
 1

Abstract— Temporal decomposition is a potential approach to
relieve the computation cost of power system multi-interval
scheduling problems, such as economic dispatch. In this form of
decomposition, the considered scheduling horizon is partitioned
into several subhorizons. A subproblem is formulated for each
subhorizon, and a distributed optimization algorithm strategy is
used to coordinate subproblems. The main existing challenge is
decomposing the scheduling horizon to gain the most time saving
from distributed computing. This paper serves as an extension to
our previous work and presents a machine learning-aided
temporal decomposition strategy to partition a scheduling horizon
optimally. We have found that the load profile, known before
solving economic dispatch, significantly affects the best number of
subhorizons. We have used load profiles as inputs to a learner
whose goal is to assign a temporal decomposition class to each load
profile. Possible decomposition classes are divisors of the
considered scheduling horizon. Thus, the proposed learning
procedure is a multiclass classification. We have selected Extreme
Gradient Boosting that is a tree-based classification learner.
Simulation results using real-world load profiles show the
promising performance of the proposed algorithm.

Index Terms— Economic dispatch, distributed optimization,
temporal decomposition, multiclass classification learner.

I. INTRODUCTION
ARGE optimization problems are frequently solved for
power systems operation and analysis of electricity markets.
Many of these problems are multi-interval optimization with

intertemporal constraints [1]. The size of optimization problems
depends on the system’s size and the length of the considered
scheduling horizon. Growing the scheduling horizon length
increases the computational burden significantly and might
make solving the problem in a required time span impossible.
Various techniques are applied to reduce the computational
complexity of multi-interval scheduling problems and make
them solvable in a reasonable time span. Distributed computing
is one of these techniques whose objective is to decompose a
problem into several smaller subproblems and to apply
distributed optimization strategies to coordinate subproblems in
a parallel manner [2, 3].

Geographical decomposition and coordination approaches
are presented in the literature for two main reasons, i) partition
optimization problems according to the power system

geographical areas and solve them faster than centralized
methods [4-9], and ii) coordinate optimal solution of
autonomous entities in the context of multi-agent systems [4].
In [10-12], we have developed temporal decomposition
strategies whose objective is to relieve the computational
complexity originated from intertemporal constraints. We have
discussed that temporal decomposition complements
geographical decomposition to further reduce the
computational burden of multi-interval optimization problems,
such as security-constrained economic dispatch (SCED) and
security-constrained unit commitment (SCUC). The temporal
decomposition1 is successfully applied to reduce the solution
time of SCED and SCUC [10-12]. Also, it is combined with
geographical decomposition in [12].

The way that the power system is partitioned and the
number of subproblems significantly impact geographical
decomposition’s performance and distributed optimization’s
convergence behavior [13-15]. Increasing the number of
subproblems does not necessarily reduce the overall solution
time since more subproblems result in more shared variables,
and this increases the required number of coordination
algorithm iterations to converge. Randomly decomposing a
system into several zones may lead to a set of subproblems
whose coordination takes many iterations. This may result in
not obtaining the best possible outcome of decomposition or
even a solution time that is more than that of centralized
optimization. In [10-12], we have reported a similar challenge
for temporal decomposition. The number of subhorizons and
breaking intervals affects the performance of temporal
decomposition and the number of distributed algorithm
iterations.

In geographical decomposition, the grid can be modeled as
a graph with buses and lines representing graph nodes and
edges, respectively. Graph-based techniques such as spectral
clustering can be applied to partition the grid based on
geographical areas so that the least flow is cut between areas
[13-15]. Geographical decomposition strategy, however, does
not relieve the computational complexity originated from
intertemporal constraints. For temporal decomposition, no
equivalent graph has been modeled so far. Temporal constraints
are interrelated throughout the scheduling horizon, not only
neighboring time periods but also non-neighboring periods.
Intuitively, temporal partitioning seems more complicated than
geographical partitioning. Optimal temporal partitioning

Multiclass Learning-aided Temporal Decomposition and
Distributed Optimization for Power Systems

Farnaz Safdarian, Member, IEEE, Amin Kargarian, Senior Member, IEEE, Fouad Hasan, Student Member, IEEE

L

This work was supported by National Science Foundation under Grant
ECCS-1944752.

The authors are with the Electrical and Computer Engineering
Department, Louisiana State University, Baton Rouge, LA 70803, (e-
mail: fsafda1@lsu.edu, kargarian@lsu.edu, fhasan1@lsu.edu).

1. We interchangeably use the terms temporal decomposition, time
partitioning, and temporal partitioning.

 2

depends on many factors. Power demand, the rate of change of
load between two consecutive time intervals, ramp limits of
generating units, minimum on/off time, and characteristics of
the considered system are important features affecting the
optimal time partitioning for the SCED and SCUC problems.
These features affect the number of active intertemporal
consistency constraints (e.g., thermal units ramp up/down limits
and minimum on/off time) between consecutive subhorizons
and the difference between shared variables values from the
perspective of neighboring subhorizons. If intertemporal
consistency constraints are active, more iterations are required
for the coordination algorithm to converge. Therefore, it is
desired to select the number of subhorizons so that most of the
consistency constraints are not active. In addition, the number
of available computing processors and their strength are two
other factors affecting the best number of subhorizons. If the
available processors are powerful, reducing the size of
subhorizons beyond a certain limit does not significantly save
time. If processors are not powerful, having more subproblems
may be wise. A combination of these features determines the
best number of subhorizons in temporal decomposition.
However, the status of constraints and shared variables’ values
are not known before solving the SCED and SCUC.

Recently, machine learning applications to solve various
problems have seen increased interest. The behavior of
complex phenomena in power systems can be modeled using
either simulation or historical datasets. Regression and
classification learners read input data and project them to a set
of output features. Classification methods have been applied to
solving a variety of power system optimization problems. In
[16], classification algorithms predict optimal power flow
solutions in real-time instead of solving an optimization
problem. A classification-based method is presented in [17] to
predict the parameters of an environmental multi-objective
economic dispatch problem. In [18], classification is used to
predict the on/off status of generators in unit commitment. An
augmented Lagrangian Hopfield network is used in [19] to
enhance the unit commitment solution procedure. A learning-
based method is proposed in [20] to determine the duration of
aggregated chronological time periods of a centralized unit
commitment problem using non-supervised hierarchical
clustering techniques. Classification is used to de-commit extra
spinning reserve units caused by minimum uptime/downtime
constraints. Although classification learners have been widely
used for power system optimization, their applications for
optimal decomposition (neither temporal nor geographical) and
distributed optimization have not been explored despite their
potential advantages to enhance decomposition. This has
motivated us to perform this study.

In this paper, a learning-aided temporal decomposition
approach is proposed to determine the best time partitioning
scheme that results in the best performance of distributed
optimization for solving the security-constrained economic
dispatch problem. To the best of our knowledge, this paper is
the first study of using learning techniques for optimal time
decomposition. The considered scheduling horizon is
partitioned into several subhorizons based on the method

presented in [11]. We study the effect of the number of
subhorizons on temporal decomposition performance and
analyze the solution time, the number of iterations, and solution
accuracy. The possible decomposition schemes belong to the
scheduling horizon’s divisors, yielding the same-sized
subhorizons to take the best advantage of parallel computing.
We propose modeling the optimal temporal partitioning
approach as a multiclass classification whose input is the load
profile known before solving SCED. The classifier’s output is
the best number of subhorizons. We have used Extreme
Gradient Boosting (XGBoost) as the learner, a tree-based
classifier suitable for multiclass classification. Once the learner
is trained, validated, and tested offline, it will be used to identify
the best time decomposition class for a given load profile before
solving SCED. We have also tested the learning-aided approach
on unit commitment. Simulation results show the promising
performance of the proposed decomposition approach.

The difference between this paper and [10-12] lies in
presenting a systematic algorithm for optimal time partitioning.
Although temporal decomposition and coordination strategies
are presented in [10-12], trial and error were used to partition
the scheduling horizon. Partitioning is one of the main barriers
to temporal decomposition applications in power systems. This
paper solves this challenge using a learning-aided strategy.
First, the strategies presented in [10-12] are applied for offline
data preparation. A learner is then trained to map a demand
profile to its corresponding best decomposition class. To solve
a new SCED problem, the learner determines the optimal class
first, and then the coordination algorithm in [10] is used to
obtain the most time saving by distributed optimization.

