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Abstract—Recent research has revealed that neural networks
and other machine learning models are vulnerable to adversarial
attacks that aim to subvert their predictions’ integrity or privacy
by adding a small calculated perturbation to inputs. Further,
the adversary can significantly degrade the performance of
the model. The number and severity of attacks continues to
grow. However, a dearth of techniques robustly defends machine
learning models in a computationally inexpensive way. Against
this background, we propose an adversarially robust training
procedure and objective function for arbitrary neural network
architectures. Robustness of neural networks against adversarial
attacks on integrity is achieved by augmentation of a novel
regularization term. This regularizer penalizes the discrepancy
between the representations induced in hidden layers by be-
nign and adversarial data. We benchmark our regularization
approach on the Fashion-Mnist and Cifar-10 datasets. Our model
is benchmarked against three state-of-the-art defense methods,
namely: (i) regularization to the largest eigenvalue in the Fisher
information matrix of the activity of the terminal layer, (ii) a
higher-level representation guided denoising autoencoder (trained
with adversarial examples), and (iii) training an otherwise un-
defended model on data distorted by additive white Gaussian
noise. Our experiments show that the proposed regularizer
provides significant improvements in adversarial robustness over
both an undefended baseline model as well as the same model
defended with other techniques. This result is observed over
several adversarial budgets with only a small (but seemingly
unavoidable) decline in benign test accuracy.

Index Terms—Adversarial Defenses, Fast Gradient Sign
Method, Regularization.

I. INTRODUCTION

Deep neural networks have quickly become the de-facto
benchmark for many challenging tasks such as image segmen-
tation [1], image classification [2], cancer detection [3], [4],
and automatic speech recognition [5]. Deep neural networks
have even out-performed humans in tasks once considered
intractable for machine intelligence, such as Go [6]. Unfortu-
nately, recent research has revealed that neural networks and
other machine learning models are vulnerable to adversarial
attacks that aim to subvert the integrity of their output decision
by adding a minute quantity of judiciously chosen noise to
input samples [7], [8]. The severity of consequences of the
exploitation of this weakness swells as the ubiquity of machine
learning systems broadens. While the research community has
developed several methods by which users of machine learning
can defend neural networks from such attacks, techniques that

ameliorate this risk are scarce. To further complicate matters,
in some situations, there is an intrinsic and dataset-dependent
trade-off between adversarial robustness, robustness in the
presence of random noise, and generalization performance on
benign data [9]–[12].

Specifically, adversarial robustness refers to the extent to
which a neural network maintains prediction accuracy on
par with accuracy achieved on noiseless (i.e., benign) data
when its inputs are corrupted by adversarial noise. Such
adversarial noise can, in general, be applied to input data
with a deleterious effect on integrity at any phase of a neural
network’s existence. For example, so called ‘poisoning attacks’
are applied at the training phase and have been shown to
degrade a neural network’s performance similarly to evasive
attacks, in which the adversary’s influence is applied to test
data [13], [14]. The existence of these vulnerabilities abruptly
provoked an ongoing arms race centered between adversarial
attack methodologies and techniques that defend otherwise
vulnerable machine learning systems [7].

Prior investigations of a multitude of defense strategies have
produced a variety of conflicting results. One such contentious
technique, known as a Higher Level Representation Guided
Denoiser (HGD), aims to thwart the adversary by transforming
input samples before they reach the neural network under
attack [15]. However, [9] demonstrated that seven of the tech-
niques described in [7] (including HGD) were published with
results that could not be replicated. Furthermore, HGD and
several others among these methods fail to bestow robustness
to additive white Gaussian noise (AGN), while classifiers
trained on AGN-distorted examples achieved significant gains
in robustness to AGN and adversarial evasion attacks [9].
Another technique was developed to impart improved adver-
sarial robustness upon neural networks trained only on benign
data by regularizing the training objective in proportion to the
largest eigenvalue of the Fisher information matrix (FIM) of
the activity of the output layer. In this work, we refer to this
regularization technique as “FIMR” and the associated Fisher
information matrix as “FIM.” Other state-of-the-art defense
tactics reviewed in [7] rely on invariance of hidden activities
under quantization (which, in some cases, fails to hold for
adversarial examples), attention mechanisms, or the inclusion
of an additional ad-hoc classifier. One particularly noteworthy
approach was proposed by Zheng et al. [16]. Their work



demonstrated robustness can be improved through training
on additive white Gaussian noise (but only to this source of
noise and not specifically to adversarially optimized noise)
by penalizing the disparity that would be induced in the final
(i.e., decision) layer by the original sample and a randomly
corrupted version.

