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Abstract— Temporal decomposition is a potential approach to
relieve the computation cost of power system multi-interval
scheduling problems, such as economic dispatch. In this form of
decomposition, the considered scheduling horizon is partitioned
into several subhorizons. A subproblem is formulated for each
subhorizon, and a distributed optimization algorithm strategy is
used to coordinate subproblems. The main existing challenge is
decomposing the scheduling horizon to gain the most time saving
from distributed computing. This paper serves as an extension to
our previous work and presents a machine learning-aided
temporal decomposition strategy to partition a scheduling horizon
optimally. We have found that the load profile, known before
solving economic dispatch, significantly affects the best number of
subhorizons. We have used load profiles as inputs to a learner
whose goal is to assign a temporal decomposition class to each load
profile. Possible decomposition classes are divisors of the
considered scheduling horizon. Thus, the proposed learning
procedure is a multiclass classification. We have selected Extreme
Gradient Boosting that is a tree-based classification learner.
Simulation results using real-world load profiles show the
promising performance of the proposed algorithm.

Index Terms— Economic dispatch, distributed optimization,
temporal decomposition, multiclass classification learner.

I. INTRODUCTION

ARGE optimization problems are frequently solved for
power systems operation and analysis of electricity markets.
Many of these problems are multi-interval optimization with
intertemporal constraints [1]. The size of optimization problems
depends on the system’s size and the length of the considered
scheduling horizon. Growing the scheduling horizon length
increases the computational burden significantly and might
make solving the problem in a required time span impossible.
Various techniques are applied to reduce the computational
complexity of multi-interval scheduling problems and make
them solvable in a reasonable time span. Distributed computing
is one of these techniques whose objective is to decompose a
problem into several smaller subproblems and to apply
distributed optimization strategies to coordinate subproblems in
a parallel manner [2, 3].
Geographical decomposition and coordination approaches
are presented in the literature for two main reasons, i) partition
optimization problems according to the power system
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geographical areas and solve them faster than centralized
methods [4-9], and ii) coordinate optimal solution of
autonomous entities in the context of multi-agent systems [4].
In [10-12], we have developed temporal decomposition
strategies whose objective is to relieve the computational
complexity originated from intertemporal constraints. We have
discussed that temporal decomposition complements
geographical decomposition to further reduce the
computational burden of multi-interval optimization problems,
such as security-constrained economic dispatch (SCED) and
security-constrained unit commitment (SCUC). The temporal
decomposition' is successfully applied to reduce the solution
time of SCED and SCUC [10-12]. Also, it is combined with
geographical decomposition in [12].

The way that the power system is partitioned and the
number of subproblems significantly impact geographical
decomposition’s performance and distributed optimization’s
convergence behavior [13-15]. Increasing the number of
subproblems does not necessarily reduce the overall solution
time since more subproblems result in more shared variables,
and this increases the required number of coordination
algorithm iterations to converge. Randomly decomposing a
system into several zones may lead to a set of subproblems
whose coordination takes many iterations. This may result in
not obtaining the best possible outcome of decomposition or
even a solution time that is more than that of centralized
optimization. In [10-12], we have reported a similar challenge
for temporal decomposition. The number of subhorizons and
breaking intervals affects the performance of temporal
decomposition and the number of distributed algorithm
iterations.

In geographical decomposition, the grid can be modeled as
a graph with buses and lines representing graph nodes and
edges, respectively. Graph-based techniques such as spectral
clustering can be applied to partition the grid based on
geographical areas so that the least flow is cut between areas
[13-15]. Geographical decomposition strategy, however, does
not relieve the computational complexity originated from
intertemporal constraints. For temporal decomposition, no
equivalent graph has been modeled so far. Temporal constraints
are interrelated throughout the scheduling horizon, not only
neighboring time periods but also non-neighboring periods.
Intuitively, temporal partitioning seems more complicated than
geographical partitioning. Optimal temporal partitioning

1. We interchangeably use the terms temporal decomposition, time
partitioning, and temporal partitioning.



depends on many factors. Power demand, the rate of change of
load between two consecutive time intervals, ramp limits of
generating units, minimum on/off time, and characteristics of
the considered system are important features affecting the
optimal time partitioning for the SCED and SCUC problems.
These features affect the number of active intertemporal
consistency constraints (e.g., thermal units ramp up/down limits
and minimum on/off time) between consecutive subhorizons
and the difference between shared variables values from the
perspective of neighboring subhorizons. If intertemporal
consistency constraints are active, more iterations are required
for the coordination algorithm to converge. Therefore, it is
desired to select the number of subhorizons so that most of the
consistency constraints are not active. In addition, the number
of available computing processors and their strength are two
other factors affecting the best number of subhorizons. If the
available processors are powerful, reducing the size of
subhorizons beyond a certain limit does not significantly save
time. If processors are not powerful, having more subproblems
may be wise. A combination of these features determines the
best number of subhorizons in temporal decomposition.
However, the status of constraints and shared variables’ values
are not known before solving the SCED and SCUC.

