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Abstract— Here we developed an experimental platform with
a magnetic, modular, undulatory robot (uBot) for studying fish-
inspired underwater locomotion. This platform will enable us to
systematically explore the relationship between body
morphology, swimming gaits, and swimming performance via
reinforcement learning methods. The pBot was designed to be
easily modifiable in morphology, compact in size, easy to be
controlled and inexpensive. The experimental platform also
included a towing tank and a motion tracking system for real-
time measurement of the pBot kinematics. The swimming gaits
of pBot were generated by a central pattern generator (CPG),
which outputs voltage signals to pBot’s magnetic actuators. The
CPG parameters were learned experimentally using the
parameter exploring policy gradient (PGPE) method to
maximize swimming speed. In the experiments, two pBot designs
with the same body morphology but different caudal-fin shapes
were tested. Results showed that swimming gaits with back-
propagating traveling waves can be learned experimentally via
PGPE, while the shape of the caudal fins had moderate
influences on the learned gaits and the swimming speed.
Furthermore, robot swimming speed was sensitive to the
undulating frequency and the voltage magnitude of the last three
posterior actuators. In contrast, swimming gaits and speed were
relatively invariant to the variances within the inter-module
connection weights of CPG and the voltage applied to the
anterior actuator.

I. INTRODUCTION

Fish swimming is the epitome of successful and diverse
forms of underwater locomotion, which spans a wide range of
body size and speed [1], [2], [3], and a large spectrum of
Reynolds number and Strouhal number [4], [5]. It is hardly
surprising that engineers often draw inspirations from the
morphologies and kinematics of fish swimming for novel
underwater propulsion [6], [7], [8], [9]. However, it is also
remarkably challenging to model and emulate fish swimming
for robotics, especially due to its large morphological and
kinematic design space and the difficulties in understanding
the relationship between its diverse forms and functions.

Fish locomotion can be characterized by their propulsion
mechanisms, which are generally categorized into two forms:
Body and/or Caudal Fin (BCF) and Median and/or Paired Fin
(MPF). Most fish species in nature use BCF for swimming
(approximately 85%, [3]). While BCF forms achieve higher
speed, MPF forms offer better maneuverability [4]. Fish
locomotion is usually investigated using one or a combination
of the following three methods: experiments with biological
fish [10], [11], experiments or simulation of robotic fish [12],
[13], or computational fluid dynamics (CFD) simulation of

Research supported by National Science Foundation (CNS-
1932130 awarded to B.C) and Army Research Office (W911NF-20-1-
0226, awarded to B.C).

"Department of Mechanical Engineering, Penn State University,
University Park, PA, 16802, USA. hxd202@psu.edu, bucl0@psu.edu.

Fig 1. Overview of the assembled p1Bot. (a) Top view of a 1Bot in water
with outer suits on. (b) Top view of a uBot with outer suits removed
except the first one. (c) Model of a uBot with outer suits removed
except the first one.

biological fish [14], [15]. Biological fish experiments can
directly reveal the biomechanics of a particular fish swimming
behavior under investigation, such as backward swimming and
vortex exploitation, however it does not allow systematic and
large-scale investigation on fish morphologies and swimming
gaits, as well as their relationships. CFD is a powerful tool that
allows for modeling and modulation of fish morphologies and
gaits and provides high-fidelity fluid flow and pressure data
for swimming physics. However, the high computational cost
makes it still impractical for systematic investigation on fish
morphologies and swimming gaits, especially using
optimization or learning methods [16] (with one recent
exception, [17]).

Although design and construction of robotic fish is no easy
task, they can be fully manipulated in forms and controlled in
gaits, and therefore provide an excellent platform for not only
studying biological fish swimming (i.e., robotics-inspired
biology, [18], [19]) but also for investigations of fish-inspired
underwater locomotion methods in general. In fact, recent
decades have seen plenty of successful robotic fish designs
which were used as platforms to study the underlying
mechanisms of robot-fluid interaction [6], [13], test control
strategies [7], [20] or explore underwater environments [8],
covering four main BCF swimming modes (anguilliform,
subcarangiform, carangiform and thunniform), although there
are still unquestionably large gaps in swimming performance
between the biological and robotic fish.

