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Abstract— On-chip training of large-scale deep neural
networks (DNNs) is challenging. To solve the memory wall
problem, compute-in-memory (CIM) is a promising approach that
exploits the analog computation inside the memory array to speed
up the vector-matrix multiplication (VMM). Challenges for on-
chip CIM training include higher weight precision and higher
analog-to-digital converter (ADC) resolution. In this work, we
propose a mixed-precision RRAM-based CIM architecture that
overcomes these challenges and supports on-chip training. In
particular, we split the multi-bit weight into the most significant
bits (MSBs) and the least significant bits (LSBs). The forward and
backward propagations are performed with CIM transposable
arrays for MSBs only, while the weight update is performed in
regular memory arrays that store LSBs. Impact of ADC resolution
on training accuracy is analyzed. We explore the training
performance of a convolutional VGG-like network on the CIFAR-
10 dataset using this Mixed-precision I/N-memory Training
architecture, namely MINT, showing that it can achieve ~91%
accuracy under hardware constraints and ~4.46TOPS/W energy
efficiency. Compared with the baseline CIM architectures based
on RRAM, it can achieve 1.35x higher energy efficiency and only
31.9% chip size (~98.86 mm? at 32 nm node).
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I. INTRODUCTION

As DNNs become deeper and more complicated, number of
operations and parameters also increase significantly. For
example, as a representative DNN, VGG-16 [1] has 138MB
parameters using 8-bit precision for weights and activations. As
a result, data movements between the computing units and
memory units become the bottleneck. Especially, expensive off-
chip DRAM access occurs frequently due to the limit on-chip
SRAM buffer size for DNN workloads. There have been many
research efforts on the design of application specific integrated
circuit (ASIC) accelerators such as Eyeriss [2] and TPU [3],
where the parameters are stored in global buffer and the
computation is still performed at the digital multiply-accumulate
(MAC) arrays. Compute-in-memory (CIM) is an efficient
paradigm to address the memory wall problem in DNN
hardware acceleration [4]. Convolution operation essentially
contains vector-matrix multiplication (VMM), which takes up
most of the computations in DNNs. The crossbar structure
supports analog VMM operations by activating multiple rows
and perform current summation along bit lines (BLs). Emerging
non-volatile memory (eNVMs) such as phase change memory
(PCM) [5] and resistive random-access memory (RRAM) [6]
provide promising solutions to design CIM-based accelerator
due to smaller cell size than SRAM at the same node. Though
these eNVMs based CIM architectures are promising, grand
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challenges exist in designing a practical CIM accelerator that
supports both training and inference. First, most of the CIM
architectures proposed so far, such as PRIME [7] and ISAAC
[8] could support the inference only. The data flow for CIM is
largely unexplored. Second, the impact of ADC resolution on
the training/inference accuracy is rarely explored. Third, the
asymmetric and nonlinear conductance tuning introduces
significant training accuracy loss [9], making it difficult to
utilize the multilevel states of eNVMs for in-situ training.

In this paper, we propose a Mixed-precision RRAM-based IN-
memory Training architecture, namely MINT, to overcome the
aforementioned challenges and target at implementing efficient
on-chip training of DNNs. Considering the practical non-ideal
effects such as asymmetric conductance tuning, limited dynamic
range, and variability/reliability for multilevel states, binary
RRAM is used in this work. Multi-bit weight is thus
implemented by multiple RRAM cells. The key idea is to split
the multi-bit weight into two parts: the most significant bits
(MSBs) and the least significant bits (LSBs). The forward and
backward propagations are performed with a CIM transposable
array for MSBs only, while the weight update is performed in a
regular memory array that stores LSBs. We analyze the impact
of ADC and RRAM’s non-ideal effects on training performance,
and evaluate hardware performance of our design.
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Fig. 1. Workflow of DNN training in CIM

II.  WEIGHT MAPPING STRATEGY FOR TRAINING

Fig. 1 shows the simplified workflow of training process in CIM
hardware, which could be divided into four steps, namely, 1)
feed-forward (FF), 2) backpropagation (BP), 3) weight gradient
(AW) calculation and 4) weight update. These four steps run in
a loop through iterations. Here we consider the batch based
training, thus steps 1) to 3) occur every input cycle within the
batch but step 4) occurs only once at end of the batch. The FF
process of the CIM array is shown in Fig. 2 (a). Here M is the
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Fig. 2. Weight mapping scheme for convolution operations in CIM training