Recently, machine learning applications to solve various
problems have seen increased interest. The behavior of
complex phenomena in power systems can be modeled using
either simulation or historical datasets. Regression and
classification learners read input data and project them to a set
of output features. Classification methods have been applied to
solving a variety of power system optimization problems. In
[16], classification algorithms predict optimal power flow
solutions in real-time instead of solving an optimization
problem. A classification-based method is presented in [17] to
predict the parameters of an environmental multi-objective
economic dispatch problem. In [18], classification is used to
predict the on/off status of generators in unit commitment. An
augmented Lagrangian Hopfield network is used in [19] to
enhance the unit commitment solution procedure. A learning-
based method is proposed in [20] to determine the duration of
aggregated chronological time periods of a centralized unit
commitment problem using non-supervised hierarchical
clustering techniques. Classification is used to de-commit extra
spinning reserve units caused by minimum uptime/downtime
constraints. Although classification learners have been widely
used for power system optimization, their applications for
optimal decomposition (neither temporal nor geographical) and
distributed optimization have not been explored despite their
potential advantages to enhance decomposition. This has
motivated us to perform this study.

In this paper, a learning-aided temporal decomposition
approach is proposed to determine the best time partitioning
scheme that results in the best performance of distributed
optimization for solving the security-constrained economic
dispatch problem. To the best of our knowledge, this paper is
the first study of using learning techniques for optimal time
decomposition. The considered scheduling horizon is
partitioned into several subhorizons based on the method

2

presented in [11]. We study the effect of the number of
subhorizons on temporal decomposition performance and
analyze the solution time, the number of iterations, and solution
accuracy. The possible decomposition schemes belong to the
scheduling horizon’s divisors, yielding the same-sized
subhorizons to take the best advantage of parallel computing.
We propose modeling the optimal temporal partitioning
approach as a multiclass classification whose input is the load
profile known before solving SCED. The classifier’s output is
the best number of subhorizons. We have used Extreme
Gradient Boosting (XGBoost) as the learner, a tree-based
classifier suitable for multiclass classification. Once the learner
is trained, validated, and tested offline, it will be used to identify
the best time decomposition class for a given load profile before
solving SCED. We have also tested the learning-aided approach
on unit commitment. Simulation results show the promising
performance of the proposed decomposition approach.

The difference between this paper and [10-12] lies in
presenting a systematic algorithm for optimal time partitioning.
Although temporal decomposition and coordination strategies
are presented in [10-12], trial and error were used to partition
the scheduling horizon. Partitioning is one of the main barriers
to temporal decomposition applications in power systems. This
paper solves this challenge using a learning-aided strategy.
First, the strategies presented in [10-12] are applied for offline
data preparation. A learner is then trained to map a demand
profile to its corresponding best decomposition class. To solve
a new SCED problem, the learner determines the optimal class
first, and then the coordination algorithm in [10] is used to
obtain the most time saving by distributed optimization.

The remainder of this paper is organized as follows.
Temporal decomposition is briefly described in Section II.
Several motivating examples are presented in Section III, and
important factors for temporal decomposition are analyzed. The
proposed learning-aided time partitioning algorithm is
presented in Section IV. Numerical results are discussed in
Section V, and concluding remarks are provided in Section VI.

1L TIME DECOMPOSITION STRATEGY

Consider solving the SCED problem in the Appendix for a
scheduling horizon of T time intervals, as shown in Fig. 1.a.
The horizon can be decomposed into N subhorizons, each
consisting of a subset of time periods, as depicted in Fig. 1.b.
The length of all time periods in Fig. 1 is the same. An SCED
subproblem can be formulated for each subhorizon. The
subproblems are connected through ramping up and down of
generating units, which are intertemporal constraints. The
computational burden of solving SCED for each subhorizon is
less than that of the whole scheduling horizon.

SCED subproblems can be formulated regardless of their
correlation with one another. Subproblems can then be solved
in parallel. However, this approach does not provide a feasible
solution as the intertemporal constraints for transition between
subhorizons are ignored. Another approach is to start from the
first subhorizon and solve subproblems sequentially by fixing
values obtained in the last interval of a subproblem n as the



initial state for subproblem n + 1. This approach provides a
feasible but suboptimal solution.
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Fig. 1. a) Overall scheduling horizon with T time intervals and b)
decomposition of overall horizon into N subhorizons (SHs).

As described in [11], the concept of overlapping (or
coupling) intervals is introduced to allow solving subproblems
in parallel while ensuring optimality of the obtained solution.
The first interval of each subhorizon n is duplicated and added
in subhorizon n — 1 as its last interval, as shown with t,, (called
overlapping time interval) in Fig. 1.b. Variables and constraints
of the overlapping time interval appear in both subproblems
corresponding to subhorizons n — 1 and n.

Power produced by generating units in overlapping time
intervals is shared between consecutive subhorizons. Consider
two consecutive subhorizons (subproblems) n—1 and n.
Power produced by unit u at the overlapping time interval ¢, is
named, respectively, p,, and py., from the perspective of
subhorizons n — 1 and n. Since these shared variables are
physically the same, the following consistency constraint must
be satisfied to ensure the feasibility of results from the whole
scheduling horizon’s perspective.
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This consistency constraint can be relaxed using the concept
of augmented Lagrangian relaxation [21]. Using the concept of
Nesterov momentum for gradient descent acceleration [22, 23],
an accelerated auxiliary problem principle (A-APP) is
presented in [11] to coordinate subproblems iteratively and
obtain the SCED solution. This approach, which allows the
parallel solution of SCED subproblems, is presented below for
two subproblems n — 1 and n. The objective function (2) is to
minimize the generation cost of units in time periods
corresponding to subproblem n — 1 plus the three penalty terms
related to consistency constraint relaxation. The objective
function of subproblem n is formulated by (3).
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Subject to equipment (e.g., generating units) and network (e.g.,
power flow) constraints corresponding to subhorizon n — 1
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Subject to equipment and network constraints corresponding to
subhorizon n.

