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Abstract—As the real-world applications (image segmentation,
speech recognition, machine translation, etc.) are increasingly
adopting Deep Neural Networks (DNNs), DNN’s vulnerabilities in
a malicious environment have become an increasingly important
research topic in adversarial machine learning. Adversarial
machine learning (AML) focuses on exploring vulnerabilities and
defensive techniques for machine learning models. Recent work
has shown that most adversarial audio generation methods fail
to consider audios’ temporal dependency (TD) (i.e., adversarial
audios exhibit weaker TD than benign audios). As a result, the
adversarial audios are easily detectable by examining their TD.
Therefore, one area of interest in the audio AML community
is to develop a novel attack that evades a TD-based detection
model. In this contribution, we revisit the LSTM model for audio
transcription and propose a new audio attack algorithm that
evades the TD-based detection by explicitly controlling the TD
in generated adversarial audios. The experimental results show
that the detectability of our adversarial audio is significantly
reduced compared to the state-of-the-art audio attack algorithms.
Furthermore, experiments also show that our adversarial audios
remain nearly indistinguishable from benign audios with only
negligible perturbation magnitude.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable
success in numerous real-world applications (e.g., image/video
analysis [1], audio analysis [2], natural language processing
[3], etc.). However, recent contributions have shown that
DNNs can be easily fooled by adversarial inputs that appear
to be legitimate for the oracle’s perspective [4]. For example,
Figure 1 shows Goodfellow et al.’s classic example of an
image of a panda that has been maliciously perturbed with
a signal that is not observable by the oracle (i.e., human) eye.
In the past decade, many studies have explored the impact
of an adversary on various applications (i.e., image analysis
[5]–[7], text classification [8], and malware detection [9]–
[11]); however, there are fewer works that discuss DNNs’
behaviors against adversaries that are built for audio analysis
despite the large number of real-world applications that rely on
accurate audio transcription technologies (e.g., Google Home,
Amazon’s Alexa).

An attack algorithm used against a benign audio X finds
an adversarial audio Xa that leads to a wrong output Y a

by maximizing the loss. This procedure of manipulating the
audo is similar to attack algorithms against images with the

(a) Adversarial example for image classification

Fig. 1. Goodfellow et al.’s demonstration of fast adversarial example
generation applied to GoogLeNet on ImageNet challenge [4]. By adding
an imperceptibly small perturbation to the image, the classification result of
GoogLeNet for “panda” has changed to “gibbon” with high confidence.

difference being the medium of the attack. Generally, the audio
attack objective is given by:

Xa = arg max
(X,Y )∈D∪{(Xa,Y a)}

L(fθ(X), Y ) (1)

where D is the benign audio dataset, L is a cost function, X
is the benign audio, Y is the ground truth for the audio X ,
and fθ is a neural network with parameters θ.

Attack algorithms against audios are generally categorized
into two groups that correspond to different audio tasks:
speech-to-text and speech-to-label attacks. A speech-to-text
task takes an input audio X and generates a sequence
of texts Y . For example, let X be an audio signal that
is represented as a sequence of length m, where X =
{X[1], . . . , X[t] . . . , X[m]} and Y be the correct transcription
of X , which could be Y = “What time is my doctor’s
appointment?”. The adversary seeks to generate audio Xa such
that ‖X − Xa‖22 is arbitrarily small and Y a = is different
than the ground truth transcription of Y . Recently, a speech-
to-text attack algorithm against the DeepSpeech model [12]
uses a gradient-based method to arbitrarily modify audios’
machine transcriptions Y to Y a (i.e., Y a �= Y ). Moreover,
the attack algorithm can inject imperceptible perturbations
(i.e., min ||Xa −X||22) directly to the raw audio waveform
X . Figure 2 shows an example of the audio attack in [12].
The perturbation σ is found by maximizing the audio attack
objective (1) using backpropagation. On the other hand, the
speech-to-label application takes an input audio X and yields978-1-7281-2547-3/20/$31.00 c©2020 IEEE
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‘‘To be or not to be 
that is the question’’

