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Abstract
Subgradient and Newton algorithms for nonsmooth optimization require generalized deriva-
tives to satisfy subtle approximation properties: conservativity for the former and semis-
moothness for the latter. Though these two properties originate in entirely different contexts,
we show that in the semi-algebraic setting they are equivalent. Both properties for a gen-
eralized derivative simply require it to coincide with the standard directional derivative on
the tangent spaces of some partition of the domain into smooth manifolds. An appealing
byproduct is a new short proof that semi-algebraic maps are semismooth relative to the
Clarke Jacobian.
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1 Introduction

Algorithms for nonsmooth optimization, such as subgradient and semi-smooth Newton
methods, crucially rely on first-order approximations of Lipschitz maps. Two seemingly
disparate first-order approximation properties underlie existing results.

Conservativity Infull generality, Lipschitz continuous functions can be highly pathologi-
cal, resulting in failure of subgradient methods to find any critical points [8]. Consequently,
it is essential to limit the class of functions under consideration. With this in mind, recent
analysis of subgradient methods [3, 9, 15] requires conservativity of a generalized gradient
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mapping G(x) for f . This property, introduced by Bolte and Pauwels [3], stipulates the
validity of a formal chain rule

d

dt
(f ◦ γ )(t) = 〈G(γ (t)), γ̇ (t)〉 for a.a. t ∈ (0, 1),

along any absolutely continuous curve γ . Most importantly, conservativity holds automati-
cally when f is semialgebraic and G is the Clarke subdifferential ∂Cf [9]. More generally,
Bolte and Pauwels [3, 4] showed that conservativity holds when G is an output of an
automatic differentiation scheme on a composition of semialgebraic functions.

Semismoothness Newton methods for solving nonsmooth equations F(x) = 0, for a Lips-
chitz map F require a semismoothness property of F with respect to a generalized Jacobian
mapping G(x). This property, introduced by Mifflin [16] and explored for Newton methods
by Qi and Sun [21], stipulates the estimate:

F(y) − F(x) − G(y)(y − x) ⊂ o(‖x − y‖)B as y → x,

at any point x ∈ Rn. Bolte, Daniilidis and Lewis [1] famously showed that semismoothness
holds when F is semialgebraic and G = ∂CF is the Clarke Jacobian.

Seemingly disparate, there is reason to believe conservativity and semismoothness are
closely related. For example, Norkin’s seminal work [18, 19] analyzed subgradient methods
on functions f that are semismooth with respect to certain generalized subdifferential oper-
ators. On the other hand, Ruszczyński [23] recently showed that semismoothness implies a
weaker notion of conservativity along semismooth curves. In this paper, we prove that the
notions of conservativity and semismoothness are equivalent for semialgebraic maps. Our
proof strategy is to relate the two properties to an intermediate “stratified derivative” condi-
tion, already known from [14] to be equivalent to conservativity. The end result applies to a
natural family of (set-valued) directional derivatives D(x, u), akin to G(x)u. In particular,
D(x, u) could be a directional derivative, the map induced by the coordinate-wise Clarke
Jacobian, or the output of an automatic differentiation procedure.

Theorem 1.1 (Informal) Suppose F(·) and D(·, ·) are semialgebraic. Then conservativity
and semismoothness are both equivalent to the following condition: there exists a partition
of Rd into finitely many semialgebraic C1 manifolds such that for any point x lying in a
manifold M equality holds:

D(x, u) = {F ′(x, u)} ∀u ∈ TM(x),

Thus both conservativity and semismoothness hold if and only if D(x, u) coincides
with the standard directional derivative F ′(·, ·) on the tangent spaces of some partition of
Rn into finitely many smooth manifolds. In dual terms, this means that semismooth gen-
eralized derivatives are simply selections of the map (x, u) → J (x)u where the rows
of J (x) are Clarke subgradients of Fi shifted by the normal space. Building on [3], the
authors of [14] recently showed that the latter property is equivalent to J (x) being con-
servative. Summarizing, the results of our paper together with those already available in
the literature [3, 14] imply that semismooth directional derivatives, stratified directional
derivatives/subgradients, and conservative set-valued vector fields are equivalent in the
semi-algebraic setting. We emphasize that the paper [2] plays a foundational role in our
work, both introducing stratifications of graphs and establishing the projection formula,
which we heavily use here.
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2 Notation and Preliminaries

In this section, we record basic notation and preliminaries from variational analysis and
semi-algebraic geometry that will be used in the paper.

