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Abstract—Neural networks have shown remarkable classifica-
tion performances in recent years, often outperforming humans
in many tasks. Unfortunately, there are some tasks where
conventional neural networks and their training methods have
under-performed. One of these areas is learning from a small
number of samples which have been partially addressed with
the development of few-shot neural networks. Few-shot neural
networks contrast traditional classification networks by learning
classification tasks with datasets with only a few samples per
class; however, these few-shot techniques are trained collectively
with a large number of labeled samples. Hence, few-shot learning
approaches only address the low sample per class learning
problem whereas the task of learning strictly from a low sample
size still goes mostly unresolved. In this contribution, we address
the challenge of learning from high dimensional low sample data
by revising the problem into a data ordering task. Specifically,
we have designed OrderNet, a novel network design and training
approach that can take a relatively small amount (less than
200 samples) of ordered high dimensional low sample data
and organize many more unseen samples. To the best of our
knowledge, OrderNet is the first neural network to address the
high dimensional low sample data using techniques adopted from
few-shot learning. We evaluate OrderNet against its ability to
order images of analog clocks by time as well as images of profile
pictures by age. Additionally, we demonstrate that OrderNet
has superior performance over a conventional regression neural
network in the low sample regime.

Index Terms—Few-Shot Learning, Low Sample Learning,
Active Learning, Ranking.

[. INTRODUCTION

Deep learning has been successfully applied to many appli-
cations with the most typically being classification; however,
as the success and popularity of deep learning expands, clever
techniques are continuously being developed to take advantage
of the technology in unconventional ways [1]-[3]. Naturally,
deep learning methods use empirical data to train and develop
models, large amounts of data are often needed, making low
sample size training particularly difficult to apply these meth-
ods. Research in neural networks has recently reformulated
the low sample size problem into a few-shot framework where
only a small number of samples are available for each class
in the supervised learning problem. The goal of a few-shot
problem is to be able to classify an unknown sample (ie.,
from a class never seen during training) from only one (or a
few) exemplary samples from that class. This task of few-shot
differs from the conventional classification where the goal is to
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classify an unknown sample from a class that was seen during
training.

To circumvent the challenge of a small number of training
samples per class, Vinyals et al. [4] created matching networks
that use a novel episodic training approach. During episodic
training, a small set of samples are repeatedly and randomly
selected from the training set to establish support and query
batches for comparison during training iterations that more
closely match the testing task’s goal (i.e., match query samples
to support samples). The result is a network training scheme
that cleverly uses repeated sub-sampling to learn similarities/d-
ifferences between samples rather than using a conventional
network approach of training on a much more extensive
database to learn classification without a support set at testing
time. Although significant improvements have been made on
the design since matching networks, many approaches still use
episodic training and distance or contrastive based design [5].

Unfortunately, the low sample and low sample per class
tasks are two separate yet challenging problems and many of
the commonly used few-shot approaches do not truly resolve
the low sample training problem; few-shot approaches are
designed to only address the low sample per class training
problem. As a testament to this statement, the benchmark
datasets for few-shot performance are minilmageNet and Om-
niglot, which are commonly trained with 48,000 samples and
24,000 samples, respectively. Only after training with lots
of samples are the few-shot approaches able to predict from
few samples, but this is formally done at testing time. Thus,
a natural question evolves from the few-shot literature: can
a similar neural network be trained with a low number of
samples (i.e., on the order of hundreds instead of thousands)?

