
Abstract— Here we developed an experimental platform with 
a magnetic, modular, undulatory robot (µBot) for studying fish-
inspired underwater locomotion. This platform will enable us to 
systematically explore the relationship between body 
morphology, swimming gaits, and swimming performance via 
reinforcement learning methods. The µBot was designed to be 
easily modifiable in morphology, compact in size, easy to be 
controlled and inexpensive. The experimental platform also 
included a towing tank and a motion tracking system for real-
time measurement of the µBot kinematics. The swimming gaits 
of µBot were generated by a central pattern generator (CPG), 
which outputs voltage signals to µBot’s magnetic actuators. The 
CPG parameters were learned experimentally using the 
parameter exploring policy gradient (PGPE) method to 
maximize swimming speed. In the experiments, two µBot designs 
with the same body morphology but different caudal-fin shapes 
were tested. Results showed that swimming gaits with back-
propagating traveling waves can be learned experimentally via 
PGPE, while the shape of the caudal fins had moderate 
influences on the learned gaits and the swimming speed. 
Furthermore, robot swimming speed was sensitive to the 
undulating frequency and the voltage magnitude of the last three 
posterior actuators. In contrast, swimming gaits and speed were 
relatively invariant to the variances within the inter-module 
connection weights of CPG and the voltage applied to the 
anterior actuator. 

I. INTRODUCTION 

Fish swimming is the epitome of successful and diverse 
forms of underwater locomotion, which spans a wide range of 
body size and speed [1], [2], [3], and a large spectrum of 
Reynolds number and Strouhal number [4], [5]. It is hardly 
surprising that engineers often draw inspirations from the 
morphologies and kinematics of fish swimming for novel 
underwater propulsion [6], [7], [8], [9]. However, it is also 
remarkably challenging to model and emulate fish swimming 
for robotics, especially due to its large morphological and 
kinematic design space and the difficulties in understanding 
the relationship between its diverse forms and functions.  

Fish locomotion can be characterized by their propulsion 
mechanisms, which are generally categorized into two forms: 
Body and/or Caudal Fin (BCF) and Median and/or Paired Fin 
(MPF). Most fish species in nature use BCF for swimming 
(approximately 85%, [3]). While BCF forms achieve higher 
speed, MPF forms offer better maneuverability [4]. Fish 
locomotion is usually investigated using one or a combination 
of the following three methods: experiments with biological 
fish [10], [11], experiments or simulation of robotic fish [12], 
[13], or computational fluid dynamics (CFD) simulation of 

biological fish [14], [15]. Biological fish experiments can 
directly reveal the biomechanics of a particular fish swimming 
behavior under investigation, such as backward swimming and 
vortex exploitation, however it does not allow systematic and 
large-scale investigation on fish morphologies and swimming 
gaits, as well as their relationships. CFD is a powerful tool that 
allows for modeling and modulation of fish morphologies and 
gaits and provides high-fidelity fluid flow and pressure data 
for swimming physics. However, the high computational cost 
makes it still impractical for systematic investigation on fish 
morphologies and swimming gaits, especially using 
optimization or learning methods [16] (with one recent 
exception, [17]).  

Although design and construction of robotic fish is no easy 
task, they can be fully manipulated in forms and  controlled in 
gaits, and therefore provide an excellent platform for not only 
studying biological fish swimming (i.e., robotics-inspired 
biology, [18], [19]) but also for investigations of fish-inspired 
underwater locomotion methods in general. In fact, recent 
decades have seen plenty of successful robotic fish designs 
which were used as platforms to study the underlying 
mechanisms of robot-fluid interaction [6], [13], test control 
strategies [7], [20] or explore underwater environments [8], 
covering four main BCF swimming modes (anguilliform, 
subcarangiform, carangiform and thunniform), although there 
are still unquestionably large gaps in swimming performance 
between the biological and robotic fish.  