number of filters/output feature map (OFM) channels, C is
number of input feature map (IFM)/filter channels, H/W is the
IFM plane height/width, and E/F is the OFM plane height/width.
The filters are unrolled to a weight matrix that is stored in the
memory array. The IFM vector is applied to the row in parallel,
and the OFM vector is obtained from the column in parallel. To
maximize the input data reuse, the best weight mapping strategy
is to use NXN processing elements (PEs) for mapping an NxXN
filter [10], and partial sums from all the PEs are accumulated
outside PEs. Only one PE is shown in Fig. 2 (a) for the first
channel group (a0 element), and 9 PEs are needed for 3x3 filter
in one layer of DNNs. As shown in Fig. 2 (b), Wi is the weights
of the first channel group (a0 element) in FF while Wi+ is the
transposed weights for BP, and they are mapped to the same
memory array as one PE. The backward pass for a convolution
operation is also a convolution (but with spatially-flipped
filters). For the FF, the products of input sliding window with
the same filter across all the channels are summed up to generate
one output, which means all the dot products in same column of
the PE are summed up. However, for the BP, the products of
input sliding window and the same channel across different
filters are summed up, which means all the dot-products in same
row are summed up. Essentially, we process the transposed
version of the weight matrix in the BP. Fig. 2 (c) shows the
details of error calculation for the first channel group (a0
element) of the filters. With such transpose array and weight
mapping strategy, FF and BP can be performed within the same
array.

III. HARDWARD IMPLEMENTATION

A. RRAM Subarray Design

In MINT architecture, RRAM subarray design is based on one-
transistor-one-resistor (1T1R) pseudo-crossbar structure, which
minimizes the sneak path and write disturbance. 1T1R array is
preferred for embedded applications where the density is not the
pursuit but the performance and the reliability are of the priority.
Each cell only has binary on-state or off-state. According to the
discrete training technique in WAGE framework [11], only
MSBs of the weight are needed for FF and BP calculation (i.e.,
the first 2 bits out of an 8-bit weight). Then the weight update is
performed with all the bits. To optimize such mixed-precision
training in MINT, two types of subarrays are proposed:
computing subarrays and storage subarrays. As shown in Fig. 3
(a), computing subarray is dedicated to the MSBs of the weight.
It is used for transpose convolution operation supporting bi-

directional read access. Each bit of inputs is fed into the array by
cycles. In FF process, all the transistors will be transparent when
all wordlines (WLs) are turned on in deep triode region. Thus,
the input vector voltages are provided to the BLs, and the
weighted sum currents are read out through sourcelines (SLs) in
parallel. For BP process, bitlines (BLs) and SLs just need to
exchange their roles by a Mode Mux, which means the partial
sums are read out from parallel BLs. The analog values of
current along BLs/SLs, which represent the VMM results, will
be quantized by ADCs. Shift-adders are applied to accumulate
partial sum results from different significant bits of the input.
Computing arrays keep active during FF and BP operations.
Storage subarray is shown in Fig. 3 (b), which is the same as
conventional RRAM array for row-by-row read-out. Therefore,
the area/energy expensive ADCs are eliminated in storage
subarray. LSBs of weights are saved in storage subarray and
only activated while updating new weights at end of a batch. The
LSBs are read-out and added with the weight gradient, and then

written back to storage subarray.
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Fig. 3. RRAM subarray design: (a) computing subarray with expensive ADC
(b) storage subarray with simple SA

B. Overall Architecture

MINT is implemented for an 8-bit VGG-8 network for CIFAR-
10 dataset. Fig. 4 shows the top-level architecture for one
convolution layer. To enable the bi-directional access, weight
bits with different significance are stored on different tiles with
shift-add to combine them together after obtaining their partial
sums. In this example, we only use first two MSBs of the weight
for convolution operation in FF and BP, corresponding to
computing subarrays in Tile[1] and Tile[2]. Tile[3-8] consist of
regular storage arrays for the other 6 LSBs of the weight. Tile[1-
8] will be all used during weight update, though most of the
weight update are incremental thus probably only storage
subarrays are rewritten. Other peripheral modules such as
pooling, activation, quantization, multiplier & adder tree and
find max are included in the analysis. The typical weight matrix
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size of one layer in DNNs could be several hundreds up to
thousands, thus we partition the filters into subarrays and limit
the subarray size to 128x128 considering the practical limits
(e.g. IR drop and maximum current for the column). Hence, 16
subarrays are formed into one PE and 9 PEs (corresponding to
3x3 filters) are formed into one tile, which means most layers in
this network can fit into 8 tiles for 8-bit weight (gradient)
precision. Computing tile [1-2] contains multiple PEs, adder
trees and L1 buffer. The red path shows the forward input feature
maps direction while the green path denotes the transposed
backward input error maps direction. In both FF and BP,
subarray first completes shift-add calculation for multi-bit inputs
cycle by cycle and then accumulate results for all the subarrays
in one PE for one channel of the filter. Accumulated results from
PEs in the same tile accumulate again through adder trees
outside PE to process the entire filter, but only for single
significance of the weight. Outside tiles, shift-add will be
performed again for all the computing tiles to obtain the eventual
desired output of OFM with appropriate bit significance. To
minimize the on-chip buffer capacity, in FF/BP, activation/error
outputs of each layer will be sent to off-chip DRAM for reuse in
gradient calculation. Digital MAC computation for gradient
calculation is performed by digital 8-bit multiplier and 10-stage
adder tree. After the weight gradient calculation for each image,
AW gradient will be stored off-chip DRAM. In the weight update
at end of the batch, the saved gradients are fetched from DRAM,
accumulated across batch, normalized by its maximum value
and then go through stochastic quantization to obtain the final
weight gradient AW.

