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Abstract— In this paper, we investigate the relaxation effects on 
multi-level resistive random access memory (RRAM) based in-
memory computing (IMC) for deep neural network (DNN) 
inference. We characterized 2-bit-per-cell RRAM IMC 
prototypes and measured the relaxation effects over 100 hours on 
multiple 8 kb test chips, where the relaxation is found to be most 
severe in the two intermediate states. We incorporated the 
experimental data into SPICE simulation and software DNN 
inference, showing DNN accuracy for CIFAR-10 dataset could 
degrade from 87.35% to 11.58% after 144 hours. To recover the 
largely degraded accuracy, mitigation schemes are proposed: 1) 
at the circuit level, the reference voltage for RRAM IMC could be 
calibrated after 80 hours when the relaxation is saturated. 2) At 
the algorithm level, the weights are trained with lower 
percentages to be quantized to the two intermediate states. With 
both schemes applied, the accuracy could be recovered to 87.32% 
for long-term stability. 

Index Terms—RRAM, in-memory computing, multi-level cell, 
relaxation effect, deep neural network 

I. INTRODUCTION 
DNNs have been successful in many computer vision and 

speech recognition applications. While state-of-the-art DNN 
algorithms continue to achieve higher accuracy with less 
number of parameters, the most compact models still require >3 
million weights to achieve >70% top-1 ImageNet accuracy [1]. 
This leads to an insatiable demand for high-density memories 
such as multi-level RRAM. On the other hand, the DNN 
computations are dominated by multiply-and-accumulate 
(MAC) operations, but the overall energy consumption of DNN 
inference hardware has been dominated by memory access and 
data communication [2], due to the separation of conventional 
memories with row-by-row access and dedicated MAC 
engines. To improve the energy-efficiency of DNN inference, 
in-memory computing (IMC) has emerged as a promising 
technique, which turns on multiple rows and performs analog 
MAC computations along the bitline inside the memory.  

Recent array-level demonstrations have presented RRAM’s 
potential towards IMC for area-/energy-efficient DNN 
inference [3-7], but most RRAM based IMC prototypes today 
feature only single-level cell design [3-5]. Device-level 
programming of multi-level RRAM has been reported but was 
limited to row-by-row read-out [6]. Only a few works reported 
IMC with four-level RRAM devices [7-8], while [7] only 
demonstrated a simple two-layer multi-layer perceptron for a 
low 94.4% accuracy for MNIST dataset. More importantly, 
most of the prior prototype designs just reported the basic 

functionality of IMC, while the reliability aspect of RRAM at 
array-level and during actual IMC operations is largely 
unexplored, although it can considerably affect the DNN 
inference accuracy.  

Relaxation occurs as a rapid drift of conductance right after 
initial programming but gradually saturates in the long term. 
For HfO2 RRAM, its relaxation effects at device-level were 
reported in [5, 9], and read disturb induced RRAM conductance 
drift behavior was investigated in [10]. In our prior work [8], to 
maintain relatively stable DNN inference accuracy with RRAM 
relaxation effects over time, the peripheral circuits (e.g. 
reference voltages to the sense amplifiers) needed to be 
recalibrated every once in a while.  

In this work, we comprehensively characterized the 
relaxation behavior with and without IMC operations on array-
level with multiple 8 kb test chips [8], and analyzed its impact 
on DNN inference accuracy over time. The experiments are 
based on relaxation measurements of 2-bit-per-cell HfO2 
RRAM cells over 1,047 hours (over one month) accumulatively 
collected from three test chips, which were designed for RRAM 
based IMC with CMOS peripheral circuits. We present two 
mitigation schemes to recover the degraded DNN accuracy due 
to the relaxation effects. First, at the circuit-level, we calibrate 
the reference voltages after the relaxation saturates. Second, at 
the algorithm-level, we present a relaxation-aware DNN 
training technique to maintain high accuracy over time without 
frequent peripheral circuit calibration.  

