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Synopsis  Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse tax-
onomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate
timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on
behavior, and vice versa. Because all organisms interact with members of their own species and other species within their
communities, the effects of humans on one organism can impose indirect effects on one or more other organisms,
resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species
and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other
organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and
behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic
change. We discuss host—parasite/pathogen dynamics, predator—prey relationships, and beneficial partnerships (mutual-
isms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may
be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that
stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences
for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological
interaction can mediate higher-level population and community changes due in part to their cascading impacts on
behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated
ecological responses to anthropogenic perturbations in a rapidly changing world.

Introduction magnitudes are well-documented at short-term

Because all organisms interact with members of their
own species and other species within their commu-
nities, the effects of human-related stressors on one
organism can impose indirect effects on one or more
other organisms, resulting in cascading changes
across interaction networks. One mechanism by
which individual organisms may respond to environ-
mental change is through physiological responses to
stressors. Stress can covary with behavior (Packard
et al. 2016), meaning that it can affect how organ-
isms interact with their biotic and abiotic surround-
ings. While relationships between stress physiology
and behavior are inconsistent across species, stress—
behavior associations of variable directions and
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(plastic within the lifetime of an individual, e.g., re-
sponse to chronic and acute stressors; Thaker et al.
2009; Adamo and Baker 2011; Allan et al. 2015) and
longer-term timescales (e.g., evolutionarily selected
co-variation in suites of stress- and behavior-
related traits, Réale et al. 2010; Baugh et al. 2017;
but see Royauté et al. 2018). The specific nature of
these relationships may be context-dependent and
difficult to predict, but within an individual, physi-
ological and behavioral changes induced by anthro-
pogenic change can covary and impact one another.

Interwoven changes in behavior and physiology
often take place in parallel among individuals in-
volved in ecological relationships. The consequences
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of global change may differ from what would be
expected if these factors are considered indepen-
dently, with possible amplifying, stabilizing, and
non-additive effects (Tylianakis et al. 2008; Ferrari
et al. 2017; Gunderson et al. 2017b). Moreover, en-
vironmental stressors can alter relationships between
physiological and behavioral traits (Killen et al.
2013). An integrative approach must be employed
to understand and describe such relationships in
the context of modified and altered environments.

Here, we highlight ecological scenarios in which
changes in stress physiology and behavior in inter-
acting individuals coping with anthropogenic stres-
sors can trigger changes at higher levels of biological
organization. We are not the first to call attention to
the role that behavioral and physiological responses
to global change may play in mediating community-
level dynamics (e.g., Gunderson et al. 2017a; Warne
et al. 2019). However, this perspective offers a mech-
anistic view, examining how changes in the stress
physiology of two or more interacting “partner
organisms” intermingle to induce vertical changes on
higher levels of biological organization, thereby
attenuating, amplifying, or otherwise altering the
biological interaction. In contrast to previous work, we
concentrate on three specific ecological interactions—
host—pathogen/parasite ~ dynamics,  predator—prey
relationships, and beneficial partnerships—to elucidate
how responses to anthropogenic stressors may alter these
interactions.

Stress is notoriously multifaceted and difficult to
define. Here, we define it as a response that occurs
when a physiological system is faced with an external
or psychological challenge that pushes the system out
of the scale of normal daily, circannual, or life-
history-transition based variation (Wingfield et al.
1998; Romero et al. 2009). This often involves the
sympathetic adrenomedullary system and the hypo-
thalamic pituitary adrenocortical (HPA) axis. While
we acknowledge that stress and glucocorticoids
(GCs) are not equivalent (MacDougall-Shackleton
et al. 2019), our perspective does rely heavily upon
the large body of empirical evidence for behavioral
responses to stressors via the HPA axis. However, we
also point toward other, relevant components of the
physiological stress response that may be important,
particularly in non-vertebrate systems (e.g., heat
shock proteins, oxidative stress; Ottaviani and
Franceschi 1996; Gunderson et al. 2017a). We define
anthropogenic change inclusively (ie., climate
change, invasive species, overexploitation, and habi-
tat degradation/loss, including pollution and human
presence). Each ecological interaction is likely im-
pacted by multiple components of anthropogenic
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change, but we first review the types most pertinent
for each of our three ecological relationship foci
(host—pathogen/parasite dynamics, predator—prey
relationships, and beneficial partnerships). We then
explore how changes in stress physiology and behav-
ior within individuals on different sides of the rela-
tionship could impact larger ecological and
evolutionary phenomena. These non-exhaustive
examples contribute to a simplified framework with
the aim of identifying common processes vulnerable
to anthropogenic change across seemingly disparate
areas of study.

