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Abstract— In this paper, we investigate the relaxation effects on
multi-level resistive random access memory (RRAM) based in-
memory computing (IMC) for deep neural network (DNN)
inference. We characterized 2-bit-per-cell RRAM IMC
prototypes and measured the relaxation effects over 100 hours on
multiple 8 kb test chips, where the relaxation is found to be most
severe in the two intermediate states. We incorporated the
experimental data into SPICE simulation and software DNN
inference, showing DNN accuracy for CIFAR-10 dataset could
degrade from 87.35% to 11.58% after 144 hours. To recover the
largely degraded accuracy, mitigation schemes are proposed: 1)
at the circuit level, the reference voltage for RRAM IMC could be
calibrated after 80 hours when the relaxation is saturated. 2) At
the algorithm level, the weights are trained with lower
percentages to be quantized to the two intermediate states. With
both schemes applied, the accuracy could be recovered to 87.32%
for long-term stability.

Index Terms—RRAM, in-memory computing, multi-level cell,
relaxation effect, deep neural network

L INTRODUCTION

DNNSs have been successful in many computer vision and
speech recognition applications. While state-of-the-art DNN
algorithms continue to achieve higher accuracy with less
number of parameters, the most compact models still require >3
million weights to achieve >70% top-1 ImageNet accuracy [1].
This leads to an insatiable demand for high-density memories
such as multi-level RRAM. On the other hand, the DNN
computations are dominated by multiply-and-accumulate
(MAC) operations, but the overall energy consumption of DNN
inference hardware has been dominated by memory access and
data communication [2], due to the separation of conventional
memories with row-by-row access and dedicated MAC
engines. To improve the energy-efficiency of DNN inference,
in-memory computing (IMC) has emerged as a promising
technique, which turns on multiple rows and performs analog
MAC computations along the bitline inside the memory.

Recent array-level demonstrations have presented RRAM’s
potential towards IMC for area-/energy-efficient DNN
inference [3-7], but most RRAM based IMC prototypes today
feature only single-level cell design [3-5]. Device-level
programming of multi-level RRAM has been reported but was
limited to row-by-row read-out [6]. Only a few works reported
IMC with four-level RRAM devices [7-8], while [7] only
demonstrated a simple two-layer multi-layer perceptron for a
low 94.4% accuracy for MNIST dataset. More importantly,
most of the prior prototype designs just reported the basic
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functionality of IMC, while the reliability aspect of RRAM at
array-level and during actual IMC operations is largely
unexplored, although it can considerably affect the DNN
inference accuracy.

Relaxation occurs as a rapid drift of conductance right after
initial programming but gradually saturates in the long term.
For HfO, RRAM, its relaxation effects at device-level were
reported in [5, 9], and read disturb induced RRAM conductance
drift behavior was investigated in [10]. In our prior work [8], to
maintain relatively stable DNN inference accuracy with RRAM
relaxation effects over time, the peripheral circuits (e.g.
reference voltages to the sense amplifiers) needed to be
recalibrated every once in a while.

In this work, we comprehensively characterized the
relaxation behavior with and without IMC operations on array-
level with multiple 8 kb test chips [8], and analyzed its impact
on DNN inference accuracy over time. The experiments are
based on relaxation measurements of 2-bit-per-cell HfO,
RRAM cells over 1,047 hours (over one month) accumulatively
collected from three test chips, which were designed for RRAM
based IMC with CMOS peripheral circuits. We present two
mitigation schemes to recover the degraded DNN accuracy due
to the relaxation effects. First, at the circuit-level, we calibrate
the reference voltages after the relaxation saturates. Second, at
the algorithm-level, we present a relaxation-aware DNN
training technique to maintain high accuracy over time without
frequent peripheral circuit calibration.

