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Abstract— Temporal decomposition is a potential approach to 
relieve the computation cost of power system multi-interval 
scheduling problems, such as economic dispatch. In this form of 
decomposition, the considered scheduling horizon is partitioned 
into several subhorizons. A subproblem is formulated for each 
subhorizon, and a distributed optimization algorithm strategy is 
used to coordinate subproblems. The main existing challenge is 
decomposing the scheduling horizon to gain the most time saving 
from distributed computing. This paper serves as an extension to 
our previous work and presents a machine learning-aided 
temporal decomposition strategy to partition a scheduling horizon 
optimally. We have found that the load profile, known before 
solving economic dispatch, significantly affects the best number of 
subhorizons. We have used load profiles as inputs to a learner 
whose goal is to assign a temporal decomposition class to each load 
profile. Possible decomposition classes are divisors of the 
considered scheduling horizon. Thus, the proposed learning 
procedure is a multiclass classification. We have selected Extreme 
Gradient Boosting that is a tree-based classification learner. 
Simulation results using real-world load profiles show the 
promising performance of the proposed algorithm. 
 

Index Terms— Economic dispatch, distributed optimization, 
temporal decomposition, multiclass classification learner.   

I. INTRODUCTION 
ARGE optimization problems are frequently solved for 
power systems operation and analysis of electricity markets. 
Many of these problems are multi-interval optimization with 

intertemporal constraints [1]. The size of optimization problems 
depends on the system’s size and the length of the considered 
scheduling horizon. Growing the scheduling horizon length 
increases the computational burden significantly and might 
make solving the problem in a required time span impossible. 
Various techniques are applied to reduce the computational 
complexity of multi-interval scheduling problems and make 
them solvable in a reasonable time span. Distributed computing 
is one of these techniques whose objective is to decompose a 
problem into several smaller subproblems and to apply 
distributed optimization strategies to coordinate subproblems in 
a parallel manner [2, 3].  

Geographical decomposition and coordination approaches 
are presented in the literature for two main reasons, i) partition 
optimization problems according to the power system 

geographical areas and solve them faster than centralized 
methods [4-9], and ii) coordinate optimal solution of 
autonomous entities in the context of multi-agent systems [4]. 
In [10-12], we have developed temporal decomposition 
strategies whose objective is to relieve the computational 
complexity originated from intertemporal constraints. We have 
discussed that temporal decomposition complements 
geographical decomposition to further reduce the 
computational burden of multi-interval optimization problems, 
such as security-constrained economic dispatch (SCED) and 
security-constrained unit commitment (SCUC). The temporal 
decomposition1 is successfully applied to reduce the solution 
time of SCED and SCUC [10-12]. Also, it is combined with 
geographical decomposition in [12].  

The way that the power system is partitioned and the 
number of subproblems significantly impact geographical 
decomposition’s performance and distributed optimization’s 
convergence behavior [13-15]. Increasing the number of 
subproblems does not necessarily reduce the overall solution 
time since more subproblems result in more shared variables, 
and this increases the required number of coordination 
algorithm iterations to converge. Randomly decomposing a 
system into several zones may lead to a set of subproblems 
whose coordination takes many iterations. This may result in 
not obtaining the best possible outcome of decomposition or 
even a solution time that is more than that of centralized 
optimization.  In [10-12], we have reported a similar challenge 
for temporal decomposition. The number of subhorizons and 
breaking intervals affects the performance of temporal 
decomposition and the number of distributed algorithm 
iterations.  

In geographical decomposition, the grid can be modeled as 
a graph with buses and lines representing graph nodes and 
edges, respectively. Graph-based techniques such as spectral 
clustering can be applied to partition the grid based on 
geographical areas so that the least flow is cut between areas 
[13-15]. Geographical decomposition strategy, however, does 
not relieve the computational complexity originated from 
intertemporal constraints. For temporal decomposition, no 
equivalent graph has been modeled so far. Temporal constraints 
are interrelated throughout the scheduling horizon, not only 
neighboring time periods but also non-neighboring periods. 
Intuitively, temporal partitioning seems more complicated than 
geographical partitioning. Optimal temporal partitioning 
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depends on many factors. Power demand, the rate of change of 
load between two consecutive time intervals, ramp limits of 
generating units, minimum on/off time, and characteristics of 
the considered system are important features affecting the 
optimal time partitioning for the SCED and SCUC problems. 
These features affect the number of active intertemporal 
consistency constraints (e.g., thermal units ramp up/down limits 
and minimum on/off time) between consecutive subhorizons 
and the difference between shared variables values from the 
perspective of neighboring subhorizons. If intertemporal 
consistency constraints are active, more iterations are required 
for the coordination algorithm to converge. Therefore, it is 
desired to select the number of subhorizons so that most of the 
consistency constraints are not active. In addition, the number 
of available computing processors and their strength are two 
other factors affecting the best number of subhorizons. If the 
available processors are powerful, reducing the size of 
subhorizons beyond a certain limit does not significantly save 
time. If processors are not powerful, having more subproblems 
may be wise. A combination of these features determines the 
best number of subhorizons in temporal decomposition.  
However, the status of constraints and shared variables’ values 
are not known before solving the SCED and SCUC.  

Recently, machine learning applications to solve various 
problems have seen increased interest. The behavior of 
complex phenomena in power systems can be modeled using 
either simulation or historical datasets. Regression and 
classification learners read input data and project them to a set 
of output features. Classification methods have been applied to 
solving a variety of power system optimization problems. In 
[16], classification algorithms predict optimal power flow 
solutions in real-time instead of solving an optimization 
problem. A classification-based method is presented in [17] to 
predict the parameters of an environmental multi-objective 
economic dispatch problem. In [18], classification is used to 
predict the on/off status of generators in unit commitment. An 
augmented Lagrangian Hopfield network is used in [19] to 
enhance the unit commitment solution procedure. A learning-
based method is proposed in [20] to determine the duration of 
aggregated chronological time periods of a centralized unit 
commitment problem using non-supervised hierarchical 
clustering techniques. Classification is used to de-commit extra 
spinning reserve units caused by minimum uptime/downtime 
constraints. Although classification learners have been widely 
used for power system optimization, their applications for 
optimal decomposition (neither temporal nor geographical) and 
distributed optimization have not been explored despite their 
potential advantages to enhance decomposition. This has 
motivated us to perform this study. 

In this paper, a learning-aided temporal decomposition 
approach is proposed to determine the best time partitioning 
scheme that results in the best performance of distributed 
optimization for solving the security-constrained economic 
dispatch problem. To the best of our knowledge, this paper is 
the first study of using learning techniques for optimal time 
decomposition. The considered scheduling horizon is 
partitioned into several subhorizons based on the method 

presented in [11]. We study the effect of the number of 
subhorizons on temporal decomposition performance and 
analyze the solution time, the number of iterations, and solution 
accuracy. The possible decomposition schemes belong to the 
scheduling horizon’s divisors, yielding the same-sized 
subhorizons to take the best advantage of parallel computing. 
We propose modeling the optimal temporal partitioning 
approach as a multiclass classification whose input is the load 
profile known before solving SCED. The classifier’s output is 
the best number of subhorizons. We have used Extreme 
Gradient Boosting (XGBoost) as the learner, a tree-based 
classifier suitable for multiclass classification. Once the learner 
is trained, validated, and tested offline, it will be used to identify 
the best time decomposition class for a given load profile before 
solving SCED. We have also tested the learning-aided approach 
on unit commitment. Simulation results show the promising 
performance of the proposed decomposition approach.  