The primary contribution of this work is a training technique
that effectively and computationally inexpensively defends
neural network classifiers from evasive attacks. We propose a
method that bolsters adversarial robustness with the addition of
a novel regularization term, which penalizes the training objec-
tive in proportion to the discrepancy between the representa-
tions induced in hidden layers by benign and adversarial data.
We demonstrate that our approach more effectively defends
neural networks from adversarial evasion attacks than other
state-of-the-art techniques. Moreover, our method achieves
robustness to AGN comparable to the technique introduced
in [9]. While they both require computation of adversarially
perturbed versions of training samples, in contrast to the
HGD, our training scheme only requires processing of the
model to be defended, while HGD demands this in conjuction
with an auxiliary neural network responsible for minimizing
adversarial influence on the input to the defended model. Our
approach differs from that of [16] in two important ways:
our regularizer penalizes absolute differences between activity
induced in every hidden layer by adversarial examples and
their benign counterparts, while Zheng et al.’s regularizes in
proportion to the empirical KL-divergence between activities
induced by benign and AGN-corrupted samples solely in the
output layer. Consequently, to some extent, our contribution is
an extension and dialectical synthesis of the defense strategies
put forth in [15] and [16], to depend on the activity induced
in each hidden layer by adversarial and benign examples.

II. RELATED WORK

A. Vulnerable Deep Neural Networks

Convolutional neural networks (CNNs) are a type of neural
network that consists of serially connected banks of neurons,
whose output states result from the convolution of an input sig-
nal with a learned function. VGG is a remarkably deep CNN
that achieves near state-of-the-art performance on various
complicated image classification tasks [17]–[19]. The VGG
architecture consists of feed-forward banks of two-dimensional
convolutional layers whose outputs propagate through max-
pooling layers that operate by down-sampling their input,
aggregating pixel values by passing the largest among each
(2,2)-pixel wide neighborhood in the input. VGG’s structure
encourages a re-encoding of pixel information into spatial
maps of features situated at levels of abstraction that increase
as they propagate deeper in the network. In our experiments
and those conducted by others, VGG has been demonstrated
to be severely vulnerable to adversarial evasion attacks [20],
incurring a significant breakdown in accuracy even for smaller
adversarial perturbations.

B. Adversarial Machine Learning

We begin by assuming that the adversary has knowledge
about the loss function, L [21]. This loss function is used to
train a neural network with some parameters, Θ, that were
learned from the dataset defined by pairs of feature vectors
with labels, (x, y). The goal of the adversary is to generate a
perturbation vector ηε that maximizes the likelihood of fooling
the target network (e.g., lead to an incorrect classification
with high confidence). It is worth noting that this perturbation
vector is not random, but constructed in a way that achieves
the adversary’s goal of triggering a misclassification. The
Fast Graident Sign Method (FGSM) generates this noise by
choosing ηε to be

ηε = εsign (∇xL(Θ,x, y)) (1)

where ε is a small positive number controlling the strength of
the attack, ∇x represents the gradient operation with respect
to the input features and Θ represents the parameters of the
neural network. That is, ηε perturbs the benign sample a
distance ε in the direction that maximizes the targeted model’s
loss to produce from the benign example, x, the adversarial
sample, xa = x + ηε. Larger values of ε are more likely to
result in misclassifications of the given sample and ε can be
thought of as an adversary’s budget in the sense that larger
perturbations tend to be more easily detected, but more likely
to fool the target [22].