Our design of OrderNet demonstrates that in some cases, a
neural network can be trained with a much smaller number of
samples given some novel architectural changes and one core
data requirement: there is a natural order in the training data.
More specifically, if the training samples are naturally ordered
then we can use that information by training a modified few-
shot network to learn the pairwise order rather than direct
classification. This novel approach expands the dataset from
N individual samples in the conventional neural network to a
much larger set of N(N — 1)/2 pairwise samples. We have
recognized that if the training data can be organized into
such an ordered set, then the few-shot approach with episodic
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TABLE I
COMPARISON OF ORDERNET AND GENERAL FEW-SHOT NETWORK
ALGORITHMS

OrderNet Generic  Few-Shot
Networks
Training scheme Episodic Episodic
Network backbone Varies Varies

Varies but often dis-
tance/contrastive
Large set of labeled
samples and very low
samples per class

Loss function Distance/contrastive

Dataset assumptions | Small set of linearly

ordered samples

Application/use Data Sorting/Linear | Novel sample classi-
Regression/Active fication given a few
Learning known samples

training and a modified distance function allows for a large
number of pairwise comparisons that can be used to train a
deep neural network effectively.

OrderNet borrows concepts from the few-shot research com-
munity, which makes few-shot the natural choice to establish
a research point of reference; however, it should be noted
that OrderNet and few-shot have very different uses and
applications. Few-shot uses a large set of labeled samples
to perform novel sample classification given a few known
samples. In contrast, the use of OrderNet is applicable in low
sample data sorting and active learning (Table I highlights
the similarities and differences). For example, consider the
scenario of organizing a large database of peoples’ profile
photographs by a person’s age without direct knowledge of
any single sample’s actual age. A human observer could
approximate the age of many photos to establish a training
set of labeled images. We argue that it is often easier to
make pairwise comparisons, organize the data sequentially
by age, and then assign numerical values to the organized
data. Further, we show in this work that by using the latter
method for establishing ground truth and then applying our
novel OrderNet approach, significantly less data is needed
to achieve considerable gains in performance (w.r.t. a con-
ventional neural network). Labeling data can be a significant
cost to the machine learning process, and the creation of
OrderNet is motivated by the need to reduce this cost with
better performance on much smaller labeled sample sizes.

To demonstrate our concept of leveraging order for low
sample deep learning we provide the following contributions
in this work:

« Propose a modified few-shot loss function to evaluate the
signed distance between pairs of training data samples.

« Demonstrate how existing episodic training can be used
in conjunction with the modified loss function to train
a deep neural network that naturally orders data from a
relatively small number of training samples.

» Adapt two datasets (i.e., time in analog clocks and age in
profile pictures) for the evaluation of our OrderNet model

« Baseline OrderNet against a standard regression network
for ordering datasets as a function of sample size.

II. RELATED WORK

The majority of neural networks are parametric models
where the parameters are learned empirically from training
data, so it is no surprise that neural networks take many
samples to train a classification task. Few-shot neural networks
have evolved towards classifying data with relatively few
exemplary samples per class to mitigate the need for many
class samples [3], [6]. Although few-shot has an earlier history
in pattern recognition [7], [8], the majority of the modern few-
shot research took shape after the development of the bench-
mark Ominiglot dataset [9]. As networks continued to solve
few-shot tasks more efficiently, the performance on Ominiglot
became nearly perfect then the more complex minilmageNet
dataset was introduced by Ravi and Larochelle [10]. The
minilmageNet dataset is now the de-facto benchmark for few-
shot networks. The specific few-shot challenge proposed with
these datasets is to train a model with a subset of data and then
present the model with one (or a “few”) labeled samples from
a disjoint set of data. The objective is to use the information
from the few labeled samples on-the-fly to classify additional
unlabeled samples. Few-shot Siamese networks [11], which
modified a signature verification approach [12] was one of
the first methods to achieve significant performance on the
Ominiglot dataset in a one-shot task. These Siamese networks
still obtain comparable performance to many methods devel-
oped since their initial introduction.

Another significant contribution to the recent few-shot re-
search was made by Vinyals et al. with Matching Networks
[4]. The authors matched the training scheme to the testing
scheme by repeatedly (and randomly) selecting subsets of the
training data to mimic the few-shot test: a process now known
in the few-shot literature as episodic training. For example, if
the few-shot testing challenge was: given one labeled sample
from five classes then classify another set of unknown and
unlabeled samples from each of those classes. Then training
would contain episodes of one randomly selected labeled
sample from five randomly selected classes and learn to match
unknown query samples to the right labeled sample. In the case
of matching networks, a cosine distance was used and later
Snell et al. demonstrated that the Euclidean distance performs
empirically better in their similar Prototypical Network design
[13]. Since the development of Prototypical Networks many
additional approaches have been proposed that include metric
based approaches [14], [15], generative based approaches
[16], [17], meta learning [18], [19], or some combination of
the aforementioned approaches. Surprisingly, Chen et al. has
shown that many of the methods appear to have very compa-
rable results when using the same neural network backbone
[5].