Host-pathogen relationships

While many facets of anthropogenic change impact
disease dynamics (Daszak et al. 2001), two particularly
relevant drivers in host—pathogen/parasite relation-
ships are habitat alteration (Pongsiri et al. 2009) and
introduced/invasive species (Crowl et al. 2008).
Habitat modification can impact disease dynamics
via changes in resource availability and distribution,
which have downstream consequences that alter dis-
ease exposure and transmission rates (Becker et al.
2015; Flint et al. 2016; Altizer et al. 2018). For in-
stance, food provisioning has been associated with in-
creased host densities, inter-individual contact rates,
and endoparasite infections (Wright and Gompper
2005; Blanco et al. 2017). Humans also introduce
pathogens into novel areas, often via domestic animals
or commercial trade, thereby exposing organisms to
pathogens with which they have no evolutionary his-
tory (Epstein et al. 2006; O’Hanlon et al. 2018). These
and other human-related activities can impact a host’s
likelihood of contracting a pathogen and, often less
appreciated, a pathogen’s ability to infect.

Stress responses of individuals can mediate many
of these emergent dynamics (Fig. 1A and Box 1A).
For example, the recent onslaught of disease-related
wildlife declines (Pongsiri et al. 2009) may be related
to chronic stress in individuals exposed to multiple,
simultaneous human-related stressors (Hing et al.
2016). Chronic stressors can reduce individual qual-
ity and cause immunosuppression, leading to in-
creased disease susceptibility = (Dhabhar and
McEwen 1997; Apanius 1998; Gervasi et al. 2017).
At the same time, individuals experiencing acute or
chronic stress varying in stress reactivity (e.g., pro-
active vs. reactive personalities, Réale et al. 2010)
can exhibit different behavioral traits, including al-
tered foraging and risk-taking behaviors (Martins
et al. 2007; Baugh et al. 2017; Vindas et al. 2017;
Moyers et al. 2018a; but see Royauté et al. 2018;
Westrick et al. 2019). In turn, certain behaviors
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Fig. 1 Flowcharts exhibiting a set of possible relationships between anthropogenic change and interrelated changes in stress physiology
and behavior in the context of three ecological interactions: (A) host—pathogen dynamics, (B) disease dynamics, and (C) beneficial
relationships. Individual-level changes in physiology and behavior can have bidirectional, horizontal impacts and can contribute to higher,
system-level changes, with potential consequences for populations, species interactions, and biodiversity.

are linked to population-level contact and disease disease transmission via two linked mechanisms: al-
transmission rates (Adelman et al. 2015; Adelman tered susceptibility (often via physiological changes)
and Hawley 2017; Sih et al. 2018). Altogether, co- and exposure (often via behavioral changes; Hawley
varying behavioral and physiological traits may alter et al. 2011), both of which respond to human
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Box 1

Schematics illustrating relationships among anthropogenic
change, stress physiology, behavior; and higher-level impacts on
interspecific relationships. Relationships (casual or correlative)
supported by empirical data are shown in gray/black; relation-
ships not yet examined in the respective systems (but in some
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living house finches (Mertz and Brittingham 2000), alter
contact rates among house finches (Moyers et al. 2018b), and
promote contaminated feeder surfaces (Adelman et al. 2015).
These changes have consequences for transmission and infec-
tion rates of the bacterium Mycoplasma gallisepticum (Adelman
et al. 2015; Fischer and Miller 2015). Infection with this patho-
gen can lead to increased GCs (Lindstrom et al. 2005; Love
et al. 2016), decreased roost-site fidelity that may further
increase contact rates (Dhondt et al. 2006), and can inhibit
antipredator responses (Adelman et al. 2017). Moreover, in
house finches, seasonal increases in GCs are correlated with
periods of Mycoplasma gallisepticum outbreaks (Lindstrém
et al. 2005), and individual differences in GCs are associated
with increased exploratory behavior (Moyers et al. 2018a),
which may further alter finch contact rates (Moyers et al.
2018a). The direct impacts of other aspects of anthropogenic
change (e.g., climate change) on M. gallisepticum’s behavior and
physiology have not yet been explored in this context, but ul-
timately these dynamics could lead to reductions in host
populations.