2.1 Variational Analysis

We follow standard notation of variational analysis, as set out for example in the mono-
graphs [5, 12, 13, 17, 20, 22]. Throughout, fix a Euclidean n-dimension space, denoted by
Rn, equipped with an inner product 〈·,·〉 and the induced norm ‖x‖ = √〈x, x〉. A set-valued
map G : Rn → Rm, maps points to subsets G(x) ⊂ Rm. The domain and graph of G,
respectively, are defined by

dom G = {x ∈ Rn : G(x) �= ∅} and gph G = {(x, y) ∈ Rn × Rm : y ∈ G(x)}.
The set Limsupx→x̄ G(x) consists of all limits of sequences yi ∈ G(xi) where xi is any
sequence converging to x̄. The map G is called outer-semicontinuous if gph G is a closed
set. We say that G is inner-semicontinuous on a set Q ⊂ Rn if for any points x ∈ Q and

y ∈ G(x) and for any sequence xi
Q−→ x, there exist points yi ∈ G(xi) converging to y.

The distance function and the projection onto a set X ⊂ Rn are defined by:

dist(y,X) := inf
x∈X

‖y − x‖, proj(y,X) := argmin
x∈X

‖y − x‖.

The deviation between two nonempty compact sets X, Y ⊂ Rn will be measured by the
Hausdorff distance

dist(X, Y ) := max

{
sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y,X)

}
.

The directional derivative of any map F : Rn → Rm is defined by

F ′(x, u) := lim
t↘0

F(x + tu) − F(x)

t
. (2.1)

The map F is called directionally differentiable if F ′(x, u) is well-defined, meaning the
limit exists in (2.1) for every x, u ∈ Rn. It is straightforward to verify that when F is locally
Lipschitz continuous and directionally differentiable, equality holds:

F ′(x, u) = lim
t↘0, v→u

F (x + tv) − F(x)

t

Abusing notation, for any curve γ : [0, 1) → Rn, we define the one-sided velocity γ ′(0) :=
limt↘0

γ (t)−γ (0)
t

and we let γ̇ (t) denote the derivative of γ at any point t ∈ (0, 1) where γ

is differentiable.
Given any locally Lipschitz continuous map F : Rn ⇒ Rm, the Clarke Jacobian of F at

x is the set

∂CF(x) = conv

{
lim

i→∞ ∇F(xi) : xi
�−→ x

}
,



D. Davis, D. Drusvyatskiy

where � is the set of points at which F is differentiable and conv (·) denotes the convex
hull. Finally, for any C1 manifold M ⊂ Rn and a point x ∈ M , the symbols TM(x) and
NM(x) will denote the tangent and normal spaces to M at x embedded in Rn.

2.2 Semialgebraic Geometry

We next collect a few elementary facts from semialgebraic geometry. For details we refer the
reader to [6, 7, 25]. All results in the paper hold more generally, and with identical proofs,
for sets and functions definable in an o-minimal structure. We focus on the semialgebraic
setting only for simplicity.

A set Q ⊂ Rn is called semialgebraic if it can be written as a union of finitely many
sets defined by finitely many polynomial inequalities. A set-valued map G : Rn ⇒ Rm is
called semi-algebraic if its graph is a semialgebraic set. Univariate semialgebraic functions
are particularly simple.

Lemma 2.1 (Curves) For any semialgebraic map γ : [0, 1] → Rn, there exists ε > 0
such that γ is C1-smooth on the open interval (0, ε). Moreover, as long as the quotients
t−1(γ (t) − γ (0)) are bounded for all small t > 0, the derivative γ ′(0) exists and equality
γ ′(0) = limt↘0 γ̇ (t) holds.

Notice that the equality γ ′(0) = limt↘0 γ̇ (t) can be interpreted as semi-smoothness of
univariate semi-algebraic functions—an observation we will revisit. An immediate conse-
quence is that locally Lipschitz semi-algebraic maps are directionally differentiable. The
following theorem moreover shows that semi-algebraic maps are “generically smooth.” To
simplify notation, we use the term C1 semialgebraic partition of Rn to mean a partition of
Rn into finitely many semialgebraic C1 manifolds.

Theorem 2.1 (Generic smoothness) Let F : Rn → Rm be a semialgebraic map. Then there
exists a C1-semialgebraic partition A of Rn such that the restriction of F to each manifold
M ∈ A is C1-smooth.