The difference between this paper and [10-12] lies in 
presenting a systematic algorithm for optimal time partitioning. 
Although temporal decomposition and coordination strategies 
are presented in [10-12], trial and error were used to partition 
the scheduling horizon. Partitioning is one of the main barriers 
to temporal decomposition applications in power systems. This 
paper solves this challenge using a learning-aided strategy. 
First, the strategies presented in [10-12] are applied for offline 
data preparation. A learner is then trained to map a demand 
profile to its corresponding best decomposition class. To solve 
a new SCED problem, the learner determines the optimal class 
first, and then the coordination algorithm in [10] is used to 
obtain the most time saving by distributed optimization. 

The remainder of this paper is organized as follows. 
Temporal decomposition is briefly described in Section II. 
Several motivating examples are presented in Section III, and 
important factors for temporal decomposition are analyzed. The 
proposed learning-aided time partitioning algorithm is 
presented in Section IV. Numerical results are discussed in 
Section V, and concluding remarks are provided in Section VI. 

II. TIME DECOMPOSITION STRATEGY  

Consider solving the SCED problem in the Appendix for a 
scheduling horizon of 𝑇𝑇 time intervals, as shown in Fig. 1.a. 
The horizon can be decomposed into 𝑁𝑁 subhorizons, each 
consisting of a subset of time periods, as depicted in Fig. 1.b. 
The length of all time periods in Fig. 1 is the same. An SCED 
subproblem can be formulated for each subhorizon. The 
subproblems are connected through ramping up and down of 
generating units, which are intertemporal constraints. The 
computational burden of solving SCED for each subhorizon is 
less than that of the whole scheduling horizon.  

SCED subproblems can be formulated regardless of their 
correlation with one another. Subproblems can then be solved 
in parallel. However, this approach does not provide a feasible 
solution as the intertemporal constraints for transition between 
subhorizons are ignored. Another approach is to start from the 
first subhorizon and solve subproblems sequentially by fixing 
values obtained in the last interval of a subproblem 𝑛𝑛 as the 
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initial state for subproblem 𝑛𝑛 + 1. This approach provides a 
feasible but suboptimal solution. 

...t1 t2 T
 

(a) 

... ...t2 Tt1 ...
𝑆𝑆𝐻𝐻1 𝑆𝑆𝐻𝐻𝑁𝑁 

𝑡𝑡𝑜𝑜  𝑡𝑡𝑜𝑜  

 
(b) 

Fig. 1. a) Overall scheduling horizon with T time intervals and b) 
decomposition of overall horizon into 𝑁𝑁 subhorizons (SHs). 

As described in [11], the concept of overlapping (or 
coupling) intervals is introduced to allow solving subproblems 
in parallel while ensuring optimality of the obtained solution. 
The first interval of each subhorizon 𝑛𝑛 is duplicated and added 
in subhorizon 𝑛𝑛 − 1 as its last interval, as shown with 𝑡𝑡𝑜𝑜 (called 
overlapping time interval) in Fig. 1.b. Variables and constraints 
of the overlapping time interval appear in both subproblems 
corresponding to subhorizons 𝑛𝑛 − 1 and 𝑛𝑛.  

Power produced by generating units in overlapping time 
intervals is shared between consecutive subhorizons. Consider 
two consecutive subhorizons (subproblems) 𝑛𝑛 − 1 and 𝑛𝑛. 
Power produced by unit 𝑢𝑢 at the overlapping time interval 𝑡𝑡𝑜𝑜 is 
named, respectively, 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′  from the perspective of 
subhorizons 𝑛𝑛 − 1 and 𝑛𝑛. Since these shared variables are 
physically the same, the following consistency constraint must 
be satisfied to ensure the feasibility of results from the whole 
scheduling horizon’s perspective. 

𝐶𝐶𝐶𝐶: 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ = 0           ∀𝑢𝑢                (1) 

This consistency constraint can be relaxed using the concept 
of augmented Lagrangian relaxation [21]. Using the concept of 
Nesterov momentum for gradient descent acceleration [22, 23], 
an accelerated auxiliary problem principle (A-APP) is 
presented in [11] to coordinate subproblems iteratively and 
obtain the SCED solution. This approach, which allows the 
parallel solution of SCED subproblems, is presented below for 
two subproblems 𝑛𝑛 − 1 and 𝑛𝑛. The objective function (2) is to 
minimize the generation cost of units in time periods 
corresponding to subproblem 𝑛𝑛 − 1 plus the three penalty terms 
related to consistency constraint relaxation. The objective 
function of subproblem 𝑛𝑛 is formulated by (3). 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑛𝑛−1 at iteration 𝑘𝑘 given 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘−1: 

min��𝑎𝑎𝑝𝑝𝑢𝑢𝑢𝑢2 + 𝑏𝑏𝑝𝑝𝑢𝑢𝑢𝑢 + 𝑐𝑐𝑢𝑢𝑢𝑢
𝑢𝑢𝑡𝑡

                                             (2) 

+�
𝜌𝜌
2
�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘−1�2 + 𝜏̂𝜏†𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑢𝑢

+ 𝜇𝜇𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
†  �𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘−1 − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘−1� 

Subject to equipment (e.g., generating units) and network (e.g., 
power flow) constraints corresponding to subhorizon 𝑛𝑛 − 1 

𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑛𝑛 at iteration 𝑘𝑘 given 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘−1: 

min��𝑎𝑎𝑝𝑝𝑢𝑢𝑢𝑢2 + 𝑏𝑏𝑝𝑝𝑢𝑢𝑢𝑢 + 𝑐𝑐𝑢𝑢𝑢𝑢
𝑢𝑢𝑡𝑡

                                              (3) 

+�
𝜌𝜌
2
�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘−1�2 − 𝜏̂𝜏†𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′

𝑢𝑢

+ 𝜇𝜇𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ †  �𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′𝑘𝑘−1 − 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘−1� 

Subject to equipment and network constraints corresponding to 
subhorizon 𝑛𝑛.  

A-APP tuning parameters are 𝜌𝜌 and 𝜇𝜇. Multiplier 𝜏̂𝜏 and 
variables 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜  and 𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ , which are the modified forms of 
Lagrange multiplier 𝜏𝜏 and shared variables 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′  using 
Nesterov momentum, are iteratively updated as follows [10, 
11]. 