The remainder of this paper is organized as follows.
Temporal decomposition is briefly described in Section II.
Several motivating examples are presented in Section III, and
important factors for temporal decomposition are analyzed. The
proposed learning-aided time partitioning algorithm is
presented in Section IV. Numerical results are discussed in
Section V, and concluding remarks are provided in Section VI.

II. TIME DECOMPOSITION STRATEGY

Consider solving the SCED problem in the Appendix for a
scheduling horizon of 𝑇𝑇 time intervals, as shown in Fig. 1.a.
The horizon can be decomposed into 𝑁𝑁 subhorizons, each
consisting of a subset of time periods, as depicted in Fig. 1.b.
The length of all time periods in Fig. 1 is the same. An SCED
subproblem can be formulated for each subhorizon. The
subproblems are connected through ramping up and down of
generating units, which are intertemporal constraints. The
computational burden of solving SCED for each subhorizon is
less than that of the whole scheduling horizon.

SCED subproblems can be formulated regardless of their
correlation with one another. Subproblems can then be solved
in parallel. However, this approach does not provide a feasible
solution as the intertemporal constraints for transition between
subhorizons are ignored. Another approach is to start from the
first subhorizon and solve subproblems sequentially by fixing
values obtained in the last interval of a subproblem 𝑛𝑛 as the

 3

initial state for subproblem 𝑛𝑛 + 1. This approach provides a
feasible but suboptimal solution.

...t1 t2 T

(a)

... ...t2 Tt1 ...
𝑆𝑆𝐻𝐻1 𝑆𝑆𝐻𝐻𝑁𝑁

𝑡𝑡𝑜𝑜 𝑡𝑡𝑜𝑜

(b)

Fig. 1. a) Overall scheduling horizon with T time intervals and b)
decomposition of overall horizon into 𝑁𝑁 subhorizons (SHs).

As described in [11], the concept of overlapping (or
coupling) intervals is introduced to allow solving subproblems
in parallel while ensuring optimality of the obtained solution.
The first interval of each subhorizon 𝑛𝑛 is duplicated and added
in subhorizon 𝑛𝑛 − 1 as its last interval, as shown with 𝑡𝑡𝑜𝑜 (called
overlapping time interval) in Fig. 1.b. Variables and constraints
of the overlapping time interval appear in both subproblems
corresponding to subhorizons 𝑛𝑛 − 1 and 𝑛𝑛.

Power produced by generating units in overlapping time
intervals is shared between consecutive subhorizons. Consider
two consecutive subhorizons (subproblems) 𝑛𝑛 − 1 and 𝑛𝑛.
Power produced by unit 𝑢𝑢 at the overlapping time interval 𝑡𝑡𝑜𝑜 is
named, respectively, 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ from the perspective of
subhorizons 𝑛𝑛 − 1 and 𝑛𝑛. Since these shared variables are
physically the same, the following consistency constraint must
be satisfied to ensure the feasibility of results from the whole
scheduling horizon’s perspective.

𝐶𝐶𝐶𝐶: 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ = 0 ∀𝑢𝑢 (1)

This consistency constraint can be relaxed using the concept
of augmented Lagrangian relaxation [21]. Using the concept of
Nesterov momentum for gradient descent acceleration [22, 23],
an accelerated auxiliary problem principle (A-APP) is
presented in [11] to coordinate subproblems iteratively and
obtain the SCED solution. This approach, which allows the
parallel solution of SCED subproblems, is presented below for
two subproblems 𝑛𝑛 − 1 and 𝑛𝑛. The objective function (2) is to
minimize the generation cost of units in time periods
corresponding to subproblem 𝑛𝑛 − 1 plus the three penalty terms
related to consistency constraint relaxation. The objective
function of subproblem 𝑛𝑛 is formulated by (3).

𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑛𝑛−1 at iteration 𝑘𝑘 given 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘−1:

min��𝑎𝑎𝑝𝑝𝑢𝑢𝑢𝑢2 + 𝑏𝑏𝑝𝑝𝑢𝑢𝑢𝑢 + 𝑐𝑐𝑢𝑢𝑢𝑢
𝑢𝑢𝑡𝑡

 (2)

+�
𝜌𝜌
2
�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘−1�2 + 𝜏̂𝜏†𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑢𝑢

+ 𝜇𝜇𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
† �𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘−1 − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘−1�

Subject to equipment (e.g., generating units) and network (e.g.,
power flow) constraints corresponding to subhorizon 𝑛𝑛 − 1

𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑛𝑛 at iteration 𝑘𝑘 given 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘−1:

min��𝑎𝑎𝑝𝑝𝑢𝑢𝑢𝑢2 + 𝑏𝑏𝑝𝑝𝑢𝑢𝑢𝑢 + 𝑐𝑐𝑢𝑢𝑢𝑢
𝑢𝑢𝑡𝑡

 (3)

+�
𝜌𝜌
2
�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘−1�2 − 𝜏̂𝜏†𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′

𝑢𝑢

+ 𝜇𝜇𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ † �𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′𝑘𝑘−1 − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘−1�

Subject to equipment and network constraints corresponding to
subhorizon 𝑛𝑛.

A-APP tuning parameters are 𝜌𝜌 and 𝜇𝜇. Multiplier 𝜏̂𝜏 and
variables 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜 and 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ , which are the modified forms of
Lagrange multiplier 𝜏𝜏 and shared variables 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ using
Nesterov momentum, are iteratively updated as follows [10,
11].

𝜏𝜏𝑘𝑘+1 = 𝜏𝜏𝑘𝑘 + 𝛽𝛽�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘 � (4)

𝛼𝛼𝑘𝑘+1 =
1 + �1 + 4𝛼𝛼𝑘𝑘2

2
 (5)

𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘+1 = 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘 +
𝛼𝛼𝑘𝑘 − 1
𝛼𝛼𝑘𝑘+1

�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘−1� (6)

𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘+1 = 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘 +
𝛼𝛼𝑘𝑘 − 1
𝛼𝛼𝑘𝑘+1

�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘−1� (7)

𝜏̂𝜏𝑘𝑘+1 = 𝜏𝜏𝑘𝑘 +
𝛼𝛼𝑘𝑘 − 1
𝛼𝛼𝑘𝑘+1

(𝜏𝜏𝑘𝑘 − 𝜏𝜏𝑘𝑘−1) (8)

where 𝛽𝛽 is a suitable positive step-size, and 𝛼𝛼 is the momentum
coefficient. Tuning parameters and step sizes can be
individually determined for each shared variable. The above
procedure is repeated until �𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ � ≤ 𝜖𝜖. This algorithm
can be extended for different numbers of subhorizons. We refer
to [11, 24] for more details on the problem formulation and
solution algorithm.

III. IMPORTANT FACTORS AND MOTIVATING EXAMPLES

Reducing the length of subhorizons and the number of
coordination algorithm iterations reduces the distributed
optimization solution time. The less the number of variables
and constraints of a subproblem is, the less the computational
time would be. However, because of increasing the number of
shared variables, the required number of iterations of the
distributed algorithm to coordinate subproblems and the total
solution time might increase. Moreover, partitioning the
problem from time intervals with a considerable number of
active intertemporal ramping up and down constraints results in
a larger gap between shared variables in the first few iterations.
This might increase the required number of iterations of
distributed optimization to converge. The scheduling horizon
must be decomposed carefully to obtain the best solution time.

In this section, we illustrate a few examples to show the
necessity of optimal temporal decomposition and to investigate
the factors that affect it. The considered scheduling problem is
a week-ahead SCED. The overall horizon is fixed, but the
length of subhorizons is studied. The objective function is to
minimize the generation cost subject to thermal unit constraints,
power balance equalities, line flow limits, and voltage angle
limitations under normal and contingency conditions.

