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Abstract
Accurate cell conductance tuning is critical to realizing multilevel resistive random access
memory (RRAM)-based compute-in-memory inference engines. To tighten the distribution of
the cells of each state, we developed a two-step write–verify scheme within a limited number of
iterations, which was tested on a test vehicle based on HfO2 RRAM array to realize 2 bits per
cell. The conductance of the cells is gathered in the targeted range within 10 loops of set and
reset processes for each step. Moreover, the read noise of the RRAM cells is statistically
measured and its impact on the upper bound of analog-to-digital converter (ADC) resolution is
predicted. The result shows that the intermediate state cells under relatively high read voltage
(e.g. 0.2 V) are vulnerable to the read noise. Fortunately, the aggregated read noise along the
column will not disturb the output of a 5 bit ADC that is required for a 128 × 128 array with 2
bits per cell.

Keywords: multilevel resistive random access memory, write-verify, read noise,
compute-in-memory, deep learning inference engine

Some figures may appear in colour only in the online journal

1. Introduction

Nowadays, deep learning is one of the spotlighted fields to
hardware and software researchers. To realize an accurate and
efficient learning process, deep neural network (DNN) has
emerged as a powerful solution in various tasks such as image
classification, speech recognition, and language translation. To
achieve high accuracy in the DNNs, recently proposed works
demand larger network size and deeper network depth. Inev-
itably, the growing size of the DNNs increases the amount of
computation significantly.

Hardware based on Von-Neumann architecture (e.g. CPU
and GPU) is commonly used for DNN computation today.
However, the huge amount of data movement between the

3 Author to whom any correspondence should be addressed.

processor and the main memory causes bandwidth limita-
tion and lowers the energy efficiency. Several CMOS-based
application-specific integrated circuits (ASIC) accelerators,
such as Google TPU [1], are proposed as an alternative. How-
ever, the memory wall still exists where the parameters are
stored in global buffers, and computation is performed in the
digital multiply-and-accumulation (MAC) arrays. Frequent
DRAM access is still required because of the limited global
buffer capacity.

Compute-in-memory (CIM) has been studied as an altern-
ative paradigm owing to its high throughput and energy effi-
ciency [2]. For the realization of CIM in the non-volatile
memory (NVM) arrays, the conductance of the memory cell
is utilized to represent the weight, and MAC operation is con-
ducted by activating multiple rows simultaneously and then
reading out the analog current summed up along the column.
This analog computing method enables high parallelism
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since the dense NVM array, with millions of memory cells,
performs computation in parallel. In addition, the computa-
tion performed within the memory array reduces the energy
consumption caused by datamovement between processor and
memory.

Various type of NVMs have been investigated as a synaptic
device for CIM application, such as resistive random access
memory (RRAM) [3–7], phase change memory (PCM) [8, 9],
flash memory [10–13], and ferroelectric field effect transistor
(FeFET) [14]. Among them, RRAM has been regarded as a
strong candidate for a synaptic device due to its logic com-
patibility and low integration cost, which has been demon-
strated at industrial-grade 22 nm platform [15]. Previous
works [16–19] have already proven the capability of the multi-
level state characteristics of RRAM. However, more tightened
cell conductance distribution is required for multilevel syn-
aptic devices than for the conventional multilevel cell (MLC)
data storage applications. This is because a shift of any cell’s
conductance value may affect the result of the analog-to-
digital conversion (ADC) quantization since the current is
summed up along the column in an analog manner, while only
the overlapping cells (e.g. tail bits) with significant conduct-
ance deviation over the neighboring states induce errors in the
MLC storage.Moreover, spacing each state linearly in the con-
ductance regime is more challenging compared to the conven-
tional MLC application, which has exponentially spaced con-
ductance states between each level.

Therefore, many studies have been conducted to precisely
tune the conductance of multilevel RRAM cells. Prior works
[20, 21] have proposed the write–verify method for synaptic
device applications, and suggested set and reset bias schemes
with incremental bitline (BL) voltage and fixed gate voltage
(VG) [20], fixed BL voltage and incremental VG [21], or a full
reset if the cell is overset [22], which may require a large num-
ber of iteration loops. In this work, we tested a novel two-
step write–verify scheme on an RRAM-based 1-transistor-
1-resistor (1T1R) array fabricated at 90 nm process [23] to
achieve a tightened 2 bit per cell conductance distribution with
a limited number of iteration loops.