A useful property that blends variational analysis and semialgebraic constructions is the
projection formula, proved in [2, Proposition 4].

Theorem 2.2 (Projection formula) Let f : Rn → R be a semialgebraic locally Lipschitz
continuous function. Then there exists a C1-semialgebraic partition A of Rn such that for
any point x lying in a manifold M ∈ A equality holds:

{f ′(x, u)} = 〈∂Cf (x), u〉 ∀u ∈ TM(x).

The next result shows that any semialgebraic map admits a semialgebraic single-valued
selection.

Lemma 2.2 (Semialgebraic selection) Any semi-algebraic map G : Rn ⇒ Rm admits a
semialgebraic selection g : dom G → R satisfying g(x) ∈ G(x) for all x ∈ dom G.

The following theorem, from [11, Proposition 2.28], shows that semialgebraic set-valued
maps are generically inner-semicontinuous.
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Theorem 2.3 (Generic inner semicontinuity) Let G : Rn ⇒ Rm be a semialgebraic map.
Then there exists a C1-semialgebraic partition A of Rn such that the restriction G |M is
inner-semicontinuous for everyM ∈ A.

Many of the aforementioned results guarantee existence of certain partitions of Rn. Con-
sequently, it will be useful to refine partitions. A partitionA of Rn is called compatible with
a collection B of sets in Rn if each set in B is a union of some sets inA.

Theorem 2.4 (Compatible partitions) Let B be a collection of finitely many semialgebraic
sets. Then there exists a C1-semialgebraic partition A of Rn that is compatible with B.

3 Main Results

Throughout, we let F : Rn → Rm be a locally Lipschitz continuous and directionally dif-
ferentiable map and let D : Rn ×Rn ⇒ Rm be a set-valued map. Later, we will impose that
F is semialgebraic; in this setting directional differentiability will follow from local Lips-
chitz continuity [1]. The reader may view D(x, u) as a “generalized directional derivative”
of F at x in direction u.

Assumption 1 We introduce the following assumptions on D.

1. (Full domain and closed-valued) The image D(x, u) is nonempty and compact for
each u ∈ Rd for all x, u ∈ Rn.

2. (Homogeneity) The map D is positively homogeneous in the second argument:

D(x, 0) = {0} and D(x, tu) = tD(x, u),

for all x, u ∈ Rn and t > 0.
3. (Lipschitz continuity) The assignment D(x, ·) is Lipschitz continuous locally uniformly

in x. That is, for every point x̄ ∈ Rn, there exists L > 0 such that

dist(D(x, u1),D(x, u2)) ≤ L‖u1 − u2‖,
for all u1, u2 ∈ Rn and all x sufficiently close to x̄.

The first condition is self-explanatory. The second condition, which asserts that
gph D(x, ·) is a cone, is natural for directional derivatives. The third condition is more
nuanced but is again mild. In particular, all three conditions hold for the directional deriva-
tive D(x, u) = F ′(x, u) and for any map of the form D(x, u) = G(x)u where G : Rn ⇒
Rm×n is locally bounded.

Clearly, D(x, u) can be regarded as a generalized directional derivative of F only if it
accurately predicts the variations of F at x in direction u. There are a number of seemingly
distinct conditions in the literature that model “goodness of approximation,” depending on
context. We record the most relevant ones for us below and comment on each.

Conditions 1 We introduce the following conditions.

1. (Semismooth I) For any point x it holds:

Limsup
y→x

F (y) − F(x) − D(y; y − x)

‖y − x‖ = {0},
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2. (Semismooth II) For any point x it holds:

Limsup
y→x

F (y) − F(x) + D(y; x − y)

‖y − x‖ = {0}.

3. (Conservative derivative) For any absolutely continuous curve γ : [0, 1] → Rn,
equality holds:{

d

dt
(F ◦ γ )(t)

}
= D(γ (t), γ̇ (t)) for a.a. t ∈ (0, 1). (3.1)

4. (Stratified derivative) There exists a semialgebraic C1 partition A of Rn such that
equality

D(x, u) = {F ′(x, u)}
holds for any manifold M ∈ A, x ∈ M , and any tangent vector u ∈ TM(x).