𝜏𝜏𝑘𝑘+1 = 𝜏𝜏𝑘𝑘 + 𝛽𝛽�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘 �                                   (4) 

𝛼𝛼𝑘𝑘+1 =
1 + �1 + 4𝛼𝛼𝑘𝑘2

2
                                               (5) 

𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘+1 = 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘 +
𝛼𝛼𝑘𝑘 − 1
𝛼𝛼𝑘𝑘+1

�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘  − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘−1�                           (6) 

𝑝̂𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘+1 = 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘 +
𝛼𝛼𝑘𝑘 − 1
𝛼𝛼𝑘𝑘+1

�𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′ 𝑘𝑘 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ 𝑘𝑘−1�                     (7) 

𝜏̂𝜏𝑘𝑘+1 = 𝜏𝜏𝑘𝑘 +
𝛼𝛼𝑘𝑘 − 1
𝛼𝛼𝑘𝑘+1

(𝜏𝜏𝑘𝑘 − 𝜏𝜏𝑘𝑘−1)                              (8) 

where 𝛽𝛽 is a suitable positive step-size, and 𝛼𝛼 is the momentum 
coefficient. Tuning parameters and step sizes can be 
individually determined for each shared variable. The above 
procedure is repeated until �𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜 − 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′ � ≤ 𝜖𝜖. This algorithm 
can be extended for different numbers of subhorizons. We refer 
to [11, 24] for more details on the problem formulation and 
solution algorithm.  

III. IMPORTANT FACTORS AND MOTIVATING EXAMPLES 

Reducing the length of subhorizons and the number of 
coordination algorithm iterations reduces the distributed 
optimization solution time. The less the number of variables 
and constraints of a subproblem is, the less the computational 
time would be. However, because of increasing the number of 
shared variables, the required number of iterations of the 
distributed algorithm to coordinate subproblems and the total 
solution time might increase. Moreover, partitioning the 
problem from time intervals with a considerable number of 
active intertemporal ramping up and down constraints results in 
a larger gap between shared variables in the first few iterations. 
This might increase the required number of iterations of 
distributed optimization to converge. The scheduling horizon 
must be decomposed carefully to obtain the best solution time. 

In this section, we illustrate a few examples to show the 
necessity of optimal temporal decomposition and to investigate 
the factors that affect it. The considered scheduling problem is 
a week-ahead SCED. The overall horizon is fixed, but the 
length of subhorizons is studied. The objective function is to 
minimize the generation cost subject to thermal unit constraints, 
power balance equalities, line flow limits, and voltage angle 
limitations under normal and contingency conditions.  
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A. Motivating Examples  

A 3-Bus System with Smooth Load Profile: The maximum 
load variation between each two consecutive time interval is 
less than the ramping limitations of generating units. 
Therefore, intertemporal consistency constraints connecting 
subhorizons, i.e., ramp up and down constraints, are not active. 
This makes subproblems loosely connected and yields small 
differences in the desired values of shared variables, i.e., 
power generated by units at overlapping time intervals, from 
the perspective of neighboring subproblems. As shown in Fig. 
2, by increasing the number of subproblems, the size of each 
subproblem will be smaller, and the overall solution time 
decreases. However, since the system is small, decomposing 
the problem beyond 20 subhorizons does not significantly save 
time. It also needs more computational resources and may 
slightly increase the solution error as compared to the 
centralized method. Hence, we suggest not decomposing the 
scheduling horizon beyond 20 subhorizons. 

 
Fig. 2.  Overall solution time versus number of subhorizons (NS) for the 3-bus 
test system with a flat load profile. 

B. IEEE 24-Bus System with Variable Load Profile: 

   Figure 3a shows the solution time versus the number of 
subhorizons for a given load pattern, called pattern one [28]. 
Increasing the number of subhorizons reduces the solution 
time; however, increasing the number of subhorizons beyond 
nine increases the solution time. This is because of having 
many active intertemporal consistency constraints and large 
differences in the desired values for power generated by units 
at overlapping time intervals from the perspective of 
neighboring subhorizons. Hence, the number of iterations and 
the overall solution time of the distributed algorithm increase. 
We have reduced the load by 5% and redrawn the curve. As 
shown in Fig. 3b, this monotonous load decrease does not 
change the curve pattern. 

We have tested another load pattern, called pattern two 
[28]. The solution time does not follow a curve similar to Fig. 
3.a and has a non-monotonic behavior. This is because of the 
sophisticated behavior of units’ ramp up/down constraints. 
These intertemporal constraints connect intervals {1, … ,𝑇𝑇} 
and will be active depending on the load pattern and system 
characteristics. This results in an unpredictable pattern in the 
desired shared variable values from the perspective of 
neighboring subhorizons and a non-monotonic behavior in the 
solution time pattern. The load is reduced by 5%, and the curve 
is plotted in Fig. 4b, which is similar to Fig. 4a. Comparing 

Figs. 3 and 4 show that the load profile pattern has a more 
significant impact on the solution time than a small load 
increase or decrease.  

C. Important Factors for Solution Time 
The factors affecting the overall solution time versus the 
number of subhorizons include 1) system characteristics, 2) 
generators characteristics, 3) the number of active ramp 
up/down constraints for transition between subhorizons, and 4) 
the desired values of power generated by units at overlapping 
time intervals from the perspective of neighboring subhorizons. 
For a given system with a set of generating units, the third and 
fourth factors should be analyzed to obtain the optimal temporal 
decomposition. However, they are unknown before solving the 
problem. The load profile plays a critical role in the status of 
intertemporal constraints and the values of variables. Hence, the 
load profile can be used to analyze the number of subhorizons 
versus the solution time and find the best temporal 
decomposition scheme.  

  
(a)                                                              (b) 

Fig. 3. Overall solution time versus number of subhorizons (NS) for the IEEE 
24-bus system with a) load pattern one and b) load pattern one with a 5% 
decrease. 

  
(a)                                                              (b) 

Fig. 4. Overall solution time versus number of subhorizons (NS) for the IEEE 
24-bus system with a) load pattern two and b) load pattern two with a 5% 
decrease. 

IV. PROPOSED LEARNING-AIDED METHODOLOGY  

Given that the load profile is known before solving SCED, 
we propose a learning-aided algorithm for time partitioning. 
The goal of this learner is to project the best number of 
subhorizons to the load profile pattern. As illustrated in Fig. 5, 
the input to the multiclass classifier is the load profile over the 
considered scheduling horizon, and its output is the best time 
partitioning scheme. 

A.  Offline Data Labelling 
Historical and predicted system load profile patterns for the 

considered scheduling horizon can be collected. For each load 
pattern 𝑙𝑙𝑙𝑙, all divisors of the considered scheduling horizon are 
determined as the possible decomposition classes (denoted by 
Ω𝑐𝑐𝑐𝑐) with subhorizons with equal length. For a scheduling 
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horizon with 72 intervals, for instance, Ω𝑐𝑐𝑐𝑐={1, 2, 3, 4, 6, 7, 8, 
9, 12, 18, 24, 36, 72}. Subhorizons with different lengths can 
also be considered. However, we suggest subhorizons with the 
same length that yields almost the same sized optimization 
subproblems with similar solution times. This results in gaining 
the most advantage of parallel computing with minimum CPU 
idle time. 

A-APP is applied to solve SCED in a distributed manner for 
each decomposition class 𝑐𝑐𝑐𝑐. An error-time index is created by 
combining the solution time and the relative error to determine 
the best class for each load pattern.  