In addition, we investigated the effect of the read noise
on the RRAM-based CIM application. The read noise of the
individual RRAM cell current from multiple activated cells
merges on the summed current along the BL. This may cause
an error in ADC of the merged current and accuracy degrada-
tion of theDNNmodel as well. Going one step further from the
prior works [24–26], we measured the read noise of individual
cells with multilevel states on our test chip, and investigated its
impact on the upper bound of ADC resolution.

2. Two-step write–verify scheme

Figure 1(a) shows the die photo of our test vehicle, which
has 64 kb (256 × 256) RRAM cell array and peripheral cir-
cuits. Figure 1(b) shows the 1T1R array configuration of the
test vehicle and an example of the synaptic array operation
where multiple WLs are activated simultaneously and the cell
currents of the activated cells are summed up along the BL.

WL0

WL1

WL2

BL1 BL2

SL

WL3

σ12

σ22

σ32

(b)
BL0

(a)

Figure 1. (a) Die photo of the tested chip. (b) 1T1R array
configuration of RRAM cell array.

Chip-level statistical measurements were performed using our
PXIe testing system from National Instruments.

To realize the multilevel RRAM with tightened cell dis-
tributions, we used a novel two-step write–verify scheme as
described in figure 2(a). Before starting the first step of write–
verify, the reset pulse is applied to all of the cells. The first
step of write–verify is conducted with respective set/reset BL
voltage, gate voltage (VG), gate voltage step (VG,STEP), and
maximum loop. At the first loop of the set operation, all the
cells are read and marked as the program (PGM) cells and
followed by the first set pulses. From the second loop, the
cells having higher conductance than lower-bound conduct-
ance (Glower) are marked as inhibited cells, while the cells
having lower conductance are marked as PGM cells at the
following set operation loop. The set pulse with incremental
gate voltage is applied at the following loop only to the PGM
marked cells. Even if some of the cells are marked as inhibited
in the previous loop, all the cells are read again in every loop
to prevent the case in which any kind of conductance variation
opportunistically reads the cells within the target range and the
cells are passed at the next loop. When the set operation loop
reaches the predefined maximum loop (ML1), the bias condi-
tions change to the reset operation mode. During the first loop
of the reset operation mode, all the cells are read and followed
by the reset pulse. Opposite to the verify operation in set mode,
the cells having lower conductance than upper bound conduct-
ance (Gupper) are marked as inhibited cells for the following
reset operation, while the cells having higher conductance are
marked as PGM cells. When the reset operation loop reaches
ML1, the second step of write–verify is conducted with differ-
ent set/reset BL voltage, VG and VG,STEP, and maximum loop.
The process flow of the second step is identical to the first step
while the whole process finishes when the reset operation loop
of the second step reaches the ML2.

The advantage of the two-step write–verify scheme comes
from its capability to precisely tune the conductance of each
cell. Our novel scheme applies relatively high voltage (1.2–
2 V) to the BL to coarsely approach the conductance to the
target at the first step of write–verify, while only 0.5–0.7 V is
applied to the BL at the second step of write–verify to fine-
tune the conductance. As can be seen in figure 2(b), lowered
BL voltage at the second step helps more gradual conductance
control. This enables higher controllability of the conductance
than the conventional write–verify processes, which merely
use fixedBL voltage or fixedVG for thewhole verify sequence.
Figure 2(c) shows the average conductance change per each

2



Semicond. Sci. Technol. 35 (2020) 115026 W Shim et al

RESET

Loop
< MaxLoop

SET [PGM] cells
PW 100-300ns

Read all cells
G[i] > Glower?

YES: Cell[i] = [inhibit]
NO: Cell[i] = [PGM]

START

YES

VG,SET+=VG,step
Loop = Loop+1

NO
Loop

< MaxLoop

Read all cells
G[i] < Gupper?