Unfortunately, many of the few-shot algorithms are re-
stricted to working only within the few-shot paradigm. That is,
training is still done on thousands of samples with very few
samples per class (e.g. minilmageNet 48,000 training sam-
ples) and testing is done with labeled exemplary samples. In
comparison to the few-shot literature, OrderNet has inherited a
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very similar architecture to the original Siamese Network with
a modified distance function. Additionally, OrderNet uses an
episodic training, which is similar to approaches like Matching
Networks and Prototypical Networks. However, OrderNet and
other few-shot approaches’ core difference is that OrderNet
is designed to order/sort a completely unseen and unlabeled
dataset given only a few hundred samples in total. This is
different from trying to explicitly classify unknown samples
by matching them to a set of given labeled samples.

Concerning ordering data, there is already a prominent area
of research focused around ranking systems that operate as
search engines [20]. The general objective of these information
retrieval systems is to take an unknown query sample (e.g.,
picture of a bike) and provide a ranked list of available samples
in a database that most closely match the query sample
(e.g., pictures of other bikes). Unfortunately, many of these
approaches set up their training with labeled class data and
(unlike OrderNet) cannot effectively train on just an organized
ordered list of data. One notable exception is RankIQA [21],
where a ranked set of images are synthetically produced by

blurring data at increasing levels and the organized datasets are
used to train a network. This network is trained to rank a set of
unseen images by quality; however, large amounts of training
data are still needed and it is unclear how rankIQA would
be extended to other rank ordered training sets. In contrast,
OrderNet only requires a few hundred ordered samples for
training and can be easily applied to any ordered data.

Finally, it is worth mentioning that the primary motivation
for the development of OrderNet was to aid in the tedious
and costly process of labeling data with a human in the loop.
If a training dataset can be effectively ordered, OrderNet can
exploit the larger amount of pairwise comparisons instead of
merely using individual samples. As a result, using OrderNet
with a small labeled dataset can yield much better organi-
zational performance of unlabeled data than a comparative
approach that uses regression or classification. Better orga-
nized data reduces the evaluation and correction time of a
human in the loop and the interaction between the network
model and human can be iterative to improve classification
performance over time. Such approaches meant to address
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tedious labeling are commonly known in the research literature
as active learning methods. Although there are many variants
to active learning, most approaches start with a minimally
trained network and a large amount of unlabeled data [22]. The
unlabeled data are classified with accompanying confidence
metrics. If the confidence is high for a particular sample,
then it can be labeled and used on the subsequent iterations
of training. Active learning approaches are often processes
surrounding a particular neural network model and therefore
complement the proposed OrderNet model.

Further, we argue that it is easier for a human to organize
data versus classify in many cases, so OrderNet might prove to
be more intuitive in an active learning process. For example,
consider the scenario mentioned in the introduction where a
human observer has to label unlabeled photos of people by
age. It is arguably easier (and more accurate) for a human
to organize them from youngest to oldest with pairwise
comparison rather than explicitly guessing each person’s actual
age. In this regard, we see active learning as a potential avenue
for the use of our OrderNet model but consider it out of scope
for the work presented in this paper.

I1I. PROPOSED METHOD

The design of OrderNet is centered around pairwise com-
parisons such that a small set of N samples are transformed
into N(N — 1)/2 pairwise combinations for training. The
episodic pairwise sub-sampling is common to the few-shot and
contrastive literature where the approach is used to identify if
an unknown query sample under test is an in-class or an out-
of-class sample with respect to a few known samples. Here,
OrderNet has modified the loss function to indicate if a query
under test is larger than or smaller than another sample. The
subtle — albeit important — modification to the loss function
in conjunction with the pairwise training scheme allows the
network to learn pairwise order from a high dimensional low
sample dataset. This tool can be used with any pairwise sorting
algorithm to order a large set of data and the entire process is
shown in Figure 1.