𝜑𝜑𝑐𝑐𝑐𝑐 = 𝜔𝜔1 × 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐  + 𝜔𝜔2 × 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐        ∀𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐     (9) 

The 𝑟𝑟𝑟𝑟𝑟𝑟 index is the relative error between the optimal costs 
obtained by centralized (𝑓𝑓∗) and distributed (𝑓𝑓𝑐𝑐𝑐𝑐𝑑𝑑) approaches. 
Parameter 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐  is the solution time of each class 𝑐𝑐𝑐𝑐.  
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Fig. 5. Flowchart of the proposed learner-based temporal decomposition 
algorithm.  
 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐 = �
𝑓𝑓∗ − 𝑓𝑓𝑐𝑐𝑐𝑐𝑑𝑑

𝑓𝑓∗
�                              (10) 

 
Weighting factors 𝜔𝜔1 and 𝜔𝜔2 assign priority to 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐  and  
𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑐𝑐𝑐𝑐 indices. A system operator can determine the weight 
values based on its preference for solution time and accuracy. 
After solving distributed SCED for each 𝑐𝑐𝑐𝑐 of load pattern 𝑙𝑙𝑙𝑙, 
the decomposition class with the smallest error-time index is 
determined (denoted by 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙∗ ), and the load pattern is assigned 
to this class. 

𝜑𝜑𝑙𝑙𝑙𝑙∗ = min{𝜑𝜑𝑐𝑐𝑐𝑐    ∀𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐}                  (11) 

This offline procedure, whose pseudocode is shown in Data 
Labelling Algorithm, assigns the best number of subhorizons as 
the class label for each load profile. 
 

Data Labelling Algorithm Pseudocode for multiclass classification of 
load patterns and data preparation 

1: Read historical load patterns for the considered scheduling horizon 
2: Determine weighting factors 𝜔𝜔1 and 𝜔𝜔2 
3: Do for all possible load patterns 
4: for 𝑐𝑐𝑐𝑐 ∈ Ω𝑐𝑐𝑐𝑐 
5:       Decompose the considered horizon into 𝑐𝑐𝑐𝑐 equal subhorizons 
6:       while |𝐶𝐶𝐶𝐶| > 𝜖𝜖, 𝑘𝑘 = 𝑘𝑘 + 1 do 
7:           Solve SCED subproblems in parallel and determine optimal 

values of 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
𝑘𝑘  and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

′𝑘𝑘     
8:                Exchange 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜

𝑘𝑘  and 𝑝𝑝𝑢𝑢𝑡𝑡𝑜𝑜
′𝑘𝑘  between SCED subproblems 

9:                Update 𝜏𝜏𝑘𝑘 by (4) 
10:              Calculate 𝛼𝛼𝑘𝑘+1 by (5) 
11:              Update 𝑝̂𝑝𝑘𝑘+1, 𝑝̂𝑝′ 𝑘𝑘+1, and 𝜏̂𝜏𝑘𝑘+1 by (6)-(8) 
12:       end while 
13:       Record 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐 and calculate 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐 
14:       Calculate 𝜑𝜑𝑐𝑐𝑐𝑐 = 𝜔𝜔1 × 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐  +𝜔𝜔2 × 𝐶𝐶𝐶𝐶𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑐𝑐𝑐𝑐         
15: end for 
16: Determine 𝜑𝜑𝑙𝑙𝑙𝑙∗  for each load pattern 
17: Assign the load pattern to 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙∗   

Remark 1: If energy storage and unit commitment constraints 
are considered in the optimization problem, the modeling and 
coordination strategies in [10, 12] need to be applied. 
Remark 2: The learning dataset should be updated every several 
months or years after installing new generating units to adapt 
the classifier to changes in the system characteristics. 

B.  Multiclass Learning for Temporal Decomposition 
We need a learner to project each load profile 𝑙𝑙𝑙𝑙 to its best 
decomposition class 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙∗ . The input to this learner is a time-
varying demand vector, and the output is an integer, which is 
limited among the divisors of the considered scheduling 
horizon. A multiclass classification learner can structure this 
learning procedure.  

Selecting Learner: Various algorithms exist to form a 
multiclass classifier, among which tree-based algorithms are 
widely used as their results can be interpreted properly. 
Decision tree, random forest, and Extreme Gradient Boosting 
(XGBoost) are among the most popular and efficient tree-based 
approaches [25]. Classification trees are made of nodes, which 
separate data based on some impurity criteria, and leaves that 
determine classes. In the decision tree, each node is selected 
based on a characteristic that provides the best split with the 
least impurity and the most information gain. To select a certain 
characteristic to split a node, the information gain by splitting 
on that node is calculated and the split with the largest gain is 
made. In the random forest, a random number of characteristics 
is selected at each step, and different decision trees are made 
based on those characteristics. A class receiving the most votes 
from decision trees is determined as the final class. Trees of a 
random forest are independent of each other.  

The chronological order of time intervals must be 
maintained in time partitioning. Thus, the decision tree and the 
random forest are not suitable for time partitioning as they 
randomly select trees and do not ensure maintaining the 
chronological order of time intervals. XGBoost maintains the 
chronological order of time intervals. In XGBoost, trees are 
made based on regression, and the predicted value is updated 
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after each regression tree is made until a suitable prediction is 
made. XGBoost is a combination of gradient boosting, 
regularization, unique regression trees, approximate greedy 
algorithm, weighted quantile sketch, sparsity-aware split 
finding, parallel learning, cache-award access, and blocks for 
out-of-core computation [26, 27]. As compared to other 
gradient boosting methods, XGBoost has two additional 
features to prevent over-fitting. The weights of a new tree can 
be scaled down by a given constant to reduce the impact of a 
single tree on the final score and to provide an opportunity for 
the next trees to improve the model. XGBoost also performs 
better than other tree boosting methods. This is mainly because 
it supports an approximate split finding, which improves 
building trees and scales well with the number of CPU cores. 
Thus, we have used XGBoost for optimal temporal partitioning 
projection. 

XGBoost Model for Load Profile Classification: Assuming 
𝑀𝑀 and 𝐾𝐾 denote, respectively, the number of rounds of 
XGBoost and the number of trees, a total number of 𝑀𝑀 × 𝐾𝐾 
decision trees are generated. XGBoost pre-sorts attributes and 
greedily finds the split point with the largest information gain 
[26]. Assume a dataset 𝒟𝒟 = ��𝑃𝑃𝑙𝑙𝑙𝑙 ,𝜑𝜑𝑙𝑙𝑙𝑙∗ �: 𝑙𝑙𝑙𝑙 =  1, . . . ,𝑁𝑁𝑠𝑠� where 
𝑃𝑃𝑙𝑙𝑙𝑙 is the demand vector 𝑙𝑙𝑙𝑙 over the scheduling horizon whose 
best decomposition class based on (11) is 𝜑𝜑𝑙𝑙𝑙𝑙∗ . We define 𝜑𝜑∗�  as 
predicted classes by the learner. 