II. RRAM IMC BITCELL AND CHIP DESIGN 

A.  2-bit-per-cell RRAM IMC 
As shown in Fig. 1(a), we use two vertically-adjacent cells 

and differential wordlines (WLs) to represent one 2-bit weight 
[8]. Four conductance values with equidistant conductance 
levels from GHIGH to GLOW corresponds to +3, +1, -1 and -3 
weight values. As shown in Fig. 1(b), the element-wise 
multiplication between binary activation (+1, -1) and four-level 
weights results in four different pull-down strengths governed 
by the effective conductance, corresponding to four MAC 
partial results of +3, +1, -1, and -3.  

Our RRAM macro design exhibits a 128×64 array, and with 
the vertically differential cell structure, each column stores 64 
distinct weights. With all cells in the same column conducting 
in parallel, the sum of multiplication or MAC computation of 
64 inputs will be between -192 to +192. Each possible MAC 
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value is represented by the RBL voltage (VRBL), which is formed 
by the resistive divider between a controllable PMOS header 
and the parallel RRAM cells plus the analog multiplexer.  

B.  RRAM IMC Macro Periphery and Chip Design  
VRBL is compared with a reference voltage (Vref) using 

voltage-mode sense amplifiers (SAs). One SA group consists 
of seven SAs, which can work in two different modes. With 
seven different Vref voltages, the seven SAs can operate as a 3-
bit (8-level) flash ADC [3]. Alternatively, we can use the seven 
SAs with identical Vref to vote majority and obtain the binary 
output for the input-splitting algorithm [8]. For higher array-
efficiency and density, each SA group is shared among every 
eight columns of RRAM array. The SAs convert the analog 
VRBL voltage that represents the partial MAC results into digital 
values, which will be further analyzed for the DNN inference 
accuracy. 

The RRAM macro can operate in two modes. First, the row 
decoder generates one-hot WL signals for cell-level RRAM 
programming and resistance read-out. Second, the row decoder 
asserts all differential wordline (WL) signals of the 128×64 

simultaneously for IMC operation and performs the partial 
MAC computation. 

The prototype chips (Fig. 1(c)) were fabricated in 90nm 
CMOS technology [11] that monolithically integrates 128×64 
HfO2 RRAM array (between M1 and M2) with SAs, column 
multiplexers, clock generator, row/column decoder, level-
shifters, decoupling capacitors, etc.  

III. EXPERIMENT RESULTS 

A. Relaxation and Experiment Setup 
We measured the relaxation effects of four-level RRAM 

device/array over time for different operating conditions across 
three different chips. During RRAM programming, we tighten 
the conductance distribution using a write-verify programming 
protocol [8] so that the initial conductance is within 5% of the 
target state that ideally maps the four weight values.  

Table I describes the eight different relaxation experiments 
that we conducted on three test chips (#1-#3) to monitor the 
effect of RRAM relaxation. For A1 and A2 experiments, we 
focus on the RRAM array resistance change without IMC for 
94 hours. On the other hand, for B1, B2, B3, and B4 
experiments, we performed array-level IMC in hardware a 

Table Ι. Relaxation setup information for eight experiments. 

 

Fig. 2. Four-level RRAM relaxation effect over time for six experiments A1/A2 (without IMC) and B1/B2/B3/B4 (with IMC). For the six experiments, most 
relaxation occurs right after the initial programming, and subsequently saturates over time. 

 
Fig. 1. (a) 2-bit-per-cell RRAM schematic; (b) Conductance representation of 
multiplication with 2-bit weights; (c) Chip micrograph. Adapted from [8]. 
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different number of times during the total experiment hours (up 
to 156 hours). During B5 and B6 experiments, more IMC 
operations are executed to verify the mitigation between the 
read-disturb induced RRAM drift effect [10] and the RRAM 
relaxation effect.  

For six experiments from Table I, Fig. 2 shows the 
measured conductance results of the four-level RRAM devices 
starting from the programming time up to 156 hours. The 
conductance values for the four-level RRAMs shown in Fig. 2 
are in the range of a few μS to a few hundreds of μS. 