Notably, with the progress on robotic fish designs, 
systematic investigations on fish form and function 
relationships, including experimental learning of swimming 
gaits for novel fish-inspired underwater propulsion are still 
scarce in the literature. In this work, we developed an 
experimental platform with a magnetic, modular undulatory 
robot (M2UBot, or µBot) for systematic investigations of the    
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Fig 1. Overview of the assembled µBot. (a) Top view of a µBot in water 
with outer suits on. (b) Top view of a µBot with outer suits removed 
except the first one. (c) Model of a µBot with outer suits removed 
except the first one. 
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relationships among the body morphologies, swimming gaits, 
and performance. With the modular design of body segments 
(based on magnetic actuators) and its easy construction and 
assembly into the full robot, body morphologies of the µBot 
can be relatively easily modified. In addition, the swimming 
gaits of the robot were generated by a central pattern generator 
(CPG), the parameters of which can be learned by a policy 
search reinforcement learning (RL) algorithm to maximize the 
swimming speed, using an experimental platform including a 
towing tank, motion tracking system and µBot itself.   
      In this work, for two different caudal-fin shape designs of 
µBot, we successfully used this platform to optimize the gaits 
for steady swimming speed, thereby investigated the 
relationship among caudal-fin morphology, optimized 
swimming gaits and speed. The rest of this paper is organized 
as follows. In section II, the design and construction of µBot 
are introduced. Section III explains the CPG design of µBot. 
Section IV presents the gait learning problem and the learning 
algorithm. Then the experimental setup is described in Section 
V and the learning results are presented in section VI. Finally, 
discussions and future work are summarized in section VII. 

II. DESIGN OF µBOT 
Here we describe the design aspects and assembly process 

of µBot. To systematically investigate the form and function 
relationships for underwater locomotion, we aimed at creating 
a robot which is easily modifiable in design, compact in size, 
easy to control and inexpensive. The compact size of the robot 
allows the experiments to be conducted in more controlled lab 
settings with limited space, while relatively low cost enables 
easy prototyping and testing with more prototypes.  

A. Magnetic, modular actuator  
Several types of actuators have been used for swimming 

robots, such as electric motors [7], [13], [20], 
hydraulic/pneumatic actuators [8], [21], magnetic actuators 
[22], [23], [24] and smart material-based actuators [25]. 
Among these actuators, electric motors are most widely used 
because of its low cost, reliable performance, and high 
efficiency. However, it is still not easy for motors to scale 
down because of their relatively complex inner structure. Here 
we chose to use a magnetic actuator that has a simple design 

(Fig. 2a and b) and can be easily modularized and scaled up or 
down for body segments of various sizes (similar to biological 
fish). For the two µBot designs presented in this study, all 
segments have a uniform size along the body. 

The magnetic actuator has a coil mounted on a rotating arm 
(coil clamp) around a pivot joint, while the coil is placed in 
between two permanent magnets pointed closely to each other 
with the same polarity (therefore opposing each other, Fig. 2a 
and b). By applying voltage to the coil, it generates a magnetic 
field approximately orthogonal to those generated by the 
permanent magnets (nearly radially symmetric), which results 
in an electromagnetic force that rotates the coil, coil-clamp, 
and the next segment around the pivot. Reversing the 
current/voltage will simply reverse the rotation direction, and 
periodic voltage input will generate oscillatory rotational 
motion. The range of the rotation angle of this actuator is 
±20𝑜𝑜  to balance the mobility of the actuator and the 
magnitude of the generated force. 

B. Robot outer soft suit 
The gaps between the modular body segments are covered 

by soft rubber suits, which provide a continuous surface for 
robot-fluid interaction, the morphology of which can be easily 
varied for different µBot designs.  We used a uniform design 
of the rubber suit for all segments (Fig. 2b). The rubber suit is 
made of silicone rubber (Ecoflex 00-30, Smooth-On Inc, PA, 
USA), and it also helps to waterproof the robot and provides 
body compliance for better fluid-structure interaction. The 
crinkled shape on the rubber suit surface is to reduce the 
compliance but can also be easily varied to modify compliance, 
although we did not investigate the influence of body stiffness 
on the swimming performance in this work. 