𝜑𝜑𝑙𝑙𝑙𝑙∗� = �𝑓𝑓𝑘𝑘�𝑃𝑃𝑙𝑙𝑙𝑙�
𝐾𝐾

𝑘𝑘=1

                                (12) 

𝑓𝑓𝑘𝑘(⋅) is a regression tree, and 𝑓𝑓𝑘𝑘�𝑃𝑃𝑙𝑙𝑙𝑙� represents the score given 
by the 𝑘𝑘th tree to 𝑙𝑙𝑙𝑙th observation. If the regression tree 𝑓𝑓𝑘𝑘 for 
𝑘𝑘 = 1, … ,𝐾𝐾 is achieved, expression (12) will provide the 
predicted temporal decomposition class. Thus, the goal of 
training the learner is to find the optimal regression trees 
(denoted by 𝑓𝑓𝑘𝑘∗�𝑃𝑃𝑙𝑙𝑙𝑙� ∀𝑘𝑘) that minimize the following 
regularized objective function. 

𝒪𝒪 = �𝑙𝑙(𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑𝑙𝑙𝑙𝑙∗� )
𝑙𝑙𝑙𝑙

+ �𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆‖𝑓𝑓𝑘𝑘‖2

𝑘𝑘

                         (13) 

where 𝑙𝑙(⋅) is the loss function quantifying prediction quality. 
XGBoost uses this loss function to build trees by minimizing 𝒪𝒪. 
Parameters 𝛾𝛾 and 𝜆𝜆 control penalty for the number of terminal 
nodes or leaves (𝑇𝑇). Parameter 𝛾𝛾 encourages pruning trees. The 
second term of (13) is added to prevent over-fitting. This term 
simplifies models produced by the learner.  

An iterative method is used to minimize the objective 
function. At iteration 𝑗𝑗 = 0, the initial guess for each class’s 
probability is one divided by the number of classes. At iteration 
𝑗𝑗 ≠ 0, XGBoost builds a tree by finding the output value for a 
leaf 𝑓𝑓𝑗𝑗 that minimizes the following objective function. 

𝒪𝒪𝑗𝑗 = � 𝑙𝑙(𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1) + 𝑓𝑓𝑗𝑗(𝑃𝑃𝑙𝑙𝑙𝑙))

𝑁𝑁𝑠𝑠

𝑙𝑙𝑙𝑙=1

+ �𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆�𝑓𝑓𝑗𝑗�

2

𝑗𝑗

                     (14) 

Using the second-order Taylor expansion, this function is 
simplified and a formula for loss reduction is derived by solving 
for the optimal value. 

𝒪𝒪𝑗𝑗 = � 𝑙𝑙(𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1))

𝑁𝑁𝑠𝑠

𝑙𝑙𝑙𝑙=1

+ 𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑗𝑗�𝑃𝑃𝑙𝑙𝑙𝑙� +
1
2
ℎ𝑙𝑙𝑙𝑙𝑗𝑗𝑓𝑓𝑗𝑗

2�𝑃𝑃𝑙𝑙𝑙𝑙�

+ �𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆�𝑓𝑓𝑗𝑗�

2

𝑗𝑗

                                 (15) 

where functions 𝑔𝑔𝑙𝑙𝑙𝑙 and ℎ𝑙𝑙𝑙𝑙 are defined as follows:  
𝑔𝑔𝑙𝑙𝑙𝑙 = 𝜕𝜕

𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1)𝑙𝑙 �𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙

∗(𝑗𝑗−1)�                         (16) 

ℎ𝑙𝑙𝑝𝑝 = 𝜕𝜕
𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1)

2 𝑙𝑙 �𝜑𝜑𝑙𝑙𝑙𝑙∗ ,𝜑𝜑�𝑙𝑙𝑙𝑙
∗(𝑗𝑗−1)�                       (17) 

Function 𝒪𝒪 is solved based on the output value 𝑓𝑓𝑘𝑘∗�𝑃𝑃𝑙𝑙𝑙𝑙�,∀𝑘𝑘 for 
the leaf to create XGBoost trees. Since the goal is to find the 
output value that minimizes the objective function, derivatives 
are calculated based on the output value and are made equal to 
zero. The desired output value is achieved as: 

𝑓𝑓𝑘𝑘∗�𝑃𝑃𝑙𝑙𝑙𝑙� = −
1
2
�

�∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙 �
2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙

𝐾𝐾

𝑘𝑘=1

+  𝛾𝛾𝛾𝛾                  (18) 

After the leaf (node) output value is calculated, the best split at 
the given node is found based on the gain and similarity score 
to grow the XGBoost tree. Then gain (ℊ) is calculated as the 
sum of the left and right leaves’ similarity scores minus the 
root’s similarity score. The best split at any given node is the 
split with the largest information gain. 

ℊ =
1
2
�

(∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
𝐿𝐿 )2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
𝐿𝐿

+
(∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙

𝑅𝑅 )2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
𝑅𝑅

−
(∑ 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙 )2

∑ ℎ𝑙𝑙𝑙𝑙 + 𝜆𝜆𝑙𝑙𝑙𝑙∈Ω𝑙𝑙𝑙𝑙
�

− 𝛾𝛾                                                               (19) 

where Ω𝑙𝑙𝑙𝑙 is the set of load profiles in the current node, and the 
sets of observations available in the left and right leaves after 
the split are denoted by Ω𝑙𝑙𝑙𝑙𝐿𝐿  and Ω𝑙𝑙𝑙𝑙𝑅𝑅 , respectively.  

The trained XGBoost can be used, as shown in Fig. 6. The 
learner reads the load profile and decomposes the scheduling 
horizons into the best number of subhorizons (SH).  

 

Multiclass 
classification learner

Time 

M
W

Input: Demand information

Optimal subhorizons

M
W

SH 1
SH n

Output: optimal time partitioning

 
Fig. 6. Utilizing procedure of the trained XGBoost learner. 



 7 

V. NUMERICAL RESULTS 
Four cases are studied, A) SCED for the IEEE 118-bus 

system without wind power, B) SCED for the IEEE 118-bus 
system with 30% wind power penetration, C) SCED for a 2006-
bus system, and D) unit commitment for the IEEE 24-bus 
system. System information and characteristics are given in 
[28]. Simulations are carried out on a personal computer with a 
3.70 GHz Intel(R) Xeon(R) CPU and 16 GB of RAM. The 
Yalmip toolbox in Matlab and Gurobi is used to solve 
optimization problems, and Python learning toolboxes 
XGBoost and sklearn are used to train multiclass classification 
learners [27, 29].  

A. IEEE 118-Bus System without Wind Power 

Dataset Preparation: The considered scheduling problem is 
a week-ahead economic dispatch. To show the algorithm’s 
performance for practical load patterns, we have extracted 6669 
real-world weekly load profiles from PJM [30]. These load 
profiles are scaled to be used for the IEEE 118-bus system. 
Figure 7 shows some random samples of load profiles. A load 
profile can belong to any divisors of 168 as the possible classes. 
For each load profile and each divisor, the distributed algorithm 
is implemented. The best divisor that provides 𝜑𝜑𝑙𝑙𝑙𝑙∗  is assigned 
to each load profile as its decomposition class. This offline 
procedure provides train and test datasets. 

 
Fig. 7. Some random samples of PJM load profiles [30], shown by different 
colors, that are normalized for the IEEE 118-bus system. 