The overall workflow of the relaxation measurement, 
simulation and DNN accuracy evaluation is shown in Fig. 3. 
During the chip measurement process, the 2-bit RRAM chips 
are programmed with the subsets of the DNN with the input-
splitting algorithm [8]. With reference voltage configuration, 
IMC operation, and relaxation effect, the RRAM array cell 
resistance changes are monitored over time. To better 
characterize the relaxation impact on effective resistance of the 
column (Reff), VRBL and DNN accuracy, we performed HSPICE 

simulation on the RRAM array column with the peripheral 
circuits, where we used the individual RRAM resistance 
measurements from the eight experiments in Table I. With the 
HSPICE simulation results, further data processing (2-D 
histogram and probability table generation) similar to hardware 
data processing is available, and we can generate DNN 
inference accuracy for RRAM array performance analysis, 
under different relaxation effect and operation stress condition.  

While we can measure IMC results directly from the RRAM 
chips, we performed HSPICE simulation with RRAM device 
measurement results, to separate the relaxation effect over time 
with the IMC operation. In fact, as we discuss in Section III.D, 
read disturb drift effects by IMC operations can partially 
mitigate the relaxation effects of RRAM devices.  

B. Relaxation Measurements and DNN Inference Accuracy 
For the relaxation measurements, we monitored the cell-

level resistance changes over time for the 128×64 RRAM array 
across eight experiments, and Fig. 4 shows the results. The two 
intermediate states of GHIGH×1/3 and GHIGH×2/3 experienced 
more decrease in average conductance and more increase in 
standard deviation over time (Fig. 4), indicating that they are 
less stable than GHIGH and GLOW.  

As shown in the cumulative distribution function (CDF) of 
Fig. 2 and four-level conductance color map in Fig. 5, we 

 

Fig. 3. RRAM chip measurement and simulation framework of this work. 

 
Fig. 5. Four-level conductance color-map. (a) GHIGH; (b) GHIGH ×2/3; (c) GHIGH 
×1/3; (d) GLOW. For each level, 128 cells’ conductance values are from A1 
experiment. Warmer color represents a lower conductance value. 

 
Fig. 4. (a) Mean of conductance and (b) standard deviation of conductance 
changes in 100 hours are shown for the eight experiments. 
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observed a noticeable relaxation effect for six experiments (A1-
A2, B1-B4) obtained from the measurement of three test chips.  
It can be seen that a large portion of relaxation occurs right after 
the programming (Fig. 2), and a similar behavior has also been 
reported in other prior HfO2 RRAM works [12]. Low resistance 
states of the cells tend to reduce their conductance over time, 
which agrees with what was reported in [9], while high 
resistance states tend to fluctuate over time (Fig. 6) but they 
contribute negligible current to the bitline for MAC operation. 

During the RRAM measurement based HSPICE simulation, 
to reflect the time-induced noise or variation of SAs, we added 
a random variation value for each Vref in the SA group. One 
input vector applied on 128 rows will perform IMC with 2-bit 
weights in the 128×64 array, and the output from the SA group 
indicates the computed results for the partial MAC value within 
one column. For each partial MAC value, Fig. 7(a) and Fig. 7(b) 
show the 2-D histograms of IMC measurements from the 
RRAM chips at 0 hours and 144 hours, respectively. Fig. 7(c) 
and Fig. 7(d) represent the 2-D histograms of the HSPICE 
simulations based on individual RRAM device measurements 
at 0 hours and 144 hours, respectively, which show similar 
behavior as the IMC measurement results. The 2-D histogram 

is used to generate a probability curve (Fig. 9), which states the 
probability for each MAC value output to be quantized to “+1” 
for the binary output (“+1” or “-1”) of the RRAM array, based 
on the input-splitting scheme [8].  

Based on the RRAM conductance changes measured from 
six experiments, we compared the VRBL, Reff, and DNN accuracy 
change over time. First, we discovered a strong correlation in 
Reff and Vref changes over time. We simulated the average Reff 
and Vref changes between 0 and ~100 hours for six experiments 
(Fig. 8). A larger increase in Reff corresponds to a larger VRBL 
increase and leads to SA output difference over time. Second, 
we simulated the MAC operation starting from the time of 0 

 
Fig. 7. (a)-(b) 2-D histogram from IMC measurements from RRAM chips at 0 and 144 hours for B2 experiment. (c)-(d) 2-D histogram from HSPICE simulation 
using individual RRAM device measurements from 0 to 144 hours for B2 experiment. 