C. Robot Assembly 
The µBot designs used in this work for gait-learning 

experiments have 5 segments with 4 actuators, including the 
head and caudal-fin segments. The assembled robot is shown 
in Fig. 1. Since the coil generates heat during operating, the 
coil clamp is made of Aluminum 6061-T6 using CNC 
machining. The internal frame of µBot is 3D printed with 
PETG material. Each rubber suit segment is glued together by 
sil-poxy with the adjacent ones. The total length of µBot is 18 
cm. The depth is 4 cm and the width in lateral direction is 2.8 
cm. The total weight of the robot is around 82 g. The robot is 
designed so that its average density is slightly less than water 
and buoyancy equilibrium is achieved with a minor part of the 
body above the surface (10% in depth), which is common in 
swimming robots like AmphiBot [7] and salamander robot 
[26]. During experiments, reflective markers are attached on 
top of the robot for camera detection. In testing, the robot 
shows excellent durability, and can last more than one 
thousand tests, with each test taking 10s. 

III. CPG DESIGN FOR µBOT SWIMMING 

The swimming gaits of the µBot are generated by a CPG 
network, which outputs rhythmic voltage signals to the 
magnetic actuators. The most basic feature of CPGs is to map 
non-patterned, low-dimensional control commands to well-
coordinated, high-dimensional rhythmic motor inputs [27]. 
Since most bio-inspired robotic locomotion requires rhythmic 
motion patterns, CPGs have been widely applied to bipedal 

 

Fig 2. Design of the whole robot and the magnetic actuator. (a) 
Operating principles of the actuator, (b) Top-view of a µBot with 4 
actuators (outer suit is removed except the first one for illustration 
purposes). The third segment shows the cross-section view of the 
actuator. 
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robots [28], [29], crawling robots [26], [30], and swimming 
robots [31], [32].  

Among the different mathematical models of CPGs, the 
model proposed by Matsuoka [33] is adopted here for µBot. 
Specifically, we used a dual-neuron model for each actuator, 
i.e.,  each actuator contains two neurons that inhibit each other. 
The mathematical expression of each neuron is represented by 
two ordinary differential equations (ODEs) as follows, 

𝜏𝜏1,𝑖𝑖,𝑗𝑗𝑈̇𝑈𝑖𝑖,𝑗𝑗 + 𝑈𝑈𝑖𝑖,𝑗𝑗 = 𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝛽𝛽𝑖𝑖,𝑗𝑗𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑖𝑖,𝑗𝑗𝑦𝑦𝑖𝑖,3−𝑗𝑗 + ∑ 𝜔𝜔𝑖𝑖,𝑘𝑘𝑦𝑦𝑘𝑘,𝑗𝑗
𝑛𝑛
𝑘𝑘=1   

𝜏𝜏2,𝑖𝑖,𝑗𝑗𝑉̇𝑉𝑖𝑖,𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑗𝑗 = 𝑦𝑦𝑖𝑖,𝑗𝑗  

𝑦𝑦𝑖𝑖,𝑗𝑗 = max(0,𝑈𝑈𝑖𝑖,𝑗𝑗)                          (1) 

𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑖𝑖,1 − 𝑦𝑦𝑖𝑖,2  

𝑖𝑖, 𝑘𝑘 = 1,2, … ,𝑛𝑛, 𝑖𝑖 ≠ 𝑘𝑘; 𝑗𝑗 = 1 𝑜𝑜𝑜𝑜 2    

where 𝑛𝑛 is CPG module number; 𝜏𝜏  is the time constant for 
each neuron; 𝑢𝑢 represents external stimulus for each neuron; 
𝛽𝛽 and 𝜇𝜇 are adaption coefficient and mutual inhibition weight 
in one module; 𝜔𝜔 is the inter-module connection weight of the 
neuron; 𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 is the output of the 𝑖𝑖𝑡𝑡ℎ CPG module [30].  