We have observed that all load profiles in the train and test 
datasets belong to {2, 4, 7, 8, 12} classes of divisors of 168. No 
load profile is assigned to other divisors. We keep these five 
classes and drop others. We define the decomposition classes 
as 𝑐𝑐𝑙𝑙1 = 2, 𝑐𝑐𝑙𝑙2 = 4, 𝑐𝑐𝑙𝑙3 = 7, 𝑐𝑐𝑙𝑙4 = 8, and 𝑐𝑐𝑙𝑙5 = 12. For 
example, 𝑐𝑐𝑙𝑙2 = 4 means that decomposition class two includes 
load profiles with the best number of subhorizons equals 4. 
Although no significant imbalance is observed in the dataset, 
various approaches can mitigate possible dataset imbalance 
effects [31]. 

Temporal Decomposition Classifier Training: Eighty 
percent of the dataset is selected randomly for training and 
twenty percent for testing. The softmax function is used to 
normalize the probability distribution of predicted output 
classes so that the sum of all probabilities becomes one. The 
maximum tree depth D, the number of trees 𝐾𝐾, and 
regularization parameters such as learning rate L, γ, and λ need 
to be tuned to train XGBoost. These parameters have been 
determined based on sensitivity analysis and preliminary 

investigation of their acceptable ranges [26, 32]. Parameters γ 
and λ are set to one while tuning other hyper-parameters. We 
set the parameter D, which controls the sequential process of 
growing trees, in a range of D ∈ {1, 2, … , 6}. It is suggested not 
to exceed the depth of a tree more than 6. Parameter L should 
be in the range of 0 < L < 1. The accuracy of the learner 
increases by increasing 𝐾𝐾; however, this may cause overfitting. 
We have tested various values for this parameter as 𝐾𝐾 ∈
{1, 2, … , 10}.  Table I shows the learner’s accuracy for different 
parameters. We have found the best combination for hyper-
parameters as L = 0.5, D = 6, and 𝐾𝐾 = 6.  Except for 𝐷𝐷 = 1 
(which is not suggested for a multiclass classification), if 
parameters are selected from their acceptable ranges, high 
accuracy is achieved, and the results are not much sensitive to 
the choice of hyperparameters. 

TABLE I 
ACCURACY OF PARAMETER TUNING  

Accuracy D K L Rounds 
0.57 1 4 0.1 1 
0.85 2 4 0.1 1 
0.93 3 4 0.1 1 
0.98 4 4 0.1 1 
0.98 5 4 0.1 1 
0.98 6 4 0.1 1 
0.98 4 1 0.1 1 
0.98 4 10 0.1 1 
0.98 4 4 0.01 1 
0.98 4 4 1 1 
0.99 4 4 0.1 2 
0.99 4 4 0.1 3 
0.99 4 4 0.1 4 
0.99 6 6 0.5 5 

 
Evaluating Temporal Decomposition Classifier: Twenty 

percent of the dataset is used for testing the multiclass 
classification learner. The following four primary indices are 
introduced for each decomposition class to interpret predicted 
results and analyze the learning-aided temporal decomposition 
accuracy. 
• True positives (TP): a load profile 𝑙𝑙𝑙𝑙 is predicted to belong 

to a decomposition class 𝑐𝑐𝑐𝑐 and its actual class is 𝑐𝑐𝑐𝑐. 
• True negatives (TN): a load profile 𝑙𝑙𝑙𝑙 is predicted to not 

belong to a decomposition class 𝑐𝑐𝑐𝑐 and its actual class is not 
𝑐𝑐𝑐𝑐. 

• False positives (FP): a load profile 𝑙𝑙𝑙𝑙 is predicted to belong 
to a decomposition class 𝑐𝑐𝑐𝑐, but its actual class is not 𝑐𝑐𝑐𝑐. 

• False negatives (FN): a load profile 𝑙𝑙𝑙𝑙 is predicted to not 
belong to a decomposition class 𝑐𝑐𝑐𝑐, but its actual class is 𝑐𝑐𝑐𝑐. 

We use classification accuracy, precision, recall, and 𝐹𝐹1 
score metrics to analyze the quality of the classification leaner. 

Accuracy𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑁𝑁𝑐𝑐𝑐𝑐

𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑁𝑁𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐𝑐𝑐
                 (20) 

Precision is defined as the fraction of true positives out of total 
instances predicted as positives. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐

𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐𝑐𝑐
                                  (21) 
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• Recall is defined as the fraction of instances belonging to 
positive classes that are predicted as positives. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐

𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐𝑐𝑐
                                       (22) 

The 𝐹𝐹1 score is the harmonic mean of precision and recall, 
defined as: 

𝐹𝐹1,𝑐𝑐𝑐𝑐 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐

                   (23) 

The confusion matrix is represented in Fig. 8. Green blocks 
show the number of load profiles whose decomposition classes 
are predicted correctly. Orange blocks depict the number of load 
profiles that are misclassified. As an example, 668 load profiles 
in the test dataset belong to 𝑐𝑐𝑙𝑙1. 664 (99.4%) of those are 
predicted correctly, and only four (0.6%) load profiles are 
misclassified. The misclassification percentage of all 
decomposition classes is low, and almost all the load profiles are 
projected to their correct best decomposition class. The overall 
𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇 are the summations of all correctly classified load 
patterns, regardless of their classes. The overall 𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹 refer 
to the overall incorrectly predicted load patterns. 

We have also calculated the overall classification accuracy, 
precision, recall, and 𝐹𝐹1 score metrics for all classes combined, 
as depicted in Table II. The overall accuracy, which is the 
proportion of correct predictions over all predictions, is more 
than 99%. The confusion matric and overall indices prove the 
promising performance of the proposed learning-aided temporal 
decomposition algorithm. 

TABLE II 
PERFORMANCE INDICES OF LEARNER FOR 118-BUS SYSTEM WITHOUT WIND 

POWER 
Index  Value 

Accuracy 0.99 
𝐹𝐹1 0.99 

Precision 0.99 
Recall 0.99 

 
We have also used a support vector machine and neural 

networks for classification. The comparison of performance 
metrics shows that the three classification approaches provide 
promising results, with a prediction accuracy above 99%. This 
indicates that several learners may work well for the considered 
temporal decomposition problems. 

Distributed Optimization Results: We have randomly 
selected a load profile, shown in Fig. 9, from the IEEE 118-bus 

system’s test dataset and have carried out the distributed 
optimization with different numbers of subhorizons. The 
operation cost obtained by centralized economic dispatch is 
$9,050,971. The relative error for all decomposition classes is 
less than 2𝑒𝑒 − 6. We choose 𝜔𝜔1  = 1𝑒𝑒6 and 𝜔𝜔2 = 1. Table III 
illustrates the relative error, solution time, and 𝜑𝜑𝑐𝑐𝑐𝑐  for each 
decomposition class. The solver time versus the number of 
subhorizons is plotted in Fig. 10. The error-time index for this 
given load profile is 𝜑𝜑𝑙𝑙𝑙𝑙∗ = 0.7327. Thus, the best strategy for 
this load pattern is to decompose the considered scheduling 
horizon into eight subproblems. We have also carried out the 
classification leaner for this load profile. The predicted 
decomposition class by the learner is also 𝑐𝑐𝑙𝑙4, which refers to 
eight subproblems.  