A. OrderNet Model

More formally, consider an ordered training set Tr =
{(x1,11),---,(Xn,yn)} where each x; is a D-dimensional
vector (x; € RP) and each y; is a I-dimensional value
(y; € RY) such that y; < Yit+1. Y; can either be a floating-
point value that represents some known quantity of x; ordering
or — if an explicit value of the ordered label is unknown —
it can be assigned an arbitrary value such that y; < ;44
holds (e.g., i = ¢). On each episode, a batch of B pairs
of high dimensional samples x; and x; (e.g. profile images
of people) are randomly sampled from the training set T'r
with replacement such that y; # y;. Each pair of training
samples pass through the same neural network (with learnable
parameters ¢) such that it transforms a D-dimensional sample
into a K-dimensional projection (i.e. s : RP? — R¥). Note
that Figure 1 distinguishes between a “feature layer” and a
“projection layer.”

The feature layer is meant to exploit the datasets’ structural
features such as a Convolutional Neural Network (CNN) for
images or Long Short Term Memory Networks (LSTM) for
sequential. In contrast, the projection layer is a much smaller
dense neural network that projects the feature layer’s output
into a consistent multi-dimensional space (e.g., a vector of
512 elements). Although the feature layer and projection layer
are part of the same network architecture, a distinction is
made between them because the weights of the projection
layer are always learned through training. In contrast, the
feature layer weights have the option of being pretrained
(i.e. Xception Network with pretrained imageNet weights).
Our experiments use randomized weights and learn both the
feature and projection layers from scratch to isolate OrderNet’s
training performance on low sample size.

After both samples pass through the projection layer, the
signed distance between the feature projections of the sample
pairs are computed and a single sigmoid activation function
(o(-)) maps the signed distance to a distribution given by

Doy > yj1xi, x;) = o(fp(x:) — £4(x;)) (1)

The binary cross-entropy loss function for the network can
then be represented as

B B

J(¢) =— Z Z Ly, >y, log[pg(vi > y;1xi,%;)]

i Juii
+ Ly, <y, log[l — Py (yi > y;1xi, x;)]
(2)
where the objective of the loss function is to drive the projected
difference fy(x;) —fs(x;) to larger positive values when y; >
y; and larger negative values when y; < y; over the total batch
of B pairwise samples.

Throughout the training process, it is important to assess
the validation performance periodically. Since the available
amount of training data is small, having a set of disjoint
validation data prevents overfitting and allows for an exit
criterion. The network is included as the comparator in a
sorting algorithm as illustrated in the implementation portion
of Figure 1 (bottom). Any sorting algorithm can be used for
validation and testing as long as it uses pairwise comparisons.
We used a simple comparison sort in our design. The output
order of the sorting algorithm is compared against the true
order of the data via the Kendall Tau Coefficient as given by
[23]

T = ﬁ;sign(% —yj)sign(zg- —Zj') (3)
where the values y; represent the true sorted samples and
z; represent the sorted samples from the output of the Or-
derNet enhanced comparison sort. In the ranking literature,
the Spearman Rho Coefficient is often used over the Kendall
Tau Coefficient because it incorporates the distance between
sorted samples, not just the absolute order. However, we have
chosen to use the Kendall Tau metric in our work because
OrderNet can be applied to unlabeled ordered data by applying
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an arbitrary order label (as presented earlier in this section).
In scenarios where the labels are arbitrarily chosen, only the
order is meaningful and Kendall Tau is more representative of
the actual sorting ability.