Generally, rhythmic signals generated from modular CPGs 
can be characterized by their individual magnitude and 
frequency and their inter-module phase delay. However, there 
exists certain parameter redundancy in the Matsuoka CPG 
model for our specific application. Therefore, to reduce the 
number of parameters for experimental gait-learning, some 
parameters were fixed while others were learned (TABLE I). 
Specifically, the following CPG parameters were learned: 
𝛼𝛼 = [𝜏𝜏,𝜔𝜔2,1,𝜔𝜔3,2,𝜔𝜔4,3,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4]Τ . Fig. 3 illustrates the 
complete CPG structure with all parameters labeled.  

IV. SWIMMING GAIT LEARNING – POLICY SEARCH 

A. Gait-learning problem 
Underwater locomotion and swimming performance 

contain many detailed aspects, such as speed, efficiency, 

maneuverability, and stability. Here we chose to optimize the 
µBot’s gaits for swimming speed. Notably, the swimming 
gaits and speed are inseparable, emergent behaviors that arise 
from the interactions between the fluids and µBot’s body 
deformable structure, controlled by CPG-generated actuator 
voltage inputs and also dependent on the body morphologies, 
such as the tail shape. Li et al. have shown with numerical 
simulation that forked-shape tail can increase both mean 
thrust and efficiency, compared with the rectangular ones [34]. 
Experiments on Tunabot also show that the swimming speed 
can be largely influenced by tail beat frequency [13]. Gazzola 
et al. have built a mathematical model to illustrate how the 
swimming speed can be influenced by varying body wave 
forms [35]. In this work, our goal is to maximize the steady 
forward swimming speed. During testing, µBot took less than 
6s for acceleration in general. Therefore, we set the µBot to 
swimming forward for 10s and used the average speed within 
the last 3 seconds as the reward for the learning.  

As discussed in section III, the learned parameters vector 
is 𝛼𝛼 = [𝜏𝜏,𝜔𝜔2,1,𝜔𝜔3,2,𝜔𝜔4,3,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4]Τ. However, 𝜔𝜔 and 𝑢𝑢 
are not contributing to the model individually. Instead, 𝜔𝜔/𝜏𝜏 
and 𝑢𝑢/𝜏𝜏 are the terms that influence the states of the ODEs. 
Thus, 𝜔𝜔 and 𝑢𝑢 are normalized by 𝜏𝜏. Also, the parameters are 
scaled (see below) so that a single learning rate can be applied 
to all parameters during learning. Consequently, the 
parameters vector to be learned is: 

 
𝑣𝑣 =  𝛼𝛼∗ = [𝜏𝜏∗,𝜔𝜔1

∗ ,𝜔𝜔2
∗ ,𝜔𝜔3

∗ ,𝑢𝑢1∗ ,𝑢𝑢2∗ ,𝑢𝑢3∗ ,𝑢𝑢4∗]Τ 

 = [100𝜏𝜏, 100 𝜔𝜔2,1
𝜏𝜏

, 100 𝜔𝜔3,2
𝜏𝜏

, 100 𝜔𝜔4,3
𝜏𝜏

, 𝑢𝑢1
𝜏𝜏

, 𝑢𝑢2
𝜏𝜏

, 𝑢𝑢3
𝜏𝜏

, 𝑢𝑢4
𝜏𝜏

]Τ. 

B. Parameter Exploring Policy Gradient  
Regarding the training of CPGs, different reinforcement 

learning algorithms have been applied, like actor-critic 
method [36] and parameters exploring policy gradient (PGPE) 
[37].  In this work, we applied PGPE method for the 
experimental µBot gait learning. PGPE is deterministic within 
each rollout, as the entire rollout history is generated from the 
parameters sampled from probabilistic policy parameter 
distributions, so that the variance in the gradient estimation is 
reduced [38], [39]. 