 
Fig. 9. A load pattern used to test the algorithm [42]. 

 
Fig. 10. Solver time versus number of subhorizons for the sample load profile 
in Fig. 9. 

We have implemented a similar procedure for all load profiles 
in the dataset. The minimum, maximum, and average values of 
the relative error and the average solver time are reported in 
Table IV. The best average solution time is obtained for 
decomposition into 28 subhorizons. However, the best 
partitioning strategy for each load profile should be determined 
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 Actual 𝑐𝑐𝑙𝑙1 
2 subhorizons 

Actual 𝑐𝑐𝑙𝑙2 
4 subhorizons 

Actual 𝑐𝑐𝑙𝑙3 
7 subhorizons 

Actual 𝑐𝑐𝑙𝑙4 
 8 subhorizons 

Actual 𝑐𝑐𝑙𝑙5 
12 subhorizons Total predict 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 

Predicted 𝑐𝑐𝑙𝑙1 664 0 0 2 3 669 99.253% 
Predicted 𝑐𝑐𝑙𝑙2 3 199 0 0 0 202 98.515% 
Predicted 𝑐𝑐𝑙𝑙3 0 0 145 0 0 145 100% 
Predicted 𝑐𝑐𝑙𝑙4 1 2 0 194 0 197 98.477% 
Predicted 𝑐𝑐𝑙𝑙5 0 0 0 0 121 121 100% 
Total actual 668 201 145 196 124 1334  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 99.40% 99.01% 100% 98.98% 97.5%   

Fig. 8. Confusion matrix. 
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independently by the learner before solving distributed 
optimization. 

TABLE III 
RELATIVE ERROR, SOLVER TIME, AND ERROR-TIME INDICES FOR 

DECOMPOSITION CLASSES CORRESPONDING TO LOAD PROFILE IN FIG. 9 
Number of 
subhorizons 𝑟𝑟𝑟𝑟𝑟𝑟 Solver time 

(sec) 𝜑𝜑𝑐𝑐𝑐𝑐 

1 - 1.4 1.4363 
2 ~0* 1.6 1.5626 
3 2e-09 1.6 1.5649 
4 ~0 1.1 1.1307 
6 2e-09 0.9 0.9175 
7 2e-08 0.8 0.8138 
8 ~0 0.7 0.7327 

12 3e-08 1.2 1.2497 
24 6e-07 1 1.594 
28 2e-06 1 2.9599 
42 2e-07 2.6 2.8136 
56 1e-07 3.1 3.2102 
84 5e-07 4.4 4.5298 

* Values less than 1e-10 are assumed to be ~0 
 

TABLE IV 
MINIMUM, MAXIMUM AND AVERAGE RELATIVE ERROR AND AVERAGE 

SOLVER TIME OF ALL LOAD PROFILES IN DATA SET FOR 118-BUS SYSTEM 

Number of 
subhorizons max 𝑟𝑟𝑟𝑟𝑟𝑟 min 𝑟𝑟𝑟𝑟𝑟𝑟 Average 

𝑟𝑟𝑟𝑟𝑟𝑟 

Average 
solver time 

(sec) 
1 - - - 1.6 
2 6e-5 ~0 3e-6 1.9 
3 6e-6 ~0 1e-6 2.6 
4 8e-6 ~0 8e-7 2 
6 9e-6 1e-9 1e-6 1.6 
7 4e-5 1e-8 3e-6 1.5 
8 4e-6 ~0 1e-6 1.4 

12 5e-2 3e-8 1e-2 1.7 
24 6e-5 6e-7 1e-5 2.5 
28 4e-4 2e-6 3e-5 1.2 
42 6e-5 2e-7 1e-5 2.6 
56 8e-4 1e-7 6e-5 3.1 
84 5e-4 5e-7 1e-4 3.9 

B. IEEE 118-Bus System with Wind Power 

It is assumed that 30% of the load is supplied with wind 
turbines. To consider an extreme impact of wind uncertainty, 
wind power scenarios for each time interval are generated 
randomly between 0 to 100% of wind power capacity. Figure 
11 shows the net load for the sampled load profiles in Fig. 7 
with 30% wind power penetration. The net load, used as input 
to the classifier, fluctuates significantly due to wind power 
variations. 

 

 
Fig. 11.  Net load profiles if Fig. 7 with 30% wind power penetration. 

The overall classification accuracy, precision, recall, and 𝐹𝐹1 
score for all classes combined are reported in Table V.  These 
four indices are around 99%, similar to those for the system 
without wind power uncertainty.  

TABLE V 
PERFORMANCE INDICES OF LEARNER FOR 118-BUS SYSTEM WITH WIND 

POWER 
Index  Value 

Accuracy 0.99 
𝐹𝐹1 0.99 

Precision 0.99 
Recall 0.99 

C. 2006-Bus System  

The classifier accuracy, 𝐹𝐹1 score, precision, and recall for 
this large system are reported in Table VI. These indices are 
above 98%, showing the promising performance of the trained 
XGBoost classifier.  

TABLE VI 
PERFORMANCE INDICES OF LEARNER FOR 2006-BUS SYSTEM 

Index  Value 
Accuracy 0.99 

𝐹𝐹1 0.99 
Precision 0.98 

Recall 0.98 
 
We have implemented distributed optimization with different 
decomposition classes for all load profiles. Table VII shows the 
minimum, maximum, and average values of the relative error 
and the average solver time. The solver time for the centralized 
SCED is 142 seconds, which is larger than that of distributed 
optimization with any decomposition class.  
 

TABLE VII 
MINIMUM, MAXIMUM, AND AVERAGE RELATIVE ERROR AND AVERAGE 
SOLVER TIME OF ALL SAMPLE LOAD PROFILES FOR 2006-BUS SYSTEM 

Number of 
subhorizons 

max 
𝑟𝑟𝑟𝑟𝑟𝑟 

min 
𝑟𝑟𝑟𝑟𝑟𝑟 

Average 
𝑟𝑟𝑟𝑟𝑟𝑟 

Average solver 
time (sec) 

1 (centralized) - - - 142 
2 ~0 ~0 ~0 67 
3 ~0 ~0 ~0 35 
4 ~0 ~0 ~0 23 
6 1e-7 ~0 1e-7 16 
7 7e-7 ~0 1e-7 13 
8 7e-7 ~0 1e-7 12 

12 6e-7 ~0 1e-7 13 
24 3e-6 ~0 2e-6 36 
28 1e-6 ~0 1e-6 38 

 
If one uses the average values to find the best decomposition 

class, any load profile should be decomposed into eight 
subhorizons. Figures 12 and 13 show solution time and 
logarithmic relative error histograms if the problem is always 
decomposed into eight subproblems. And Figs. 14 and 15 are 
solution time and logarithmic relative error histograms if one 
uses a learner to find the best decomposition class for each load 
profile. As observed, the learning-aided approach outperforms 
in terms of the solution time and relative error. While 44% of 
the average-based strategy’s cases lie in (11.5, 12.5] seconds 
solution time interval, 48% of the learning-aided approach’s 
samples take (8, 9] seconds. Also, 28% of the average-based 
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strategy’s cases have a relative error in the range of 10−7, the 
learning-aided approach provides a relative error smaller than 
10−10 for all samples. The average solution time and relative 
error of the learning-aided approach are 10.1 and 7× 10−11, 
which roughly 20% and 100% smaller than those of average-
based strategy. Only for 4% of cases (highlighted in red in Fig. 
14), the decomposition class of average-based and leaning-
aided strategies are the same. Although the proposed approach 
takes approximately 2 seconds more for 24% of cases 
(highlighted in gray in Figs. 14 and 15), the relative errors of 
these cases are ~10−4 smaller than those obtained by the 
average-based strategy. 