 4

A. Motivating Examples

A 3-Bus System with Smooth Load Profile: The maximum
load variation between each two consecutive time interval is
less than the ramping limitations of generating units.
Therefore, intertemporal consistency constraints connecting
subhorizons, i.e., ramp up and down constraints, are not active.
This makes subproblems loosely connected and yields small
differences in the desired values of shared variables, i.e.,
power generated by units at overlapping time intervals, from
the perspective of neighboring subproblems. As shown in Fig.
2, by increasing the number of subproblems, the size of each
subproblem will be smaller, and the overall solution time
decreases. However, since the system is small, decomposing
the problem beyond 20 subhorizons does not significantly save
time. It also needs more computational resources and may
slightly increase the solution error as compared to the
centralized method. Hence, we suggest not decomposing the
scheduling horizon beyond 20 subhorizons.

Fig. 2. Overall solution time versus number of subhorizons (NS) for the 3-bus
test system with a flat load profile.

B. IEEE 24-Bus System with Variable Load Profile:

 Figure 3a shows the solution time versus the number of
subhorizons for a given load pattern, called pattern one [28].
Increasing the number of subhorizons reduces the solution
time; however, increasing the number of subhorizons beyond
nine increases the solution time. This is because of having
many active intertemporal consistency constraints and large
differences in the desired values for power generated by units
at overlapping time intervals from the perspective of
neighboring subhorizons. Hence, the number of iterations and
the overall solution time of the distributed algorithm increase.
We have reduced the load by 5% and redrawn the curve. As
shown in Fig. 3b, this monotonous load decrease does not
change the curve pattern.

We have tested another load pattern, called pattern two
[28]. The solution time does not follow a curve similar to Fig.
3.a and has a non-monotonic behavior. This is because of the
sophisticated behavior of units’ ramp up/down constraints.
These intertemporal constraints connect intervals {1, … ,𝑇𝑇}
and will be active depending on the load pattern and system
characteristics. This results in an unpredictable pattern in the
desired shared variable values from the perspective of
neighboring subhorizons and a non-monotonic behavior in the
solution time pattern. The load is reduced by 5%, and the curve
is plotted in Fig. 4b, which is similar to Fig. 4a. Comparing

Figs. 3 and 4 show that the load profile pattern has a more
significant impact on the solution time than a small load
increase or decrease.

C. Important Factors for Solution Time
The factors affecting the overall solution time versus the
number of subhorizons include 1) system characteristics, 2)
generators characteristics, 3) the number of active ramp
up/down constraints for transition between subhorizons, and 4)
the desired values of power generated by units at overlapping
time intervals from the perspective of neighboring subhorizons.
For a given system with a set of generating units, the third and
fourth factors should be analyzed to obtain the optimal temporal
decomposition. However, they are unknown before solving the
problem. The load profile plays a critical role in the status of
intertemporal constraints and the values of variables. Hence, the
load profile can be used to analyze the number of subhorizons
versus the solution time and find the best temporal
decomposition scheme.

(a) (b)

Fig. 3. Overall solution time versus number of subhorizons (NS) for the IEEE
24-bus system with a) load pattern one and b) load pattern one with a 5%
decrease.

(a) (b)

Fig. 4. Overall solution time versus number of subhorizons (NS) for the IEEE
24-bus system with a) load pattern two and b) load pattern two with a 5%
decrease.

IV. PROPOSED LEARNING-AIDED METHODOLOGY

Given that the load profile is known before solving SCED,
we propose a learning-aided algorithm for time partitioning.
The goal of this learner is to project the best number of
subhorizons to the load profile pattern. As illustrated in Fig. 5,
the input to the multiclass classifier is the load profile over the
considered scheduling horizon, and its output is the best time
partitioning scheme.

A. Offline Data Labelling
Historical and predicted system load profile patterns for the

considered scheduling horizon can be collected. For each load
pattern 𝑙𝑙𝑙𝑙, all divisors of the considered scheduling horizon are
determined as the possible decomposition classes (denoted by
Ω𝑐𝑐𝑐𝑐) with subhorizons with equal length. For a scheduling

0 10 20 30 40 50 60 70 80 85

NS

0

5

10

15

20

25

So
lve

r T
im

e (
s)

2 4 6 8 10 12
NS

0

5

10

15

20

So
lv

er
 T

im
e

(s
)

2 4 6 8 10 12

NS

0

50

100

150

200

250

So
lv

er
 T

im
e

(s
)

2 4 6 8 10 12

NS

0

0.5

1

1.5

2

So
lv

er
 T

im
e

(s
)

2 4 6 8 10 12

NS

0

1

2

3

4

So
lv

er
 T

im
e

(s
)

 5

horizon with 72 intervals, for instance, Ω𝑐𝑐𝑐𝑐={1, 2, 3, 4, 6, 7, 8,
9, 12, 18, 24, 36, 72}. Subhorizons with different lengths can
also be considered. However, we suggest subhorizons with the
same length that yields almost the same sized optimization
subproblems with similar solution times. This results in gaining
the most advantage of parallel computing with minimum CPU
idle time.

A-APP is applied to solve SCED in a distributed manner for
each decomposition class 𝑐𝑐𝑐𝑐. An error-time index is created by
combining the solution time and the relative error to determine
the best class for each load pattern.

𝜑𝜑𝑐𝑐𝑐𝑐 = 𝜔𝜔1 × 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐 + 𝜔𝜔2 × 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐 ∀𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐 (9)

The 𝑟𝑟𝑟𝑟𝑟𝑟 index is the relative error between the optimal costs
obtained by centralized (𝑓𝑓∗) and distributed (𝑓𝑓𝑐𝑐𝑐𝑐𝑑𝑑) approaches.
Parameter 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐 is the solution time of each class 𝑐𝑐𝑐𝑐.

Possible Load
Patterns

Divide overall horizon
into all of its divisors

Solve distributed optimization
problem for each divisor of each

load profile

Data Labelling

Training / validation
dataset Test dataset

Train Xgboost
Learner

Cross Validation

Reached max of
iterations?

Achieved desired
prediction?

Multi-class classifier for predicting optimal
number of subhorizons

Yes

No

No

Yes

𝜑𝜑𝑐𝑐𝑐𝑐 ∀𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐
 each load profile

𝜑𝜑𝑙𝑙𝑙𝑙∗
 load pattern

bute

Fig. 5. Flowchart of the proposed learner-based temporal decomposition
algorithm.

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐 = �
𝑓𝑓∗ − 𝑓𝑓𝑐𝑐𝑐𝑐𝑑𝑑

𝑓𝑓∗
� (10)

Weighting factors 𝜔𝜔1 and 𝜔𝜔2 assign priority to 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐 and
𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑐𝑐𝑐𝑐 indices. A system operator can determine the weight
values based on its preference for solution time and accuracy.
After solving distributed SCED for each 𝑐𝑐𝑐𝑐 of load pattern 𝑙𝑙𝑙𝑙,
the decomposition class with the smallest error-time index is
determined (denoted by 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙∗), and the load pattern is assigned
to this class.

𝜑𝜑𝑙𝑙𝑙𝑙∗ = min{𝜑𝜑𝑐𝑐𝑐𝑐 ∀𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐} (11)

This offline procedure, whose pseudocode is shown in Data
Labelling Algorithm, assigns the best number of subhorizons as
the class label for each load profile.

Data Labelling Algorithm Pseudocode for multiclass classification of
load patterns and data preparation

1: Read historical load patterns for the considered scheduling horizon
2: Determine weighting factors 𝜔𝜔1 and 𝜔𝜔2
3: Do for all possible load patterns
4: for 𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐
5: Decompose the considered horizon into 𝑐𝑐𝑐𝑐 equal subhorizons
6: while |𝐶𝐶𝐶𝐶| > 𝜖𝜖, 𝑘𝑘 = 𝑘𝑘 + 1 do
7: Solve SCED subproblems in parallel and determine optimal

values of 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘 and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′𝑘𝑘
8: Exchange 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘 and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′𝑘𝑘 between SCED subproblems

9: Update 𝜏𝜏𝑘𝑘 by (4)
10: Calculate 𝛼𝛼𝑘𝑘+1 by (5)
11: Update 𝑝̂𝑝𝑘𝑘+1, 𝑝̂𝑝′ 𝑘𝑘+1, and 𝜏̂𝜏𝑘𝑘+1 by (6)-(8)
12: end while
13: Record 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐 and calculate 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐
14: Calculate 𝜑𝜑𝑐𝑐𝑐𝑐 = 𝜔𝜔1 × 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐 +𝜔𝜔2 × 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐
15: end for
16: Determine 𝜑𝜑𝑙𝑙𝑙𝑙∗ for each load pattern
17: Assign the load pattern to 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙∗

Remark 1: If energy storage and unit commitment constraints
are considered in the optimization problem, the modeling and
coordination strategies in [10, 12] need to be applied.
Remark 2: The learning dataset should be updated every several
months or years after installing new generating units to adapt
the classifier to changes in the system characteristics.