C. Higher Level Representation Guided Denoising Autoen-
coders

The computational ease with which adversarial examples
can be calculated demonstrates an urgent need for training
schemes and methods that render neural networks more robust
to adversarial attacks. The appendage of a HGD, instantiated at
the input of an inchoate neural network to transform inputs as a
means to remove the adversarial influence operates so that the
target neural network need not be optimized further [15]. As a
result, the HGD is a desirable solution. However, its inclusion
significantly increases the number of parameters that must
be loaded to predict with the HGD-defended neural network.
The HGD is based on a denoising convolutional autoencoder
that is trained with benign samples in conjunction with their
adversarially perturbed analogs [15]. This auxiliary network
estimates a defensive counter-perturbation that when added to
the adversarial input minimizes the disparity between hidden
representations induced by the benign and adversarial samples
at the penultimate layer of the target network. Hence, HGD
is trained to output a defensive perturbation that annihilates
the adversary’s influence on the representation induced by the
given sample in layer p, minimizing |sp (x)− sp (xa) |, where
sp(·) is the activity induced in the penultimate layer.

D. Eigen-decomposition of the Fisher information Matrix

Another highly desirable category of adversarial defense
solutions requires no adversarially generated information. The
FIMR, introduced in [23], augments a neural network’s loss
function with a term that penalizes learning approximately in



proportion to the largest eigenvalue of an approximation of the
Fisher Information Matrix (FIM) of the post-activation output
of the penultimate layer of the underlying target model.

KL(P (y|x)‖P (y|x + η)) ∝ ηTFη

where KL(p‖q) is the KL-divergence between probability
distributions p and q, F is the Fisher Information Matrix [23],
[24] and P (y|x) is the posterior probability produced by the
model. The regularizer on the FIM penalizes against bias in
confidence in the output layer, this tactic has the effect of
smoothing and broadening the spectrum of the output activity,
which may lower the capacity for adversarial perturbations to
propagate through the final layer. As in [23], we approximate
the trace of the FIM as

∑
j

1
pj

, where pj is the neural network’s

estimated probability that the input belongs in class j . The
resulting loss function is formulated as

L = (1− ζ)LCE + ζ
∑

classes j

1

pj
, (2)

where LCE is cross entropy loss and ζ ∈ [0, 1] is a penalty
coefficient that weights the convex combination to provide a
trade-off between the cross-entropy and FIM regularization.

E. Natural Noise

Gilmer et al. elucidate that as a consequence of the geometry
of the image space perceived by a neural network and the
latent spaces to which it projects information in its hidden
layers, robustness to natural noise implies a limited robustness
to adversarial noise [9]. This observation corroborates the
finding of Zantedeschi et al. that noisy training (i.e., training on
inputs subjected to AGN) is an effective defense strategy [25].
Additionally, it was demonstrated that a plethora of defense
strategies (including HGD) that rely on information from
attacked samples often fail to translate adversarial robustness
to the more general setting of AGN [9]. For convenience,
we refer to the noise itself as “AGN” and the corresponding
defense tactic of training only on AGN-distorted examples as
“AGNT.”

III. OUR CONTRIBUTION

The related work has shown there is value in adding regular-
ization terms into neural networks’ cost functions to bolster ro-
bustness. In light of this potential to defend a neural network’s
performance in the face of adversarial attacks, we propose the
addition of a novel regularization term proportional to the dis-
crepancy between the representations induced in hidden layers
by benign and adversarial data. Motivating this regularization
term is the expectation that in an adversarially robust CNN, the
discrepancy between hidden (i.e., latent) activity induced by
adversarial and benign samples should be small. Therefore, we
extend the cost function to penalize against large discrepancies
between these latent representations. Specifically, we consider
the novel loss function,

L = (1− ξ)LCE +
ξ∑

layers i
|si (x) |

∑
layers i

|si (x)− si (xa) | (3)

where LCE is the original undefended categorical cross-entropy
loss function, ξ ∈ [0, 1] is a penalty coefficient, si(x) and
si(xa) represent the activity of the ith layer and the activity
that would be induced in the ith layer by stimulating the
given neural network with an adversarially perturbed version
of the same input. An essential distinction between (3) and the
approach to general robustness (i.e., in the face of all noise)
of [16] is immediately apparent in that our regularizer is a
function of latent disparity induced in every hidden layer. In
contrast, the work presented in [16] seeks solely to stabilize the
activity of the output layer. Moreover, our regularizer penalizes
adversarially induced latent disparity. Specifically, the work
of Zheng et al. [16] does not train against samples that are
adversarially optimized. Rather they opt to regularize to final
layer’s disparities induced by additive white Gaussian noise
(AGN). Figure 1 exposes a graphical portrayal of signals’ flow
in our final training procedure, which we dub “HLDR”.