Notably, with the progress on robotic fish designs,
systematic investigations on fish form and function
relationships, including experimental learning of swimming
gaits for novel fish-inspired underwater propulsion are still
scarce in the literature. In this work, we developed an
experimental platform with a magnetic, modular undulatory
robot (M?UBot, or pBot) for systematic investigations of the
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Fig 2. Design of the whole robot and the magnetic actuator. (a)
Operating principles of the actuator, (b) Top-view of a pBot with 4
actuators (outer suit is removed except the first one for illustration
purposes). The third segment shows the cross-section view of the
actuator.

relationships among the body morphologies, swimming gaits,
and performance. With the modular design of body segments
(based on magnetic actuators) and its easy construction and
assembly into the full robot, body morphologies of the uBot
can be relatively easily modified. In addition, the swimming
gaits of the robot were generated by a central pattern generator
(CPQ), the parameters of which can be learned by a policy
search reinforcement learning (RL) algorithm to maximize the
swimming speed, using an experimental platform including a
towing tank, motion tracking system and pBot itself.

In this work, for two different caudal-fin shape designs of
uBot, we successfully used this platform to optimize the gaits
for steady swimming speed, thereby investigated the
relationship among caudal-fin morphology, optimized
swimming gaits and speed. The rest of this paper is organized
as follows. In section II, the design and construction of pBot
are introduced. Section III explains the CPG design of puBot.
Section IV presents the gait learning problem and the learning
algorithm. Then the experimental setup is described in Section
V and the learning results are presented in section V1. Finally,
discussions and future work are summarized in section VII.

II. DESIGN OF uBoT

Here we describe the design aspects and assembly process
of uBot. To systematically investigate the form and function
relationships for underwater locomotion, we aimed at creating
a robot which is easily modifiable in design, compact in size,
easy to control and inexpensive. The compact size of the robot
allows the experiments to be conducted in more controlled lab
settings with limited space, while relatively low cost enables
easy prototyping and testing with more prototypes.

A. Magnetic, modular actuator

Several types of actuators have been used for swimming
robots, such as electric motors [7], [13], [20],
hydraulic/pneumatic actuators [8], [21], magnetic actuators
[22], [23], [24] and smart material-based actuators [25].
Among these actuators, electric motors are most widely used
because of its low cost, reliable performance, and high
efficiency. However, it is still not easy for motors to scale
down because of their relatively complex inner structure. Here
we chose to use a magnetic actuator that has a simple design

(Fig. 2a and b) and can be easily modularized and scaled up or
down for body segments of various sizes (similar to biological
fish). For the two uBot designs presented in this study, all
segments have a uniform size along the body.

The magnetic actuator has a coil mounted on a rotating arm
(coil clamp) around a pivot joint, while the coil is placed in
between two permanent magnets pointed closely to each other
with the same polarity (therefore opposing each other, Fig. 2a
and b). By applying voltage to the coil, it generates a magnetic
field approximately orthogonal to those generated by the
permanent magnets (nearly radially symmetric), which results
in an electromagnetic force that rotates the coil, coil-clamp,
and the next segment around the pivot. Reversing the
current/voltage will simply reverse the rotation direction, and
periodic voltage input will generate oscillatory rotational
motion. The range of the rotation angle of this actuator is
+20° to balance the mobility of the actuator and the
magnitude of the generated force.

B. Robot outer soft suit

The gaps between the modular body segments are covered
by soft rubber suits, which provide a continuous surface for
robot-fluid interaction, the morphology of which can be easily
varied for different pBot designs. We used a uniform design
of the rubber suit for all segments (Fig. 2b). The rubber suit is
made of silicone rubber (Ecoflex 00-30, Smooth-On Inc, PA,
USA), and it also helps to waterproof the robot and provides
body compliance for better fluid-structure interaction. The
crinkled shape on the rubber suit surface is to reduce the
compliance but can also be easily varied to modify compliance,
although we did not investigate the influence of body stiffness
on the swimming performance in this work.