o
o

Weight
Update]
‘ [ Tilel2l ] Accumulation
.
. * T Ld - FindMax
© s
% G
£

=1

s b £
<l |z AW
Il Calculation

% § Multiplier
i &
2 AdderTree
3 |3 |

2 D

L
]

\

L2 I/O Buffer
(1.5 MiB)

De- |
Pooling

i
Pooling | |

| |
,,,,,,,,,,,,,, i

ion| | Find Max

i Shift Add
R S

I 1 Output Bufer (92x16595)

Figure 4. MINT overall architecture
IV. EVLUATIONS AND DISCUSSIONS

A. Impact of ADC range and resolution

ADCs in CIM impose huge overhead since their hardware cost
in area and energy. The cost of some design (e.g. Flash ADC)
may even grows exponentially as the ADC resolution increases.

The impact of ADCs on inference performance has been
discussed in prior works [12]. However, to our best knowledge,
the ADC quantization impact on training performance is rarely
explored so far. For XNOR-Net inference on CIFAR-10, 3-bit
ADC is sufficient for 128%128 array [13]. We modified the
convolution step in WAGE to include ADC quantization to
partial sum from each subarray in the network. In our
evaluations using PyTorch platform, we found that not only the
resolution of ADC but also the full range of ADC will affect the
training accuracy. According to distribution of the partial sum,
the required range of ADC is less than the full precision for a
certain subarray size. For example, in MINT architecture, we
have 128x128 subarray, which means a 7-bit full precision for
the column output in theory. However, in practice, the required
full precision of partial sum is only 5-bit as most of the partial
sum ranges from 0 to 32. Hence, in our case, 5-bit ADC means
no accuracy loss and it could be the same accuracy ~91% as the
software baseline. Then we further analyze the ADC resolution
and range effects. The training performance under different
ADC configurations is shown in Fig. 5. (a). We can see that
generally CIM is very sensitive to the ADC quantization. First,
we use 8-bit weight without MSB/LSB splitting. With the same
ADC range (32) but 4-bit ADC (green line) will degrade
accuracy from 5-bit ADC’s 91% to 85%. ADC range (32) means
ADC will only quantize sum value in (0, 32) range and any value
larger than 32 will be treated as 32. Second, we use 2-bit MSB
and 6-bit LSB splitting, we see that ADC range (32) and 5-bit
ADC (black line) could still achieve the same 91% accuracy,
however, reducing the ADC range to 16 and 4-bit resolution will
not converge the training (red line). Cutting the range of ADC
will have less effect than the reduced precision of ADC. In
summary, 5-bit ADC is required to guarantee no accuracy loss
in MINT design.

B. Non-idealities of RRAM

Cycling endurance may be a concern in write-dominant training.
We count the number of weight updates during the training for
our VGG-like network as shown in Fig. 5 (b). Each epoch
includes 50K images, and the total epoch number is 85.
However, weight update may only occur after one batch every
200 images. From the statistics, we can see 99% of RRAM cells
flip less than 2000 times and the maximum write times is just
7,211. Today’s binary RRAM technology could achieve more
than 10° cycles [14], thus here endurance is not a concern.

C. Evaluation Setup

Our MINT architecture is built with a modified NeuroSim [15]
framework. We evaluate the aforementioned VGG-8 network
on CIFAR-10 dataset. As shown in Fig. 5 (a), we can split the
8-bit weight into 2-bit MSBs and 6-bit LSBs, while it could
achieve a comparable accuracy. Therefore, for MINT design,
we only use first 2-bit MSBs for FF/BP and they are stored in
computing subarrays, and we use the rest 6-bit LSBs for weight
update only and they are stored in storage subarrays. 5-bit
ADCs are included in computing subarray according to the
analysis of ADC. To improvement the throughput and energy
efficiency, we use inter-layer parallelism scheme which means
that each layer is a pipeline stage for both FF and BP
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computation. Table. I shows the chip-level parameters
including the hardware configuration, precision, area and
energy for key circuit modules. The energy is given in energy
per operation (or bit). We design two custom CIM-based
architectures as the baselines: Baseline 1) without transpose
subarray design and MSB/LSB splitting; Baseline 2) with
transpose subarray but without MSB/LSB splitting; Other
modules including digital logic for AW calculation and weight
update are the same for MINT and baseline designs. We model
the MINT and baseline designs in 32nm node, which is a
practical node considering TSMC’s 40nm RRAM [16] and
Intel’s 22nm RRAM [17] processes. All the architectures are
built with a modified NeuroSim model by adding essential
hardware components for supporting training and
considerations of on-chip SRAM buffer and off-chip DRAM

access.
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Fig. 5. (a). Training performance for different ADC quantization range and
resolution. (b). Statistics of weight update frequency