‘‘The course of true love 
never did run smooth’’
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Fig. 2. Overview of Carlini’s attack algorithm [12]. Benign audio X produces
the correct transcription Y via DeepSpeech. The adversary uses an attack to
obtain a perturbed adversarial audio Xa which produces Y a �= Y .

a class label C. In speech-to-label attack, an adversarial audio
Xa subverts the authentic class label C while remains close to
X . For example, let X be an audio signal that is represented
as a sequence of length m and Y be the correct category of
the audio. For the audio signal X = “You have a doctor’s
appointment in 30 minutes,” the correct assignment could be
Y = “Calendar Notification,” where class labels could be in
the set Y := {New Text Message, Calendar Notification}.
Alzantot et al. proposed a generic audio attack algorithm
against a speech command classification model. Their attack
added an imperceptible random noise to the original audio
signal [13] (i.e., simply changing the least significant bits
in the audio signal). Alzantot et al.’s attack achieved an
87% attack success rate by adding small background noise
without having to know the underlying model parameter and
architecture. In both speech-to-text and speech-to-label attacks,
the resulting adversarial audio Xa = X+σ is almost identical
to X in both time and frequency domains.

Defensive countermeasures for audio analysis applications
are also under-explored. The research community first pro-
posed to use the defensive feature transformation techniques
that are proven to be quite effective against image attacks
to defend against audio attacks. These feature transformation
techniques include waveform quantization, local smoothing,
downsampling, auto-encoder transformation, etc [14]. Unfor-
tunately, these techniques provide limited security to audio
analysis applications in a malicious environment [15]. This
limited security is due to the images and audios having fun-
damentally different structures. That is the images are spatially
structured while audios are sequentially structured. Recently,
Yang et al. proposed a novel adversarial audio detection
algorithm based on the empirical result that adversarial audios
behave differently from benign audios in terms of temporal
dependency [15]. Their experiments showed that the their
detection algorithm can easily identify a variety of state-of-
the-art audio attacks. Temporal Dependency (TD) is a new
concept emerged in the AML. As a result, the TD’s impact on
audio attacks and audio defenses remains unknown. An audio’s
temporal dependency is an innate and intrinsic characteristic
that depicts the relations among different temporal steps in
an audio sequence. Generally, DNN-based audio analysis
applications model the temporal dependency explicitly through
various intermediate results during neural network training,

e.g., hidden states in LSTM, attention in transformer models.
In this contribution, we focus on generating adversarial

audios that are against speech-to-text transcription tasks. We
first revisit the LSTM model that is commonly used for
performing the transcription then we shed light on the TD’s
role in generating an adversarial audios’ against a speech
recognition model. Then we propose a new audio attack
algorithm that evades the TD-based adversarial audio detection
and benchmark our algorithm, as well as the state-of-the-art,
on the Mozilla dataset. Our results show that our adversarial
speech model can evade the TD detection methods.

The rest of this paper is organized as follows: In section
II, we review the TD-based detection method and analyze
the TD’s impact on audio attacks in section III. We present
the experimental evaluations in section IV and draw the
conclusions in section V.

II. RELATED WORKS

In this section, we review the latest contributions in adver-
sarial machine learning for audio analysis applications then we
review the technical details of TD-based detection methods.

A. Adversarial Audio Examples

The adversarial audio example generation against Deep-
Speech (i.e., a model developed for speech recognition and is
the state-of-the-art) proposed by Carlini and Wagner is the first
targeted speech-to-text audio attack algorithm (i.e., explicitly
specify the attack target Y a) [12]. This audio attack method
is particularly effective on various benchmarks, given that the
slight noise is imperceptible to a human ear. In [16], Yukura
and Sakuma take into account the impacts when audios are
played over-the-air (e.g., background white noise, frequency
filtering during analog to digital converting, etc.) and designed
a robust audio attack method against DeepSpeech. Although
the adversarial audios in [12] achieved an almost 100% success
rate, Carlini and Wagner assumed a white-box setting which
requires detailed information of the victim’s model (e.g., DNN
structure, trained weights, etc). In [17], Taori et al. proposed
a black-box audio attack method by combining the genetic
algorithms and gradient estimation.