B. Multiclass Learning for Temporal Decomposition
We need a learner to project each load profile 𝑙𝑙𝑙𝑙 to its best
decomposition class 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙∗ . The input to this learner is a time-
varying demand vector, and the output is an integer, which is
limited among the divisors of the considered scheduling
horizon. A multiclass classification learner can structure this
learning procedure.

Selecting Learner: Various algorithms exist to form a
multiclass classifier, among which tree-based algorithms are
widely used as their results can be interpreted properly.
Decision tree, random forest, and Extreme Gradient Boosting
(XGBoost) are among the most popular and efficient tree-based
approaches [25]. Classification trees are made of nodes, which
separate data based on some impurity criteria, and leaves that
determine classes. In the decision tree, each node is selected
based on a characteristic that provides the best split with the
least impurity and the most information gain. To select a certain
characteristic to split a node, the information gain by splitting
on that node is calculated and the split with the largest gain is
made. In the random forest, a random number of characteristics
is selected at each step, and different decision trees are made
based on those characteristics. A class receiving the most votes
from decision trees is determined as the final class. Trees of a
random forest are independent of each other.

The chronological order of time intervals must be
maintained in time partitioning. Thus, the decision tree and the
random forest are not suitable for time partitioning as they
randomly select trees and do not ensure maintaining the
chronological order of time intervals. XGBoost maintains the
chronological order of time intervals. In XGBoost, trees are
made based on regression, and the predicted value is updated

 6

after each regression tree is made until a suitable prediction is
made. XGBoost is a combination of gradient boosting,
regularization, unique regression trees, approximate greedy
algorithm, weighted quantile sketch, sparsity-aware split
finding, parallel learning, cache-award access, and blocks for
out-of-core computation [26, 27]. As compared to other
gradient boosting methods, XGBoost has two additional
features to prevent over-fitting. The weights of a new tree can
be scaled down by a given constant to reduce the impact of a
single tree on the final score and to provide an opportunity for
the next trees to improve the model. XGBoost also performs
better than other tree boosting methods. This is mainly because
it supports an approximate split finding, which improves
building trees and scales well with the number of CPU cores.
Thus, we have used XGBoost for optimal temporal partitioning
projection.

XGBoost Model for Load Profile Classification: Assuming
𝑀𝑀 and 𝐾𝐾 denote, respectively, the number of rounds of
XGBoost and the number of trees, a total number of 𝑀𝑀 × 𝐾𝐾
decision trees are generated. XGBoost pre-sorts attributes and
greedily finds the split point with the largest information gain
[26]. Assume a dataset 𝒟𝒟 = ��𝑃𝑃𝑙𝑙𝑙𝑙 ,𝜑𝜑𝑙𝑙𝑙𝑙∗ �: 𝑙𝑙𝑙𝑙 = 1, . . . ,𝑁𝑁𝑠𝑠� where
𝑃𝑃𝑙𝑙𝑙𝑙 is the demand vector 𝑙𝑙𝑙𝑙 over the scheduling horizon whose
best decomposition class based on (11) is 𝜑𝜑𝑙𝑙𝑙𝑙∗ . We define 𝜑𝜑∗� as
predicted classes by the learner.

𝜑𝜑𝑙𝑙𝑙𝑙∗� = �𝑓𝑓𝑘𝑘�𝑃𝑃𝑙𝑙𝑙𝑙�
𝐾𝐾

𝑘𝑘=1

 (12)

𝑓𝑓𝑘𝑘(⋅) is a regression tree, and 𝑓𝑓𝑘𝑘�𝑃𝑃𝑙𝑙𝑙𝑙� represents the score given
by the 𝑘𝑘th tree to 𝑙𝑙𝑙𝑙th observation. If the regression tree 𝑓𝑓𝑘𝑘 for
𝑘𝑘 = 1, … ,𝐾𝐾 is achieved, expression (12) will provide the
predicted temporal decomposition class. Thus, the goal of
training the learner is to find the optimal regression trees
(denoted by 𝑓𝑓𝑘𝑘∗�𝑃𝑃𝑙𝑙𝑙𝑙� ∀𝑘𝑘) that minimize the following
regularized objective function.

𝒪𝒪 = �𝑙𝑙(𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑𝑙𝑙𝑙𝑙∗�)
𝑙𝑙𝑙𝑙

+ �𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆‖𝑓𝑓𝑘𝑘‖2

𝑘𝑘

 (13)

where 𝑙𝑙(⋅) is the loss function quantifying prediction quality.
XGBoost uses this loss function to build trees by minimizing 𝒪𝒪.
Parameters 𝛾𝛾 and 𝜆𝜆 control penalty for the number of terminal
nodes or leaves (𝑇𝑇). Parameter 𝛾𝛾 encourages pruning trees. The
second term of (13) is added to prevent over-fitting. This term
simplifies models produced by the learner.

An iterative method is used to minimize the objective
function. At iteration 𝑗𝑗 = 0, the initial guess for each class’s
probability is one divided by the number of classes. At iteration
𝑗𝑗 ≠ 0, XGBoost builds a tree by finding the output value for a
leaf 𝑓𝑓𝑗𝑗 that minimizes the following objective function.

𝒪𝒪𝑗𝑗 = � 𝑙𝑙(𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1) + 𝑓𝑓𝑗𝑗(𝑃𝑃𝑙𝑙𝑙𝑙))

𝑁𝑁𝑠𝑠

𝑙𝑙𝑙𝑙=1

+ �𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆�𝑓𝑓𝑗𝑗�

2

𝑗𝑗

 (14)

Using the second-order Taylor expansion, this function is
simplified and a formula for loss reduction is derived by solving
for the optimal value.

𝒪𝒪𝑗𝑗 = � 𝑙𝑙(𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1))

𝑁𝑁𝑠𝑠

𝑙𝑙𝑙𝑙=1

+ 𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑗𝑗�𝑃𝑃𝑙𝑙𝑙𝑙� +
1
2
ℎ𝑙𝑙𝑙𝑙𝑗𝑗𝑓𝑓𝑗𝑗

2�𝑃𝑃𝑙𝑙𝑙𝑙�

+ �𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆�𝑓𝑓𝑗𝑗�

2

𝑗𝑗

 (15)

where functions 𝑔𝑔𝑙𝑙𝑙𝑙 and ℎ𝑙𝑙𝑙𝑙 are defined as follows:
𝑔𝑔𝑙𝑙𝑙𝑙 = 𝜕𝜕

𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1)𝑙𝑙 �𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙

∗(𝑗𝑗−1)� (16)

ℎ𝑙𝑙𝑝𝑝 = 𝜕𝜕
𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1)

2 𝑙𝑙 �𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1)� (17)

Function 𝒪𝒪 is solved based on the output value 𝑓𝑓𝑘𝑘∗�𝑃𝑃𝑙𝑙𝑙𝑙�,∀𝑘𝑘 for
the leaf to create XGBoost trees. Since the goal is to find the
output value that minimizes the objective function, derivatives
are calculated based on the output value and are made equal to
zero. The desired output value is achieved as:

𝑓𝑓𝑘𝑘∗�𝑃𝑃𝑙𝑙𝑙𝑙� = −
1
2
�

�∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙 �
2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙

𝐾𝐾

𝑘𝑘=1

+ 𝛾𝛾𝛾𝛾 (18)

After the leaf (node) output value is calculated, the best split at
the given node is found based on the gain and similarity score
to grow the XGBoost tree. Then gain (ℊ) is calculated as the
sum of the left and right leaves’ similarity scores minus the
root’s similarity score. The best split at any given node is the
split with the largest information gain.