C. Robot Assembly

The pBot designs used in this work for gait-learning
experiments have 5 segments with 4 actuators, including the
head and caudal-fin segments. The assembled robot is shown
in Fig. 1. Since the coil generates heat during operating, the
coil clamp is made of Aluminum 6061-T6 using CNC
machining. The internal frame of pBot is 3D printed with
PETG material. Each rubber suit segment is glued together by
sil-poxy with the adjacent ones. The total length of uBot is 18
cm. The depth is 4 cm and the width in lateral direction is 2.8
cm. The total weight of the robot is around 82 g. The robot is
designed so that its average density is slightly less than water
and buoyancy equilibrium is achieved with a minor part of the
body above the surface (10% in depth), which is common in
swimming robots like AmphiBot [7] and salamander robot
[26]. During experiments, reflective markers are attached on
top of the robot for camera detection. In testing, the robot
shows excellent durability, and can last more than one
thousand tests, with each test taking 10s.

III. CPG DESIGN FOR uBOT SWIMMING

The swimming gaits of the uBot are generated by a CPG
network, which outputs rhythmic voltage signals to the
magnetic actuators. The most basic feature of CPGs is to map
non-patterned, low-dimensional control commands to well-
coordinated, high-dimensional rhythmic motor inputs [27].
Since most bio-inspired robotic locomotion requires rhythmic
motion patterns, CPGs have been widely applied to bipedal



Fig 3. The complete CPG network of pBot with its parameters labeled for each actuator. Parameters labeled with colors were learned experimentally,
while those in black were fixed. The subscripts of the parameters were simplified according to how they were learned, see TABLE 1.

robots [28], [29], crawling robots [26], [30], and swimming
robots [31], [32].

Among the different mathematical models of CPGs, the
model proposed by Matsuoka [33] is adopted here for uBot.
Specifically, we used a dual-neuron model for each actuator,
i.e., each actuator contains two neurons that inhibit each other.
The mathematical expression of each neuron is represented by
two ordinary differential equations (ODESs) as follows,

T Usj + Usj = wij = BijVij = MijYiz—j + Zh=1 ©isVi,j
T, Vij +Vij = Yij

yi,j = max(0,U; ;) (1)
Yiout = Vi1~ Viz2

i,k=12,..,ni#k;j=1or2

where n is CPG module number; 7 is the time constant for
each neuron; u represents external stimulus for each neuron;
[ and u are adaption coefficient and mutual inhibition weight
in one module; w is the inter-module connection weight of the
neuron; y; 4y is the output of the i** CPG module [30].
Generally, rhythmic signals generated from modular CPGs
can be characterized by their individual magnitude and
frequency and their inter-module phase delay. However, there
exists certain parameter redundancy in the Matsuoka CPG
model for our specific application. Therefore, to reduce the
number of parameters for experimental gait-learning, some
parameters were fixed while others were learned (TABLE I).
Specifically, the following CPG parameters were learned:
a = [T, Wy, W33, Wy 3, Uy, Uy, Us, Uy|T. Fig. 3 illustrates the
complete CPG structure with all parameters labeled.

IV. SWIMMING GAIT LEARNING — POLICY SEARCH

A. Gait-learning problem

Underwater locomotion and swimming performance
contain many detailed aspects, such as speed, efficiency,

TABLE 1. CPG PARAMETERS
Parameter Learned or fixed Value or comments
T1,ij Learned same for all neurons
T2, Learned same with Ty;;
same in one module
W A >
L Learned different between modules
Bij Fixed 4.5 for all the neurons
Hij Fixed 3 for all the neurons
w; #0onlyifk=i-1,
Wi Learned same in one module,

different between modules

maneuverability, and stability. Here we chose to optimize the
uBot’s gaits for swimming speed. Notably, the swimming
gaits and speed are inseparable, emergent behaviors that arise
from the interactions between the fluids and pBot’s body
deformable structure, controlled by CPG-generated actuator
voltage inputs and also dependent on the body morphologies,
such as the tail shape. Li et al. have shown with numerical
simulation that forked-shape tail can increase both mean
thrust and efficiency, compared with the rectangular ones [34].
Experiments on Tunabot also show that the swimming speed
can be largely influenced by tail beat frequency [13]. Gazzola
et al. have built a mathematical model to illustrate how the
swimming speed can be influenced by varying body wave
forms [35]. In this work, our goal is to maximize the steady
forward swimming speed. During testing, pBot took less than
6s for acceleration in general. Therefore, we set the pBot to
swimming forward for 10s and used the average speed within
the last 3 seconds as the reward for the learning.