Specifically, in PGPE, the policy parameters 𝑣𝑣  are 
sampled from the probability distribution 𝑝𝑝(𝑣𝑣|𝜌𝜌) where 𝜌𝜌 is 
the hyperparameters vector governing the sampling of the 
policy parameters. Based on the returned reward 𝑅𝑅(𝑣𝑣), the 
hyperparameters 𝜌𝜌 can be updated as, 

𝜌𝜌 ← 𝜌𝜌 + 𝛾𝛾∇𝜌𝜌𝐽𝐽(𝜌𝜌),      (2) 

TABLE I.  CPG PARAMETERS 

Parameter Learned or fixed Value or comments 

𝝉𝝉𝟏𝟏,𝒊𝒊,𝒋𝒋 Learned  same for all neurons 
𝝉𝝉𝟐𝟐,𝒊𝒊,𝒋𝒋 Learned same with 𝝉𝝉𝟏𝟏,𝒊𝒊,𝒋𝒋 

𝒖𝒖𝒊𝒊,𝒋𝒋 Learned same in one module, 
different between modules 

𝜷𝜷𝒊𝒊,𝒋𝒋 Fixed 4.5 for all the neurons 
𝝁𝝁𝒊𝒊,𝒋𝒋 Fixed 3 for all the neurons 

𝝎𝝎𝒊𝒊,𝒌𝒌 Learned 
𝝎𝝎𝒊𝒊,𝒌𝒌 ≠ 𝟎𝟎 only if 𝒌𝒌 = 𝒊𝒊 − 𝟏𝟏, 
same in one module, 
different between modules 

 

 

 
Fig 3. The complete CPG network of µBot with its parameters labeled for each actuator. Parameters labeled with colors were learned experimentally, 
while those in black were fixed. The subscripts of the parameters were simplified according to how they were learned, see TABLE I. 

 



where 𝛾𝛾 is the learning rate. The gradient of the value function 
∇𝜌𝜌𝐽𝐽(𝜌𝜌) is derived as ([38]), 

∇𝜌𝜌𝐽𝐽(𝜌𝜌)  ≈  1
𝑁𝑁
∑ ∇𝜌𝜌 log 𝑝𝑝(𝑣𝑣𝑖𝑖�𝜌𝜌)𝑟𝑟(𝑣𝑣𝑖𝑖)𝑁𝑁
𝑖𝑖=1 , (3) 

where 𝑁𝑁 represents the number of rollouts and 𝑟𝑟(𝑣𝑣𝑖𝑖) denotes 
the reward for 𝑖𝑖𝑡𝑡ℎ  sampled parameters vector. The 
hyperparameters 𝜌𝜌 = [𝜇𝜇 𝜎𝜎]𝑇𝑇 include 𝜇𝜇  and 𝜎𝜎  for the mean 
and standard deviation of the normal distribution of CPG 
parameters vector 𝑣𝑣 . To ensure a positive value of the 
standard deviation, the lower bound of 𝜎𝜎 is set as 10−4 for all 
the 8 CPG parameters. 

Baseline helps to decrease the variance of a policy 
gradient [40], allowing faster learning. In terms of the 
baseline selection, there are many options. In this work, the 
idea of optimal baseline in [41] is applied and the equation of 
the baseline is expressed as: 

𝑏𝑏 = ∑ 𝑟𝑟�𝑣𝑣𝑖𝑖��∇𝜌𝜌 log 𝑝𝑝�𝑣𝑣𝑖𝑖�𝜌𝜌��2𝑁𝑁
𝑖𝑖=1 ∑ �∇𝜌𝜌 log𝑝𝑝�𝑣𝑣𝑖𝑖�𝜌𝜌��2𝑁𝑁

𝑖𝑖=1� .   (4) 

The parameter vector 𝑣𝑣  contains 8 parameters. 
Empirically, the learning curve shows good convergence with 
15 rollouts. Therefore, we chose 𝑁𝑁 = 15  to balance the 
estimation accuracy and experimental cost.  