ℊ =
1
2
�

(∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
𝐿𝐿)2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
𝐿𝐿

+
(∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙

𝑅𝑅)2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
𝑅𝑅

−
(∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙)2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
�

− 𝛾𝛾 (19)

where Ω𝑙𝑙𝑙𝑙 is the set of load profiles in the current node, and the
sets of observations available in the left and right leaves after
the split are denoted by Ω𝑙𝑙𝑙𝑙𝐿𝐿 and Ω𝑙𝑙𝑙𝑙𝑅𝑅 , respectively.

The trained XGBoost can be used, as shown in Fig. 6. The
learner reads the load profile and decomposes the scheduling
horizons into the best number of subhorizons (SH).

Multiclass
classification learner

Time

M
W

Input: Demand information

Optimal subhorizons

M
W

SH 1
SH n

Output: optimal time partitioning

Fig. 6. Utilizing procedure of the trained XGBoost learner.

 7

V. NUMERICAL RESULTS
Four cases are studied, A) SCED for the IEEE 118-bus

system without wind power, B) SCED for the IEEE 118-bus
system with 30% wind power penetration, C) SCED for a 2006-
bus system, and D) unit commitment for the IEEE 24-bus
system. System information and characteristics are given in
[28]. Simulations are carried out on a personal computer with a
3.70 GHz Intel(R) Xeon(R) CPU and 16 GB of RAM. The
Yalmip toolbox in Matlab and Gurobi is used to solve
optimization problems, and Python learning toolboxes
XGBoost and sklearn are used to train multiclass classification
learners [27, 29].

A. IEEE 118-Bus System without Wind Power

Dataset Preparation: The considered scheduling problem is
a week-ahead economic dispatch. To show the algorithm’s
performance for practical load patterns, we have extracted 6669
real-world weekly load profiles from PJM [30]. These load
profiles are scaled to be used for the IEEE 118-bus system.
Figure 7 shows some random samples of load profiles. A load
profile can belong to any divisors of 168 as the possible classes.
For each load profile and each divisor, the distributed algorithm
is implemented. The best divisor that provides 𝜑𝜑𝑙𝑙𝑙𝑙∗ is assigned
to each load profile as its decomposition class. This offline
procedure provides train and test datasets.

Fig. 7. Some random samples of PJM load profiles [30], shown by different
colors, that are normalized for the IEEE 118-bus system.

We have observed that all load profiles in the train and test
datasets belong to {2, 4, 7, 8, 12} classes of divisors of 168. No
load profile is assigned to other divisors. We keep these five
classes and drop others. We define the decomposition classes
as 𝑐𝑐𝑙𝑙1 = 2, 𝑐𝑐𝑙𝑙2 = 4, 𝑐𝑐𝑙𝑙3 = 7, 𝑐𝑐𝑙𝑙4 = 8, and 𝑐𝑐𝑙𝑙5 = 12. For
example, 𝑐𝑐𝑙𝑙2 = 4 means that decomposition class two includes
load profiles with the best number of subhorizons equals 4.
Although no significant imbalance is observed in the dataset,
various approaches can mitigate possible dataset imbalance
effects [31].

Temporal Decomposition Classifier Training: Eighty
percent of the dataset is selected randomly for training and
twenty percent for testing. The softmax function is used to
normalize the probability distribution of predicted output
classes so that the sum of all probabilities becomes one. The
maximum tree depth D, the number of trees 𝐾𝐾, and
regularization parameters such as learning rate L, γ, and λ need
to be tuned to train XGBoost. These parameters have been
determined based on sensitivity analysis and preliminary

investigation of their acceptable ranges [26, 32]. Parameters γ
and λ are set to one while tuning other hyper-parameters. We
set the parameter D, which controls the sequential process of
growing trees, in a range of D ∈ {1, 2, … , 6}. It is suggested not
to exceed the depth of a tree more than 6. Parameter L should
be in the range of 0 < L < 1. The accuracy of the learner
increases by increasing 𝐾𝐾; however, this may cause overfitting.
We have tested various values for this parameter as 𝐾𝐾 ∈
{1, 2, … , 10}. Table I shows the learner’s accuracy for different
parameters. We have found the best combination for hyper-
parameters as L = 0.5, D = 6, and 𝐾𝐾 = 6. Except for 𝐷𝐷 = 1
(which is not suggested for a multiclass classification), if
parameters are selected from their acceptable ranges, high
accuracy is achieved, and the results are not much sensitive to
the choice of hyperparameters.

TABLE I
ACCURACY OF PARAMETER TUNING

Accuracy D K L Rounds
0.57 1 4 0.1 1
0.85 2 4 0.1 1
0.93 3 4 0.1 1
0.98 4 4 0.1 1
0.98 5 4 0.1 1
0.98 6 4 0.1 1
0.98 4 1 0.1 1
0.98 4 10 0.1 1
0.98 4 4 0.01 1
0.98 4 4 1 1
0.99 4 4 0.1 2
0.99 4 4 0.1 3
0.99 4 4 0.1 4
0.99 6 6 0.5 5

Evaluating Temporal Decomposition Classifier: Twenty

percent of the dataset is used for testing the multiclass
classification learner. The following four primary indices are
introduced for each decomposition class to interpret predicted
results and analyze the learning-aided temporal decomposition
accuracy.
• True positives (TP): a load profile 𝑙𝑙𝑙𝑙 is predicted to belong

to a decomposition class 𝑐𝑐𝑐𝑐 and its actual class is 𝑐𝑐𝑐𝑐.
• True negatives (TN): a load profile 𝑙𝑙𝑙𝑙 is predicted to not

belong to a decomposition class 𝑐𝑐𝑐𝑐 and its actual class is not
𝑐𝑐𝑐𝑐.

• False positives (FP): a load profile 𝑙𝑙𝑙𝑙 is predicted to belong
to a decomposition class 𝑐𝑐𝑐𝑐, but its actual class is not 𝑐𝑐𝑐𝑐.

• False negatives (FN): a load profile 𝑙𝑙𝑙𝑙 is predicted to not
belong to a decomposition class 𝑐𝑐𝑐𝑐, but its actual class is 𝑐𝑐𝑐𝑐.

We use classification accuracy, precision, recall, and 𝐹𝐹1
score metrics to analyze the quality of the classification leaner.

Accuracy𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑁𝑁𝑐𝑐𝑐𝑐

𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑁𝑁𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐𝑐𝑐
 (20)

Precision is defined as the fraction of true positives out of total
instances predicted as positives.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐

𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐𝑐𝑐
 (21)

0 25 50 75 100 125 150 168

Time (hour)

2500

3000

3500

4000

4500

5000

5500

Lo
ad

 (M
W

)

 8

• Recall is defined as the fraction of instances belonging to
positive classes that are predicted as positives.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐

𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐𝑐𝑐
 (22)

The 𝐹𝐹1 score is the harmonic mean of precision and recall,
defined as:

𝐹𝐹1,𝑐𝑐𝑐𝑐 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐

 (23)

The confusion matrix is represented in Fig. 8. Green blocks
show the number of load profiles whose decomposition classes
are predicted correctly. Orange blocks depict the number of load
profiles that are misclassified. As an example, 668 load profiles
in the test dataset belong to 𝑐𝑐𝑙𝑙1. 664 (99.4%) of those are
predicted correctly, and only four (0.6%) load profiles are
misclassified. The misclassification percentage of all
decomposition classes is low, and almost all the load profiles are
projected to their correct best decomposition class. The overall
𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇 are the summations of all correctly classified load
patterns, regardless of their classes. The overall 𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹 refer
to the overall incorrectly predicted load patterns.

We have also calculated the overall classification accuracy,
precision, recall, and 𝐹𝐹1 score metrics for all classes combined,
as depicted in Table II. The overall accuracy, which is the
proportion of correct predictions over all predictions, is more
than 99%. The confusion matric and overall indices prove the
promising performance of the proposed learning-aided temporal
decomposition algorithm.