 
Fig. 6. Average conductance change of four-level RRAM devices for six 
experiments. GHIGH ×1/3 is affected the most by relaxation. While GLOW 
tends to fluctuate over time, they contribute negligible current for IMC. 

 

        
Fig. 9. Probability curve shifting is observed over time from B2 experiment. 

 
Fig. 8. Reff and VRBL correlation. VRBL will increase with Reff from the relaxation 
effect. 
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hours to ~100 hours and use the Vref setting at 0 hours 
throughout the entire experiment duration. The results indicate 
that a worse relaxation will lead to a larger change in average 
Reff, and correspondingly results in a larger VRBL change. These 
VRBL changes cause the difference in SA group output, 2-D 
histogram, and shifting behavior in probability curves (Fig. 9), 
and lead to a considerable DNN inference accuracy loss, e.g. 
from 87.35 % to 11.58% for B4 (Fig. 10(a)).  

As we observe that a large portion of the RRAM relaxation 
effect occurs soon after the RRAM programming, one approach 
to avoid huge loss from it is to wait until most relaxation 
saturates, then calibrate the Vref for SAs, and use the calibrated 
Vref for the ensuing time. We selected ~80 hours as the time to 
perform Vref re-calibration for two reasons. First, while large 
conductance changes are observed right after programming (in 
20 minutes from Fig. 2), non-negligible relaxation further 
occurs from 20 minutes to ~80 hours, and the relaxation largely 
saturates after ~80 hours. Second, our aim is that the Vref re-
calibration method can mitigate the long-term relaxation effect 
without additional write operations (e.g. throughout hundreds 
of hours, while our experiments in this paper are up to ~150 
hours due to the time limits). Compared to re-calibrating Vref in 
20 minutes or a few hours after programming, performing Vref 
re-calibration in ~80 hours could enable a longer operational 
time for the RRAM chips.  

Based on the B2/B3/B4 experiments, we characterized the 
MAC operation starting from the time of around 80 hours to 
144/156 hours and used the Vref setting obtained at time of 

around 80 hours through the remaining time of experiments 
(Fig. 10(b)). Compared to Fig. 10(a), a relatively smaller 
accuracy drop occurs over time in Fig. 10(b), due to the 
saturated RRAM relaxation behavior. This circuit-level 
technique improves the long-term stability for IMC, although 
B4 experiment needs further improvement.  

C. Relaxation-aware DNN Training and Improvement 
 As seen in Fig. 3, among the four levels of 2-bit-per-cell 

RRAM, two intermediate states suffer more relaxation, due to 
the weak filament in RRAM cell. If the DNN is aware of this 
drawback on the two intermediate states and reduces the overall 
percentage of these states during the training procedure, the 
inference accuracy should have less impact from the relaxation 
effect. Therefore, we introduce a magnification factor (M) 
during the training of 2-bit-weight VGG-like DNN for CIFAR-
10 dataset (Fig. 11). By increasing the M during training, it 
pushes more weights within each layer to the highest and lowest 
resistance stages, with almost no initial accuracy change 
compared to the baseline DNN (Table II).  

Subsequently, using the measured RRAM conductance 
values from B2-B4 experiments, we evaluated the DNN 
accuracy over time for different M values from 1.0 to 2.5 (Table 
Ⅱ), using Vref settings from the time at 0 hours and around 80 
hours (Fig. 12). Compared with the results in Fig. 10(a), the re-
trained DNNs with higher M achieves much higher DNN 
accuracy over time for both Vref settings. By combining both 
schemes, DNN accuracy of >87.2% for CIFAR-10 is achieved 
for B4 over 144 hours with a single Vref re-calibration at 86 
hours. This indicates that the relaxation-aware training scheme 
largely alleviated the impact of RRAM relaxation. 

 
W=3*[(round(clip(weight_array*M, -1, +1)*1.5+1.5)-1.5)/1.5] 

Fig. 11. DNN training with higher magnification factor (M) pushes more 
weights to +3 (GHIGH) and -3 (GLOW).  

Fig. 10. (a) DNN accuracy drops from 0 to ~100 hours for 6 experiments. (b) 
DNN accuracy drops with Vref calibrated at ~80 hours for B2/B3/B4. 