 

 
Fig. 12. Solution time histogram [seconds] for 8-subproblem class 
decomposition. 
 

 
Fig. 13. Logarithmic relative error histogram for 8-subproblem class 
decomposition. 
 

 
Fig. 14. Solution time histogram [seconds] for proposed learning-aided 
approach. 
 

 
Fig. 15. Logarithmic relative error for proposed learning-aided approach. 

D.  Unit Commitment for IEEE 24-Bus System 
The learning-aided decomposition is applied to a unit 
commitment problem with a considered horizon of 72 hours. 
We have extracted 5226 weekly load patterns from PJM [30]. 
The load profiles are scaled to be used for the IEEE 24-bus 
system. The centralized optimization problem is decomposed 
into all divisors of 72, representing possible classes that a load 
profile can belong to. The coordination strategy in [10] is used. 
Increasing the number of subhorizons beyond 12 increases the 
number of distributed optimization iterations significantly such 
that those classes cannot lead to the least solution time and 𝑟𝑟𝑟𝑟𝑟𝑟. 
Eighty percent of the dataset is selected randomly for training 
and twenty percent for testing. The overall classification 
accuracy, precision, recall, and 𝐹𝐹1 score metrics are above 98%, 
indicating the trained classifier assigns the best decomposition 
label to load profiles accurately. 

Distributed optimization is implemented for all test load 
profiles with different decomposition classes. The minimum, 
maximum, and average relative error and average solver time 
for all test load profiles are reported in Table VIII. A user may 
conclude that having four subhorizons is the best decomposing 
paradigm for all load profiles. However, this table shows the 
average values, which is not necessarily the best choice for all 
load profiles. Figure 16 shows the number of samples in each 
decomposition class obtained by the learner. Only 24% of load 
profiles belong to the 4-subhorizon class, whereas 76% of 
samples belong to other decomposition classes. The average 
solution time and relative error are respectively 31% and 10−8 
less if the proposed approach is used instead of always 
decomposing the problem into four subproblems. 

 
TABLE VIII 

MINIMUM, MAXIMUM AND AVERAGE RELATIVE ERROR AND AVERAGE 
SOLVER TIME FOR ALL LOAD PROFILES IN DATASET FOR 24-BUS SYSTEM 

Number of 
subhorizons 

max 
𝑟𝑟𝑟𝑟𝑟𝑟 

min 
𝑟𝑟𝑟𝑟𝑟𝑟 

Average 
𝑟𝑟𝑟𝑟𝑟𝑟 

Average solver 
time (sec) 

1 - - - 229 
2 ~0 0 ~0 11 
3 0.03 ~0 9e-4 9 
4 1e-4 0 8e-6 3 
6 6e-5 0 6e-4 4 
8 4e-5 0 1e-4 3.5 
9 8e-5 0 2e-4 3 

12 0.1 0.05 0.07 6 
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Fig. 16. Number of samples is each decomposition class using the learning-
aided approach. 

VI. CONCLUSION 
In this paper, we have focused on decomposing the overall time 
horizon and finding the best number of subhorizons. We have 
observed that load values and profile patterns significantly 
impact the best number of subhorizons. The load is predictable 
and is known before solving the system scheduling problem. 
Possible load patterns have been decomposed into various 
numbers of subhorizons, and distributed optimization has been 
solved. Each load profile has been labeled with its 
corresponding best decomposition class that results in the best 
time-saving and relative error. We have trained a multiclass 
classification learner based on XGBoost, whose goal is to read 
the load data as the input and project it to the corresponding best 
decomposition class. 

The simulation studies using real-world load patterns show 
that the proposed algorithm can efficiently and quickly find the 
best number of subproblems. More than 98% of the cases are 
predicted correctly for all studied cases. Using the best number 
of subproblems reduces the solution time more significantly 
than a naïve decomposition with a single class for all load 
profiles deduced from average values.  

APPENDIX 

The considered centralized SCED problem, which is a 
multi-interval DC OPF, is formulated as follows. The objective 
function is to minimize generation costs subject to generating 
unit limitations (a.2)-(a.5) and power flow constraints (a.6)-
(a.8) under normal and contingency conditions [1].  

min��𝑎𝑎𝑢𝑢 ⋅ 𝑝𝑝𝑢𝑢𝑢𝑢2 +  𝑏𝑏𝑢𝑢 ⋅ 𝑝𝑝𝑢𝑢𝑢𝑢 + 𝐶𝐶𝑢𝑢
𝑢𝑢𝑡𝑡

              (𝑎𝑎. 1) 

s.t. 
𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢 ≤ 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢 ≤ 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢                 ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐      (𝑎𝑎. 2) 
𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑝𝑝𝑢𝑢(𝑡𝑡−1)𝑐𝑐 ≤ UR𝑢𝑢           ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐      (𝑎𝑎. 3) 
𝑝𝑝𝑢𝑢(𝑡𝑡−1)c − 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢 ≤ DR𝑢𝑢           ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐      (𝑎𝑎. 4) 
|𝑝𝑝𝑢𝑢𝑢𝑢0 − 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢| ≤ Δ                     ∀ 𝑢𝑢,∀𝑡𝑡,∀𝑐𝑐      (𝑎𝑎. 5) 

𝑃𝑃𝑖𝑖𝑖𝑖 ≤
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗

𝑋𝑋𝑖𝑖𝑖𝑖
≤ 𝑃𝑃𝑖𝑖𝑖𝑖            ∀𝑖𝑖𝑖𝑖,∀𝑡𝑡,∀𝑐𝑐       (𝑎𝑎. 6) 

𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗

𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗

      ∀𝑖𝑖,∀𝑡𝑡,∀𝑐𝑐        (𝑎𝑎. 7) 

𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡𝑡𝑡 = 0                                  ∀𝑡𝑡,∀𝑐𝑐              (𝑎𝑎. 8) 

where 𝑢𝑢, 𝑡𝑡, and 𝑐𝑐 are indices for generating units, time, and 
contingency scenarios. Subscripts 𝑖𝑖, 𝑗𝑗, and 𝑖𝑖𝑖𝑖 indicate bus 𝑖𝑖, bus 
𝑗𝑗, and line 𝑖𝑖𝑖𝑖. Parameters UR𝑢𝑢 and DR𝑢𝑢 refer to ramp up and 
down limits of unit 𝑢𝑢. 𝛿𝛿 are bus voltage angles. We refer to [11] 
for more details. 
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