TABLE II
PERFORMANCE INDICES OF LEARNER FOR 118-BUS SYSTEM WITHOUT WIND

POWER
Index Value

Accuracy 0.99
𝐹𝐹1 0.99

Precision 0.99
Recall 0.99

We have also used a support vector machine and neural

networks for classification. The comparison of performance
metrics shows that the three classification approaches provide
promising results, with a prediction accuracy above 99%. This
indicates that several learners may work well for the considered
temporal decomposition problems.

Distributed Optimization Results: We have randomly
selected a load profile, shown in Fig. 9, from the IEEE 118-bus

system’s test dataset and have carried out the distributed
optimization with different numbers of subhorizons. The
operation cost obtained by centralized economic dispatch is
$9,050,971. The relative error for all decomposition classes is
less than 2𝑒𝑒 − 6. We choose 𝜔𝜔1 = 1𝑒𝑒6 and 𝜔𝜔2 = 1. Table III
illustrates the relative error, solution time, and 𝜑𝜑𝑐𝑐𝑐𝑐 for each
decomposition class. The solver time versus the number of
subhorizons is plotted in Fig. 10. The error-time index for this
given load profile is 𝜑𝜑𝑙𝑙𝑙𝑙∗ = 0.7327. Thus, the best strategy for
this load pattern is to decompose the considered scheduling
horizon into eight subproblems. We have also carried out the
classification leaner for this load profile. The predicted
decomposition class by the learner is also 𝑐𝑐𝑙𝑙4, which refers to
eight subproblems.

Fig. 9. A load pattern used to test the algorithm [42].

Fig. 10. Solver time versus number of subhorizons for the sample load profile
in Fig. 9.

We have implemented a similar procedure for all load profiles
in the dataset. The minimum, maximum, and average values of
the relative error and the average solver time are reported in
Table IV. The best average solution time is obtained for
decomposition into 28 subhorizons. However, the best
partitioning strategy for each load profile should be determined

0 20 40 60 80 100 120 140 168

Time (hour)

2500

3000

3500

4000

4500

5000

5500

Lo
ad

 (M
W

)

0 20 40 60 80 100 120 140 168
NS

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

So
lve

r T
im

e (
s)

 Actual 𝑐𝑐𝑙𝑙1
2 subhorizons

Actual 𝑐𝑐𝑙𝑙2
4 subhorizons

Actual 𝑐𝑐𝑙𝑙3
7 subhorizons

Actual 𝑐𝑐𝑙𝑙4
 8 subhorizons

Actual 𝑐𝑐𝑙𝑙5
12 subhorizons Total predict 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐

Predicted 𝑐𝑐𝑙𝑙1 664 0 0 2 3 669 99.253%
Predicted 𝑐𝑐𝑙𝑙2 3 199 0 0 0 202 98.515%
Predicted 𝑐𝑐𝑙𝑙3 0 0 145 0 0 145 100%
Predicted 𝑐𝑐𝑙𝑙4 1 2 0 194 0 197 98.477%
Predicted 𝑐𝑐𝑙𝑙5 0 0 0 0 121 121 100%
Total actual 668 201 145 196 124 1334

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 99.40% 99.01% 100% 98.98% 97.5%

Fig. 8. Confusion matrix.

 9

independently by the learner before solving distributed
optimization.

TABLE III
RELATIVE ERROR, SOLVER TIME, AND ERROR-TIME INDICES FOR

DECOMPOSITION CLASSES CORRESPONDING TO LOAD PROFILE IN FIG. 9
Number of
subhorizons 𝑟𝑟𝑟𝑟𝑟𝑟 Solver time

(sec) 𝜑𝜑𝑐𝑐𝑐𝑐

1 - 1.4 1.4363
2 ~0* 1.6 1.5626
3 2e-09 1.6 1.5649
4 ~0 1.1 1.1307
6 2e-09 0.9 0.9175
7 2e-08 0.8 0.8138
8 ~0 0.7 0.7327

12 3e-08 1.2 1.2497
24 6e-07 1 1.594
28 2e-06 1 2.9599
42 2e-07 2.6 2.8136
56 1e-07 3.1 3.2102
84 5e-07 4.4 4.5298

* Values less than 1e-10 are assumed to be ~0

TABLE IV
MINIMUM, MAXIMUM AND AVERAGE RELATIVE ERROR AND AVERAGE

SOLVER TIME OF ALL LOAD PROFILES IN DATA SET FOR 118-BUS SYSTEM

Number of
subhorizons max 𝑟𝑟𝑟𝑟𝑟𝑟 min 𝑟𝑟𝑟𝑟𝑟𝑟 Average

𝑟𝑟𝑟𝑟𝑟𝑟

Average
solver time

(sec)
1 - - - 1.6
2 6e-5 ~0 3e-6 1.9
3 6e-6 ~0 1e-6 2.6
4 8e-6 ~0 8e-7 2
6 9e-6 1e-9 1e-6 1.6
7 4e-5 1e-8 3e-6 1.5
8 4e-6 ~0 1e-6 1.4

12 5e-2 3e-8 1e-2 1.7
24 6e-5 6e-7 1e-5 2.5
28 4e-4 2e-6 3e-5 1.2
42 6e-5 2e-7 1e-5 2.6
56 8e-4 1e-7 6e-5 3.1
84 5e-4 5e-7 1e-4 3.9

B. IEEE 118-Bus System with Wind Power

It is assumed that 30% of the load is supplied with wind
turbines. To consider an extreme impact of wind uncertainty,
wind power scenarios for each time interval are generated
randomly between 0 to 100% of wind power capacity. Figure
11 shows the net load for the sampled load profiles in Fig. 7
with 30% wind power penetration. The net load, used as input
to the classifier, fluctuates significantly due to wind power
variations.

Fig. 11. Net load profiles if Fig. 7 with 30% wind power penetration.

The overall classification accuracy, precision, recall, and 𝐹𝐹1
score for all classes combined are reported in Table V. These
four indices are around 99%, similar to those for the system
without wind power uncertainty.

TABLE V
PERFORMANCE INDICES OF LEARNER FOR 118-BUS SYSTEM WITH WIND

POWER
Index Value

Accuracy 0.99
𝐹𝐹1 0.99

Precision 0.99
Recall 0.99

C. 2006-Bus System

The classifier accuracy, 𝐹𝐹1 score, precision, and recall for
this large system are reported in Table VI. These indices are
above 98%, showing the promising performance of the trained
XGBoost classifier.

TABLE VI
PERFORMANCE INDICES OF LEARNER FOR 2006-BUS SYSTEM

Index Value
Accuracy 0.99

𝐹𝐹1 0.99
Precision 0.98

Recall 0.98

We have implemented distributed optimization with different
decomposition classes for all load profiles. Table VII shows the
minimum, maximum, and average values of the relative error
and the average solver time. The solver time for the centralized
SCED is 142 seconds, which is larger than that of distributed
optimization with any decomposition class.