As for audio defenses, feature transformation techniques
(e.g., image quantization, filtering, image reprocessing, au-
toencoder reformation) are widely adopted as countermeasures
against an adversary in real-world tasks [18]–[21]. These
feature transformation techniques are widely used in many
applications due to their low cost and the fact that they can be
used with various DNN architectures. Feature transformation
defenses aim to filter the adversarial perturbations of the
raw input. While feature transformations are effective on
images, they provide limited security against adversarial audio
attacks [15]. In [22], Rajaratnam and Kalita proposed to
flood particular frequency bands with random noise to detect
adversarial audios. Unfortunately, an adversary can specify
the frequency bands that carry the adversarial perturbations
to evade the noise flooding detection method [16]. Recently,
Yang et al. proposed an empirical test to discriminate against
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Fig. 3. This figure shows the TD-based detection method. X,Xa are benign
and adversarial audios respectively. X[: k], Xa[: k] denote the first k percent
partial audios of X,Xa respectively. We use f(∗) to represent the Automatic
Speech Recognition (ASR) system.

various adversarial audios by measuring the audios’ temporal
dependency [15]; however, we will show in this paper that
this detection technique can be easily fooled by suppressing
the temporal dependency in adversarial audios.

B. Adversarial Audio Detection with Temporal Dependency

In this section, we review the details of the detecting
adversarial audios with TD methods. Figure 3 shows the
general procedures for a TD-based detection method. We first
explain the notations in Figure 3. We refer to the benign and
adversarial audios as X and Xa, respectively. The Automatic
Speech Recognition (ASR) system is denoted as f(∗). We
use X[: k] and Xa[: k] to denote the first k percent partial
audio of X and Xa, respectively. For the complete audios,
the machine transcriptions from ASR for X and Xa are f(X)
and f(Xa), respectively. For the partial audios, the machine
transcriptions for X[: k] and Xa[: k] are f(X[: k]) and
f(Xa[: k]), respectively. Specifically, the TD-based detection
performs the following steps:

• Slice the first k percent partial audios X[: k] and Xa[: k]
then obtain the transcriptions f(X[: k]) and f(Xa[: k])
from ASR (e.g., DeepSpeech);

• Apply ASR to the complete audios X and Xa to obtain
the complete transcriptions f(X) and f(Xa);

• Slice the complete transcriptions f(X) and f(Xa) to
have the same length as f(X[: k]) and f(Xa[: k]),
respectively. The complete transcriptions after slicing are
denoted as f(X)[: k] and f(Xa)[: k];

• Calculate the transcription consistencies between f(X)[:
k] and f(X[: k]) as well as between f(Xa)[: k] and
f(Xa[: k]).

In the last step, the transcription consistencies can be
measured by Word Error Rate (WER) or Character Error Rate
(CER). WER/CER is defined as the word/character errors (i.e.,
substitution, insertion, and deletion errors) divided by the total
number of word/character in the reference text.

ht−1

xt

f i c o

ct−1
⊕

ct

ht
forget gate input gate cell gate output gate

Fig. 4. This figure ties together the different gates in LSTM. Specifically,
the input gate, forget gate, cell gate, and output gate correspond to z =
{i, f, c, o}, respectively.