To reduce the number of episodes and prevent overshoot 
of 𝜎𝜎 during the experimental learning, we used an empirical, 
heuristic learning rate adjusting method. First, the nominal 
value of 𝛾𝛾 was set as 0.5 for the first 6 episodes and 1 for the 
rest. During the experiments, the standard deviation of 𝑣𝑣 
might decrease to the lower bound very quickly and stop 
exploration further. We prevented this situation within the 
first 6 episodes, by setting the learning rate as 0.2 if any  𝜎𝜎 
decreases below the lower bound. In addition, when the 
normalized variance (variance/mean) of the returned reward 
𝑟𝑟(𝑣𝑣) was less than 0.2 (the update of 𝜌𝜌 will be small), the 
learning rate was set as 1 rather than 0.5. The learning was 
stopped when the normalized variance of the returned reward 
𝑟𝑟(𝑣𝑣)  was less than 0.03, which indicated a near locally 
optimal solution has been identified.  

V. SWIMMING GAIT LEARNING – EXPERIMENTAL SETUP 

The experimental platform contains two subsystems: a 
real-time control system that outputs CPG signals to the 
actuators, and a motion tracking system that measures the 

µBot’s gaits and speed. The sketched experimental setup is 
illustrated in Fig. 4a. 

The control system consists of a laptop, a microcontroller 
(Arduino Mega), two L293D chips and an external DC power 
supply. The laptop generates the CPG signals, which are first 
sent to the microcontroller through serial communication, and 
then to the L293D to drive the actuators. The voltage from the 
DC power supply was set as 12V to protect the coil of µBot.  

The motion tracking system consists of the same laptop as 
used in the control system, a monochrome camera (acA2000-
165umNIR, Basler AG Inc, Ahrensburg, Germany) and a 
760nm filter, IR light sources, a microcontroller (Arduino 
Uno) and a linear stage. During the experimental learning, the 
head position of µBot was captured by the camera and sent to 
the laptop at each time step. Then the forward swimming 
speed was calculated using backward difference. The µBot 
speed signal, after being filtered, was also sent to the linear 
stage through serial communication (Fig. 4b). The linear 
stage, which carried the wires of the µBot, was moved at the 
same speed of µBot to make the µBot wires tension free, 
thereby removing its effect on the swimming performance. 
The whole system operated at 20Hz. The robot was brought 
back to the original position after each trail. 

VI. EXPERIMENTAL RESULTS 

In the current work, µBot designs with two tail shapes 
were tested, one with a rectangular shape (µBot-1) and the 
other with an inclined bottom edge (µBot-2) (Fig. 5). The 
rectangular tail had a similar shape with that of AmphiBot III 
in [7] and the inclined tail took the shape 𝐸𝐸230 used in [39], 
which had the best thrust-generation efficiency among those 
tested. For each µBot, the learning processes were repeated 
three times with different initial conditions to investigate 
whether the same local optimum can be found. Due to the 
uncertainty in PGPE sampling, the number of episodes for 
each learning process is different. On average, a complete 
learning experiment required approximately 15 episodes to 
converge. The learning plots for the reward and the CPG 
parameters are shown in Fig. 5 and 6, respectively. 

Since both the control and the motion tracking systems 
operated at 20Hz and were not phase-locked with the 
swimming gaits, the sampling of the CPG signal and 

(a) 

 

(b) 

 
Fig 4. (a) Experimental setup of µBot learning. (b) Operating procedure of the whole system: red color marks the key elements for control system and 
green color marks the key elements for motion tracking system. 
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swimming gait kinematics can be 5 or 6 per cycle. To have a 
better representation and visualization of the CPG inputs and 
swimming gaits, the respective data within the last 3 seconds 
were assembled into one cycle according to their phases. Fig. 
7 shows the CPG voltage signals and swimming gait variables 
from the last learning episode of each experiment, while the 
swimming gaits were smoothed out.   