A-APP tuning parameters are p and p. Multiplier 7 and
variables Py, and Py, which are the modified forms of

Lagrange multiplier T and shared variables p,,; and p,,, using

Nesterov momentum, are iteratively updated as follows [10,
11].
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where S is a suitable positive step-size, and « is the momentum
coefficient. Tuning parameters and step sizes can be
individually determined for each shared variable. The above
procedure is repeated until |puto - p{”o| < €. This algorithm
can be extended for different numbers of subhorizons. We refer
to [11, 24] for more details on the problem formulation and
solution algorithm.

I1I. IMPORTANT FACTORS AND MOTIVATING EXAMPLES

Reducing the length of subhorizons and the number of
coordination algorithm iterations reduces the distributed
optimization solution time. The less the number of variables
and constraints of a subproblem is, the less the computational
time would be. However, because of increasing the number of
shared variables, the required number of iterations of the
distributed algorithm to coordinate subproblems and the total
solution time might increase. Moreover, partitioning the
problem from time intervals with a considerable number of
active intertemporal ramping up and down constraints results in
a larger gap between shared variables in the first few iterations.
This might increase the required number of iterations of
distributed optimization to converge. The scheduling horizon
must be decomposed carefully to obtain the best solution time.

In this section, we illustrate a few examples to show the
necessity of optimal temporal decomposition and to investigate
the factors that affect it. The considered scheduling problem is
a week-ahead SCED. The overall horizon is fixed, but the
length of subhorizons is studied. The objective function is to
minimize the generation cost subject to thermal unit constraints,
power balance equalities, line flow limits, and voltage angle
limitations under normal and contingency conditions.



A. Motivating Examples

A 3-Bus System with Smooth Load Profile: The maximum
load variation between each two consecutive time interval is
less than the ramping limitations of generating units.
Therefore, intertemporal consistency constraints connecting
subhorizons, i.e., ramp up and down constraints, are not active.
This makes subproblems loosely connected and yields small
differences in the desired values of shared variables, i.e.,
power generated by units at overlapping time intervals, from
the perspective of neighboring subproblems. As shown in Fig.
2, by increasing the number of subproblems, the size of each
subproblem will be smaller, and the overall solution time
decreases. However, since the system is small, decomposing
the problem beyond 20 subhorizons does not significantly save
time. It also needs more computational resources and may
slightly increase the solution error as compared to the
centralized method. Hence, we suggest not decomposing the
scheduling horizon beyond 20 subhorizons.
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Fig. 2. Overall solution time versus number of subhorizons (NS) for the 3-bus
test system with a flat load profile.

B. IEEE 24-Bus System with Variable Load Profile:

Figure 3a shows the solution time versus the number of
subhorizons for a given load pattern, called pattern one [28].
Increasing the number of subhorizons reduces the solution
time; however, increasing the number of subhorizons beyond
nine increases the solution time. This is because of having
many active intertemporal consistency constraints and large
differences in the desired values for power generated by units
at overlapping time intervals from the perspective of
neighboring subhorizons. Hence, the number of iterations and
the overall solution time of the distributed algorithm increase.
We have reduced the load by 5% and redrawn the curve. As
shown in Fig. 3b, this monotonous load decrease does not
change the curve pattern.

We have tested another load pattern, called pattern two
[28]. The solution time does not follow a curve similar to Fig.
3.a and has a non-monotonic behavior. This is because of the
sophisticated behavior of units’ ramp up/down constraints.
These intertemporal constraints connect intervals {1,...,T}
and will be active depending on the load pattern and system
characteristics. This results in an unpredictable pattern in the
desired shared variable values from the perspective of
neighboring subhorizons and a non-monotonic behavior in the
solution time pattern. The load is reduced by 5%, and the curve
is plotted in Fig. 4b, which is similar to Fig. 4a. Comparing
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Figs. 3 and 4 show that the load profile pattern has a more
significant impact on the solution time than a small load
increase or decrease.

C. Important Factors for Solution Time

The factors affecting the overall solution time versus the
number of subhorizons include 1) system characteristics, 2)
generators characteristics, 3) the number of active ramp
up/down constraints for transition between subhorizons, and 4)
the desired values of power generated by units at overlapping
time intervals from the perspective of neighboring subhorizons.
For a given system with a set of generating units, the third and
fourth factors should be analyzed to obtain the optimal temporal
decomposition. However, they are unknown before solving the
problem. The load profile plays a critical role in the status of
intertemporal constraints and the values of variables. Hence, the
load profile can be used to analyze the number of subhorizons
versus the solution time and find the best temporal
decomposition scheme.
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Fig. 3. Overall solution time versus number of subhorizons (NS) for the IEEE
24-bus system with a) load pattern one and b) load pattern one with a 5%
decrease.
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Fig. 4. Overall solution time versus number of subhorizons (NS) for the [IEEE
24-bus system with a) load pattern two and b) load pattern two with a 5%
decrease.