TABLE VII
MINIMUM, MAXIMUM, AND AVERAGE RELATIVE ERROR AND AVERAGE
SOLVER TIME OF ALL SAMPLE LOAD PROFILES FOR 2006-BUS SYSTEM

Number of
subhorizons

max
𝑟𝑟𝑟𝑟𝑟𝑟

min
𝑟𝑟𝑟𝑟𝑟𝑟

Average
𝑟𝑟𝑟𝑟𝑟𝑟

Average solver
time (sec)

1 (centralized) - - - 142
2 ~0 ~0 ~0 67
3 ~0 ~0 ~0 35
4 ~0 ~0 ~0 23
6 1e-7 ~0 1e-7 16
7 7e-7 ~0 1e-7 13
8 7e-7 ~0 1e-7 12

12 6e-7 ~0 1e-7 13
24 3e-6 ~0 2e-6 36
28 1e-6 ~0 1e-6 38

If one uses the average values to find the best decomposition

class, any load profile should be decomposed into eight
subhorizons. Figures 12 and 13 show solution time and
logarithmic relative error histograms if the problem is always
decomposed into eight subproblems. And Figs. 14 and 15 are
solution time and logarithmic relative error histograms if one
uses a learner to find the best decomposition class for each load
profile. As observed, the learning-aided approach outperforms
in terms of the solution time and relative error. While 44% of
the average-based strategy’s cases lie in (11.5, 12.5] seconds
solution time interval, 48% of the learning-aided approach’s
samples take (8, 9] seconds. Also, 28% of the average-based

0 25 50 75 100 125 150 168

Time (hour)

1500

2000

2500

3000

3500

4000

4500

5000

5500

Lo
ad

 (M
W

)

 10

strategy’s cases have a relative error in the range of 10−7, the
learning-aided approach provides a relative error smaller than
10−10 for all samples. The average solution time and relative
error of the learning-aided approach are 10.1 and 7× 10−11,
which roughly 20% and 100% smaller than those of average-
based strategy. Only for 4% of cases (highlighted in red in Fig.
14), the decomposition class of average-based and leaning-
aided strategies are the same. Although the proposed approach
takes approximately 2 seconds more for 24% of cases
(highlighted in gray in Figs. 14 and 15), the relative errors of
these cases are ~10−4 smaller than those obtained by the
average-based strategy.

Fig. 12. Solution time histogram [seconds] for 8-subproblem class
decomposition.

Fig. 13. Logarithmic relative error histogram for 8-subproblem class
decomposition.

Fig. 14. Solution time histogram [seconds] for proposed learning-aided
approach.

Fig. 15. Logarithmic relative error for proposed learning-aided approach.

D. Unit Commitment for IEEE 24-Bus System
The learning-aided decomposition is applied to a unit
commitment problem with a considered horizon of 72 hours.
We have extracted 5226 weekly load patterns from PJM [30].
The load profiles are scaled to be used for the IEEE 24-bus
system. The centralized optimization problem is decomposed
into all divisors of 72, representing possible classes that a load
profile can belong to. The coordination strategy in [10] is used.
Increasing the number of subhorizons beyond 12 increases the
number of distributed optimization iterations significantly such
that those classes cannot lead to the least solution time and 𝑟𝑟𝑟𝑟𝑟𝑟.
Eighty percent of the dataset is selected randomly for training
and twenty percent for testing. The overall classification
accuracy, precision, recall, and 𝐹𝐹1 score metrics are above 98%,
indicating the trained classifier assigns the best decomposition
label to load profiles accurately.

Distributed optimization is implemented for all test load
profiles with different decomposition classes. The minimum,
maximum, and average relative error and average solver time
for all test load profiles are reported in Table VIII. A user may
conclude that having four subhorizons is the best decomposing
paradigm for all load profiles. However, this table shows the
average values, which is not necessarily the best choice for all
load profiles. Figure 16 shows the number of samples in each
decomposition class obtained by the learner. Only 24% of load
profiles belong to the 4-subhorizon class, whereas 76% of
samples belong to other decomposition classes. The average
solution time and relative error are respectively 31% and 10−8
less if the proposed approach is used instead of always
decomposing the problem into four subproblems.

TABLE VIII

MINIMUM, MAXIMUM AND AVERAGE RELATIVE ERROR AND AVERAGE
SOLVER TIME FOR ALL LOAD PROFILES IN DATASET FOR 24-BUS SYSTEM

Number of
subhorizons

max
𝑟𝑟𝑟𝑟𝑟𝑟

min
𝑟𝑟𝑟𝑟𝑟𝑟

Average
𝑟𝑟𝑟𝑟𝑟𝑟

Average solver
time (sec)

1 - - - 229
2 ~0 0 ~0 11
3 0.03 ~0 9e-4 9
4 1e-4 0 8e-6 3
6 6e-5 0 6e-4 4
8 4e-5 0 1e-4 3.5
9 8e-5 0 2e-4 3

12 0.1 0.05 0.07 6

 11

Fig. 16. Number of samples is each decomposition class using the learning-
aided approach.

VI. CONCLUSION
In this paper, we have focused on decomposing the overall time
horizon and finding the best number of subhorizons. We have
observed that load values and profile patterns significantly
impact the best number of subhorizons. The load is predictable
and is known before solving the system scheduling problem.
Possible load patterns have been decomposed into various
numbers of subhorizons, and distributed optimization has been
solved. Each load profile has been labeled with its
corresponding best decomposition class that results in the best
time-saving and relative error. We have trained a multiclass
classification learner based on XGBoost, whose goal is to read
the load data as the input and project it to the corresponding best
decomposition class.

The simulation studies using real-world load patterns show
that the proposed algorithm can efficiently and quickly find the
best number of subproblems. More than 98% of the cases are
predicted correctly for all studied cases. Using the best number
of subproblems reduces the solution time more significantly
than a naïve decomposition with a single class for all load
profiles deduced from average values.

APPENDIX

The considered centralized SCED problem, which is a
multi-interval DC OPF, is formulated as follows. The objective
function is to minimize generation costs subject to generating
unit limitations (a.2)-(a.5) and power flow constraints (a.6)-
(a.8) under normal and contingency conditions [1].

min��𝑎𝑎𝑢𝑢 ⋅ 𝑝𝑝𝑢𝑢𝑢𝑢2 + 𝑏𝑏𝑢𝑢 ⋅ 𝑝𝑝𝑢𝑢𝑢𝑢 + 𝐶𝐶𝑢𝑢
𝑢𝑢𝑡𝑡

 (𝑎𝑎. 1)

s.t.
𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢 ≤ 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢 ≤ 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢 ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 2)
𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑝𝑝𝑢𝑢(𝑡𝑡−1)𝑐𝑐 ≤ UR𝑢𝑢 ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 3)
𝑝𝑝𝑢𝑢(𝑡𝑡−1)c − 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢 ≤ DR𝑢𝑢 ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 4)
|𝑝𝑝𝑢𝑢𝑢𝑢0 − 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢| ≤ Δ ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 5)

𝑃𝑃𝑖𝑖𝑖𝑖 ≤
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗

𝑋𝑋𝑖𝑖𝑖𝑖
≤ 𝑃𝑃𝑖𝑖𝑖𝑖 ∀𝑖𝑖𝑖𝑖,∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 6)

𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗

𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗

 ∀𝑖𝑖,∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 7)

𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡𝑡𝑡 = 0 ∀𝑡𝑡,∀𝑐𝑐 (𝑎𝑎. 8)

where 𝑢𝑢, 𝑡𝑡, and 𝑐𝑐 are indices for generating units, time, and
contingency scenarios. Subscripts 𝑖𝑖, 𝑗𝑗, and 𝑖𝑖𝑖𝑖 indicate bus 𝑖𝑖, bus
𝑗𝑗, and line 𝑖𝑖𝑖𝑖. Parameters UR𝑢𝑢 and DR𝑢𝑢 refer to ramp up and
down limits of unit 𝑢𝑢. 𝛿𝛿 are bus voltage angles. We refer to [11]
for more details.

REFERENCES
[1] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power generation,

operation, and control. John Wiley & Sons, 2013.
[2] A. J. Conejo, F. J. Nogales, and F. J. Prieto, "A decomposition procedure

based on approximate Newton directions," Mathematical programming,
vol. 93, no. 3, pp. 495-515, 2002.

[3] M. H. Amini et al., "Decomposition Methods for Distributed Optimal
Power Flow: Panorama and Case Studies of the DC Model," in Classical
and Recent Aspects of Power System Optimization: Elsevier, 2018, pp.
137-155.

[4] A. Kargarian et al., "Toward distributed/decentralized DC optimal power
flow implementation in future electric power systems," IEEE
Transactions on Smart Grid, vol. 9, no. 4, pp. 2574-2594, 2018.

[5] D. K. Molzahn et al., "A survey of distributed optimization and control
algorithms for electric power systems," IEEE Transactions on Smart
Grid, vol. 8, no. 6, pp. 2941-2962, 2017.

[6] Y. Wang, S. Wang, and L. Wu, "Distributed optimization approaches for
emerging power systems operation: A review," Electric Power Systems
Research, vol. 144, pp. 127-135, 2017.