II. RRAM IMC BITCELL AND CHIP DESIGN

A. 2-bit-per-cell RRAM IMC

As shown in Fig. 1(a), we use two vertically-adjacent cells
and differential wordlines (WLs) to represent one 2-bit weight
[8]. Four conductance values with equidistant conductance
levels from Gugn to Grow corresponds to +3, +1, -1 and -3
weight values. As shown in Fig. 1(b), the element-wise
multiplication between binary activation (+1, -1) and four-level
weights results in four different pull-down strengths governed
by the effective conductance, corresponding to four MAC
partial results of +3, +1, -1, and -3.

Our RRAM macro design exhibits a 128x64 array, and with
the vertically differential cell structure, each column stores 64
distinct weights. With all cells in the same column conducting
in parallel, the sum of multiplication or MAC computation of
64 inputs will be between -192 to +192. Each possible MAC
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Fig. 1. (a) 2-bit-per-cell RRAM schematic; (b) Conductance representation of
multiplication with 2-bit weights; (c) Chip micrograph. Adapted from [8].

value is represented by the RBL voltage (Vzs), which is formed
by the resistive divider between a controllable PMOS header
and the parallel RRAM cells plus the analog multiplexer.

B. RRAM IMC Macro Periphery and Chip Design

Vrer is compared with a reference voltage (V) using
voltage-mode sense amplifiers (SAs). One SA group consists
of seven SAs, which can work in two different modes. With
seven different Vs voltages, the seven SAs can operate as a 3-
bit (8-level) flash ADC [3]. Alternatively, we can use the seven
SAs with identical V,..s to vote majority and obtain the binary
output for the input-splitting algorithm [8]. For higher array-
efficiency and density, each SA group is shared among every
eight columns of RRAM array. The SAs convert the analog
Vrar voltage that represents the partial MAC results into digital
values, which will be further analyzed for the DNN inference
accuracy.

The RRAM macro can operate in two modes. First, the row
decoder generates one-hot WL signals for cell-level RRAM
programming and resistance read-out. Second, the row decoder
asserts all differential wordline (WL) signals of the 128x64

Table I. Relaxation setup information for eight experiments.

# of array-level IMC
Experiment#| Chip# | Total Hours | executed during
total hour
A1 #1 94
A2 #2 94
B1 #3 108
B2 #1 144 10
B3 #1 156
B4 #2 144
B5 #1 154 49
B6 #1 153 12

simultaneously for IMC operation and performs the partial
MAC computation.

The prototype chips (Fig. 1(c)) were fabricated in 90nm
CMOS technology [11] that monolithically integrates 128x64
HfO, RRAM array (between M1 and M2) with SAs, column
multiplexers, clock generator, row/column decoder, level-
shifters, decoupling capacitors, etc.

III. EXPERIMENT RESULTS

A. Relaxation and Experiment Setup

We measured the relaxation effects of four-level RRAM
device/array over time for different operating conditions across
three different chips. During RRAM programming, we tighten
the conductance distribution using a write-verify programming
protocol [8] so that the initial conductance is within 5% of the
target state that ideally maps the four weight values.

Table I describes the eight different relaxation experiments
that we conducted on three test chips (#1-#3) to monitor the
effect of RRAM relaxation. For Al and A2 experiments, we
focus on the RRAM array resistance change without IMC for
94 hours. On the other hand, for Bl, B2, B3, and B4
experiments, we performed array-level IMC in hardware a
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Fig. 2. Four-level RRAM relaxation effect over time for six experiments A1/A2 (without IMC) and B1/B2/B3/B4 (with IMC). For the six experiments, most
relaxation occurs right after the initial programming, and subsequently saturates over time.
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Fig. 4. (a) Mean of conductance and (b) standard deviation of conductance
changes in 100 hours are shown for the eight experiments.

different number of times during the total experiment hours (up
to 156 hours). During BS and B6 experiments, more IMC
operations are executed to verify the mitigation between the
read-disturb induced RRAM drift effect [10] and the RRAM
relaxation effect.