A. µBot with the rectangular tail (µBot-1) 
Fig. 5a illustrates the reward curves for µBot-1. All the 

three experiments yielded similar final rewards at 
approximately 25mm/s as well as similar CPG input signals 
(with slight differences in phases, Fig. 7a) and swimming 
gaits (Fig. 7d), which indicated that all three experiments 
converged closely to a locally optimal gait. 

Fig. 7g shows an illustration of the learned gaits for µBot-
1. Joint-1 reaches the peak first (at 13.04% of the cycle), while 
other joints, including the passive tail joint, reach the peaks 
sequentially in order (dashed line). Notably, even though the 
joint amplitudes were small, there was a backward traveling 
wave, propagating from head to tail (same in Fig. 7d). The 
bending amplitudes of all actuated µBot joints in learned gaits 
were within 5𝑜𝑜 , which was significantly smaller than the 
joint/actuator limit ( 20𝑜𝑜 ). However, the passive bending 
angle of the tail trailing-edge (red dot, second to the last dot) 
can have more than 25𝑜𝑜  (Fig. 7d). A closer examination 
shows that the phase of the passive bending of tail trailing 
edge was slightly ahead of the phase of joint-1. Since the 
distance from the joint-1 (light blue, the second dot) to the 
passive joint of tail trailing edge (red, second to the last dot) 
was less than a body length, the whole µBot body consisted 
of a wavelength larger than one. Remarkably, this is 
consistent with those observed in biological fish [42] and 
predicted by Lighthill [43].   

Regarding the CPG parameters, 𝜏𝜏∗, which determines the 
frequency of the learned gaits, had the fastest convergence 

and smallest differences among the three learning 
experiments (Fig. 6a). The 𝜔𝜔∗  terms, which mainly 
determines the phase differences between two adjacent 
actuators, showed large differences between experiments and 
large variances within each experiment even after the reward 
converged (Fig. 6b, c, and d). Interestingly, the phase delays 
of the learned CPG voltage signals, as well as the resulting 
gaits, showed much smaller differences among experiments 
(Fig. 7a and d). For the 𝑢𝑢∗ terms, which control the magnitude 

 
Fig 6. Learning curves of all the learned parameters. For each robot, learning is repeated 3 times with varying initial conditions. Vertical bars are 
the range of mean ± 3*standard deviation. (a)-(h) are learning plots for µBot-1. (i)-(p) are learning plots for µBot-2. 
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Fig 5. Reward (forward speed in mm/s) curves for the two µBots, 
while the lateral view of µBots with 2 tail designs is shown on 
top of the reward curves. For each robot, learning is repeated 3 
times with varying initial conditions. The vertical bars are the 
range of mean ± 3*standard deviation. (a) µBot-1. (b) µBot-2.  
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of the applied voltage, the final values of 𝑢𝑢2∗ , 𝑢𝑢3∗and 𝑢𝑢4∗  in the 
three experiments were close and the variances at the end of 
the learning were small (Fig. 6f, g, and h). However, the 
values of 𝑢𝑢1∗ had relatively large differences between different 
experiments and larger variance within each experiment (Fig. 
6e). It can also be seen from Fig. 7a that the voltage 
amplitudes of the last three body joints were all near the 
voltage bound (12𝑉𝑉) but that for the most anterior joint could 
drop to approximately 10𝑉𝑉.  