The full training and validation pseudo-code is shown in
Algorithm 1. Since there are a variety of pairwise sorting
algorithms that would work with OrderNet, we dictate it in
the pseudo-code as function, g(-), that takes the OrderNet
pairwise comparator, ¢(-), and the list of input validation
samples ({Xy1.--Xunr })-

IV. EXPERIMENTS

OrderNet was evaluated against two image datasets with
complex features: 1) synthetically generated images of analog
clocks and 2) real profile images of people. The objective for
the analog clocks dataset was to order images by the true
time and in the objective for the profile images of people
was to order the images by the true age of the person. All
experiments were designed to evaluate when training is limited
to a relatively small number of samples. Since both of these
machine learning datasets had thousands of training samples,
we significantly reduced the sample size for training in all
experiments and compared performance as a function of the
number of training samples.

A. Synthetically Generated Analog Clocks

The synthetically generated analog clock data was devel-
oped by Kaggle user Shiva Verma [24]. It consists of a basic
set of RGB generated images of clocks with an hour and
minute hand. Each image is square with 300 pixels in each
dimension and three channels for pixel color. Examples of the
data are shown in Figure 2. The analog clocks are all circularly
shaped and oriented with 12 o’clock at the top of the image;
however, the size, color, and displacement of the clocks are
randomly varied as well as the hour and minute hand positions.
The images are labeled by the time present on the hour and
minute hands with 12:00 represented as 0.0. Since the dataset
contains 50,000 synthetically generated samples, we can easily
control the number of labeled samples that we use for learning.

For training OrderNet, we randomly sampled between 25
and 800 samples of the 50,000 analog images (where the
number of samples varies depending on the experiment). The
training set was then ordered by the true time label. For
example, since the label for 12:00 in the data was 0.0, the
first ordered sample was the sample closest to 12:00 moving
in a clockwise rotation. On each training iteration, a batch
of 25 pairs of random samples (with different labels) are
chosen from the training set with replacement. Every pair
of samples from the batch were passed through the neural
network feature and projection layer. The feature layer was
the Keras implementation of Xception network initialized
with randomized weights and the network projection layer is
a dense layer with 512 ReLU activation nodes. The entire
network has 21.9M trainable parameters. The signed distance
is computed between each sample’s projection layer’s output
and passed through a final activation function. The final result

Fig. 2. Example of four data samples from the synthetic analog clock dataset.

is a single output value indicating a binary decision on the
two provided samples’ order. In our implementation, a sigmoid
activation was used and, combined with the loss function in
Eq. (2), is designed to produce an output of 1 if the -th sample
is later in time than the j-th sample, else the output value is
0.

For each experiment, training was run for 30,000 episodes
with an Adam optimizer and a learning rate of 6x 10~°. Every
50 episodes a disjoint set of 100 samples was used to validate
ordering performance and the network with the best valida-
tion performance was stored for final testing evaluation. A
comparison sort was used with the respective OrderNet model
as the pairwise comparator to evaluate ordering performance.
The sorted result was evaluated against the true sorted indices
via the Kendall Tau coefficient (see Eq. (3)).

For comparison against OrderNet, a regression network
was trained and evaluated on the same data. The regression
network uses the same architecture and training process except
for the signed distance layer. Instead of the final activation
function indicating the order of two samples, it simply learns
to predict the sample’s true label. The regression network
uses mean squared error between the predicted output and
the normalized labeled for the training loss function, but
the remainder of the training procedure is congruent with
OrderNet training. Additionally, the regression network learns
an exact value rather than operating as a comparator so there
is no need to integrate the regression model into a comparison
sort algorithm. During validation and testing, all samples’
regressed output can be calculated and then sorted using any
common sorting algorithm available. The sort’s final order is
then compared against the true sorted indicies via the Kendall
Tau coefficient exactly as it was done in the OrderNet design.
Again, the network with the best validation performance was
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Algorithm 1 OrderNet training and validation pseudo-code

Input: Training Set Tr = {(x1,¥1), ..., (Xn,Yn )}, disjoint validation set V = {(Xu1,Yv1); --s (Xunr, Yuns )}, batch size B, total training episodes E,
initial model ¢, model learning rate 77, pairwise sorting algorithm g, and initialize best Kendall coefficient Tp.5¢ = —1.0
Output: model with best validation performance ¢p.s;, network loss J(¢), and ordered of validation data {z,;, ..., Zyar }