5. (Stratified subdifferential) There exists a semialgebraic C1 partitionA ofRn such that
for any manifold M ∈ A and x ∈ M , it holds:

D(x, u) ⊂ J (x)u,

where we set
J (x) = {A ∈ Rm×n : Ai ∈ ∂CFi(x) + NM(x)},

and Ai denote the rows of A.

The theorem identifies the largest possible example of semismooth, conservative, and
stratified derivatives. These are simply Clarke subdifferentials plus normals to the manifolds
that form a partition of Rn. Let us discuss these conditions in turn.

Semismoothness The first two conditions, 1 and 2, play a central role for ensuring super-
linear convergence of Newton-type algorithms for nonsmooth equations. We refer the reader
the monograph [13, Chapter 10] for details. To place these conditions in context, recall
that any locally Lipschitz and directionally differentiable map F satisfies the first-order
approximation property [24]:1

F(y) = F(x) + F ′(x, y − x) + o(‖y − x‖). (3.2)

Condition 1 instead asserts

F(y) − F(x) − D(y, y − x) ⊂ o(‖y − x‖)B.
Notice that contrary to (3.2), the value D(y, y − x) is computed at the basepoint y.
Condition 2 asserts instead

F(x) − F(y) − D(y, x − y) ⊂ o(‖y − x‖)B.
Clearly, when D has the form D(x, u) = G(x)u for some set-valued map G : Rn →
Rm×n, conditions 1 and 2 are equivalent. In particular, if F is directionally differentiable
and G(x) = ∂CF(x) is the Clarke generalized Jacobian, both conditions reduce to the
semismoothness property in the sense of [16, 21]. In the context of optimization, sim-
ilar conditions have been used by Norkin [18, 19] to establish asymptotic convergence
guarantees of subgradient methods.

1Here o = ox refers to any function satisfying t−1o(t) → 0 as t → 0.
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Conservative Derivative Condition 3 asserts that the generalized directional derivative D

satisfies a formal chain rule at almost every point along any absolutely continuous path γ .
Equivalently, we may write condition (3.1) as:

{F ′(γ (t), γ̇ (t))} = D(γ (t), γ̇ (t)) for a.a. t ∈ (0, 1).

This property is equivalent to the conservative derivatives G(x) introduced in [3], in the
setting D(x, u) = G(x)u. Such generalized derivatives play a key role in justifying auto-
matic differentiation techniques for nonsmooth functions [4], as well as for analyzing the
asymptotic behavior of subgradient methods [9].

Stratified Derivative/Subdifferential Condition 4 is geometrically intuitive. It simply
asserts that there exists a partition ofRn into finitely many smooth manifolds, so thatD(x, ·)
coincides with the directional derivative in directions tangent to the manifold containing the
point x. Condition 5 can be interpreted as a “dual” counterpart of 4. Namely it stipulates
that D(x, u) is a selection of the map (x, u) �→ J (x)u, where the rows of J (x) consist of
the Clarke subdifferentials of the component functions Fi shifted by a normal space NM(x).
The “duality” between conditions 4 and 5 is explored in [2].

3.1 Equivalence of 1–5

The goal of our paper is to prove that if Assumption 1 holds and F and D are semialgebraic,
then conditions 1–5 are equivalent. The authors of [14], building on [3], recently proved the
equivalence 3 ⇔ 5 for maps of the form D(x, u) = G(x)u where G(·) locally bounded and
outer-semicontinuous. Therefore we claim no originality with respect to the equivalence
3 ⇔ 5.

We begin by proving that 3 implies 1 and 2. The following simple lemma will be useful.

Lemma 3.1 Condition 3 implies that for any absolutely continuous curve γ : [0, 1] → Rn,
equality holds:

D(γ (t), γ̇ (t)) = −D(γ (t), −γ̇ (t)) for a.a. t ∈ (0, 1).

Proof Fix an absolutely continuous curve γ : [0, 1] → Rn and define α(t) = γ (1 − t).
Then α̇(t) = −γ̇ (1− t) and (F ◦ α)′(t) = −(F ◦ γ )′(1− t) for a.a. t ∈ (0, 1). Plugging in
α in place of γ in (3.1) completes the proof.

Theorem 3.2 (Conservative derivatives and semismoothness) Suppose that F and D are
semialgebraic and that Assumption 1 holds. Then condition 3 implies both 1 and 2.
Moreover, both implications are true if 3 only holds with respect to semialgebraic curves γ .