Table Ⅱ. Weight distribution change for DNN training with different 
magnification factor (M) for VGG-like CNN for CIFAR-10 dataset. 

 

Authorized licensed use limited to: ASU Library. Downloaded on January 03,2022 at 21:17:48 UTC from IEEE Xplore.  Restrictions apply. 



D. RRAM Read Disturb on Relaxation Effect Mitigation 
As discussed in [10], when the read voltage is higher than a 

certain level, read disturb will occur as conductance drift for 
both LRS and HRS states.  High RBL voltage will tend to 
increase the conductance of LRS, and reduce that of HRS, 
which is the opposite trend of RRAM relaxation effect. In Fig. 
2(a), compared to the no IMC operation experiments A1/A2, 
we observed that B1-B4 experiments have less mean 
conductance change. When IMC operation is applied on the 
chip, the voltage between the RRAM cells increases from 

normal read voltage (0.2V) to a relatively high value (0.4-
0.6V), thus the read disturb induced conductance drift takes 
place. This drift mitigates the relaxation effect on LRS, and 
results in fewer conductance changes over time.  

To verify this hypothesis, B5 and B6 experiments are 
conducted with a greater number of IMC operations and 
measured for inference accuracy performance comparison. B5 
executes IMC operation every three hours, and B6 executes 
IMC operation every twelve hours, both having a higher IMC 
operation frequency than B1-B4 experiments. Overall, B5 and 
B6 experiments have less conductance reduction than  B1-B4 
at three LRS states (Fig. 3). 

Then, similar relaxation simulations are reproduced with 
HSPICE simulations and both circuit-level and algorithm-level 
optimization methods are applied for B5 and B6 experiments. 
Fig. 13 shows the DNN inference accuracy changes over time 
under two mitigation methods. Compared to B2-B4 results in 
Fig. 12, the accuracy degradation without any optimization 
scheme (M=1.0 case) is lower after 150 hours (87.18% to 
71.12% for B5, 87.49% to 58.81% for B6). Regarding the two 
proposed mitigation schemes together with the purposely 
induced read-disturb, both methods result in similar or better 
accuracy retention over time compared with B2-B4 
experiments. For B5 and B6 experiments, applying a single 
scheme is sufficient for DNN accuracy retention against the 
relaxation effect. Vref recalibration alone (in solid lines in Fig. 
13) can recover the accuracy of original DNN cases (M=1.0) to 
be above 83% after 150 hours. Similarly, relaxation-aware 
DNN training scheme alone serves similar improvement results 
as B2-B4 experiments. M=2.5 case in B5 and B6 (blue dash 
lines) can maintain the accuracy above 83% over 150 hours, 
without the help of Vref calibration method. 

The results above indicate that the read disturb drift effects 
can also partially cancel out and mitigate the non-ideality from 
relaxation effect, overall improving the DNN inference 
accuracy over time.  

 
Fig. 13. Simulation results of B5/B6 experiments under high frequency IMC 
operation stress. B5 and B6 show better accuracy retention after 150 hours. 

 
Fig. 12. (a)-(c) For experiment B2/B3/B4, we tested the DNN inference accuracy from 0 to 144/156 hours, for RRAM arrays with weight distribution using 
different magnification factor (M). Overall, higher percentage of “+3/-3” weights offers improved robustness against relaxation. (d)-(f) DNN accuracy trends 
with Vref calibrated at ~80 hours for B2/B3/B4 experiments. 
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IV. CONCLUSION 
In this paper, we comprehensively characterized the 

relaxation effects of multi-level HfO2 RRAM at array-level for 
in-memory computing hardware targeting DNN inference 
applications. Relaxation effects are noticeable at intermediate 
states of multi-level RRAM, but can be compensated using 
circuit-level (e.g. Vref calibration after relaxation saturation) and 
algorithm-level (e.g. relaxation-aware DNN training for weight 
re-distribution) techniques that we proposed and demonstrated. 
Also, the non-ideality from the read disturb induced drift effect 
can be utilized to mitigate the relaxation effect and could 
potentially enhance the DNN inference accuracy retention over 
time. 
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