1V. PROPOSED LEARNING-AIDED METHODOLOGY

Given that the load profile is known before solving SCED,
we propose a learning-aided algorithm for time partitioning.
The goal of this learner is to project the best number of
subhorizons to the load profile pattern. As illustrated in Fig. 5,
the input to the multiclass classifier is the load profile over the
considered scheduling horizon, and its output is the best time
partitioning scheme.

A. Offline Data Labelling

Historical and predicted system load profile patterns for the
considered scheduling horizon can be collected. For each load
pattern lp, all divisors of the considered scheduling horizon are
determined as the possible decomposition classes (denoted by
Q) with subhorizons with equal length. For a scheduling



horizon with 72 intervals, for instance, Q,,={1, 2, 3,4, 6, 7, 8,
9, 12, 18, 24, 36, 72}. Subhorizons with different lengths can
also be considered. However, we suggest subhorizons with the
same length that yields almost the same sized optimization
subproblems with similar solution times. This results in gaining
the most advantage of parallel computing with minimum CPU
idle time.

A-APP is applied to solve SCED in a distributed manner for
each decomposition class cl. An error-time index is created by
combining the solution time and the relative error to determine
the best class for each load pattern.

Qo = w; Xrely + wy X CPUjme 1 Vel e, (9)

The rel index is the relative error between the optimal costs
obtained by centralized (f*) and distributed (£%) approaches.
Parameter CPU,;p, (; is the solution time of each class cl.

Solve distributed optimization
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Fig. 5. Flowchart of the proposed learner-based temporal decomposition
algorithm.
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rel, = (10)

Weighting factors w; and w, assign priority to rel, and
CPUime o1 indices. A system operator can determine the weight
values based on its preference for solution time and accuracy.
After solving distributed SCED for each cl of load pattern Ip,
the decomposition class with the smallest error-time index is
determined (denoted by clj,), and the load pattern is assigned
to this class.

@fp = min{p, Vcl € Q} (11)

This offline procedure, whose pseudocode is shown in Data
Labelling Algorithm, assigns the best number of subhorizons as
the class label for each load profile.

Data Labelling Algorithm Pseudocode for multiclass classification of
load patterns and data preparation

1: Read historical load patterns for the considered scheduling horizon

2: Determine weighting factors w, and w,

3: Do for all possible load patterns

4:forcl € Oy

5 Decompose the considered horizon into cl equal subhorizons

6:  while |CC| > €, k=k+1do

7: Solve SCED subproblems in parallel and determine optimal

values of pft;, and p;f,

8: Exchange P{fto and p{]ﬁu between SCED subproblems
9: Update % by (4)

10: Calculate a4 by (5)

11: Update p**1, p'**1, and £%*1 by (6)-(8)

12:  end while

13: Record CPUyjpe ¢ and calculate rel;

14:  Calculate ¢y = w; Xrely + wy X CPUgime

15: end for

16: Determine @y, for each load pattern
17: Assign the load pattern to cly,,

Remark 1: If energy storage and unit commitment constraints
are considered in the optimization problem, the modeling and
coordination strategies in [10, 12] need to be applied.
Remark 2: The learning dataset should be updated every several
months or years after installing new generating units to adapt
the classifier to changes in the system characteristics.

B. Multiclass Learning for Temporal Decomposition

We need a learner to project each load profile Ip to its best
decomposition class clj,. The input to this learner is a time-
varying demand vector, and the output is an integer, which is
limited among the divisors of the considered scheduling
horizon. A multiclass classification learner can structure this
learning procedure.

Selecting Learner: Various algorithms exist to form a
multiclass classifier, among which tree-based algorithms are
widely used as their results can be interpreted properly.
Decision tree, random forest, and Extreme Gradient Boosting
(XGBoost) are among the most popular and efficient tree-based
approaches [25]. Classification trees are made of nodes, which
separate data based on some impurity criteria, and leaves that
determine classes. In the decision tree, each node is selected
based on a characteristic that provides the best split with the
least impurity and the most information gain. To select a certain
characteristic to split a node, the information gain by splitting
on that node is calculated and the split with the largest gain is
made. In the random forest, a random number of characteristics
is selected at each step, and different decision trees are made
based on those characteristics. A class receiving the most votes
from decision trees is determined as the final class. Trees of a
random forest are independent of each other.

The chronological order of time intervals must be
maintained in time partitioning. Thus, the decision tree and the
random forest are not suitable for time partitioning as they
randomly select trees and do not ensure maintaining the
chronological order of time intervals. XGBoost maintains the
chronological order of time intervals. In XGBoost, trees are
made based on regression, and the predicted value is updated



after each regression tree is made until a suitable prediction is
made. XGBoost is a combination of gradient boosting,
regularization, unique regression trees, approximate greedy
algorithm, weighted quantile sketch, sparsity-aware split
finding, parallel learning, cache-award access, and blocks for
out-of-core computation [26, 27]. As compared to other
gradient boosting methods, XGBoost has two additional
features to prevent over-fitting. The weights of a new tree can
be scaled down by a given constant to reduce the impact of a
single tree on the final score and to provide an opportunity for
the next trees to improve the model. XGBoost also performs
better than other tree boosting methods. This is mainly because
it supports an approximate split finding, which improves
building trees and scales well with the number of CPU cores.
Thus, we have used XGBoost for optimal temporal partitioning
projection.

