
MINT: Mixed-precision RRAM-based IN-memory 
Training Architecture 

 Hongwu Jiang, Shanshi Huang, Xiaochen Peng and Shimeng Yu 

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA  

Email: shimeng.yu@ece.gatech.edu

Abstract— On-chip training of large-scale deep neural 
networks (DNNs) is challenging. To solve the memory wall 
problem, compute-in-memory (CIM) is a promising approach that 
exploits the analog computation inside the memory array to speed 
up the vector-matrix multiplication (VMM). Challenges for on-
chip CIM training include higher weight precision and higher 
analog-to-digital converter (ADC) resolution. In this work, we 
propose a mixed-precision RRAM-based CIM architecture that 
overcomes these challenges and supports on-chip training. In 
particular, we split the multi-bit weight into the most significant 
bits (MSBs) and the least significant bits (LSBs). The forward and 
backward propagations are performed with CIM transposable 
arrays for MSBs only, while the weight update is performed in 
regular memory arrays that store LSBs. Impact of ADC resolution 
on training accuracy is analyzed. We explore the training 
performance of a convolutional VGG-like network on the CIFAR-
10 dataset using this Mixed-precision IN-memory Training 
architecture, namely MINT, showing that it can achieve ~91% 
accuracy under hardware constraints and ~4.46TOPS/W energy 
efficiency. Compared with the baseline CIM architectures based 
on RRAM, it can achieve 1.35× higher energy efficiency and only 
31.9% chip size (~98.86 mm2 at 32 nm node). 

Keywords— RRAM, compute-in-memory, deep neural 
network, hardware accelerator 

I. INTRODUCTION  

As DNNs become deeper and more complicated, number of 
operations and parameters also increase significantly. For 
example, as a representative DNN, VGG-16 [1] has 138MB 
parameters using 8-bit precision for weights and activations. As 
a result, data movements between the computing units and 
memory units become the bottleneck. Especially, expensive off-
chip DRAM access occurs frequently due to the limit on-chip 
SRAM buffer size for DNN workloads. There have been many 
research efforts on the design of application specific integrated 
circuit (ASIC) accelerators such as Eyeriss [2] and TPU [3], 
where the parameters are stored in global buffer and the 
computation is still performed at the digital multiply-accumulate 
(MAC) arrays. Compute-in-memory (CIM) is an efficient 
paradigm to address the memory wall problem in DNN 
hardware acceleration [4]. Convolution operation essentially 
contains vector-matrix multiplication (VMM), which takes up 
most of the computations in DNNs. The crossbar structure 
supports analog VMM operations by activating multiple rows 
and perform current summation along bit lines (BLs). Emerging 
non-volatile memory (eNVMs) such as phase change memory 
(PCM) [5] and resistive random-access memory (RRAM) [6] 
provide promising solutions to design CIM-based accelerator 
due to smaller cell size than SRAM at the same node. Though 
these eNVMs based CIM architectures are promising, grand 

challenges exist in designing a practical CIM accelerator that 
supports both training and inference. First, most of the CIM 
architectures proposed so far, such as PRIME [7] and ISAAC 
[8] could support the inference only. The data flow for CIM is 
largely unexplored. Second, the impact of ADC resolution on 
the training/inference accuracy is rarely explored. Third, the 
asymmetric and nonlinear conductance tuning introduces 
significant training accuracy loss [9], making it difficult to 
utilize the multilevel states of eNVMs for in-situ training.  

In this paper, we propose a Mixed-precision RRAM-based IN-
memory Training architecture, namely MINT, to overcome the 
aforementioned challenges and target at implementing efficient 
on-chip training of DNNs. Considering the practical non-ideal 
effects such as asymmetric conductance tuning, limited dynamic 
range, and variability/reliability for multilevel states, binary 
RRAM is used in this work. Multi-bit weight is thus 
implemented by multiple RRAM cells. The key idea is to split 
the multi-bit weight into two parts: the most significant bits 
(MSBs) and the least significant bits (LSBs). The forward and 
backward propagations are performed with a CIM transposable 
array for MSBs only, while the weight update is performed in a 
regular memory array that stores LSBs. We analyze the impact 
of ADC and RRAM’s non-ideal effects on training performance, 
and evaluate hardware performance of our design. 
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Fig. 1. Workflow of DNN training in CIM 