B. µBot with the inclined tail (µBot-2) 
For the µBot with the inclined tail, the three learning 

experiments yielded two distinguishable gaits, however with 
similar rewards at approximately 21mm/s (Fig. 5b). Exp-1 
and 3 yielded the first gaits (Fig. 7b and e) and Exp-2 yielded 
the second gait (Fig. 7c and f). The main difference between 
the two gaits is that the phase delays of joint-4 (most posterior 
actuator) actuation and passive tail joint were both noticeable 
larger in the second gait than the first.  In addition, the voltage 
magnitude of joint-4 (Fig. 7b and c) in the first gait was higher 
than that of the second gait and showed saturation to the 12V 
limit. Nonetheless, similar to µBot-1, travelling waves can be 
observed in all learned gaits for µBot-2, the joint bending 
amplitude remained at approximately 5𝑜𝑜 . However, the 
passive bending amplitudes of the tail trailing edge in µBot-2 
were only less than half (approximately 10𝑜𝑜 ) of those in 
µBot-1. 

CPG parameters in µBot-2 showed similar convergence 
behaviors as those in µBot-1, except 𝑢𝑢4∗  where the standard 
deviation in Exp-1 is still large after the reward converged 
(Fig. 6p). However, the distribution of the value of 𝑢𝑢4∗  term is 
in a range where the voltage can always reach the bound 
(12𝑉𝑉) with more or less saturation. 

VII. DISCUSSIONS AND FUTURE WORK 

Among all CPG parameters, the 𝜏𝜏∗  term showed the 
fastest convergence, the lowest variances within individual 
experiment and arrived at the closest value for all learning 
experiments in both µBot designs. Since 𝜏𝜏∗  is the only 
parameter that determines the undulating gait frequency 

(approximately 3.9Hz), its good convergence property 
indicates that the swimming speed is highly sensitive to the 
driving frequency, which is in agreement with a recent 
computational result in [44]. In contrast, 𝜔𝜔∗ terms were more 
dispersed, and some had large variances even when the 
reward converged.  

Interestingly, the propagation of variances from CPG 
parameters to CPG voltage outputs, then to swimming gaits 
and finally to the swimming speed showed a decaying trend. 
The convergence results of 𝑢𝑢∗  suggest that the swimming 
speed is sensitive to the voltage amplitudes of the last three 
posterior actuators but not to the most anterior one.  

In addition, it is noticeable that the recoil of the head (head 
oscillation) was significantly larger at the start of the learning 
than that of the converged gaits (result not shown). As per 
authors’ visual inspections of the experimental learning 
process, the recoil problem was gradually reduced as the 
swimming performance improved. This may indicate that 
µBot propagating slightly more than one complete traveling 
wave along its body length may help to reduce the head recoil, 
while the swimming performance benefits accordingly, which 
was previously proposed in [43], [45]. 

Although we were not attempting to optimize the tail 
shape of µBot, comparing µBot-1 and µBot-2 with different 
tail designs, our results did suggest that the optimal gaits were 
dependent on the robot morphology. However, substantial 
future work will be needed to further reveal how optimal 
swimming behaviors emerge from the interactions between the 
fluids and µBot’s body deformable structure.  

  Finally, note that, in the current learning experiments, we 
were conservative in setting the actuator voltage limit to 12V 
to prevent overheating the coils, while a more accurate 
voltage limit for the long-term safe operation of µBot is yet to 
be determined. As a result, the body undulatory amplitude of 
the learned µBot gaits was notably small relative to the 
physical limit of the joints (20°). In future work, we will 
further optimize the size of the coil to improve the torque 
generation of the actuators. More importantly, we will 
continue to use the µBot platform for systematically 
investigating the relationships among body morphologies, 
swimming gaits, and swimming performance. 

 

Fig 7. Learned voltage signals and swimming gaits. Joint-1 to joint-4 correspond to the 4 actuators in order from head to tail. (a) (d): µBot-1, exp-1, exp-
2, and exp-3. (b) (e):  µBot-2, exp-1 and exp-3. (c)(f): µBot-2, exp-2. (g): illustration of a learned gait of µBot-1, where the color dots match the 
corresponding positions on the robot body. The blue lines represent the body, and the red lines represent the rubber tail. The dashed line goes through the 
joints that reach the peak bending angle, indicating that the wave is traveling backward along the body. The percentages on the right side indicate the 
relative phase of a gait cycle. 
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