XGBoost Model for Load Profile Classification: Assuming
M and K denote, respectively, the number of rounds of
XGBoost and the number of trees, a total number of M X K
decision trees are generated. XGBoost pre-sorts attributes and
greedily finds the split point with the largest information gain
[26]. Assume a dataset D = {(Plp, (pl*p): lp=1,. ..,Ns} where
Py, is the demand vector lp over the scheduling horizon whose
best decomposition class based on (11) is ¢,. We define @* as
predicted classes by the learner.

K

@ = (P

fi(+) is a regression tree, and f;, (Plp) represents the score given
by the kth tree to Ipth observation. If the regression tree f;, for
k=1,..,K is achieved, expression (12) will provide the
predicted temporal decomposition class. Thus, the goal of
training the learner is to find the optimal regression trees
(denoted by fy (Plp) Vk) that minimize the following
regularized objective function.

— 1
0 = > Ui 03 + ) YT+ 52l
Ip k

(12)

(13)

where [(+) is the loss function quantifying prediction quality.
XGBoost uses this loss function to build trees by minimizing O.
Parameters y and A control penalty for the number of terminal
nodes or leaves (T). Parameter y encourages pruning trees. The
second term of (13) is added to prevent over-fitting. This term
simplifies models produced by the learner.

An iterative method is used to minimize the objective
function. At iteration j = 0, the initial guess for each class’s
probability is one divided by the number of classes. At iteration
Jj # 0, XGBoost builds a tree by finding the output value for a
leaf f; that minimizes the following objective function.

0l = Zl(wm. I 4 £ (Py))
Ip=1
1 2
+ > v+ 3l5 (14)
J

Using the second-order Taylor expansion, this function is
simplified and a formula for loss reduction is derived by solving
for the optimal value.

. 1
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1 2
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where functions g;,, and h,,, are defined as follows:
— ~*(j—1)
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Function O is solved based on the output value f;; (Plp), Vk for
the leaf'to create XGBoost trees. Since the goal is to find the
output value that minimizes the objective function, derivatives
are calculated based on the output value and are made equal to
zero. The desired output value is achieved as:

2
leeﬂlp ) lp

S(P Z T
fk( lp) leeﬂlp hlp + A * 4

(18)

After the leaf (node) output value is calculated, the best split at
the given node is found based on the gain and similarity score
to grow the XGBoost tree. Then gain (g) is calculated as the
sum of the left and right leaves’ similarity scores minus the
root’s similarity score. The best split at any given node is the
split with the largest information gain.

(leeﬂl‘ glp) (leeQR glp) (ZIPEQLp glp)
leEﬂL hy, + 2 leeﬂR hy + 4 leenlp hy + 4
4 (19)

where (;,, is the set of load profiles in the current node, and the

g =

sets of observations available in the left and right leaves after
the split are denoted by Q and le, respectively.

The trained XGBoost can be used, as shown in Fig. 6. The
learner reads the load profile and decomposes the scheduling
horizons into the best number of subhorizons (SH).

Input: Demand information

Output: optimal time partitioning

Multiclass
classification learner

g g
Optimal subhorizons

Fig. 6. Utilizing procedure of the trained XGBoost learner.



V. NUMERICAL RESULTS

Four cases are studied, A) SCED for the IEEE 118-bus
system without wind power, B) SCED for the IEEE 118-bus
system with 30% wind power penetration, C) SCED for a 2006-
bus system, and D) unit commitment for the IEEE 24-bus
system. System information and characteristics are given in
[28]. Simulations are carried out on a personal computer with a
3.70 GHz Intel(R) Xeon(R) CPU and 16 GB of RAM. The
Yalmip toolbox in Matlab and Gurobi is used to solve
optimization problems, and Python learning toolboxes
XGBoost and sklearn are used to train multiclass classification
learners [27, 29].

A. IEEE 118-Bus System without Wind Power

Dataset Preparation: The considered scheduling problem is
a week-ahead economic dispatch. To show the algorithm’s
performance for practical load patterns, we have extracted 6669
real-world weekly load profiles from PJM [30]. These load
profiles are scaled to be used for the IEEE 118-bus system.
Figure 7 shows some random samples of load profiles. A load
profile can belong to any divisors of 168 as the possible classes.
For each load profile and each divisor, the distributed algorithm
is implemented. The best divisor that provides ¢y, is assigned
to each load profile as its decomposition class. This offline
procedure provides train and test datasets.

Fig. 7. Some random samples of PJM load profiles [30], shown by different
colors, that are normalized for the IEEE 118-bus system.

We have observed that all load profiles in the train and test
datasets belong to {2, 4, 7, 8, 12} classes of divisors of 168. No
load profile is assigned to other divisors. We keep these five
classes and drop others. We define the decomposition classes
as cly =2, cl =4, cl3=7, cl;, =8, and cls =12. For
example, cl, = 4 means that decomposition class two includes
load profiles with the best number of subhorizons equals 4.
Although no significant imbalance is observed in the dataset,
various approaches can mitigate possible dataset imbalance
effects [31].