IV. EXPERIMENTAL FRAMEWORK

We evaluate the benign and adversarial test accuracy af-
ter fine-tuning in a stratified ten-fold cross-validation (CV)
experiment. The benchmarks were performed in a way that
reproducibly disentangles apparent trends from the non-
determinism in the processes that produce the datasets consid-
ered and what is inherent in the low-level implementations of
popular machine learning platforms (e.g., Tensorflow, pyTorch
[26], [27]). The Fashion-Mnist and Cifar-10 datasets were
selected for the experiments based on their popularity in
adversarial machine learning [28], [29]. A VGG network
is pre-trained on 10,000 randomly selected samples for up
1000 epochs or convergence (whichever comes first). This
pre-training step halts early if the change in validation loss
stagnates for 100 epochs. The pre-training data are discarded
for the remainder of the experiment. The unseen training
and test data are split over ten stratified subsets. For each
fold of CV, 6000 adversarial examples are generated using
the FGSM (i.e., see (1)) for several small budgets, which
are presented as training data to the HGD and HLDR with
their benign counterparts. Meanwhile, as in [23], Shen et al.’s
model is trained using only the benign samples. AGNT (and
other models exposed to AGN-perturbed examples) are fine-
tuned on AGN-perturbed versions of the benign analogs of the
aforementioned 6000 adversarial samples. In every iteration of
the CV experiment, each model is evaluated on the test subset
assigned to that iteration, subject to a varying adversarial
budget.

A fine-tuning data subset is an ordered product of the sets of
adversarially perturbed samples and their benign presentation
(e.g., (x,xa)). The adversarial samples are generated with pre-
specified budgets 16

255 and 32
255 . We define D and dataset Dε

to be the benign component of the fine-tuning subset and its
adversarially perturbed form with a budget of ε, respectively.
The fine-tuning subset is

D =

{
(x,xa)|x ∈ D,xa = x + ηε, ε ∈

{
0,

16

255
,
32

255

}}
.



Fig. 1: An illustration of the calculation of our adversarial regularizer from three intermediate layers of VGG. The purple
(left) and yellow (right) convolutional layers share weights, and are stimulated by adversarially perturbed data and benign data,
respectively.

We also measure empirical accuracy in the presence of AGN
(as opposed to adversarial noise).

A natural question arises from Gilmer’s conclusions [9],
that limits on adversarial robustness are intimately related to
testing error in the presence of AGN: to what extent (and in
what direction) does AGNT alter adversarial robustness and
robustness to AGN? To better understand this connection, we
also engineer a dual of the previously outlined experiment. In
addition to training on D, each approach is trained on exam-
ples distorted by pixelwise AGN. In this second experiment,
HLDR and HGD are trained to minimize disparities between
representations induced by benign and noisy pairs of samples.
More precisely, we construct these extended training subsets
as

DN = D ∪
{
(x,xn) |x ∈ D,xn = x + n,n ∼ N

(
0,

32

255

)}
.

V. MODEL DETAILS

This section discusses implementation details of compo-
nents of the experimental framework and their interactions
with the relevant training procedures. Every fold of the CV
experiment begins with the same pre-trained VGG model and
is subjected to fine-tuning on D, constructed as described in
Section IV. Implementation of all models was composed in
Tensorflow so that all models could be evaluated on the same
platform and experimental controls. Tensorflow is initialized
following the suggestions of [26], which reduces the impact of
non-deterministic processes on the compilation and execution
of backpropagation. Optimization of each model is performed
using the “Nadam” algorithm [30], an extension of the pop-
ular “adam” routine that incorporates Nesterov momentum to
increase the rate at which the optimization process converges.
We implemented FIMR by incorporating the approximation

evaluated in [23]. The penalty coefficient of HLDR and FIMR,
respectively, are fixed as ξ = 0.25 and ζ = 0.0025. The results
presented in this work use a Feature Guided Denoiser, which
is the best performing HGD introduced in [15]. This denoising
autoencoder is trained to minimize |sf (x) − sf (xa) |, where
sf (·) is the output of the final convolutional layer. We ex-
perimented with the other HGD objectives (e.g., minimizing
|s−1 (x) − s−1 (xa) |, where s−1 represents the penultimate
densely connected layer of VGG) and observed no apparent
difference in benign or adversarial test accuracy.