In [15], empirical experiments demonstrated that the tran-
scription consistency between (f(X)[: k], f(X[: k])) is signif-
icantly higher than consistency between (f(Xa)[: k], f(Xa[:
k])). In terms of WER and CER, the error rates between
(f(X)[: k], f(X[: k])) is significantly lower than error rates
between (f(Xa)[: k], f(Xa[: k])). The TD-based detection
method exploits the above observation to discriminate against
adversarial audios. The experiments in [15] concluded that the
TD-based adversarial audio detection is adequate to detect a
variety of state-of-the-art audio attacks. In this contribution,
we show that the TD-based detection method can be fooled
by suppressing the temporal dependency when the adversarial
audio is being generated.

III. A NEW AUDIO ATTACK ALGORITHM

The LSTM is widely adopted to model the temporal de-
pendency in audios [23] (see Figure 4 for a representation
of an LSTM neuron.). The output of LSTM at each time t
takes into account both the corresponding input xt and the
hidden states ht−1. Here we provide the equations of LSTM as
follows. For different gates, z = {f, i, o, c}, the Wz matrices
are used to form representations of inputs, and the Uz matrices
form representations of hidden states. More formally, these
expressions are given by:

ft = ζ(Wfxt + Ufht−1)

it = ζ(Wixt + Uiht−1)

ot = ζ(Woxt + Uoht−1)

ct = ft ◦ ct−1 + it ◦ ζ(Wcxt + Ucht−1)

ht = ot ◦ ζ(ct)
In [15], the TD-based detection method achieved high

discriminating power against the audio attacks that target
DeepSpeech. The DeepSpeech is an open-sourced bidirec-
tional recurrent neural network model that has two LSTMs for
forward and backward dependencies [24]. Figure 5 shows the
structure of DeepSpeech. Both of the LSTMs in DeepSpeech
evaluate the hidden states sequentially. Thus removing any
part of the audio can result in a loss of essential transitions
of hidden states. As a result, in the TD-based detection
method, removing part of the audio near the end impacts
the backward hidden states’ transitions. Similarly, removing
part of the audio at the beginning impacts the forward hidden
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Fig. 5. Overview of the DeepSpeech neural network that starts with three
full connected layers followed by backward/forward LSTMs then followed by
two more fully connected layers.

states’ transitions (note this was not tested in [15]). Moreover,
the impact on hidden states causes incoherence in the final
transcription. Therefore, when audios are tested by the TD-
based detection method, the benign audio exhibits a larger
transcription consistency because of its intrinsic TD remains
intact or slightly impacted. On the other hand, the adversarial
audio is perturbed to provide the desired output while not
modifying the TD (i.e., hidden states) accordingly. Thus, this
is the reason the adversarial audio exhibits low transcription
consistency.

We now motivate our adversarial audio generation method
by discussing two scenarios that the TD-based detection
method fails. The first failure scenario is when the audio attack
algorithm explicitly designs the audio waveform as well as
the hidden states. The second failure scenario is when the
adversary completely removes the TD from the adversarial
audio such that the transcription is independent of hidden
states in DeepSpeech. Our audio attack algorithm exploits the
second failure scenario of the TD-based detection method.
Specifically, we propose our approach based on Carlini and
Wagner’s audio attack algorithm [12].

In [12], the audio attack algorithm minimizes objective
in (2). The first part of the objective is the CTC-Loss [25]
which measures Xa’s output transcription’s distance compared
to Y a. The second part of the objective minimizes Xa’s
perturbation magnitude comparing with X .

argmin
Xa

LCTC(X
a, Y a) + ‖X −Xa‖22 (2)

As we can observe, (2) only takes into account the attack
effect and the perturbation magnitude. We propose to add a
third term that modifies the adversarial audios’ TD. The new
objective is shown in (3). The proposed third term consists of a
penalization term ||Uzh

a
t ||22 and a rewarding term ||WzX

a
t ||22.

Xa
t is the component of Xa at time step t and ha

t is the
backward LSTM’s hidden state at time t. Recall that Wz/Uz

matrices are used to form representations of inputs and hidden
states in LSTM, respectively. The reasoning of the third term
is that Uzh

a
t and WzX

a
t correspond to the contributions from

TABLE I
THE TARGETS FOR AUDIOS WITH DIFFERENT DURATION.