As discussed in section III, the learned parameters vector
is @ = [T, W, 1, W35, Wy 3, Uy, Uy, Uz, Uy] . However, w and u
are not contributing to the model individually. Instead, w/t
and u/7 are the terms that influence the states of the ODEs.
Thus, w and u are normalized by 7. Also, the parameters are
scaled (see below) so that a single learning rate can be applied
to all parameters during learning. Consequently, the
parameters vector to be learned is:

_ * __ * * * * * * * *1T
v=a =[1"w], w0 ul,uy,us, u;l

= [1007, 100 % 100%, 100243 1 Yz Us LT

’ ’
T T T T T

B. Parameter Exploring Policy Gradient

Regarding the training of CPGs, different reinforcement
learning algorithms have been applied, like actor-critic
method [36] and parameters exploring policy gradient (PGPE)
[37]. In this work, we applied PGPE method for the
experimental pBot gait learning. PGPE is deterministic within
each rollout, as the entire rollout history is generated from the
parameters sampled from probabilistic policy parameter
distributions, so that the variance in the gradient estimation is
reduced [38], [39].

Specifically, in PGPE, the policy parameters v are
sampled from the probability distribution p(v|p) where p is
the hyperparameters vector governing the sampling of the
policy parameters. Based on the returned reward R(v), the
hyperparameters p can be updated as,

p<p+yVyj(p), 2
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where ¥ is the learning rate. The gradient of the value function
V,J(p) is derived as ([38]),

V() ~ 13NV, logp(ilo)r), ()

where N represents the number of rollouts and (v') denotes
the reward for i*" sampled parameters vector. The
hyperparameters p = [u ¢]” include u and o for the mean
and standard deviation of the normal distribution of CPG
parameters vector v. To ensure a positive value of the
standard deviation, the lower bound of ¢ is set as 10~ for all
the 8 CPG parameters.

Baseline helps to decrease the variance of a policy
gradient [40], allowing faster learning. In terms of the
baseline selection, there are many options. In this work, the
idea of optimal baseline in [41] is applied and the equation of
the baseline is expressed as:

b= 2y r(v)|IV, logp(v*|o)|I" /LAY, logp(v ). @)

The parameter vector v contains 8 parameters.
Empirically, the learning curve shows good convergence with
15 rollouts. Therefore, we chose N = 15 to balance the
estimation accuracy and experimental cost.

To reduce the number of episodes and prevent overshoot
of o during the experimental learning, we used an empirical,
heuristic learning rate adjusting method. First, the nominal
value of y was set as 0.5 for the first 6 episodes and 1 for the
rest. During the experiments, the standard deviation of v
might decrease to the lower bound very quickly and stop
exploration further. We prevented this situation within the
first 6 episodes, by setting the learning rate as 0.2 if any o
decreases below the lower bound. In addition, when the
normalized variance (variance/mean) of the returned reward
r(v) was less than 0.2 (the update of p will be small), the
learning rate was set as 1 rather than 0.5. The learning was
stopped when the normalized variance of the returned reward
r(v) was less than 0.03, which indicated a near locally
optimal solution has been identified.

V. SWIMMING GAIT LEARNING — EXPERIMENTAL SETUP

The experimental platform contains two subsystems: a
real-time control system that outputs CPG signals to the
actuators, and a motion tracking system that measures the

uBot’s gaits and speed. The sketched experimental setup is
illustrated in Fig. 4a.