Temporal Decomposition Classifier Training: Eighty
percent of the dataset is selected randomly for training and
twenty percent for testing. The softmax function is used to
normalize the probability distribution of predicted output
classes so that the sum of all probabilities becomes one. The
maximum tree depth D, the number of trees K, and
regularization parameters such as learning rate L, y, and A need
to be tuned to train XGBoost. These parameters have been
determined based on sensitivity analysis and preliminary
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investigation of their acceptable ranges [26, 32]. Parameters y
and A are set to one while tuning other hyper-parameters. We
set the parameter D, which controls the sequential process of
growing trees, in a range of D € {1, 2, ..., 6}. It is suggested not
to exceed the depth of a tree more than 6. Parameter L should
be in the range of 0 < L < 1. The accuracy of the learner
increases by increasing K; however, this may cause overfitting.
We have tested various values for this parameter as K €
{1,2,...,10}. Table I shows the learner’s accuracy for different
parameters. We have found the best combination for hyper-
parameters as L= 0.5, D =6, and K = 6. Except for D =1
(which is not suggested for a multiclass classification), if
parameters are selected from their acceptable ranges, high
accuracy is achieved, and the results are not much sensitive to
the choice of hyperparameters.

TABLE I
ACCURACY OF PARAMETER TUNING
Accuracy D K L Rounds
0.57 1 4 0.1 1
0.85 2 4 0.1 1
0.93 3 4 0.1 1
0.98 4 4 0.1 1
0.98 5 4 0.1 1
0.98 6 4 0.1 1
0.98 4 1 0.1 1
0.98 4 10 0.1 1
0.98 4 4 0.01 1
0.98 4 4 1 1
0.99 4 4 0.1 2
0.99 4 4 0.1 3
0.99 4 4 0.1 4
0.99 6 6 0.5 5

Evaluating Temporal Decomposition Classifier: Twenty
percent of the dataset is used for testing the multiclass
classification learner. The following four primary indices are
introduced for each decomposition class to interpret predicted
results and analyze the learning-aided temporal decomposition
accuracy.
®  True positives (TP): a load profile Ip is predicted to belong

to a decomposition class cl and its actual class is cl.

e  True negatives (TN): a load profile Ip is predicted to not
belong to a decomposition class cl and its actual class is not
cl.

e  False positives (FP): a load profile Ip is predicted to belong
to a decomposition class cl, but its actual class is not cl.

e  False negatives (FN): a load profile Ip is predicted to not
belong to a decomposition class cl, but its actual class is cl.

We use classification accuracy, precision, recall, and F;
score metrics to analyze the quality of the classification leaner.

TP, + TN,
TP, + TN, + FP,; + FN

Accuracy,; = (20)

Precision is defined as the fraction of true positives out of total
instances predicted as positives.

TP,

PTGCiSiOTlcl = m
cl cl

(2D



Actual 'cll Actual .clz Actual .cl3 Actual .Cl4 Actual ;ls Total predict Precision,,
2 subhorizons | 4 subhorizons | 7 subhorizons | 8 subhorizons | 12 subhorizons
Predicted cl; 664 0 0 2 3 669 99.253%
Predicted cl, 199 0 0 0 202 98.515%
Predicted cl; 145 0 0 145 100%
Predicted cl, 1 0 194 0 197 98.477%
Predicted cls 0 0 0 121 121 100%
Total actual 668 201 145 196 124 1334
Recall, 99.40% 99.01% 100% 98.98% 97.5%

Fig. 8. Confusion matrix.

e Recall is defined as the fraction of instances belonging to
positive classes that are predicted as positives.
TP,

—_— 22
TP, +FN, (22)

Recall, =

The F; score is the harmonic mean of precision and recall,
defined as:

precision, X recall

Fl,Cl = (23)

X —
precisiong + recall

The confusion matrix is represented in Fig. 8. Green blocks
show the number of load profiles whose decomposition classes
are predicted correctly. Orange blocks depict the number of load
profiles that are misclassified. As an example, 668 load profiles
in the test dataset belong to cl;. 664 (99.4%) of those are
predicted correctly, and only four (0.6%) load profiles are
misclassified. The misclassification percentage of all
decomposition classes is low, and almost all the load profiles are
projected to their correct best decomposition class. The overall
TP and TN are the summations of all correctly classified load
patterns, regardless of their classes. The overall FP and FN refer
to the overall incorrectly predicted load patterns.

We have also calculated the overall classification accuracy,
precision, recall, and F; score metrics for all classes combined,
as depicted in Table II. The overall accuracy, which is the
proportion of correct predictions over all predictions, is more
than 99%. The confusion matric and overall indices prove the
promising performance of the proposed learning-aided temporal
decomposition algorithm.

TABLE II
PERFORMANCE INDICES OF LEARNER FOR 118-BUS SYSTEM WITHOUT WIND
POWER

Index Value

Accuracy 0.99

F; 0.99

Precision 0.99

Recall 0.99

We have also used a support vector machine and neural
networks for classification. The comparison of performance
metrics shows that the three classification approaches provide
promising results, with a prediction accuracy above 99%. This
indicates that several learners may work well for the considered
temporal decomposition problems.

Distributed Optimization Results: We have randomly
selected a load profile, shown in Fig. 9, from the IEEE 118-bus

system’s test dataset and have carried out the distributed
optimization with different numbers of subhorizons. The
operation cost obtained by centralized economic dispatch is
$9,050,971. The relative error for all decomposition classes is
less than 2e — 6. We choose w; = 1e6 and w, = 1. Table III
illustrates the relative error, solution time, and ¢, for each
decomposition class. The solver time versus the number of
subhorizons is plotted in Fig. 10. The error-time index for this
given load profile is ¢, = 0.7327. Thus, the best strategy for
this load pattern is to decompose the considered scheduling
horizon into eight subproblems. We have also carried out the
classification leaner for this load profile. The predicted
decomposition class by the learner is also cl,, which refers to
eight subproblems.