II. WEIGHT MAPPING STRATEGY FOR TRAINING 

Fig. 1 shows the simplified workflow of training process in CIM 
hardware, which could be divided into four steps, namely, 1) 
feed-forward (FF), 2) backpropagation (BP), 3) weight gradient 
(ΔW) calculation and 4) weight update. These four steps run in 
a loop through iterations. Here we consider the batch based 
training, thus steps 1) to 3) occur every input cycle within the 
batch but step 4) occurs only once at end of the batch. The FF 
process of the CIM array is shown in Fig. 2 (a). Here M is the
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Fig. 2. Weight mapping scheme for convolution operations in CIM training

number of filters/output feature map (OFM) channels, C is 
number of input feature map (IFM)/filter channels, H/W is the 
IFM plane height/width, and E/F is the OFM plane height/width. 
The filters are unrolled to a weight matrix that is stored in the 
memory array. The IFM vector is applied to the row in parallel, 
and the OFM vector is obtained from the column in parallel. To 
maximize the input data reuse, the best weight mapping strategy 
is to use N×N processing elements (PEs) for mapping an N×N 
filter [10], and partial sums from all the PEs are accumulated 
outside PEs. Only one PE is shown in Fig. 2 (a) for the first 
channel group (a0 element), and 9 PEs are needed for 3×3 filter 
in one layer of DNNs. As shown in Fig. 2 (b), Wi+1 is the weights 
of the first channel group (a0 element) in FF while Wi+1

T is the 
transposed weights for BP, and they are mapped to the same 
memory array as one PE. The backward pass for a convolution 
operation is also a convolution (but with spatially-flipped 
filters). For the FF, the products of input sliding window with 
the same filter across all the channels are summed up to generate 
one output, which means all the dot products in same column of 
the PE are summed up. However, for the BP, the products of 
input sliding window and the same channel across different 
filters are summed up, which means all the dot-products in same 
row are summed up. Essentially, we process the transposed 
version of the weight matrix in the BP. Fig. 2 (c) shows the 
details of error calculation for the first channel group (a0 
element) of the filters. With such transpose array and weight 
mapping strategy, FF and BP can be performed within the same 
array.  

III. HARDWARD IMPLEMENTATION 

A. RRAM Subarray Design 

In MINT architecture, RRAM subarray design is based on one-
transistor-one-resistor (1T1R) pseudo-crossbar structure, which 
minimizes the sneak path and write disturbance. 1T1R array is 
preferred for embedded applications where the density is not the 
pursuit but the performance and the reliability are of the priority. 
Each cell only has binary on-state or off-state. According to the 
discrete training technique in WAGE framework [11], only 
MSBs of the weight are needed for FF and BP calculation (i.e., 
the first 2 bits out of an 8-bit weight). Then the weight update is 
performed with all the bits. To optimize such mixed-precision 
training in MINT, two types of subarrays are proposed: 
computing subarrays and storage subarrays. As shown in Fig. 3 
(a), computing subarray is dedicated to the MSBs of the weight. 
It is used for transpose convolution operation supporting bi-

directional read access. Each bit of inputs is fed into the array by 
cycles. In FF process, all the transistors will be transparent when 
all wordlines (WLs) are turned on in deep triode region. Thus, 
the input vector voltages are provided to the BLs, and the 
weighted sum currents are read out through sourcelines (SLs) in 
parallel. For BP process, bitlines (BLs) and SLs just need to 
exchange their roles by a Mode Mux, which means the partial 
sums are read out from parallel BLs. The analog values of 
current along BLs/SLs, which represent the VMM results, will 
be quantized by ADCs. Shift-adders are applied to accumulate 
partial sum results from different significant bits of the input. 
Computing arrays keep active during FF and BP operations. 
Storage subarray is shown in Fig. 3 (b), which is the same as 
conventional RRAM array for row-by-row read-out. Therefore, 
the area/energy expensive ADCs are eliminated in storage 
subarray. LSBs of weights are saved in storage subarray and 
only activated while updating new weights at end of a batch. The 
LSBs are read-out and added with the weight gradient, and then 
written back to storage subarray. 
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Fig. 3. RRAM subarray design: (a) computing subarray with expensive ADC 
(b) storage subarray with simple SA 