Duration (seconds) Adversarial Target
[0, 2.5) hello google
[2.5, 4.5) this is an adversarial example
[4.5, 7.8) hello google please cancel my

medical appointment

previous time’s hidden states ha
t and current time’s input Xa

t

to the final output, respectively (note we only discuss the
backward LSTM but this can be easily extended to the forward
LSTM). Therefore, penalizing Uzh

a
t and rewarding WzX

a
t

will force the adversarial audio Xa to depend more on the
input instead of the hidden states from different time steps.
The new objective function to optimizes becomes:

argmin
Xa

LCTC(X
a, Y a) + ||X −Xa||22

+
∑

z∈{f,i,o,c}

∑

t

{||Uzh
a
t ||22 − ||WzX

a
t ||22} (3)

We further add a scaling factor to (3). In the final objective,
see (4), Φ1 corresponds to minimizing the CTC Loss and
perturbation magnitude whereas Φ2 corresponds to suppress-
ing the temporal dependency across different time steps. The
scaling factor α is used to control the trade-off between Φ1 and
Φ2. Because Φ1 and Φ2 are both depending on Xa (directly
via Xa

t or indirectly via ha
t ). Thus, we use gradient descend

as used in [12] to minimize Eq. (4) to solve for Xa

Φ1 = LCTC(X
a, Y a) + ||X −Xa||22

Φ2 =
∑

z∈{f,i,o,c}

∑

t

{||Uzh
a
t ||22 − ||WzX

a
t ||22}

argmin
Xa

α
Φ1

Φ1 +Φ2
+ (1− α)

Φ2

Φ1 +Φ2
(4)

where α ∈ [0, 1] is a convex combination parameter that
provides a trade-off between the Carlini objective and the
penalization for TD. Note that this optimization problem in (3)
can easily be solved using the automatic gradient estimators
in Tensorflow [26].

IV. EXPERIMENTS

In this section, we demonstrate the efficacy of the proposed
audio attack when facing the TD-based detection method by
comparing it with Carlini’s audio attack [12]. The victim
model is the open-sourced DeepSpeech 1. We use the Mozilla
Common Voice dataset to perform the benchmark, and we
chose the 100 16KHz-sampled audios released in [12]. The
audio durations are between 1.73s to 7.8s, with an average of
4s. Table I gives the speech-to-text attack target sentences (i.e.,
the desired transcripts), which are consistent with the related
works [12], [15].

1https://github.com/mozilla/DeepSpeech
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In the experiments, we first perform the TD-based detection
test (see Section II-B for details) for each benign audio and
corresponding adversarial audios generated by Carlini’s and
our audio attack algorithms. The obtained word(character) er-
ror rates are denoted as WERbenign, WERCarlini and WEROurs
(CERbenign, CERCarlini and CEROurs) and are calculated us-
ing open-sourced python implementations 2. Then, the WER’s
and CER’s are averaged over 100 audio samples. We tested
with multiple choices k ∈ [0.3, 0.95] in TD-based detection
test (note that k ≥ 0.3 such that the partial audio contains
transcription). We tested with α ∈ [0.1, 0.9] in the proposed
audio attack.

Next, we demonstrate the proposed audio attack’s efficacy
from four perspectives:
A) We first show that the proposed audio attack has de-

creased WER and CER compared with Carlini’s audio
attack.

B) Secondly, we show the TD-based detection results com-
parison measured by AUC score.

C) We then show the comparisons of attack successes and
perturbation magnitudes.

D) Lastly, we show the influence of hyper-parameter α in
the proposed audio attack.

A. Word (Character) Error Rate Comparison

The TD-based detection method’s high discriminating
power relies on the empirical result that benign audios have
lower WER and CER than various adversarial audios [15].

