY MEASUREMENTS OF THE PROPOSED ALGORITHM FOR BRANCH CONSTRAINTS CLASSIFICATION 

systems FN FP TN TP NPV PPV TPR TNR Misclassification Accuracy 

case39_epri 0% 0.03% 97.4% 2.5% 99.9% 98.5% 99.9% 99.9% 0.1% 99.9% 

case118_ieee 0.02% 0.09% 99.0% 0.84% 99.9% 90.1% 96.8% 99.9% 0.1% 99.9% 

case300_ieee 0% 0.04% 99.3% 0.65% 100% 94.3% 100% 99.9% 0.1% 99.9% 

case500_tamu 0% 0.58% 98.9% 0.41% 99.9% 41.7% 98.8% 99.4% 0.6%    99.4% 

case1354_pegase 0% 3.1% 96.4% 0.53% 100% 14.7% 100% 96.9% 3.1% 96.9% 
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VI. CONCLUSION 

This paper presents a hybrid regression-classification 

algorithm to identify the active and inactive voltage and branch 

flow constraints for OPF before solving the optimization 

problem. It is observed that the majority of voltage and branch 

flow constraints are inactive, even if the system load changes, 

and have no impact on the OPF solution. The proposed learning 

algorithm identifies inactive inequality constraints and creates a 

truncated OPF problem. This algorithm reduces the size of the 

OPF problem and its computation costs. The simulation studies 

show that the proposed algorithm can efficiently and quickly 

separate active and inactive bus voltage and branch flow 

constraints based on reading the predicted nodal real and 

reactive power demand. The results show that more than 99% 

of voltage and branch constraints are predicted correctly, and 

omitting them results in a significant time-saving for solving 

AC OPF. Further analysis of the very small fraction (less than 

1%) of misclassified constraints shows that they are not heavily 

binding.  

We have tested several learning algorithms, generated 

diverse samples to ensure that the learners observe various 

patterns in the training phase, and trained learners with different 

hyperparameters to obtain high-quality results with a low false-

negative percentage. Another reason for the low false negative 

percentage is the small number of active constraints in power 

systems optimization problems.  

VII. FUTURE WORK 

Advanced approaches, such as generative adversarial 

networks [32-34], can be used to produce more realistic 

operating scenarios to form a training database. Other 

constraints such as transformers constraints, phase shifter 

constraints, load shedding constraints, power electronic 

converter constraints, capacitor banks, FACTS devices, and 

battery storage constraints can be included in OPF, and 

classifiers can be used to identify inactive constraints and drop 

them from the optimization formulation. In addition, the 

proposed algorithm can be applied to other power system 

scheduling problems, such as unit commitment, to reduce their 

computational burden. 

A research direction is to investigate strategies for 

penalizing false-negative classes in learners’ objective 

functions to reduce the possibility of misclassification of true 

active constraints. This would be useful for problems with a 

high percentage of active constraints as compared to total 

constraints. Another research direction is to develop combined 

learning techniques and system models to consider grid 

topology and generation cost changes in active/inactive 

constraints prediction. This direction is suitable for the 

application of the proposed algorithm on electricity market 

problems.  In addition, to enhance the solution speed for DC 

OPF, one may identify the status of all inequality constraints 

and then solve the first-order optimality conditions based on the 

system of linear equations instead of solving a truncated DC 

OPF using optimization techniques. Predicting the sets of active 

and inactive constraints in the presence of uncertainties, such as 

renewable sources, is another interesting research path.  
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