D. Performance benchmarking

The area breakdown for FF, BP, AW calculation and weight
update is shown in Fig. 6 (a). We see that area efficiency of
MINT is much improved in FF/BP over that of baseline. This
is because we optimize with the transpose design (reusing
periphery) and MSB/LSB splitting (saving unnecessary ADCs).
The total area is reduced to only 31.9% of the Baseline 1. For
MINT architecture, the largest part of area overhead is actually
the on-chip SRAM buffer, which taking 33.28% of total area.
The throughput of MINT architecture is ~1,927 frame per
second (FPS). Compared to the conventional GPU based
training, the typical energy efficiency (e.g. NVidia Titan RTX)
is ~0.06 TOPS/W. The TPU v3 (for training) energy efficiency
is estimated to be approximately ~0.45TOPS/W [18]. MINT
can achieve 4.46 TOPS/W. In Fig. 6 (b), we see that the energy
saving of MINT in FF and BP process is 4x compared with
Baseline 1&2 on average thanks to the mixed-precision
training, as the ADCs are only used for the first 2-bit MSBs
rather than the entire 8-bit weight. Digital blocks of AW
calculation also contribute substantially to the total energy. For
AW calculation, we use pure digital logic thus it consumes
significant energy. In principle, AW calculation could also be
implemented in CIM as it involves the convolution between
errors and activations. For example, we could write the errors
into another memory array, and load in the activations as the
row input to the array, to generate the column output being AW.

This is possible for SRAM based CIM [19], however, writing
RRAM is expensive due to RRAM’s large write energy/latency

(than SRAM).
Table I: MINT Parameters

Main block | Spec. | Energy(pJ/op) | Area(mm?)
Subarray Level
RRAM array | Size: 128x128 Precision:1-bit 99.85 0.0003
MUX & Decoder 3.68 0.0013
ADC | Number: 32 Precision:5-bit 327.92 0.0019
Shift Add | Number: 32 Precision:12-bit 71.17 0.0009
WL/SL SwitchMatrix and other 15.74 0.0006
Subarray Total 518.36 0.0050
PE Level
Subarray Size: 4x4 8293.77 0.08
Adder Tree Number: 64 Precision: 12-bit 54.77 0.05
L1 Buffer Size: 128128 0.05/bit 0.043
Output Buffer Size: 32*54 0.01/bit 0.003
PE Total 8348.60 0.13
Tile Level
PE Size: 3x3 74643.93 117
Adder Tree Number: 64 Precision: 16-bit 485.14 0.08
L2 Buffer Size:256*512 0.10/bit 0.3
Output Buffer Size: 16*32*9 0.014/bit 0.007
Tile Total 75129.10 1.60
Layer Level
Shift Add Number:64 Precision:17-bit 208.57 3.20
Chip Level
RelLU+Find Max 45.40 0.006
Digital Gradient Calculation and Process 0.022 18.8
Global Buffer | Size:12*1024*1024 0.4/bit 32.90

DRAM access is also a significant part of the total energy since
gradient calculation and weight update needs to access DRAM
frequently. Considering our case of VGG-8, which has ~13MB
weights, for batch size=200, there will be 200x13MB=2.6GB
gradient calculated per batch. Due to the limited global buffer
capacity, the gradients have to be sent to the DRAM after being
calculated. Later they need to be loaded for accumulation,
normalization and quantization.
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[ Baseline2: transpose; No weight split

[CIMINT

[_IBaseline1
[ Baseline2 -
300 F [ mINT H
2 200

rvey

Energy(nJ)

o
S
Ll
>

_—mil

0
FF+BP AwCal. WU DRAM Total FF BP AwCal. WU DRAM Total
(a) (b)

Fig. 6. (a). Breakdown of chip area. (b). Breakdown of energy consumption.
V.  CONCLUSION

We propose a mixed-precision RRAM-based in-memory
training architecture, namely MINT, which can maximize the
hardware reuse with the transpose array design. Splitting
MSB/LSB can also reduce hardware overhead (in particular
ADCs). The evaluation results show that, MINT achieves the
energy saving of 77x compared to GPU, 10x compared to TPU
and 1.35x compared to the CIM architecture without
optimizations. The area of MINT is only ~31.9% of the RRAM
baseline designs.
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