In this section, based on the previously calculated
WERbenign, WERCarlini and WEROurs (CERbenign,
CERCarlini and CEROurs), we show the proposed audio attack
method exhibits decreased WER and CER by visualizing
two set of statistics: (a) (WERCarlini − WEROurs) and
(CERCarlini − CEROurs); and (b) (WEROurs − WERbenign)
and (CEROurs − CERbenign).

The (a) statistics measure how much our adversarial audios’
error rates have decreased compared with Carlini’s adversarial
audios’ error rates. This statistics indicate the proposed audio
attack method’s advantage over Carlini’s method in terms of
detectability because higher error rates are more likely to
trigger the TD-based detector. The (b) statistics measure how
much our adversarial audios’ error rates exceed the benign
audios’ error rates. Figure 6 and 7 show the above two set of
statistics from our experiments for different choices of α and
k.

The results for this experiment can be found in Figure 6. The
first observation is that the proposed audio attack algorithm
has an overall advantage (i.e., more likely to evade the TD-
based detector) over Carlini’s audio attack in terms of both
WER and CER for most choices of α and k. Specifically,
our method has a more substantial advantage when there is
a small α. The reasoning is that smaller α allows for more
concentration on modifying the TD in adversarial audios. The

2http://pythonhosted.org/asr/index.html
http://pypi.org/project/asrtoolkit/
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Fig. 6. The above two heatmaps give the (a) statistic: WER(CER) differences
of Carlini’s adversarial audio minus our adversarial audio. The x-axis is
choices of k and y-axis is values of hyper-parameter α. As showed in the
colorbar, brighter color indicates our algorithm’s advantage and vice versa.
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Fig. 7. The above two heatmaps give the (b) statistic: WER(CER) differences
of our adversarial audio minus the benign audio. The x-axis is different choices
of k and y-axis is different values of hyper-parameter α. A darker color means
the adversarial audio is more indistinguishable compared with the benign
audios and vice versa.

second observation is that for the largest k, Carlini’s and our
audio attack algorithms perform similarly in terms of CER
regardless of α. The reasoning is that the partial audio and
the complete audio almost have the same duration. Hence,
the transcriptions are both simply the complete adversarial
transcription (i.e., desired attack target).

In Figure 7, we observe that our adversarial audio behaves
nearly indistinguishably with the benign audio for small α.
This observation is more substantial in Figure 7(b) than in
Figure 7(a). Moreover, although we noticed that in Figure 7(a)
the benign audios’ error rates are at least 0.2 lower than our
adversarial audios’, the reasoning is that the WER is a much
harsher metric, especially for short texts compared with CER.

B. TD-based Detection Results Comparison

The TD-based detection test obtained the WER’s and
CER’s for benign and two adversarial audios, i.e., WERbenign,
WERCarlini and WEROurs (CERbenign, CERCarlini and
CEROurs). In this section, we show the detection result
comparisons based on WER and CER, respectively. We use
the AUC score to measure the detection result.

In the comparison, we choose α = 0.1 in our proposed
audio attack and choose k = 0.5 to be consistent with [15].
The comparison is given in Table II. Note the detection score
for Carlini’s audio attack is provided in [15].

As we can see in Table II, the TD-based detection method
discriminates Carlini’s adversarial audios accurately. However,
the detection against our adversarial audios is not much better
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TABLE II
COMPARISON OF TWO AUDIO ATTACKS IN TERMS OF DETECTION RESULTS

MEASURED BY THE AUC SCORE. α = 0.1 AND k = 0.5.

Proposed Attack Carlini’s Method
Character Error Rate 62.15% 91.6%
Word Error Rate 66.18% 93.6%

TABLE III
WE GIVE THE ATTACK EFFICACY COMPARISON HERE. WE CALCULATE THE
WER AND CER BETWEEN EACH ADVERSARIAL AUDIOS’ TRANSCRIPTION

AND THE ASSIGNED ADVERSARIAL TARGET (SEE TABLE I).