(B) Fire Ant-Lizard Predator—Prey System: Invasive fire ants prey
upon eastern fence lizards, resulting in changes to their GC phys-
iology (Graham et al. 2012, 2017; McCormick et al. 2017,
Sprayberry et al. 2019), immune responses (McCormick et al.
2019; Sprayberry et al. 2019), and limb morphology (Langkilde
2009). Changes in GC physiology and an evolutionary history of

exposure to fire ant predation in members of this species are also
associated with altered anti-predator behaviors that are thought to
reduce susceptibility to fire ant predation but to increase suscep-
tibility to avian predation (Trompeter and Langkilde 2011; Thawley
and Langkilde 2017). Although not yet explored, increased injury
from avian predation (Thawley and Langkilde 2017) in combination
with immune function changes related to fire ant exposure
(Sprayberry et al. 2019) could make lizards more susceptible to
certain diseases and mortality, with potential downstream conse-
quences for population numbers. While the direct impacts of cli-
mate change on these dynamics have yet to be explored, recent
work has suggested that increased temperatures can further con-
tribute to changes in GC physiology in fence lizards (Telemeco
et al. 2019), with unexplored consequences for/interactions with
fire ants.

(C) Anemone—clownfish mutualism: Climate change causes
thermal stress-induced bleaching in the magnificent sea anemone.
Bleaching has been found to increase metabolic demands (Norin
et al. 2018) and to induce a GC stress response in the anemones’
associated anemonefish, the orange-fin anemonefish (Beldade
et al. 2017). In turn, these changes have been associated with
decreased reproduction in anemonefish (Beldade et al. 2017).
The downstream consequences of these dynamics on anemone
and anemonefish populations in this particular system and the
role of anemone or anemonefish behavior in mediating these
changes are not yet understood.

modifications of habitat structure and resource
distributions.

Concurrent physiological and behavioral changes
take place in the parasites and pathogens that infect
human-impacted hosts. Relationships between an-
thropogenic change, stress, and behavior have largely
been examined from the perspective of the host, but
pathogens and parasites also have stress pathways
(Vonlaufen et al. 2008; Keppel et al. 2016) and are
susceptible to anthropogenic change (Carlson et al.
2017). Certain types of environmental change are
known to directly impact their physiology and be-
havior. For example, in helminth parasites, pollution
can inhibit reproductive (Gheorghiu et al. 2007) and
encystment physiology (Morley et al. 2003) and can
alter behavior by impairing locomotion and the abil-
ity to find hosts (Pietrock and Marcogliese 2003).
Parasites and pathogens are also known to respond
negatively to certain extreme environmental condi-
tions (e.g., higher than wusual temperatures,
Stevenson et al. 2013; or lower than usual pH,
Marcogliese and Cone 1996).

Studies examining hosts or parasites in isolation
often conclude that anthropogenic stressors have
negative impacts on fitness for each group, but the
consequences of these changes for higher-level dis-
ease dynamics depend upon interactive effects (e.g.,

Ezenwa et al. 2016) and the relative susceptibilities of
hosts versus parasites to environmental change (Rohr
et al. 2008; Sonn et al. 2017; Decker et al. 2018). If
pathogens or parasites incur higher costs than hosts,
it is possible that environmental change could lead
to unexpected benefits for host populations. For ex-
ample, some parasites can act as “pollutant sinks”
accumulating pollutants and thereby reducing the
host’s exposure (Sures et al. 2003, 2017). On the
other hand, the ability of parasites and pathogens
to use hosts as a buffer to their direct exposure to
environmental change may allow these organisms to
persist while taking advantage of immunocompro-
mised hosts.

There is an urgent need for work characterizing
the physiological and behavioral responses of patho-
gens and parasites to anthropogenic change, and
how these responses interact with simultaneous
impacts on infected hosts. Unsurprisingly, technolog-
ical advances are opening doors for studies of disease
ecology; proximity sensors, movement tracking, and
passive integrated transponder (PIT) tags may be
useful for mapping out contact/transmission dynam-
ics. Studies of the house finch-mycoplasma system
provide a particularly elegant, thoroughly explored
case-study off of which future work could be mod-
eled (Box 1A).
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Predator—prey dynamics

Human activities are known to affect predator—prey
dynamics directly, via human presence or direct kill-
ing, and indirectly via the introduction of invasive
species and habitat alteration. Introduced species
have had devastating impacts on native species
with cascading effects on ecological communities
(Nelson et al., 2010; Murphy et al. 2019). Habitat
modification—particularly modification that involves
changes in food availability (e.g., supplementation:
Rodewald et al. 2011; overexploitation: Baum and
Worm 2009; hunting: Ritchie and Johnson 2009)—
has obvious impacts on predator—prey dynamics.
More subtly, habitat modifications that impact sen-
sory ecology—for example noise and light pollu-
tion—can alter susceptibility to predation and/or
hunting ability (Siemers and Schaub 2011; Minnaar
et al. 2015).