Our VGG model is slightly different from the architecture
developed by Simonyan et al. [17]. The VGG model used
in these experiments is augmented with batch-normalization
following every convolutional layer [31]. This implementa-
tion of VGG forgoes “relu” activation functions in favor of
rectified exponential nonlinearities. The primary two blocks
of our implementation of VGG have two serially connected
two-dimensional convolutional layers that output 64 channels
through a max-pooling operation. This pattern repeats in
subsequent blocks, doubling the number of channels output
with each successive block terminated by a max-pooling layer
until the final two, which output 512 channels. Blocks 3-5 each
have three serially connected convolutional layers before their
max-pooling layers. Block 5 broadcasts into a fully connected
layer of 512 neurons, re-encoding the data in its 512 input
channels before feeding this information to the final soft-max
layer of output neurons.

VI. RESULTS

This section presents the empirical results from the adver-
sarial defenses discussed throughout this manuscript. Figure 2a
shows the comparisons between empirical accuracy on adver-
sarial and benign copies of the test data for varying adversarial



budgets, ε, (note ε = 0 here refers to the benign accuracy).
Figure 2b show these results as the differences relative to
those of the undefended model. The error bars in each figure
represent 95% confidence intervals. Most surprisingly, while
it retained the initially high benign test accuracy achieved by
the undefended model, HGD failed to convey a significant
improvement on the adversarial test set for any positive budget
considered. Shen et al.’s regularizer incurs a small weakening
of benign test accuracy (and an insignificant reduction in
adversarial test accuracy for small ε) but gains a small but
insignificant improvement in adversarial test accuracy for
larger ε. Our proposed regularizer, HLDR, incurs a slight
reduction in benign test accuracy and attains a remarkably
large (relative to the other methods considered) improvement
in adversarial test accuracy for all non-zero budgets tested.

Figures 2c and 2d show results of the same experiment
applied to the Cifar-10 dataset. Notably, the phenomenon
observed in the Fashion-Mnist results is present in the Cifar-
10 results as well, which is that HLDR achieves significantly
more adversarial robustness than FIMR and HGD. Surpris-
ingly, as with Fashion-Mnist, HGD failed to achieve a signif-
icant improvement over the undefended model while FIMR
develops a significantly more robust network (as compared
to the undefended and FIMR models evaluated on Fashion-
Mnist).

Figures 3a-3d depict the influence of AGN of various
intensities (i.e., standard deviations, σ) on the classification
accuracy of the instance of VGG protected by the correspond-
ing defense technique and the relative change in accuracy
with respect to the undefended model. Interestingly, when
assessed over the Fashion-Mnist dataset (Figures 3a and 3b),
the HGD-defended model is not meaningfully impacted by the
random corruption applied to its input data. In contrast, the
performance of the FIMR- and HLDR-defended models were
observed to be more prone to a degradation in accuracy. In the
case of the Fashion-Mnist dataset, neither the FIM-defended
model nor HLDR were likely to resist this degradation of
performance in the face of AGN. However, each model
was infrequently (i.e., on few iterations of CV) observed to
enjoy a small boost in classification accuracy for non-zero σ.
Strikingly, on the Cifar-10 dataset, HLDR and FIMR imparted
a small but highly variable improvement in accuracy for all
noise powers considered.