Word Error Rate Character Error Rate
α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Carlini [12] 0.13 0.04
Ours 0.21 0.12 0.09 0.14 0.11 0.09 0.04 0.03 0.03 0.03

than random guessing. Thus, our proposed audio attack has
much lower detectability compared with Carlini’s audio attack
when facing the TD-based detection method. Moreover, we
can further decrease the value of α to encourage even lower
detectability for the proposed method.

C. Attack Efficacy and Perturbation Magnitude Comparison

A successful audio attack method needs to achieve the attack
target (i.e., see Table I) with minimal perturbation magnitude.
In this section, we show the comparisons in terms of attack
efficacy and perturbation magnitude.

We first assess whether the proposed audio attack method
can successfully achieve the assigned attack target or not. In
Table III, we give the attack efficacy comparison compared
with Carlini’s audio attack. The attack efficacies of two audio
attacks are measured by the consistency between adversar-
ial audios’ transcriptions and corresponding assigned attack
targets. The consistency is measured by WER/CER and is
averaged over 100 audio samples. From Table III, we observe
that our audio attack’s efficacy is worse (i.e., WER/CER is
higher) than Carlini’s audio attack only at α = 0.1. However,
this results only means that our method made 2.47 errors out of
27.47 characters on average and Carlini’s method made 1.09
errors (1.05 errors oppose to 0.65 errors out of 5 words on
average, note that WER is a much harsher metric than CER
especially for short text).

We next compare the perturbation magnitudes of two audio
attacks. We measure the perturbation in Decibels (dB) to be
consistent with [12]. Decibels (dB) is a logarithmic scale that
measures the relative loudness of an audio sample:

dB(x) = max
i

20 log10 xi

The perturbation magnitude of σ = |X −Xa| to the original
audio X is given by:

dBX(σ) = dB(σ)− dB(X)

The perturbation magnitude is a relative quantity and is a
negative number where smaller values indicate quieter per-
turbations because the perturbation σ introduced is quieter
than the original signal X . The average relative perturbation
magnitude of proposed audio attack is −30dB for α = 0.1
and −45dB for Carlini’s audio attack [12]. As we can see, we
sacrificed some perturbation magnitude in exchange for lower
detectability against the TD-based detection.

We also highlight our main results in Table IV which shows
the two adversarial audios’ transcriptions for Carlini’s and our
audio attack when different k’s are applied. The complete
adversarial audio transcription texts are shown in k = 1 rows.
In Table IV, we observe that our method provides better ad-
versarial audio transcriptions as k decreases whereas Carlini’s
adversarial audio transcriptions quickly become incoherent
(i.e., easier to detect when the audio becomes incoherent).
As a result, the proposed adversarial audios exhibit lower
WER/CER than Carlini’s adversarial audios and have lower
detectability when applying a TD-based detection test.

D. Influence of Hyper-Parameter α

In this section, we show the hyper-parameter α’s influ-
ence on the proposed audio attack. Specifically, we give the
proposed adversarial audios’ averaged WER’s and CER’s for
various α values. We also provide the averaged CER and
WER for benign audios and Carlini’s adversarial audios for
reference.

In Figure 8, the circles with different colors correspond
to the proposed audio attack with different α values. The
leftmost circle corresponds to α = 0.1 and rightmost circle
corresponds to α = 0.9. As we can see, our audio attack’s
WER/CER decreases as α decreases. Furthermore, the CER
statistics become very close to the benign audio’s CER for
α = 0.1.

0 0.2 0.4 0.6 0.8 1

Word/Character Error Rates

Character Error Rate

Word Error Rate

benign
carlini

(a) Error rates

Fig. 8. The WER and CER averaged over different k’s for benign and two
adversarial audios. The circles with different colors represent our methods
with different α’s. The circles moves leftwards as α decreases.