The control system consists of a laptop, a microcontroller
(Arduino Mega), two L293D chips and an external DC power
supply. The laptop generates the CPG signals, which are first
sent to the microcontroller through serial communication, and
then to the L293D to drive the actuators. The voltage from the
DC power supply was set as 12V to protect the coil of uBot.

The motion tracking system consists of the same laptop as
used in the control system, a monochrome camera (acA2000-
165umNIR, Basler AG Inc, Ahrensburg, Germany) and a
760nm filter, IR light sources, a microcontroller (Arduino
Uno) and a linear stage. During the experimental learning, the
head position of uBot was captured by the camera and sent to
the laptop at each time step. Then the forward swimming
speed was calculated using backward difference. The puBot
speed signal, after being filtered, was also sent to the linear
stage through serial communication (Fig. 4b). The linear
stage, which carried the wires of the pBot, was moved at the
same speed of puBot to make the pBot wires tension free,
thereby removing its effect on the swimming performance.
The whole system operated at 20Hz. The robot was brought
back to the original position after each trail.

VI. EXPERIMENTAL RESULTS

In the current work, uBot designs with two tail shapes
were tested, one with a rectangular shape (uBot-1) and the
other with an inclined bottom edge (uBot-2) (Fig. 5). The
rectangular tail had a similar shape with that of AmphiBot III
in [7] and the inclined tail took the shape E3° used in [39],
which had the best thrust-generation efficiency among those
tested. For each pBot, the learning processes were repeated
three times with different initial conditions to investigate
whether the same local optimum can be found. Due to the
uncertainty in PGPE sampling, the number of episodes for
each learning process is different. On average, a complete
learning experiment required approximately 15 episodes to
converge. The learning plots for the reward and the CPG
parameters are shown in Fig. 5 and 6, respectively.

Since both the control and the motion tracking systems
operated at 20Hz and were not phase-locked with the
swimming gaits, the sampling of the CPG signal and



swimming gait kinematics can be 5 or 6 per cycle. To have a
better representation and visualization of the CPG inputs and
swimming gaits, the respective data within the last 3 seconds
were assembled into one cycle according to their phases. Fig.
7 shows the CPG voltage signals and swimming gait variables
from the last learning episode of each experiment, while the
swimming gaits were smoothed out.

A. pBot with the rectangular tail (uBot-1)

Fig. 5a illustrates the reward curves for uBot-1. All the
three experiments yielded similar final rewards at
approximately 25mm/s as well as similar CPG input signals
(with slight differences in phases, Fig. 7a) and swimming
gaits (Fig. 7d), which indicated that all three experiments
converged closely to a locally optimal gait.

Fig. 7g shows an illustration of the learned gaits for uBot-
1. Joint-1 reaches the peak first (at 13.04% of the cycle), while
other joints, including the passive tail joint, reach the peaks
sequentially in order (dashed line). Notably, even though the
joint amplitudes were small, there was a backward traveling
wave, propagating from head to tail (same in Fig. 7d). The
bending amplitudes of all actuated puBot joints in learned gaits
were within 5°, which was significantly smaller than the
joint/actuator limit (20°). However, the passive bending
angle of the tail trailing-edge (red dot, second to the last dot)
can have more than 25° (Fig. 7d). A closer examination
shows that the phase of the passive bending of tail trailing
edge was slightly ahead of the phase of joint-1. Since the
distance from the joint-1 (light blue, the second dot) to the
passive joint of tail trailing edge (red, second to the last dot)
was less than a body length, the whole uBot body consisted
of a wavelength larger than one. Remarkably, this is
consistent with those observed in biological fish [42] and
predicted by Lighthill [43].