[7] S. Kar, G. Hug, J. Mohammadi, and J. M. Moura, "Distributed State
Estimation and Energy Management in Smart Grids: A Consensus ${+}
$ Innovations Approach," IEEE Journal of selected topics in signal
processing, vol. 8, no. 6, pp. 1022-1038, 2014.

[8] A. R. Malekpour and A. Pahwa, "Stochastic networked microgrid energy
management with correlated wind generators," IEEE Transactions on
Power Systems, vol. 32, no. 5, pp. 3681-3693, 2017.

[9] A. Asrari, M. Ansari, J. Khazaei, and P. Fajri, "A Market Framework for
Decentralized Congestion Management in Smart Distribution Grids
Considering Collaboration Among Electric Vehicle Aggregators," IEEE
Transactions on Smart Grid, 2019.

[10] F. Safdarian, A. Mohammadi, and A. Kargarian, "Temporal
Decomposition for Security-Constrained Unit Commitment," IEEE
Transactions on Power Systems, vol. 35, no. 3, pp. 1834-1845, 2019.

[11] F. Safdarian and A. Kargarian, "Time decomposition strategy for
security-constrained economic dispatch," IET Generation, Transmission
& Distribution, vol. 13, no. 22, pp. 5129-5138, 2019.

[12] F. Safdarian and A. Kargarian, "Temporal Decomposition-Based
Stochastic Economic Dispatch for Smart Grid Energy Management,"
IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4544 - 4554, 2020.

[13] J. Guo, G. Hug, and O. K. Tonguz, "Intelligent partitioning in distributed
optimization of electric power systems," IEEE Transactions on Smart
Grid, vol. 7, no. 3, pp. 1249-1258, 2016.

[14] J. Guo, O. Tonguz, and G. Hug, "Impact of power system partitioning on
the efficiency of distributed multi-step optimization," in 2017 IEEE
Manchester PowerTech, 2017: IEEE, pp. 1-6.

[15] A. Mohammadi, M. Mehrtash, A. Kargarian, and M. Barati, "Tie-line
characteristics based partitioning for distributed optimization of power
systems," in 2018 IEEE Power & Energy Society General Meeting
(PESGM), 2018: IEEE, pp. 1-5.

[16] D. Deka and S. Misra, "Learning for DC-OPF: Classifying active sets
using neural nets," in 2019 IEEE Milan PowerTech, 2019: IEEE, pp. 1-6.

[17] T. Yalcinoz and O. Köksoy, "A multiobjective optimization method to
environmental economic dispatch," International Journal of Electrical
Power & Energy Systems, vol. 29, no. 1, pp. 42-50, 2007.

[18] W. L. Snyder, H. D. Powell, and J. C. Rayburn, "Dynamic programming
approach to unit commitment," IEEE Transactions on Power Systems,
vol. 2, no. 2, pp. 339-348, 1987.

[19] V. Dieu and W. Ongsakul, "Enhanced augmented Lagrangian Hopfield
network for unit commitment," IEE proceedings-generation,
transmission and distribution, vol. 153, no. 6, pp. 624-632, 2006.

[20] S. Pineda, R. Fernández-Blanco, and J. M. Morales, "Time-Adaptive Unit
Commitment," IEEE Transactions on Power Systems, vol. 34, no. 5, pp.
3869-3878, 2019.

[21] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

0

500

1000

1500

2000

1 2 3 4 6 8 9 12

N
um

be
r o

f s
am

pl
es

Number of Subproblems

 12

[22] Y. Nesterov, "A method of solving a convex programming problem with
convergence rate O (1/k2)," in Soviet Mathematics Doklady, 1983, vol.
27, no. 2, pp. 372-376.

[23] T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk, "Fast
alternating direction optimization methods," SIAM Journal on Imaging
Sciences, vol. 7, no. 3, pp. 1588-1623, 2014.

[24] G. Cohen, "Auxiliary problem principle and decomposition of
optimization problems," Journal of optimization Theory and
Applications, vol. 32, no. 3, pp. 277-305, 1980.

[25] A. Liaw and M. Wiener, "Classification and regression by randomForest,"
R news, vol. 2, no. 3, pp. 18-22, 2002.

[26] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in
Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785-794.

[27] T. Chen, T. He, M. Benesty, and V. Khotilovich, "Package ‘xgboost’," R
version 0.90, 2019.

[28] "System Data." https://sites.google.com/site/aminkargarian/test-system-
data/multi-class-learning-based-temporal-decomposition-and-
distributed-optimizat?authuser=0 (accessed.

[29] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal
of machine learning research, vol. 12, no. Oct, pp. 2825-2830, 2011.

[30] "PJM Load Data." http://dataminer2.pjm.com/feed/load_frcstd_7_day
(accessed.

[31] C. Wang, C. Deng, and S. Wang, "Imbalance-XGBoost: leveraging
weighted and focal losses for binary label-imbalanced classification with
XGBoost," Pattern Recognition Letters, vol. 136, pp. 190-197, 2020.

[32] S. Soleimani, S. R. Mousa, J. Codjoe, and M. Leitner, "A comprehensive
railroad-highway grade crossing consolidation model: a machine learning
approach," Accident Analysis & Prevention, vol. 128, pp. 65-77, 2019.

Farnaz Safdarian is a Postdoctoral Researcher at Texas A&M University. She
received her Ph.D. in Electrical Engineering at Louisiana State University. She
earned her B.S. and M.S. degrees in Electrical Engineering from Amirkabir
University of Technology (Tehran Polytechnic) and Shahid Beheshti
University, Iran, in 2011 and 2014, respectively. She has been involved in
various projects and published several papers as part of her professional career.
She also has work experience in the power industry as well as teaching.

Amin Kargarian (SM’20) received his Ph.D. degree in electrical and computer
engineering from Mississippi State University, Starkville, MS, USA, in 2014.
He was a Postdoctoral Research Associate in the Electrical and Computer
Engineering Department at Carnegie Mellon University in 2014-2015. He is
currently an Assistant Professor with the Electrical and Computer Engineering
Department, Louisiana State University, Baton Rouge, LA, USA. His research
interests include power systems optimization and machine learning.

Fouad Hasan (S’18) received his B.Sc. degree in electrical engineering (power
system) from Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh, in 2015. He is currently pursuing his Ph.D. degree with the
Department of Electrical and Computer Engineering, Louisiana State
University, Baton Rouge, LA, USA. His research interests include
optimization, power systems operation, electricity market, and machine
learning.

https://sites.google.com/site/aminkargarian/test-system-data/multi-class-learning-based-temporal-decomposition-and-distributed-optimizat?authuser=0
https://sites.google.com/site/aminkargarian/test-system-data/multi-class-learning-based-temporal-decomposition-and-distributed-optimizat?authuser=0
https://sites.google.com/site/aminkargarian/test-system-data/multi-class-learning-based-temporal-decomposition-and-distributed-optimizat?authuser=0
http://dataminer2.pjm.com/feed/load_frcstd_7_day

	I. Introduction
	II. Time Decomposition Strategy
	III. Important Factors and Motivating Examples
	Figure 3a shows the solution time versus the number of subhorizons for a given load pattern, called pattern one [28]. Increasing the number of subhorizons reduces the solution time; however, increasing the number of subhorizons beyond nine increase...
	We have tested another load pattern, called pattern two [28]. The solution time does not follow a curve similar to Fig. 3.a and has a non-monotonic behavior. This is because of the sophisticated behavior of units’ ramp up/down constraints. These inter...

	IV. Proposed Learning-aided Methodology
	A. Offline Data Labelling
	B. Multiclass Learning for Temporal Decomposition
	,𝒪-𝑗.=,𝑙𝑝=1-,𝑁-𝑠.-𝑙(,𝜑-𝑙𝑝-∗.,,,𝜑.-𝑙𝑝-∗,𝑗−1..+,𝑓-𝑗.(,𝑃-𝑙𝑝.)).+,𝑗-𝛾𝑇+,1-2.𝜆,,,𝑓-𝑗..-2.. (14)

	V. Numerical Results
	VI. Conclusion
	References