YES: Cell[i] = [inhibit]
NO: Cell[i] = [PGM]

1ST STEP WRITE-VERIFY
SET:       VBL=VSET1 (1.2-2V)

VG,SET=VG,SET1 (1.4-2V)
RESET: VBL=VRESET1 (0.6-1.4V)

VG,RESET=VG,RESET1 (1.9-2.8V)
VG,STEP= VG,STEP1 (20mV)
MaxLoop=ML1

RESET [PGM] cells
PW 100-300ns

YES

VG,RESET+=VG,step
Loop = Loop+1

2ND STEP WRITE-VERIFY
SET:      VBL=VSET2, (0.5-0.7V)

VG,SET=VG,SET2 (3-3.3V)
RESET: VBL=VRESET2, (0.5-0.6V)

VG,RESET=VG,RESET2 (3-3.3V)
VG,STEP= VG,STEP2 (10mV)
MaxLoop=ML2

NO

Loop=1
Loop=1

MaxLoop?

ML1

ML2
END

(a)

(b)

0 10 20 30 40
6.5E-05
7.0E-05
7.5E-05
8.0E-05
8.5E-05
9.0E-05
9.5E-05
1.0E-04
1.0E-04
1.1E-04

C
on

du
ct

an
ce

 (S
)

Loop

1st SET loops 1st RESET loops 2nd SET loops 2nd RESET loops

Target 
range

(c)

0 1 2 3 4 5 6 7 8 9 10
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4
 1st step (Conventional)
 2nd step (two-step)

C
on

du
ct

an
ce

 c
ha

ng
e 

pe
r L

oo
p

Loop

average of 512 cells 

Figure 2. (a) The two-step write–verify scheme for multilevel RRAM. The sequence for one state of the multilevel RRAM is shown here,
and it is repeated for other states with different bias conditions. (b) Example of a loop-by-loop conductance tuning process into the target
range. (c) Conductance change per each loop during the first and second step write–verify.

loop during the first and second step write–verify. The second
step write–verify with lowered BL voltage enables 30–80
times slower conductance change in the beginning loops than
the first step write–verify, which can be considered as same as
conventional write–verify process (fixed BL voltage through-
out the whole process). The complex optimization process and
the longer programming time for each state are acceptable for
the inference engine application.

We tested and optimized the bias condition of the two-
step write–verify scheme with our HfO2-based RRAM chip
as shown in figure 3. We designed four states, where state
1 is the high resistance state (HRS) and states 2/3/4 are lin-
early spaced in conductance in the low resistance state (LRS)
regime. Figure 3(a) shows the conductance distributions of a
targeted intermediate state after each verify sequences. The
cell distribution after the first set operation (10 loops) indicates

that even though the incremental VG pulse programming was
used with 20 mV step, the cell distribution is still too wide to
fit into the narrow target conductance range (±3% of target
value). The first step reset process lowers the conductance of
the cells having higher conductance than the upper bound of
the target range. However, >50% of the cells have lower con-
ductance than the lower bound of the target range after the first
step reset process. Simply repeating these set/reset processes
with the same BL voltage and VG (first loop) makes it chal-
lenging to reduce the ratio of the cells out of the target range.
Accordingly, we reduced the BL voltage and increased the VG,
which are optimized for the second step set/reset operations.
Since a lower BL voltage facilitates more gradual conductance
change of each cell, a greater number of cells have conduct-
ance in the target range, even with the same number of max-
imum loops (ML2 = 10).
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Figure 3. (a) Conductance distribution of measured 512 RRAM cells after first and second step set and reset operation with ML1 = 10,
ML2 = 10, VG,STEP1 = 0.02 V, VG,STEP2 = 0.01 V. (b) Conductance distribution of four states (512 cells in each state) with two-step
write–verify scheme.

Figure 3(b) shows the cumulative probability distribution
of four states. We realized the tightly distributed states 2 and
3 (512 cells per state) with two-step write–verify scheme for
2 bits per cell. The bias conditions were optimized separately
with respect to each state. The distributions of states 1 and 4
were achieved only with one-step write–verify, since the con-
ductance of the LRS and HRS cells drift more gradually relat-
ive to the intermediate states, so the two-step verify sequences
were not essential.