In comparison to other ecological interactions,
there is a relatively large body of literature examining
behavior- and stress-mediated impacts of humans on
predator—prey dynamics. Predator—prey interactions
are inherently behavioral, and there are clear impacts
of humans on space use (Muhly et al. 2011; Ordiz
et al. 2013; Suraci et al. 2019a), activity rhythms
(Ordiz et al. 2017), and other behaviors relevant to
predators and prey (Smith et al. 2015; Ortiz et al.
2019). Humans can also act or be perceived as direct
predators, which can induce stress-mediated, non-
consumptive impacts on animal physiology
(Ellenberg et al. 2006; Pereira et al. 2006; Casas
et al. 2016). Because humans are “super-predators”
(Darimont et al. 2009; Suraci et al. 2019a), their ac-
tivities can trigger stress—responses (Creel et al. 2002,
2013; Van Meter et al. 2009) in both prey and pred-
ator species. Such physiological changes can be
linked to further downstream changes (e.g., Thaker
et al. 2009), such as acting to inhibit anti-predator
behaviors in prey (e.g., Allan et al. 2015; Hammond
et al. 2019; but see Lawrence et al. 2017). Altogether,
these physiological and behavioral changes could
make already-stressed prey more susceptible to pre-
dation. It is difficult to predict the overall impacts of
humans on predator—prey relationships without bal-
ancing the costs and benefits of human activity on
each member of the relationship.

Interactions between changes in the physiology
and behavior of predators and prey have cascading
consequences that can mediate eco-system level
changes (Hammond et al. 2007; Hawlena and
Schmitz 2010; Guiden et al. 2019; Fig. 1B). For ex-
ample, when predators avoid human settlements, the
same areas can function as a shield for prey species,
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providing a low-risk area for foraging and reproduc-
ing (Berger 2007; Muhly et al. 2011). This in turn
alters dietary choices of prey, which can impact na-
tive plant communities (Schmitz et al. 1997; Killen
et al. 2013; Suraci et al. 2019a). Altered prey avail-
ability in low-risk areas (Berger 2007; Mubhly et al.
2011) may leave predators nutritionally stressed,
forcing them to either hunt novel or non-preferred
species, or to become willing to hunt in high-risk
areas, thereby incurring further physiological costs.
Alternatively, when prey perceive humans as preda-
tors, subsequent changes in stress physiology may
lead to inhibition of anti-predator behaviors
(Clinchy et al. 2013) and altered energy flow up
the food chain (Hawlena and Schmitz 2010). When
the performance curves of predator and prey species
differ with respect to environmental traits, one spe-
cies may be favored as the environment changes
(Miller et al. 2017). Alternatively, fitness costs for
both groups of animals may be amplified when
chronically stressed predators hunt for poor-quality,
declining prey.

Ultimately, anthropogenic stressors may drive se-
lection for generalist and bold-type predators, which
may be more successful in environments with scarce
prey options (Terraube et al. 2011; Mella et al. 2015).
Personality types in predators can alter predation
rates and non-consumptive impacts on prey species
(Sih et al. 2012; Toscano and Griffen 2014).
Similarly, certain stress phenotypes in prey may be
favored in modified environments, and if stress
physiology is linked to behavioral phenotypes
(Martins et al. 2007; Overli et al. 2007; Atwell
et al. 2012; Baugh et al. 2017; but see Royauté
et al. 2018; Westrick et al. 2019), there may be par-
allel, selective impacts on prey temperament.
Selection on animal temperaments can in turn influ-
ence community structure (Toscano et al. 2016;
Moran et al. 2017; Sih et al. 2018).