I: fori=1,...,F do

2 Jg)=0
32 forb=1,...,Bdo
4: Create a set of pairwise samples, T'e = {(x;,¥:), (X;,¥;5)}
randomly chosen from T'r with replacement and such that y; # y;
5: Pa(ys > yj|xs,%;5) = o(fa(x:) — F4(x5))
6: J(@) = J(¢) — Ly, >, log[By(¥: > yslxi,%5)] — Ly, <y, log[l — By (s > yjlxi, x;)]
7:  end for
8 oo —nVsd(d)
9:  if evaluate model on this episode then

11

T i< Sign(yvi — Yuj )Sign(zui = z‘vj}

= M=)
12 if T > Tpest then
13: ¢best == ¢'
14: Thest = T
15 end if
16:  end if
17: end for

/I each episode

/I each sample in the batch

/I Compute the distribution value for each pair of samples
/I Add the loss function over the entire batch

/I Update model

10: g(o, {xva..Axt,M}) = {(Xy1,2p1)s --s (Xur> Zonr )b/ pairwise sorting algorithm takes in validation data and provides ordered index labels z,;

/I compute Kendall 7 between true order of val. data and output of sort

I/ store best T
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Validation performance as a function of training time.

stored for final testing evaluation.

Figure 3 shows the training and validation results when
200 training samples were used. As observed in the plot, the
regression network’s training performance is nearly perfect
early in the training and the corresponding validation perfor-
mance plateaus. This effect is expected since the number of
training samples is small (200) and the regression network
quickly overtrains to the data. In contrast, OrderNet’s novel
pairwise comparison architecture allows the 200 individual
data samples to be 19,900 pairwise samples. As a result, the
training takes more epochs to converge, and the network’s
performance can continue to improve (as seen in the validation
data).

To test the performance as a function of training samples,
we repeated this experiment for 25, 50, 100, 200, 300, 400,

500, and 800 training samples. In each experiment, a disjoint
set of validation data was used to monitor performance. The
validation data is labeled data available during training that is
restricted from the training set. It is used to track performance
and/or provide an independent exit criterion. 100 disjoint
samples were used for the validation data set and the model
with the best (i.e., largest) Kendall ordering metric was used as
a final model for testing. Then 200 random samples (disjoint
from both the training and validation data) were used for
testing the final model. Figure 4 shows the results for OrderNet
and the conventional regression network as a function of the
number of samples. As expected, both networks’ performance
increases as a function of the number of training samples
and eventually converge; however, OrderNet has considerable
performance gain when the training sample size is small. It is
important to note that training performance for both networks
are almost nearly identical and high due to the small number
of training samples; however, upon closer inspection of the
raw data, OrderNet performs slightly worse than the regression
network only on training data. As mentioned previously about
Figure 3, this behavior is expected in the experiment because
the regression network has effectively IV samples whereas
OrderNet expands those N samples into N(N —1)/2 pairwise
samples. Therefore, reducing over training and improving val-
idation and testing performance but also causing an expected
degradation in training performance.

B. Age of Individuals in Profile Images

The UTKFace dataset contains over 20,000 RGB images
of aligned and cropped faces labeled by each person’s age,
gender, and race [25]. Each cropped image is square with
200 pixels in each dimension and three channels for pixel
color. Examples of the data are shown in Figure 5. The
corresponding labeled age of each person is an integer value
from 1 to 116. However, it is highly unbalanced, especially
in the range between 91 to 116 years of age where the
number of samples drops off considerably. As a result, we
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Fig. 5. Example of four samples from UTKFace age dataset

restricted our training, validation, and testing on ages labeled
1-90 which still contains 23,620 samples. Similar to the analog
clocks dataset, we constrained the training and validation
sample sizes. The training data is one (randomly selected)
sample for each class when experiments have less than 90
training samples to mitigate potentially confusing results from
imbalanced training. For experiments greater than 90 training
samples, the same number of randomly selected samples from
each of the 90 classes are used (i.e., 90, 180, 270, etc.).
Note that OrderNet uses batch pairwise sub-sampling with
replacement so the balanced dataset is not a prerequisite for
OrderNet to learn effectively; however, balancing the dataset
establishes a baseline of performance that is easier to compare
against.