5500
5000 | n
4500 |

4000 |

Load (MW)

3500

3000 [

2500
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20 40 60 80 100 120 140 168
Time (hour)

Fig. 9. A load pattern used to test the algorithm [42].
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Fig. 10. Solver time versus number of subhorizons for the sample load profile
in Fig. 9.

We have implemented a similar procedure for all load profiles
in the dataset. The minimum, maximum, and average values of
the relative error and the average solver time are reported in
Table IV. The best average solution time is obtained for
decomposition into 28 subhorizons. However, the best
partitioning strategy for each load profile should be determined



independently by the learner before solving distributed
optimization.
TABLE III
RELATIVE ERROR, SOLVER TIME, AND ERROR-TIME INDICES FOR
DECOMPOSITION CLASSES CORRESPONDING TO LOAD PROFILE IN FIG. 9
Number of Solver time

subhorizons rel (sec) Pel
1 - 1.4 1.4363
2 ~0* 1.6 1.5626
3 2e-09 1.6 1.5649
4 ~0 1.1 1.1307
6 2e-09 0.9 0.9175
7 2e-08 0.8 0.8138
8 ~0 0.7 0.7327
12 3e-08 1.2 1.2497
24 6e-07 1 1.594
28 2e-06 1 2.9599
42 2e-07 2.6 2.8136
56 1e-07 3.1 3.2102
84 S5e-07 4.4 4.5298

* Values less than 1e-10 are assumed to be ~0

TABLE IV
MINIMUM, MAXIMUM AND AVERAGE RELATIVE ERROR AND AVERAGE
SOLVER TIME OF ALL LOAD PROFILES IN DATA SET FOR 118-BUS SYSTEM

Number of . Average AVerage
subhorizons max rel min rel rel solver time
(sec)
! - - - 1.6
2 6e-5 ~0 3e-6 1.9
3 6e-6 ~0 le-6 2.6
4 8e-6 ~0 8e-7 2
6 9e-6 le-9 le-6 1.6
7 4e-5 le-8 3e-6 15
8 4e-6 ~0 le-6 1.4
12 5e-2 3e-8 le-2 1.7
24 6e-5 6e-7 le-5 25
28 4e-4 2e-6 3e-5 12
42 6e-5 2e-7 le-5 26
56 8c-4 17 6e-5 3.1
84 5e-4 5e-7 le-4 3.9

B. IEEE 118-Bus System with Wind Power

It is assumed that 30% of the load is supplied with wind
turbines. To consider an extreme impact of wind uncertainty,
wind power scenarios for each time interval are generated
randomly between 0 to 100% of wind power capacity. Figure
11 shows the net load for the sampled load profiles in Fig. 7
with 30% wind power penetration. The net load, used as input
to the classifier, fluctuates significantly due to wind power
variations.

Fig. 11. Net load profiles if Fig. 7 with 30% wind power penetration.
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The overall classification accuracy, precision, recall, and F;
score for all classes combined are reported in Table V. These
four indices are around 99%, similar to those for the system
without wind power uncertainty.

TABLE V
PERFORMANCE INDICES OF LEARNER FOR 118-BUS SYSTEM WITH WIND
POWER

Index Value
Accuracy 0.99
F, 0.99
Precision 0.99
Recall 0.99

C. 2006-Bus System

The classifier accuracy, F; score, precision, and recall for
this large system are reported in Table VI. These indices are
above 98%, showing the promising performance of the trained
XGBoost classifier.

TABLE VI
PERFORMANCE INDICES OF LEARNER FOR 2006-BUS SYSTEM
Index Value
Accuracy 0.99
F; 0.99
Precision 0.98
Recall 0.98

We have implemented distributed optimization with different
decomposition classes for all load profiles. Table VII shows the
minimum, maximum, and average values of the relative error
and the average solver time. The solver time for the centralized
SCED is 142 seconds, which is larger than that of distributed
optimization with any decomposition class.

TABLE VII
MINIMUM, MAXIMUM, AND AVERAGE RELATIVE ERROR AND AVERAGE
SOLVER TIME OF ALL SAMPLE LOAD PROFILES FOR 2006-BUS SYSTEM

Number of max min  Average Average solver
subhorizons rel rel rel time (sec)
1 (centralized) - - - 142
2 ~0 ~0 ~0 67
3 ~0 ~0 ~0 35
4 ~0 ~0 ~0 23
6 le-7 ~0 le-7 16
7 Te-7 ~0 le-7 13
8 Te-7 ~0 le-7 12
12 6e-7 ~0 le-7 13
24 3e-6 ~0 2e-6 36
28 le-6 ~0 le-6 38

If one uses the average values to find the best decomposition
class, any load profile should be decomposed into eight
subhorizons. Figures 12 and 13 show solution time and
logarithmic relative error histograms if the problem is always
decomposed into eight subproblems. And Figs. 14 and 15 are
solution time and logarithmic relative error histograms if one
uses a learner to find the best decomposition class for each load
profile. As observed, the learning-aided approach outperforms
in terms of the solution time and relative error. While 44% of
the average-based strategy’s cases lie in (11.5, 12.5] seconds
solution time interval, 48% of the learning-aided approach’s
samples take (8, 9] seconds. Also, 28% of the average-based



strategy’s cases have a relative error in the range of 1077, the
learning-aided approach provides a relative error smaller than
10710 for all samples. The average solution time and relative
error of the learning-aided approach are 10.1 and 7x 10711,
which roughly 20% and 100% smaller than those of average-
based strategy. Only for 4% of cases (highlighted in red in Fig.
14), the decomposition class of average-based and leaning-
aided strategies are the same. Although the proposed approach
takes approximately 2 seconds more for 24% of cases
(highlighted in gray in Figs. 14 and 15), the relative errors of
these cases are ~10~* smaller than those obtained by the
average-based strategy.