For six experiments from Table I, Fig. 2 shows the
measured conductance results of the four-level RRAM devices
starting from the programming time up to 156 hours. The
conductance values for the four-level RRAMs shown in Fig. 2
are in the range of a few uS to a few hundreds of uS.

The overall workflow of the relaxation measurement,
simulation and DNN accuracy evaluation is shown in Fig. 3.
During the chip measurement process, the 2-bit RRAM chips
are programmed with the subsets of the DNN with the input-
splitting algorithm [8]. With reference voltage configuration,
IMC operation, and relaxation effect, the RRAM array cell
resistance changes are monitored over time. To better
characterize the relaxation impact on effective resistance of the
column (R.p), Vzsr and DNN accuracy, we performed HSPICE
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Fig. 5. Four-level conductance color-map. (a) Guign; (b) Guicn %2/3; (¢) Guign
x1/3; (d) Grow. For each level, 128 cells’ conductance values are from Al
experiment. Warmer color represents a lower conductance value.

simulation on the RRAM array column with the peripheral
circuits, where we used the individual RRAM resistance
measurements from the eight experiments in Table I. With the
HSPICE simulation results, further data processing (2-D
histogram and probability table generation) similar to hardware
data processing is available, and we can generate DNN
inference accuracy for RRAM array performance analysis,
under different relaxation effect and operation stress condition.

While we can measure IMC results directly from the RRAM
chips, we performed HSPICE simulation with RRAM device
measurement results, to separate the relaxation effect over time
with the IMC operation. In fact, as we discuss in Section IIL.D,
read disturb drift effects by IMC operations can partially
mitigate the relaxation effects of RRAM devices.

B. Relaxation Measurements and DNN Inference Accuracy

For the relaxation measurements, we monitored the cell-
level resistance changes over time for the 128x64 RRAM array
across eight experiments, and Fig. 4 shows the results. The two
intermediate states of Guirx1/3 and Guigr*2/3 experienced
more decrease in average conductance and more increase in
standard deviation over time (Fig. 4), indicating that they are
less stable than Guigr and Grow.

As shown in the cumulative distribution function (CDF) of
Fig. 2 and four-level conductance color map in Fig. 5, we
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Fig. 6. Average conductance change of four-level RRAM devices for six

experiments. Ghiga x1/3 is affected the most by relaxation. While Grow
tends to fluctuate over time, they contribute negligible current for IMC.

observed a noticeable relaxation effect for six experiments (A1-
A2, B1-B4) obtained from the measurement of three test chips.
It can be seen that a large portion of relaxation occurs right after
the programming (Fig. 2), and a similar behavior has also been
reported in other prior HfO, RRAM works [12]. Low resistance
states of the cells tend to reduce their conductance over time,
which agrees with what was reported in [9], while high
resistance states tend to fluctuate over time (Fig. 6) but they
contribute negligible current to the bitline for MAC operation.

During the RRAM measurement based HSPICE simulation,
to reflect the time-induced noise or variation of SAs, we added
a random variation value for each V. in the SA group. One
input vector applied on 128 rows will perform IMC with 2-bit
weights in the 128%64 array, and the output from the SA group
indicates the computed results for the partial MAC value within
one column. For each partial MAC value, Fig. 7(a) and Fig. 7(b)
show the 2-D histograms of IMC measurements from the
RRAM chips at 0 hours and 144 hours, respectively. Fig. 7(c)
and Fig. 7(d) represent the 2-D histograms of the HSPICE
simulations based on individual RRAM device measurements
at 0 hours and 144 hours, respectively, which show similar
behavior as the IMC measurement results. The 2-D histogram
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is used to generate a probability curve (Fig. 9), which states the
probability for each MAC value output to be quantized to “+1”
for the binary output (“+1” or “-1”) of the RRAM array, based
on the input-splitting scheme [8].