3. Impact of the read noise of RRAM cell current on
weighted sum computation

For the analysis of the noise effect on weighted sum compu-
tation in the RRAM array, we tested the read noise on RRAM
cell by repeating the read operation 1000 times first. Figure
4 shows the measured conductance data from three different
samples. Each read takes 5 ms to calculate the conductance
using the source measuring unit (SMU) in our measurement
system. The result shows that the conductance of the displayed
cells oscillates±2% due to the random telegraph noise (RTN)
within the RRAM cell.

To investigate the effect of noise-induced RRAM conduct-
ance variation on weighted sum computation in the synaptic
array, we post-processed the measured data of the conductance
of 128 cells. Wemerged the conductance of multiple cells, and
then the average and standard deviation of merged conduct-
ance are extracted. Assuming the weight sparsity and input
sparsity are 50%, integrating the conductance of 8, 16, and 32
cells can respectively represent 32, 64, 128-row weighted sum
operation. Figure 5(a) shows that the larger the array size is, the
higher the variation ofmerged conductance due to the accumu-
lated noise along the BL. However, the ratio over the average
conductance decreases with larger array sizes, as shown in fig-
ure 5(b). This implies that larger arrays may average out the
variation of individual cells. In terms of the cell conductance
fluctuation, the intermediate state 2 has the largest fluctuation.
The intermediate states are generally more vulnerable to the
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Figure 4. Measured read noise as a normalized conductance for
three different cells. Prior to the read noise test, these cells were
programmed to be within state 3.

RTN-induced variation. Since theHRS (state 1) cells have neg-
ligible effect on the merged current owing to the large on/off
ratio of tested RRAM cells, the noise of the HRS is not shown
here.

Figure 6 shows the read voltage dependency of noise-
induced weighted sum current variation. The read voltage
applied to the BL below 0.15 V has less impact on the fluc-
tuation, while 0.2 V read voltage significantly increases the
fluctuation. Higher read voltage (>0.25 V) may induce larger
RTN-originated noise variation. However, we do not show the
result here, because the conductance drift caused by read dis-
turb becomes dominant [27], and the noise-induced variation
cannot be distinguished from the read disturb results. In order
to reduce the power consumption of the parallel CIM operation
on the memory array, it is desirable to use current mode sens-
ing which could use a relatively small (<0.2 V) read voltage
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Figure 5. (a) Standard deviation of merged conductance and (b)
standard deviation over average merged conductance for various
synaptic array sizes. The read voltage applied to the BL is 0.2 V.

that is clamped, where the aggregated read noise becomes a
concern for the ADC resolution.

To quantify the impact of noise-induced variation on ADC
accuracy, we defined the overlap ratio as a metric indicating
the degree of ADC error as shown in figure 7. The 3 sigma
of the probability distributions are calculated from the stand-
ard deviations (sigma), which are extracted from the measured
data with various conductance levels, read voltages, and array
sizes. The minimum space between the adjacent ADC quant-
ized levels is same as one-step current (i.e. state 2’s current) of
a single RRAM cell in the case of maximum ADC resolution.
We defined the overlap ratio by 2 times 3 sigma over minimum
on cell current. With RRAM cells in the intermediate states, as
the array size becomes larger, the overlap ratio of neighboring
quantized levels increases and the error probability of digit-
ized ADC output rises. Our results suggest that 9-bit ADC for
full accumulation resolution of a 128 × 128 array with 2-bit

Figure 6. Standard deviation of merged conductance with various
read voltages applied to the BL. The conductance target of the
measured cells is state 3.

Figure 7. (a) Conceptual schematic of overlap ratio with the ADC
quantized level and read-noise-induced distribution. (b) Calculated
overlap ratio with various read voltages, array sizes, and
conductance levels.

per cell array is infeasible due to overlapping ratio of >100%
in state 2.

4. Conclusions

In this paper, two-step write–verify for multilevel RRAM
is proposed. Low BL voltage in the second step of write–
verify enables more precise conductance control to achieve

5
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tight cell distribution. The effect of read-noise-induced con-
ductance variation on ADC accuracy becomes worse in larger
arrays and higher BL voltages. However, the required ADC
resolution could be lowered depending on the DNNmodel and
dataset. For example, 5-bit ADC is found to be sufficient for
128 × 128 array with 2-bit/cell array for CIFAR-10 dataset
[28], and therefore the impact of the noise is still acceptable.
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