For training OrderNet with the UTKFace dataset, we used
an identical network architecture as presented in the analog
clocks subsection (i.e. Keras Xception network feature layer
with 512 node projection layer). When training with less than
90 samples, random classes (i.e., ages) were chosen without
replacement. When training with greater than 90 samples,
a balanced set of samples from each class was used. For
validation, a consistent but disjoint set of 2 samples from
each age were used (i.e., 180 images in total) and the testing
set consisted of 900 samples (10 samples per class) disjoint
from both the training and validation sets. Figure 6 shows the
results for OrderNet and the conventional regression network
as a function of the number of samples for the UTKFace
dataset. As in the analog clocks, both networks’ performance
increase as a function of the number of training samples and
also converge as the number of samples increase. Although
OrderNet has a small testing performance gain in the lower
training sample regime, the performance difference is not
nearly as obvious as in the case with analog clocks. We
speculate this smaller performance gain could be due to the
coarse classification of the UTKFace dataset. That is, the
UTKFace dataset we used has 90 class labels (i.e., one label
per age from 1-90 years of age) whereas the analog clocks
have 720 class labels (i.e. one label per hr/min on a clock).
OrderNet explicitly benefits from the pairwise subsampling,
so 180 samples with 180 labels effectively allows for more
combinations than 180 samples with 90 labels. As a result, we
expect some degradation as the dataset becomes more discrete.
A potential alternative to improve the performance OrderNet
on the UTKFace dataset would be to order all the training data
samples from youngest to oldest rather than by the discrete
year of age classification used in the UTKFace datasets.

V. CONCLUSIONS

The conventional paradigm of few-shot learning is not
truly low sample training. Rather, few-shot models assume
that the learning setting is high sample training with a low
number of samples per class. Training neural networks on
high dimensional data with a low number of total samples
is a significantly more challenging task due to the empirical
training nature of neural networks. Our OrderNet architecture
and training scheme allows for truly low sample training if
one condition is met. Namely, suppose the training data can
be organized by a human operator into a naturally ordered list
based on some feature or true data label. In that case, OrderNet
can exploit the pairwise comparisons to order a significantly
larger dataset. The performance was demonstrated on two sets
of data that already contained labeled values: analog clocks
and profile images. In both cases, the ordering performance
(based on the Kendall Tau Coefficient) of OrderNet improved
performance over a conventional regression network in the
low sample regime. As the number of samples increased,
the performance of the two networks converged as expected.
It appears from empirical results that the convergence in
performance is around the number of classification labels in
the dataset. Although it is uncertain from only two datasets,
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Fig. 6. Final training, validation, and testing performance for ordering the
UTKFace dataset by age as a function of number of training samples

this would imply that, as the classification moves from a
more discrete set of ordered classes to a more analog set of
labels, OrderNet would be increasingly more beneficial than a
regression network. We hypothesize this as a potential reason
why the analog clocks (which had a fine classification dataset
of 720 class labels) benefited much more than the UTKFace
dataset (which had a much coarser dataset containing 90
classification labels). It is a possibility that the this effect was
compounded by the much higher complexity of the UTKFace
dataset features as well.

Future work aims to further refine the operating space of
OrderNet by testing the network across a larger set of data.
Additionally, we plan to integrate OrderNet into active learning
and human in the loop applications where we would expect to
see the most gain from the algorithm. Notably, we believe there
are many ordering/organizational applications where human
data labeling is tedious. In these applications OrderNet may
prove to be useful as an interactive tool to reduce cost, time,
and directed attention fatigue of humans working toward data
organization and labeling.
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