Based on the RRAM conductance changes measured from
six experiments, we compared the Vzaz, Rep;, and DNN accuracy
change over time. First, we discovered a strong correlation in
Ry and V,or changes over time. We simulated the average R.y
and Vs changes between 0 and ~100 hours for six experiments
(Fig. 8). A larger increase in R,y corresponds to a larger Vgp:
increase and leads to SA output difference over time. Second,
we simulated the MAC operation starting from the time of 0
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Fig. 7. (a)-(b) 2-D histogram from IMC measurements from RRAM chips at 0 and 144 hours for B2 experiment. (c)-(d) 2-D histogram from HSPICE simulation
using individual RRAM device measurements from 0 to 144 hours for B2 experiment.
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hours to ~100 hours and use the V. setting at 0 hours
throughout the entire experiment duration. The results indicate
that a worse relaxation will lead to a larger change in average
Rep, and correspondingly results in a larger Vg, change. These
Vrer changes cause the difference in SA group output, 2-D
histogram, and shifting behavior in probability curves (Fig. 9),
and lead to a considerable DNN inference accuracy loss, e.g.
from 87.35 % to 11.58% for B4 (Fig. 10(a)).

As we observe that a large portion of the RRAM relaxation
effect occurs soon after the RRAM programming, one approach
to avoid huge loss from it is to wait until most relaxation
saturates, then calibrate the Vs for SAs, and use the calibrated
V.o for the ensuing time. We selected ~80 hours as the time to
perform V. re-calibration for two reasons. First, while large
conductance changes are observed right after programming (in
20 minutes from Fig. 2), non-negligible relaxation further
occurs from 20 minutes to ~80 hours, and the relaxation largely
saturates after ~80 hours. Second, our aim is that the V. re-
calibration method can mitigate the long-term relaxation effect
without additional write operations (e.g. throughout hundreds
of hours, while our experiments in this paper are up to ~150
hours due to the time limits). Compared to re-calibrating V., in
20 minutes or a few hours after programming, performing Vs
re-calibration in ~80 hours could enable a longer operational
time for the RRAM chips.

Based on the B2/B3/B4 experiments, we characterized the
MAC operation starting from the time of around 80 hours to
144/156 hours and used the V. setting obtained at time of

Table II. Weight distribution change for DNN training with different
magnification factor (M) for VGG-like CNN for CIFAR-10 dataset.

Mag. Factor GHIGH GHIGH x2/3 GHIGHX 1/3 GLOW BaDsﬁlrElne
for Training (%) (%) (%) (%) Accuracy
1.0 24.603 25.578 25.482 24.338 87.60%
1.5 32.948 17.157 17.128 32.767 87.39%
2.0 36.766 13.189 13.198 36.847 87.24%
25 39.389 10.755 10.716 39.141 87.60%
GHIGH 1
Grcn*2/3-
Grucnx1/3
GLOW'
-1.0 -0.5 0.0 0.5 1.0

Floating Point Weight
W=3*[(round(clip(weight_array*M, -1, +1)*1.5+1.5)-1.5)/1.5]

Fig. 11. DNN training with higher magnification factor (M) pushes more
weights to +3 (GHIGH) and -3 (GLOW)~

around 80 hours through the remaining time of experiments
(Fig. 10(b)). Compared to Fig. 10(a), a relatively smaller
accuracy drop occurs over time in Fig. 10(b), due to the
saturated RRAM relaxation behavior. This circuit-level
technique improves the long-term stability for IMC, although
B4 experiment needs further improvement.

C. Relaxation-aware DNN Training and Improvement

As seen in Fig. 3, among the four levels of 2-bit-per-cell
RRAM, two intermediate states suffer more relaxation, due to
the weak filament in RRAM cell. If the DNN is aware of this
drawback on the two intermediate states and reduces the overall
percentage of these states during the training procedure, the
inference accuracy should have less impact from the relaxation
effect. Therefore, we introduce a magnification factor (M)
during the training of 2-bit-weight VGG-like DNN for CIFAR-
10 dataset (Fig. 11). By increasing the M during training, it
pushes more weights within each layer to the highest and lowest
resistance stages, with almost no initial accuracy change
compared to the baseline DNN (Table II).