Regarding the CPG parameters, 7", which determines the
frequency of the learned gaits, had the fastest convergence
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Fig 5. Reward (forward speed in mm/s) curves for the two pBots,
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top of the reward curves. For each robot, learning is repeated 3
times with varying initial conditions. The vertical bars are the
range of mean + 3*standard deviation. (a) uBot-1. (b) uBot-2.

and smallest differences among the three learning
experiments (Fig. 6a). The w* terms, which mainly
determines the phase differences between two adjacent
actuators, showed large differences between experiments and
large variances within each experiment even after the reward
converged (Fig. 6b, ¢, and d). Interestingly, the phase delays
of the learned CPG voltage signals, as well as the resulting
gaits, showed much smaller differences among experiments
(Fig. 7a and d). For the u* terms, which control the magnitude
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of the applied voltage, the final values of u3, uzand uj in the
three experiments were close and the variances at the end of
the learning were small (Fig. 6f, g, and h). However, the
values of uj had relatively large differences between different
experiments and larger variance within each experiment (Fig.
6¢). It can also be seen from Fig. 7a that the voltage
amplitudes of the last three body joints were all near the
voltage bound (12V) but that for the most anterior joint could
drop to approximately 10V.

B. uBot with the inclined tail (uBot-2)

For the pBot with the inclined tail, the three learning
experiments yielded two distinguishable gaits, however with
similar rewards at approximately 21mm/s (Fig. 5b). Exp-1
and 3 yielded the first gaits (Fig. 7b and ¢) and Exp-2 yielded
the second gait (Fig. 7c and f). The main difference between
the two gaits is that the phase delays of joint-4 (most posterior
actuator) actuation and passive tail joint were both noticeable
larger in the second gait than the first. In addition, the voltage
magnitude of joint-4 (Fig. 7b and c) in the first gait was higher
than that of the second gait and showed saturation to the 12V
limit. Nonetheless, similar to pBot-1, travelling waves can be
observed in all learned gaits for uBot-2, the joint bending
amplitude remained at approximately 5° . However, the
passive bending amplitudes of the tail trailing edge in uBot-2
were only less than half (approximately 10°) of those in
uBot-1.

CPG parameters in pBot-2 showed similar convergence
behaviors as those in uBot-1, except u; where the standard
deviation in Exp-1 is still large after the reward converged
(Fig. 6p). However, the distribution of the value of u} term is
in a range where the voltage can always reach the bound
(12V) with more or less saturation.

VII. DISCUSSIONS AND FUTURE WORK

Among all CPG parameters, the T term showed the
fastest convergence, the lowest variances within individual
experiment and arrived at the closest value for all learning
experiments in both pBot designs. Since t* is the only
parameter that determines the undulating gait frequency

(approximately 3.9Hz), its good convergence property
indicates that the swimming speed is highly sensitive to the
driving frequency, which is in agreement with a recent
computational result in [44]. In contrast, w* terms were more
dispersed, and some had large variances even when the
reward converged.

Interestingly, the propagation of variances from CPG
parameters to CPG voltage outputs, then to swimming gaits
and finally to the swimming speed showed a decaying trend.
The convergence results of u* suggest that the swimming
speed is sensitive to the voltage amplitudes of the last three
posterior actuators but not to the most anterior one.

In addition, it is noticeable that the recoil of the head (head
oscillation) was significantly larger at the start of the learning
than that of the converged gaits (result not shown). As per
authors’ visual inspections of the experimental learning
process, the recoil problem was gradually reduced as the
swimming performance improved. This may indicate that
uBot propagating slightly more than one complete traveling
wave along its body length may help to reduce the head recoil,
while the swimming performance benefits accordingly, which
was previously proposed in [43], [45].

Although we were not attempting to optimize the tail
shape of puBot, comparing puBot-1 and uBot-2 with different
tail designs, our results did suggest that the optimal gaits were
dependent on the robot morphology. However, substantial
future work will be needed to further reveal how optimal
swimming behaviors emerge from the interactions between the
fluids and pBot’s body deformable structure.

Finally, note that, in the current learning experiments, we
were conservative in setting the actuator voltage limit to 12V
to prevent overheating the coils, while a more accurate
voltage limit for the long-term safe operation of pBot is yet to
be determined. As a result, the body undulatory amplitude of
the learned pBot gaits was notably small relative to the
physical limit of the joints (20°). In future work, we will
further optimize the size of the coil to improve the torque
generation of the actuators. More importantly, we will
continue to use the pBot platform for systematically
investigating the relationships among body morphologies,
swimming gaits, and swimming performance.
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