V. CONCLUSION

Deep neural networks (DNNs) have excelled automated
speech recognition tasks and have become the state-of-the-
art in their field. Several works have shown that DNNs, such
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TABLE IV
EXAMPLES OF PROPOSED METHOD COMPARED WITH THE METHODOLOGY IN [12] USING “ADVERSARIAL TARGETS” IN TABLE I FOR α = 0.1, THE

SPLITTING RATIO k TAKES DIFFERENT CHOICES. k = 1 SIMPLY MEANS NO SLICING.

k Proposed attack: partial transcription Attack in [12]: partial transcription
k = 0.3 sf
k = 0.35
k = 0.4 h l
k = 0.45 hel ol
k = 0.5 helg ilo
k = 0.55 hellg elkot
k = 0.6 hello elkutg
k = 0.65 hellogo elgutgo
k = 0.7 hello go elotgoop
k = 0.75 hello gol elotgole
k = 0.8 hello goog elotgole
k = 0.85 hello gogl ellot google
k = 0.9 hello gogl hello google
k = 0.95 hello gogl hello google
k = 1 hello google hello google
k Proposed attack: partial transcription Attack in [12]: partial transcription
k = 0.3 ti is an dver the ma n dver
k = 0.35 this is an advers the man averk
k = 0.4 thi is an advers the ma an averk
k = 0.45 thi is an adversa the me an adverot
k = 0.5 this is an adversai the man everycont oude
k = 0.55 this is an adversaria the mandedvery conti youdius
k = 0.6 this is an adversarial the me an avercontds
k = 0.65 this is an adversarial the me an avertse
k = 0.7 this is an adversariale the ma an aversar
k = 0.75 this is an adversarialea this i an adversariral
k = 0.8 this is an adversarialea this i an adversaryfral
k = 0.85 this is an adversarial eam thi mi an adver otsarifalxam
k = 0.9 thi is an adversarial exampl the maan edvery contisarial examply
k = 0.95 thi is an adversarial exampl the i an edvery conti oudisarial exampley
k = 1 this is an adversarial exampl this is an adversarial example
k Proposed attack: partial transcription Attack in [12]: partial transcription
k = 0.3 helgole plea hte
k = 0.35 helo gogle pleasea trag
k = 0.4 helo google please can stragong
k = 0.45 helo google please cance straage ginl
k = 0.5 helo google please cancel m strage inlee
k = 0.55 helo google please cancel m med strag ginlee
k = 0.6 hello google please cancel m medical strig goleple a caov
k = 0.65 hello google please cancel m medical straage finglile o ca as
k = 0.7 helo google please cancel my medicalpon srig gonlile o ca ask ym
k = 0.75 hello google please cancel my medical appoin srig gonlile o ca aske rymma
k = 0.8 hello google please cancel my medical appointm ri e gioglepleas i cavase hymemal
k = 0.85 hello google please cancel my medical appointme dil e gioglepleas i cavase hymadmal
k = 0.9 hello google please cancel my medical appointme il e gioglepleas i caase hymemal
k = 0.95 hello google please cancel my medical appointme elli google pleas i caace hy memalunt
k = 1 hello google please cancel my medical appointment hello google please cancel my medical appointment
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as DeepSpeech, can be easily fooled by adversarial inputs and
more recent work has shown that adversarial audio can be
detected with TD. In this work, we investigated generating
adversarial audio that can avoid the TD-based techniques for
detecting such audios. We argue that our audio signals are
more difficult to detect because we exploit the intrinsic prop-
erty of LSTMs in the DeepSpeech models. The experiments
showed the drastically reduced detectability in the face of the
TD-based detection method comparing with its counterpart
in [12] on the benchmark dataset. We also observed that
the proposed attacking algorithm’s generated adversarial audio
has negligible differences when comparing with corresponding
benign audio on character level and low difference on word
level.
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