Subsequently, using the measured RRAM conductance
values from B2-B4 experiments, we evaluated the DNN
accuracy over time for different M values from 1.0 to 2.5 (Table
II), using V. settings from the time at 0 hours and around 80
hours (Fig. 12). Compared with the results in Fig. 10(a), the re-
trained DNNs with higher M achieves much higher DNN
accuracy over time for both V. settings. By combining both
schemes, DNN accuracy of >87.2% for CIFAR-10 is achieved
for B4 over 144 hours with a single V., re-calibration at 86
hours. This indicates that the relaxation-aware training scheme
largely alleviated the impact of RRAM relaxation.
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Fig. 13. Simulation results of B5/B6 experiments under high frequency IMC
operation stress. B5 and B6 show better accuracy retention after 150 hours.

D. RRAM Read Disturb on Relaxation Effect Mitigation

As discussed in [10], when the read voltage is higher than a
certain level, read disturb will occur as conductance drift for
both LRS and HRS states. High RBL voltage will tend to
increase the conductance of LRS, and reduce that of HRS,
which is the opposite trend of RRAM relaxation effect. In Fig.
2(a), compared to the no IMC operation experiments A1/A2,
we observed that B1-B4 experiments have less mean
conductance change. When IMC operation is applied on the
chip, the voltage between the RRAM cells increases from

normal read voltage (0.2V) to a relatively high value (0.4-
0.6V), thus the read disturb induced conductance drift takes
place. This drift mitigates the relaxation effect on LRS, and
results in fewer conductance changes over time.

To verify this hypothesis, B5 and B6 experiments are
conducted with a greater number of IMC operations and
measured for inference accuracy performance comparison. B5
executes IMC operation every three hours, and B6 executes
IMC operation every twelve hours, both having a higher IMC
operation frequency than B1-B4 experiments. Overall, B5 and
B6 experiments have less conductance reduction than B1-B4
at three LRS states (Fig. 3).

Then, similar relaxation simulations are reproduced with
HSPICE simulations and both circuit-level and algorithm-level
optimization methods are applied for B5S and B6 experiments.
Fig. 13 shows the DNN inference accuracy changes over time
under two mitigation methods. Compared to B2-B4 results in
Fig. 12, the accuracy degradation without any optimization
scheme (M=1.0 case) is lower after 150 hours (87.18% to
71.12% for BS, 87.49% to 58.81% for B6). Regarding the two
proposed mitigation schemes together with the purposely
induced read-disturb, both methods result in similar or better
accuracy retention over time compared with B2-B4
experiments. For B5 and B6 experiments, applying a single
scheme is sufficient for DNN accuracy retention against the
relaxation effect. V. recalibration alone (in solid lines in Fig.
13) can recover the accuracy of original DNN cases (M=1.0) to
be above 83% after 150 hours. Similarly, relaxation-aware
DNN training scheme alone serves similar improvement results
as B2-B4 experiments. M=2.5 case in B5 and B6 (blue dash
lines) can maintain the accuracy above 83% over 150 hours,
without the help of V,.rcalibration method.

The results above indicate that the read disturb drift effects
can also partially cancel out and mitigate the non-ideality from
relaxation effect, overall improving the DNN inference
accuracy over time.
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IV. CONCLUSION

In this paper, we comprehensively characterized the
relaxation effects of multi-level HfO, RRAM at array-level for
in-memory computing hardware targeting DNN inference
applications. Relaxation effects are noticeable at intermediate
states of multi-level RRAM, but can be compensated using
circuit-level (e.g. V;.rcalibration after relaxation saturation) and
algorithm-level (e.g. relaxation-aware DNN training for weight
re-distribution) techniques that we proposed and demonstrated.
Also, the non-ideality from the read disturb induced drift effect
can be utilized to mitigate the relaxation effect and could
potentially enhance the DNN inference accuracy retention over
time.
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