44%

[9.5,10.5] (10.5,11.5] (11.5,12.5] (12.5,13.5] (13.5,14.5]

Fig. 12. Solution time histogram [seconds] for 8-subproblem class
decomposition.

28%

16% 16% 16%

8% 8%

Fig. 13. Logarithmic relative error histogram for 8-subproblem class
decomposition.

48%

24%

8% 8%
4% 4% 4%
[6,71 (7,81 (8,91 (9,10] (10,11] (11,12] (12, 13] (13, 14] (14, 15]

Fig. 14. Solution time histogram [seconds] for proposed learning-aided
approach.
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Fig. 15. Logarithmic relative error for proposed learning-aided approach.

D.  Unit Commitment for IEEE 24-Bus System

The learning-aided decomposition is applied to a unit
commitment problem with a considered horizon of 72 hours.
We have extracted 5226 weekly load patterns from PJM [30].
The load profiles are scaled to be used for the IEEE 24-bus
system. The centralized optimization problem is decomposed
into all divisors of 72, representing possible classes that a load
profile can belong to. The coordination strategy in [10] is used.
Increasing the number of subhorizons beyond 12 increases the
number of distributed optimization iterations significantly such
that those classes cannot lead to the least solution time and rel.
Eighty percent of the dataset is selected randomly for training
and twenty percent for testing. The overall classification
accuracy, precision, recall, and F; score metrics are above 98%,
indicating the trained classifier assigns the best decomposition
label to load profiles accurately.

Distributed optimization is implemented for all test load
profiles with different decomposition classes. The minimum,
maximum, and average relative error and average solver time
for all test load profiles are reported in Table VIII. A user may
conclude that having four subhorizons is the best decomposing
paradigm for all load profiles. However, this table shows the
average values, which is not necessarily the best choice for all
load profiles. Figure 16 shows the number of samples in each
decomposition class obtained by the learner. Only 24% of load
profiles belong to the 4-subhorizon class, whereas 76% of
samples belong to other decomposition classes. The average
solution time and relative error are respectively 31% and 1078
less if the proposed approach is used instead of always
decomposing the problem into four subproblems.

TABLE VIII
MINIMUM, MAXIMUM AND AVERAGE RELATIVE ERROR AND AVERAGE
SOLVER TIME FOR ALL LOAD PROFILES IN DATASET FOR 24-BUS SYSTEM

Number of max min Average Average solver
subhorizons rel rel rel time (sec)

1 - - - 229

2 ~0 0 ~0 11

3 0.03 ~0 9e-4 9

4 le-4 0 8e-6 3

6 6e-5 0 6e-4

8 4e-5 0 le-4 3.5

9 8e-5 0 2e-4 3

12 0.1 0.05 0.07
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Fig. 16. Number of samples is each decomposition class using the learning-
aided approach.

VL CONCLUSION

In this paper, we have focused on decomposing the overall time
horizon and finding the best number of subhorizons. We have
observed that load values and profile patterns significantly
impact the best number of subhorizons. The load is predictable
and is known before solving the system scheduling problem.
Possible load patterns have been decomposed into various
numbers of subhorizons, and distributed optimization has been
solved. Each load profile has been Ilabeled with its
corresponding best decomposition class that results in the best
time-saving and relative error. We have trained a multiclass
classification learner based on XGBoost, whose goal is to read
the load data as the input and project it to the corresponding best
decomposition class.

The simulation studies using real-world load patterns show
that the proposed algorithm can efficiently and quickly find the
best number of subproblems. More than 98% of the cases are
predicted correctly for all studied cases. Using the best number
of subproblems reduces the solution time more significantly
than a naive decomposition with a single class for all load
profiles deduced from average values.

APPENDIX

The considered centralized SCED problem, which is a
multi-interval DC OPF, is formulated as follows. The objective
function is to minimize generation costs subject to generating
unit limitations (a.2)-(a.5) and power flow constraints (a.6)-
(a.8) under normal and contingency conditions [1].

minzzau 'putz + by pue +Cy (a.1)
t u
S.t.
Pute < Pute = Putc vu,vt,Vc (a.2)
Putc — Put-1)c < URy Yu,Vt,Vc  (a.3)
Pu(t-1)c ~ Putc < DR, vu,vt,Vc (a. 4)
|Puto = Purcl < A Yu,Vt,Ve (a.5)
S't - S't —_ ..
by < LCTJJC <Py Vij,Vt,Yc  (a.6)
S — 8.
Puite = Paite = Z - vivtve (a7)
Ky
Oreftc =0 Vt,Vc (a.8)
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where u, t, and c are indices for generating units, time, and
contingency scenarios. Subscripts i, j, and ij indicate bus i, bus
Jj, and line ij. Parameters UR,, and DR, refer to ramp up and
down limits of unit u. § are bus voltage angles. We refer to [11]
for more details.
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