Proof Suppose condition 3 holds; we aim to verify 1. To this end, fix a point x and assume
without loss of generality x = 0 and F(x) = 0. We aim to prove

Limsup
d→0

F(d) − D(d, d)

‖d‖ = {0}.
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For any t ∈ [0, 1] define the semialgebraic function

ϕ(t) := sup
(d,v): ‖d‖=t, v∈D(d,d)

‖F(d) − v‖.

Condition 1 will follow immediately once we establish ϕ′(0) = 0. Clearly, we may assume
ϕ(t) > 0 for all small t > 0, since otherwise by Lemma 2.1 the equality ϕ′(0) = 0
holds trivially. Lemma 2.2 yields semialgebraic curves d(·) and v(·) satisfying ‖d(t)‖ = t ,
v(t) ∈ D(d(t), d(t)) and ‖F(d(t)) − v(t)‖ ≥ 1

2ϕ(t) for all small t > 0. Observe d(0) = 0
and ‖d(t)‖/t = 1. Therefore Lemma 2.1 shows that d ′(0) exists and limt→0 ḋ(t) = d ′(0).

Note the inclusion v(t)/t ∈ D(d(t),
d(t)
t

). Local Lipschitz continuity of D(x, ·) at x =
d(0) = 0, implies that there exists L > 0 and a semialgebraic curve w(t) satisfying w(t) ∈
D(d(t), ḋ(t)) with ∥∥∥∥w(t) − v(t)

t

∥∥∥∥ ≤ L

∥∥∥∥d(t)

t
− ḋ(t)

∥∥∥∥
for all small t > 0. Since the right side tends to zero as t ↘ 0, we compute

ϕ′(0) = lim
t↘0

ϕ(t)

t
≤ limsupt↘0

2‖F(d(t))−v(t)‖
t

= 2 · limsupt↘0

∥∥∥F(d(t))
t

− w(t)

∥∥∥ .
Lemma 2.1 and condition 3 guarantee

lim
t↘0

w(t) = lim
t↘0

(F ◦ d)′(t) = lim
t↘0

F(d(t))

t
,

Note that all the limits in the displayed equation exist due to the local monotonicity of
semialgebraic functions. We conclude ϕ′(0) = 0 and therefore condition 1 holds. The proof
of condition 2 follows by identical reasoning, while taking into account Lemma 3.1.

Combining Theorem 3.2 with Theorem 2.2 immediately shows that semi-algebraic
locally Lipschitz maps are semismooth with respect to the Clarke generalized Jacobian. This
result original appeared in [1] with a different proof.

Corollary 3.3 (Semi-algebraic maps are semismooth) Any locally Lipschitz semi-algebraic
map F : Rn ⇒ Rm satisfies condition 1 for the map D(x, u) = ∂CF(x)u.

Proof Note the inclusion ∂CF(x) ⊂ {A ∈ Rm×n : Ai ∈ ∂CFi(x)}. Let Ai be the partition
ensured by Theorem 2.2 for each coordinate function Fi . Using Theorem 2.4, let A be
a semialgebraic partition that is compatible with each Ai . Fix a semialgebraic curve γ .
Semialgebraicity implies that for any M ∈ A and for a.a. t ∈ (0, 1) with γ (t) ∈ M , the
inclusion γ̇ (t) ∈ TM(γ (t)) holds. Consequently, by Theorem 2.2, condition 3 holds with
respect to all semialgebraic curves. An application of Theorem 3.2 completes the proof.

The proof of the full equivalence between conditions 1–5 will make use of the following
simple linear algebraic fact.

Lemma 3.4 For any sets A, B ⊂ Rn and a subspace V ⊂ Rn, the equivalence holds:

A ⊂ B + V ⇐⇒ proj(A, V ⊥) ⊂ proj(B, V ⊥).
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We now have all the ingredients to prove the main the result of the paper.

Theorem 3.5 (Equivalence) Suppose that F and D are semialgebraic and that Assump-
tion 1 holds. Then conditions 1-5 are equivalent.

Proof We first establish the equivalences 2 ⇔ 3 ⇔ 4 ⇔ 5 by verifying the implications
3 ⇒ 2 ⇒ 4 ⇒ 5 ⇒ 3.