Exploring stress- or behaviorally-mediated effects
of anthropogenic change on both sides of predator—
prey relationships is a difficult task, particularly for
larger-bodied, longer-lived, and more far-ranging
organisms like mammalian carnivores. Long-term
datasets will likely be critical in this pursuit
(Langkilde 2009; Smith et al. 2017b). Studies of in-
vasive, predatory fire ants and fence lizards provide
an elegant example that future work may benefit
from emulating (Box 1B).

Beneficial partnerships

Certain types of anthropogenic change may be most
likely to impact beneficial interaction networks, in
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which the behavior and physiology of two or more
individuals is linked through a mutualistic (between
heterospecifics; Fig. 1C) or cooperative (between
conspecifics) relationship. For example, climate
change and invasive species can change species
assemblages (Williams and Jackson 2007; Rogers
et al. 2017) thereby altering the likelihood of mutu-
alistic species interacting. In contrast, direct killing,
which can remove key individuals from social groups
(Packer et al. 2011) and human presence, which can
alter grouping of conspecifics (Li et al. 2017), may
impact cooperative networks. Theory and existing
evidence suggest that humans may impose contrast-
ing pressures on these relationships, acting to disrupt
mutualisms (Tylianakis et al. 2008; Dunn et al. 2009;
Aslan et al. 2013), but to promote cooperation
(Raulo and Dantzer 2018).

While mutualistic relationships are thought to ame-
liorate environmental stressors for the involved species
(Stachowicz 2001), there is little empirical research
exploring how anthropogenic stressors imposed on
one partner may indirectly act as a stressor upon an
associated partner, thereby contributing to biodiversity
loss because associated species are bound to common
fates (Toby Kiers et al. 2010). One key example comes
from the impacts of climate change on a marine mu-
tualism. Temperature-induced anemone bleaching can
indirectly harm anemones’ associated anemonefish by
increasing metabolic demands (Norin et al. 2018),
triggering the fish’s GC response, and ultimately sig-
nificantly suppressing reproductive output (Beldade
et al. 2017). This fascinating study system has been
illustrated in Box 1C. Indirect effects of global change
may also negatively affect cleaner mutualisms via the
stress axis in other systems. Mutualistic relationships
can be subject to cheating (Bshary and Grutter 2005),
thus, if anthropogenically-mediated changes in stress
are associated with certain behavioral types or
responses, then selfish behaviors may change in fre-
quency. Moreover, stress activation can have masking
impacts on relationships between physiology and be-
havior, sometimes resulting in a homogeneity of be-
havioral types (Killen et al. 2013).

Relatively fewer studies have explored the poten-
tial for humans to trigger stress responses to modify
patterns of cooperation within social species.
Evidence for the role of the HPA-axis in promoting
or inhibiting social behavior comes mainly from
studies of reproduction (Montgomery et al. 2018;
Raulo and Dantzer 2018). Mating behavior and pa-
rental care are generally inhibited by HPA activation
(Wingfield et al. 1998; Kirby et al. 2009; but see
Blumstein et al. 2016), including, potentially,
human-induced HPA activation. However, stressors
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can also promote coordinated, group-level coopera-
tion (von Dawans et al. 2012; Schweda et al. 2019)
and increase social network cohesion (Crockford
et al. 2008), both of which can positively impact
individual fitness of social animals (Silk 2007;
Smith et al. 2017a). Such findings can be extended
to generate hypotheses about the impacts of human-
induced stressors on cooperative behaviors (e.g., co-
operative hunting, group defense/vigilance). For ex-
ample, human-induced disturbances can promote
group-level vigilance in ungulates or birds (Hunter
and Skinner 1998; Blumstein 2006). These effects
may shape community processes by altering rates
of herbivory or depredation by non-human preda-
tors. Although the strength of these effects likely
varies with sex, species, and the intensity/duration
of the stressor, human-induced stressors may pro-
mote group-level cooperation to alter population de-
mography, spatial distributions, and persistence.
The extent to which social cooperation can buffer
anthropogenic challenges remains poorly understood.
Cooperatively breeding vertebrates do occur dispro-
portionately  in  unpredictable  environments
(Guindre-Parker and Rubenstein 2018; Schradin
et al. 2019), but the extent to which this flexibility
in offspring care behavior reduces vulnerability to an-
thropogenic change is understudied. Even for non-
cooperatively breeding animals, social bonds can
shield the effects of everyday stressors (Young et al.
2014), suggesting that sociality may help animals to
buffer some costs of global change. However, in other
species, individuals sacrifice their personal thermal
preferences to maintain social cohesion (Cooper
et al. 2018), suggesting that sociality may constrain
appropriate responses to warming global tempera-
tures. Going forward, technological advances such as
animal-worn sensors that monitor stress-reactivity in
real-time (Young et al. 2014; Lee et al. 2016) in com-
bination with data collected from long-term studies
(Packer et al. 2011; Smith et al. 2017b) could offer
insights into the effects of physiological and beneficial
partnerships shaping higher-level processes.