B. Overall Architecture 

MINT is implemented for an 8-bit VGG-8 network for CIFAR-
10 dataset. Fig. 4 shows the top-level architecture for one 
convolution layer. To enable the bi-directional access, weight 
bits with different significance are stored on different tiles with 
shift-add to combine them together after obtaining their partial 
sums. In this example, we only use first two MSBs of the weight 
for convolution operation in FF and BP, corresponding to 
computing subarrays in Tile[1] and Tile[2]. Tile[3-8] consist of 
regular storage arrays for the other 6 LSBs of the weight. Tile[1-
8] will be all used during weight update, though most of the 
weight update are incremental thus probably only storage 
subarrays are rewritten. Other peripheral modules such as 
pooling, activation, quantization, multiplier & adder tree and 
find max are included in the analysis. The typical weight matrix 
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size of one layer in DNNs could be several hundreds up to 
thousands, thus we partition the filters into subarrays and limit 
the subarray size to 128×128 considering the practical limits 
(e.g. IR drop and maximum current for the column). Hence, 16 
subarrays are formed into one PE and 9 PEs (corresponding to 
3×3 filters) are formed into one tile, which means most layers in 
this network can fit into 8 tiles for 8-bit weight (gradient) 
precision. Computing tile [1-2] contains multiple PEs, adder 
trees and L1 buffer. The red path shows the forward input feature 
maps direction while the green path denotes the transposed 
backward input error maps direction.  In both FF and BP, 
subarray first completes shift-add calculation for multi-bit inputs 
cycle by cycle and then accumulate results for all the subarrays 
in one PE for one channel of the filter. Accumulated results from 
PEs in the same tile accumulate again through adder trees 
outside PE to process the entire filter, but only for single 
significance of the weight. Outside tiles, shift-add will be 
performed again for all the computing tiles to obtain the eventual 
desired output of OFM with appropriate bit significance. To 
minimize the on-chip buffer capacity, in FF/BP, activation/error 
outputs of each layer will be sent to off-chip DRAM for reuse in 
gradient calculation. Digital MAC computation for gradient 
calculation is performed by digital 8-bit multiplier and 10-stage 
adder tree. After the weight gradient calculation for each image, 
∆𝑊gradient will be stored off-chip DRAM. In the weight update 
at end of the batch, the saved gradients are fetched from DRAM, 
accumulated across batch, normalized by its maximum value 
and then go through stochastic quantization to obtain the final 
weight gradient ∆𝑊.  
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Figure 4. MINT overall architecture  

IV. EVLUATIONS AND DISCUSSIONS 

A. Impact of ADC range and resolution 

ADCs in CIM impose huge overhead since their hardware cost 
in area and energy. The cost of some design (e.g. Flash ADC) 
may even grows exponentially as the ADC resolution increases. 

The impact of ADCs on inference performance has been 
discussed in prior works [12]. However, to our best knowledge, 
the ADC quantization impact on training performance is rarely 
explored so far. For XNOR-Net inference on CIFAR-10, 3-bit 
ADC is sufficient for 128×128 array [13]. We modified the 
convolution step in WAGE to include ADC quantization to 
partial sum from each subarray in the network. In our 
evaluations using PyTorch platform, we found that not only the 
resolution of ADC but also the full range of ADC will affect the 
training accuracy. According to distribution of the partial sum, 
the required range of ADC is less than the full precision for a 
certain subarray size. For example, in MINT architecture, we 
have 128×128 subarray, which means a 7-bit full precision for 
the column output in theory. However, in practice, the required 
full precision of partial sum is only 5-bit as most of the partial 
sum ranges from 0 to 32. Hence, in our case, 5-bit ADC means 
no accuracy loss and it could be the same accuracy ~91% as the 
software baseline. Then we further analyze the ADC resolution 
and range effects. The training performance under different 
ADC configurations is shown in Fig. 5. (a). We can see that 
generally CIM is very sensitive to the ADC quantization. First, 
we use 8-bit weight without MSB/LSB splitting. With the same 
ADC range (32) but 4-bit ADC (green line) will degrade 
accuracy from 5-bit ADC’s 91% to 85%. ADC range (32) means 
ADC will only quantize sum value in (0, 32) range and any value 
larger than 32 will be treated as 32. Second, we use 2-bit MSB 
and 6-bit LSB splitting, we see that ADC range (32) and 5-bit 
ADC (black line) could still achieve the same 91% accuracy, 
however, reducing the ADC range to 16 and 4-bit resolution will 
not converge the training (red line). Cutting the range of ADC 
will have less effect than the reduced precision of ADC. In 
summary, 5-bit ADC is required to guarantee no accuracy loss 
in MINT design. 

B. Non-idealities of RRAM 

Cycling endurance may be a concern in write-dominant training. 
We count the number of weight updates during the training for 
our VGG-like network as shown in Fig. 5 (b). Each epoch 
includes 50K images, and the total epoch number is 85. 
However, weight update may only occur after one batch every 
200 images. From the statistics, we can see 99% of RRAM cells 
flip less than 2000 times and the maximum write times is just 
7,211. Today’s binary RRAM technology could achieve more 
than 106 cycles [14], thus here endurance is not a concern.  