Implication 3 ⇒ 2: This was proved in Theorem 3.2.
Implication 2 ⇒ 4: Theorems 2.1 and 2.3 yield a partition A of Rn into finitely many

semialgebraicC1 manifolds such that when restricted to each manifoldM ∈ A, the function
F is C1-smooth and the map

x �→ gph D(x, ·)
is inner semicontinuous. Fix a manifold M ∈ A, a point x ∈ M , unit tangent vector

u ∈ TM(x), and v ∈ D(x, u). Since −u also lies in TM(x), we may find sequences xi
M−→ x

and τi ↘ 0 with τ−1
i (xi −x) → −u. By inner-semicontinuity, there exist sequences (ui, vi)

converging to (u, v) and satisfying vi ∈ D(xi, ui). The assumed condition 2 therefore
guarantees

{0} = Limsup
i→0

F(xi) − F(x) + D(xi, x − xi)

‖xi − x‖ .

Rearranging and using linearity of F ′(x, ·) on TM(x) we deduce2

{F ′(x, u)} = {−F ′(x,−u)} = Limsup
i→∞

D

(
xi,

x − xi

‖x − xi‖
)
. (3.3)

Taking into account local Lipschitz continuity of D(y, ·) uniformly for all y near x, we

deduce that there exists L > 0 and a sequence zi ∈ D
(
xi,

x−xi‖x−xi‖
)
satisfying

∥∥∥∥zi − vi

‖ui‖
∥∥∥∥ ≤ L

∥∥∥∥ x − xi

‖x − xi‖ − ui

‖ui‖
∥∥∥∥ ,

for all large indices i. Observe that the right side tends to zero. Continuing (3.3), we deduce

{F ′(x, u)} = lim
i→∞ zi = lim

i→∞
vi

‖ui‖ = {v}.

We have thus proved D(x, u) = {F ′(x, u)} for all u ∈ TM(x), and therefore 4 holds.
Implication 4 ⇒ 5: Let A be the partition of Rn into C1 semialgebraic manifolds stip-

ulated by condition 4. Using Theorem 2.2 for each coordinate function Fi and refining the
partitions using Theorem 2.4, we arrive at a finite partition A′ of Rn into C1 semialgebraic
manifolds that is compatible with A and satisfies

{F ′
i (x, u)} = 〈∂CFi(x), u〉,

2Note that F ′(x; ·) is linear on TM(x). Indeed, since F is semialgebraic, it is directionally differentiable.
Therefore, for any u ∈ TM(x), the directional derivative F ′(x; u) coincides with the directional derivative
(in the sense of manifolds) of the restriction of F to M at x in the direction u.
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whenever x lies in M ∈ A′ and u ∈ TM(x) is a tangent vector. Since for any such vector u,
equality {F ′(x, u)} = D(x, u) holds by 4, we conclude

D(x, u) = J (x)u ∀u ∈ TM(x).

On the other hand, for any u /∈ TM(x), we trivially have

Ji(x)u = 〈∂CFi(x), u〉 + 〈NM(x), u〉 = 〈∂CFi(x), u〉 + R = R,

where Ji(x) denotes the set of all i’th rows of matrices in J (x). Therefore, in this case, the
inclusion D(x, u) ⊂ J (x)u holds trivially.

Implication 5 ⇒ 3: Let A be the partition of Rn into C1 semialgebraic manifolds stipu-
lated by condition 5. Refining the partition using Theorems 2.2 and 2.4, we may ensure that
the equality holds:

{F ′(x, u)} = J (x)u ∀u ∈ TM(x),

whenever x lies in some manifold M ∈ A.
Consider now any absolutely continuous curve γ : [0, 1] → Rn. It is elementary to verify

that for a.a. t ∈ (0, 1) the implication holds (e.g. [10, Lemma 4.13]):

γ (t) ∈ M =⇒ γ̇ (t) ∈ TM(γ (t)). (3.4)

We conclude that for a.a. t ∈ (0, 1) and M ∈ A satisfying γ (t) ∈ M , we have{
d

dt
(F ◦ γ )(t)

}
= {F ′(γ (t), γ̇ (t))} = J (γ (t))γ̇ (t) ⊃ D(γ (t), γ̇ (t)),

as claimed.
Summarizing, we have proved the equivalence 2 ⇔ 3 ⇔ 4 ⇔ 5. Next, observe that 5

holds for a map D(·, ·) if and only if it holds for the map D̂(x, u) := −D(x, −u). Noting
that condition 2 for D̂ coincides with condition 1 for D completes the proof of the theorem.
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