Figures 4a - 4d demonstrate how the different models are
impacted by the value of ε for the AGN-enhanced training
procedure described in Section IV. A model trained only on
AGN-perturbed examples (i.e., DN \ D) was also evaluated
and is distinguished in the legends of 4a-5d as ‘AGNT’.
AGN training improves accuracy for HLDR in both the AGN
and adversarial regimes relative to training on the exclusively
adversarial training set, D. AGNT reliably defends against
adversarial attacks, but HLDR obtains a significant advantage
over AGNT when tested against adversarial noise. In contrast,
FIMR and HGD do not experience a significant improvement
compared to the first experiment on both adversarial and AGN-
perturbed test samples. We also evaluated the output-stability

training method described by Zheng et al. [16]. The resulting
performances were omitted from these figures because it failed
to maintain satisfactory benign test accuracy (specifically by
dropping to approximately 10% for every penalty coefficient
considered, including those recommended in [16]). Further,
stability training was found to be detrimental to adversarial
test accuracy (also dropping to approximately 10% in every
iteration of CV observed and for every penalty coefficient and
test budget considered. Ten such penalty coefficients were
sampled uniformly from [0.0001, 1] and found to produce
identical results.

Figures 6a-6d depict the impact on AGN-perturbed test
accuracy of training on the combined AGN and adversarially
distorted fine-tuning sets, DN . On both Fashion-Mnist and
Cifar-10, this training scheme significantly elevated robustness
of HLDR to AGN relative to the undefended model. No
apparent improvement between ordinary training and AGN-
augmented training was observed for HGD or FIM.

Figures 6a - 6d show the empirical mean perturbation error
(i.e., normalized MAE between representations induced in
hidden layers of VGG by a benign example and its adver-
sarially perturbed counterpart) for a budget of ε = 8

255 for the
Fashion-Mnist and Cifar-10 datasets under both experiments
outlined in section IV. Counter-intuitively, the perturbation
errors only differ significantly among the different methodolo-
gies on the Fashion-Mnist data after layer six. Their ranking
by perturbation error in the second to the last layer of the
model does not predict model performance in Figures 2a
and 2b. Similarly, in the Cifar-10 experiment, perturbation
errors are nearly indistinguishable in the neural network’s
first eight layers. These observations hold in both experiments
described in IV. As in the Fashion-Mnist case, ranking defense
technique by perturbation error in latter layers is not predictive
of performance on the adversarially perturbed test data shown
in Figures 2c and 2d.

Table I shows the time required by each defense technique
to iterate over a single sample of fine-tuning. Not shown
in the Table I is the observation that the models defended
only by AGNT require no additional training time (on a per-
sample basis). This stems from the fact that such models
are not responsible for the auxiliary computation involved
in calculating the regularizers and their derivatives. Notably,
the HGD consumes twice as much time as the HLDR and
FIMR networks, which differ in training time only by 0.1
milliseconds per sample. This result occurs because HLDR
and FIMR do not increase the number of parameters of the
defended model. In contrast, HGD increases the load of the
forward passes of the optimization routine by more than 11
million parameters. Equivalently, 26028363 parameters must
be processed to predict with the HGD defended model.

VII. DISCUSSION

Our proposed method has two distinct advantages over the
HGD: Aside from significantly better performances in the
adversarial test regime, our method only requires as many
parameters as the original model, and as a result, completes
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Fig. 2: (a) Test accuracy vs. adversarial budget for the adversarial defense schemes discussed in this work, evaluated on the
Fashion-Mnist dataset (b) Corresponding improvement in test accuracy over the undefended model plotted against adversarial
budget. Error bars represent 95% confidence intervals, estimated over ten folds of the CV experiment. (c) Test accuracy vs.
adversarial budget for the adversarial defense schemes discussed in this work, evaluated on the Cifar-10 (d) Gain in test
accuracy over the undefended model plotted against adversarial budget, evaluated on the Cifar-10 dataset.
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Fig. 3: (a) Test accuracy and (b) the corresponding improvement in test accuracy over the undefended model vs. pixel-wise
AGN strength (i.e., standard deviation) measured alongside the results presented in Figures 2a and 2b. (c) and (d) show the
analogous results corresponding to the Cifar-10 experiments (i.e., those associated with Figures 2c and 2d.
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Fig. 4: (a) Test accuracy vs. adversarial budget for the adversarial defense schemes that were trained on the AGN-enhanced fine
tuning subset, DN , evaluated on the Fashion-Mnist dataset (b) Corresponding improvement in test accuracy over the undefended
model plotted against adversarial budget. (c) Test accuracy vs. adversarial budget for the adversarial defense tactics discussed
in this work and trained on the AGN-enhanced fine tuning subset, DN , evaluated on the Cifar-10 (d) Gain in test accuracy
over the undefended model plotted against adversarial budget, evaluated on the Cifar-10 dataset.