C. Evaluation Setup 

Our MINT architecture is built with a modified NeuroSim [15] 
framework. We evaluate the aforementioned VGG-8 network 
on CIFAR-10 dataset. As shown in Fig. 5 (a), we can split the 
8-bit weight into 2-bit MSBs and 6-bit LSBs, while it could 
achieve a comparable accuracy. Therefore, for MINT design, 
we only use first 2-bit MSBs for FF/BP and they are stored in 
computing subarrays, and we use the rest 6-bit LSBs for weight 
update only and they are stored in storage subarrays. 5-bit 
ADCs are included in computing subarray according to the 
analysis of ADC. To improvement the throughput and energy 
efficiency, we use inter-layer parallelism scheme which means 
that each layer is a pipeline stage for both FF and BP 
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computation. Table. I shows the chip-level parameters 
including the hardware configuration, precision, area and 
energy for key circuit modules. The energy is given in energy 
per operation (or bit). We design two custom CIM-based 
architectures as the baselines: Baseline 1) without transpose 
subarray design and MSB/LSB splitting; Baseline 2) with 
transpose subarray but without MSB/LSB splitting; Other 
modules including digital logic for ΔW calculation and weight 
update are the same for MINT and baseline designs. We model 
the MINT and baseline designs in 32nm node, which is a 
practical node considering TSMC’s 40nm RRAM [16] and 
Intel’s 22nm RRAM [17] processes. All the architectures are 
built with a modified NeuroSim model by adding essential 
hardware components for supporting training and 
considerations of on-chip SRAM buffer and off-chip DRAM 
access. 
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Fig. 5. (a). Training performance for different ADC quantization range and 
resolution. (b). Statistics of weight update frequency 

D. Performance benchmarking 

The area breakdown for FF, BP, ΔW calculation and weight 
update is shown in Fig. 6 (a). We see that area efficiency of 
MINT is much improved in FF/BP over that of baseline. This 
is because we optimize with the transpose design (reusing 
periphery) and MSB/LSB splitting (saving unnecessary ADCs). 
The total area is reduced to only 31.9% of the Baseline 1. For 
MINT architecture, the largest part of area overhead is actually 
the on-chip SRAM buffer, which taking 33.28% of total area. 
The throughput of MINT architecture is ~1,927 frame per 
second (FPS). Compared to the conventional GPU based 
training, the typical energy efficiency (e.g. NVidia Titan RTX) 
is ~0.06 TOPS/W. The TPU v3 (for training) energy efficiency 
is estimated to be approximately ~0.45TOPS/W [18]. MINT 
can achieve 4.46 TOPS/W. In Fig. 6 (b), we see that the energy 
saving of MINT in FF and BP process is 4× compared with 
Baseline 1&2 on average thanks to the mixed-precision 
training, as the ADCs are only used for the first 2-bit MSBs 
rather than the entire 8-bit weight. Digital blocks of ΔW 
calculation also contribute substantially to the total energy. For 
ΔW calculation, we use pure digital logic thus it consumes 
significant energy. In principle, ΔW calculation could also be 
implemented in CIM as it involves the convolution between 
errors and activations. For example, we could write the errors 
into another memory array, and load in the activations as the 
row input to the array, to generate the column output being ΔW. 

This is possible for SRAM based CIM [19], however, writing 
RRAM is expensive due to RRAM’s large write energy/latency 
(than SRAM).  

Table I: MINT Parameters 

 
DRAM access is also a significant part of the total energy since 
gradient calculation and weight update needs to access DRAM 
frequently. Considering our case of VGG-8, which has ~13MB 
weights, for batch size=200, there will be 200×13MB=2.6GB 
gradient calculated per batch. Due to the limited global buffer 
capacity, the gradients have to be sent to the DRAM after being 
calculated. Later they need to be loaded for accumulation, 
normalization and quantization.  

 
Fig. 6. (a). Breakdown of chip area. (b). Breakdown of energy consumption.  

V. CONCLUSION 

We propose a mixed-precision RRAM-based in-memory 
training architecture, namely MINT, which can maximize the 
hardware reuse with the transpose array design. Splitting 
MSB/LSB can also reduce hardware overhead (in particular 
ADCs). The evaluation results show that, MINT achieves the 
energy saving of 77× compared to GPU, 10× compared to TPU 
and 1.35× compared to the CIM architecture without 
optimizations. The area of MINT is only ~31.9% of the RRAM 
baseline designs.  
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