Conclusions and future directions

The exposure of multiple parties in an ecological
relationship to simultaneous anthropogenic stressors
may be greater or less than the sum of its parts
(Jackson et al. 2016). We focused on three, classic
ecological relationships here, but many other inter-
actions could be examined with a similar perspective
(e.g., competition, pollination, animal-mediated seed
dispersal, herbivory). We also did not touch upon
the extensive ways that early life stress and maternal
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stress may impact these dynamics (Pryce et al. 2002),
nor upon higher-level interactions between interac-
tions, for example, the impacts of predator—prey rela-
tionships on disease dynamics (Buss and Hua 2018;
Sprayberry et al. 2019). Stress and stress-mediated
changes are not inherently “bad,” and may facilitate
wildlife persistence in the face of environmental
change (Boonstra 2013). In some cases, anthropo-
genic change-induced stress responses may interact
to facilitate or stabilize ecological dynamics. Still,
while impacts of anthropogenic change on interacting
organisms may sometimes counterbalance each other
in a network, when multiple changes are made to a
carefully tuned system disruption is more likely than
stabilization (Tylianakis et al. 2008). These dynamics
are context-dependent, and ideally should be studied
against the backdrop of altered environments.

It is challenging and often logistically impossible
to simultaneously study stress and behavior on mul-
tiple sides and/or levels of an ecological interaction.
However, systematically studying species responses to
environmental change in isolation from the ecologi-
cal relationships and modified habitats they exist
within may yield biased conclusions. When attempt-
ing to predict or characterize one species’ response
to anthropogenic change, meta-analyses that inte-
grate seemingly disparate literatures may be valuable
in examining how that same type of environmental
change impacts other species that are ecologically
bound to the focal species (Winfree et al. 2009;
Becker et al. 2015). HormoneBase, a new repository
of vertebrate hormone levels, may be a useful online
resource in this pursuit (Vitousek et al. 2018).
Simulations and modeling may also be required
(Gilman et al. 2010). Studies that experimentally ma-
nipulate physiological or environmental parameters
(e.g., with hormone implants, or mesocosms) will
be critical in teasing apart the causality of hor-
mone-behavior-anthropogenic change relationships
in modified habitats. Finally, while it is more easily
suggested than done, another possible solution to
this logistical challenge is for multiple research
groups studying disparate sides or levels of the
same ecological relationship to combine forces.
This approach may be most useful when long term
or museum-based datasets are also available, or when
studies can be preemptively designed with both
groups in mind. Moreover, it will be important to
reach outside of comfort zones to pair seemingly
diverse datasets (e.g., behavioral/movement datasets
from telemetry, GPS, or accelerometers in combina-
tion with ecosystem function studies that integrate
data on stable isotopes or nutrient flow; Nakamura
and Sato 2014; Schmitz et al. 2018).
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Stress-mediated ecological changes will have evo-
lutionary consequences for wildlife communities. For
example, species that have spent many generations in
urbanized conditions can exhibit altered physiologi-
cal and behavioral traits, potentially due to evolu-
tionary change (Partecke et al. 2006; Donihue and
Lambert 2015; Charmantier et al. 2017; Tennessen
et al. 2018). In the face of environmental change,
novel species assemblages (Williams and Jackson
2007), and altered phenology (Rafferty et al. 2015),
the target species involved in pathogenic, predatory,
or mutualistic relationships may change. Generalist
species with flexible life histories may emerge as
“winners” (Dunn et al. 2009; Le Viol et al. 2012;
Hammond et al. 2018). The stress response may be
one process at play in these shifting community dy-
namics, allowing species to modulate several mecha-
nisms of response to novel conditions (e.g., behavior,
reproduction, metabolic expenditure, etc.). Species
exist within ecological interactions. When attempting
to predict the impacts of anthropogenic change on
one species, we must also consider the ways that it
may directly or indirectly impact the physiology and
behavior of partner species.
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