Training Time ( milliseconds
sample )

HLDR HGD FIM
2.1 5.3 2.0

TABLE I: Training Time (measured in seconds per sample)
for each of the defense techniques considered in this work.
HLDR is nearly as fast as FIM, which (due to its independence
from any adversarial information that HLDR must propagate
through the network) demonstrates the low cost of the addi-
tional forward propagation calculations incurred in order to
optimize under the HLDR.

training considerably faster. That FIMR drastically reduces
the perturbation induced in hidden layers compared to that
of HLDR and HGD is shockingly unintuitive, as one expects
that the model with empirically minimal perturbation in the
final convolutional layer would be most resistant to adversarial
attacks. This discrepancy in the translation of hidden perturba-
tion minimization to adversarial robustness at the output may
be explained (in the FIMR and HLDR cases) as resulting from
changes in the weights of the final densely connected layers.
FIMR reaches a relatively greater robustness to FGSM attacks
despite the provision of adversarial examples to HGD and
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(c) Cifar-10 AGN Accuracy
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(d) Cifar-10 AGN Relative Improvement

Fig. 5: (a) Test accuracy and (b) the corresponding improvement in test accuracy over the undefended model vs. pixel-wise
AGN power measured alongside the results presented in Figures 2a and 2b, trained on the AGN-enhanced fine tuning subset,
DN . (c) and (d) show the analogous results corresponding to the Cifar-10 experiments (i.e., those associated with Figures 2c
and 2d).
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(b) Cifar-10 Perturbation Error
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(c) F-mnist Perturbation Error
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(d) Cifar-10 Perturbation Error

Fig. 6: Mean perturbation error - i.e., MAE between hidden representations induced by a benign example and its adversarially
perturbed counterpart (with a budget of ε = 8

255 ) normalized to the total intensity of the benign representation, |si(x)−si(xa)|
|si(x)| -

for hidden convolutional layers of VGG augmented and fine-tuned with each of the various defense techniques considered are
shown for the Fashion-Mnist and Cifar-10 datasets in (a) and (b), respectively. (c) and (d) exhibit the same under the combined
AGN training regimes.

not to FIMR. This observation demonstrates that the disparity
reduction between activity induced in hidden layers by adver-
sarial and benign examples is a more effective means of at
once reducing the success rate of adversarial attacks and error
amplification (the phenomenon in which this disparity grows
with increasing depth in the network in question). That HLDR
is able to attain greater improvements in robustness over the
baseline demonstrates the value exchanged between the cost
of calculating adversarial examples and computing additional
forward-passes. We speculate that the gap between adversarial
accuracy achieved by HLDR and AGNT is a product of the
specific directions in which each training regime expands the
boundaries of preimages of decision boundaries embedded
in hidden layer activity [32]. Indeed, as AGNT flattens the
boundaries of such subsets in the directions that minimize
perturbations induced by AGN, in a high dimensional feature
space, the sheer number of potential directions exploitable by
adversarial perturbations remains large enough that training
HLDR attains a tangible (and replicable) improvement in ad-
versarial test accuracy, while matching AGNT’s performance
on AGN-perturbed test samples.

That we were unable to replicate the robustness conferred
by HGD as demonstrated in [15] was unexpected, given its
intuitive design and the fact that the structure of its objective
function directly inspired the regularizer we introduce. This

inconsistency with the results presented in [15] may be at-
tributable to the underlying model. For example, Liao et al.’s
investigation studied the defense of a ResNet model while our
experiments study VGG [33], [34].

HLDR represents a novel and effective approach to training
adversarially robust neural networks; however, our conclusions
are limited by the restriction that this work only considers
training procedures that use the fine-tuning subsets constructed
as described in Section IV. Further work toward understanding
how HLDR impacts performance in the face of adversarial,
Gaussian, and other forms of distortion (e.g., loss due to
compression) involves comparing HLDR directly to other
related methods that train on fine-tuning subsets, adversarial
attack methods, and objective functions distinct from the
formulations used in this work. Of great interest is assessing
the impact of replacing the L1-norm in (3) with higher order
norms.
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