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Abstract

Portable smartphone-based fluorescent microscopes are becoming popular owing to their ability to provide
major functionalities offered by regular benchtop microscopes at a fraction of the cost. However,
smartphone-based microscopes are still limited to a single fluorophore, fixed magnification, the inability to
work with a different smartphones, and limited usability to either glass slides or cover slips. To overcome
these challenges, here we present a modular smartphone-based microscopic attachment. The modular design
allows the user to easily swap between different sets of filters and lenses, thereby enabling utility of multiple
fluorophores and magnification levels. Our microscopic smartphone attachment can also be used with
different smartphones and was tested with Nokia Lumia 1020, Samsung Galaxy S9+, and an iPhone XS.
Further, we showed imaging results of samples on glass slides, cover slips, and microfluidic devices. A 1951
USAF resolution test target was used to quantify the maximum resolution of the microscope which was
found to be 3.9 um. The performance of the smartphone-based microscope was compared with a benchtop
microscope and we found an R? value of 0.99 using polystyrene beads and blood cells isolated from human
blood samples collected from Robert Wood Johnson Medical Hospital. Additionally, to count the particles
(cells and beads) imaged from the smartphone-based fluorescent microscope, we developed artificial neural
networks (ANNs) using multiple training algorithms, and evaluated their performances compared to the
control (ImageJ). Finally, we did ANOVA and Tukey’s post-hoc analysis and found a p-value of 0.97 which
shows that no statistical significant difference exists between the performance of the trained ANN and

control (ImageJ).
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Introduction

Modern laboratories are equipped with a wide range of analytical instruments. Among these, fluorescent
microscopes are of particular importance, especially in the fields of biology and material science . They
enable identification of cells and cellular components with a high precision. By tagging the specimen with
multiple different probes, fluorescent microscopy can simultaneously identify several target molecules®#. In
addition to fluorescent microscopes, other benchtop instruments, such as flow cytometers and hematology
analyzers are also heavily utilized in clinical laboratories for the purpose of disease diagnosis and patient
prognosis by analyzing various biomarkers in clinical samples such as whole blood. In particular, both flow
cytometers and hematology analyzers are used for various blood cells enumeration and their membrane
antigens quantification. These measurements are routinely monitored in the hospitals for a variety of
diseases, especially patient stratification with infectious diseases. Though these modern devices are
extremely precise and equipped with a lot of functional modalities, they are highly expensive (e.g., cost
thousands of dollars), lacks portability and require trained personnel to operate. Recently, researchers have
developed multiple smartphone-based biosensors to provide low cost, portable, and efficient alternatives to

the traditional bulky benchtop instruments found in lab settings>.

Smartphone-based fluorescent microscopes (SBFMs) have a great potential to be used as point of care
platforms for diagnostics, healthcare, and environmental monitoring®. Modern smartphones are equipped
with cutting edge camera units which allow to capture high quality images. SBFMs have been employed in
a wide range of settings that include the detection of different biomarkers including proteins and nucleic
acids’!!. Ozcan et.al reported the quantification of red and white blood cells as well as hemoglobulin from
whole blood using a smartphone-based microscope!?. Moreover, SBFMs have also been employed for the
detection of parasites'? as well as imaging the nanoparticles and viruses'#. The design and working of a multi
color smartphone-based fluorescence microscope capable of imaging two fluorophores at two magnification
levels has been demonstrated!”. Researchers have also reported the use of colored lenses along with
smartphones to image multiple fluorophores'®. SBFMs have also been used for monitoring drug-induced
nephrotoxicity on an organ on chip (OOC) platform!’. Lee et al.'® demonstrated the adaptation of a
smartphone's camera to function as a compact lens less microscope in ambient light. The method is based
on the shadow imaging technique where the sample is placed on the surface of the image sensor, which

captures direct shadow images under illumination. A hand-held smartphone based quantitative phase



microscopy employing transport of intensity equation method has also been demonstrated'®. Jung et al.?
presented a portable multi-contrast microscope operating on a smartphone platform. Based on color-
multiplexing of illumination angles, the microscope enabled acquisition of bright field, dark field, and
differential phase contrast images in a single shot. Identification of fluorescently labelled pathogenic bacteria
has been recently demonstrated using a SBFM?!. Knowlton et al.?> developed a SBFM incorporating
magnetic focusing technology to increase the application of the platform to a broad range of biomedical
assays. Shan et al.?* developed a fluorescent microscope for on-site quantitative Hg?* measurement based on
a fluorescent biosensor. Recently, a smartphone-based fluorescent microscope with a hydraulically driven
optofluidic lens was used for the quantification of glucose with high accuracy?*. Another smartphone-based
microscope employed deep learning for the automated screening of sickle cells?. Fresh tissue samples have
been imaged at cellular resolution using smartphone-based epifluorescence microscopy?®. Another recently
published study reported the use of a smartphone-based microscope for the detection of norovirus in water
samples with high precision?’. Another smartphone-based particle counting platform was recently reported
as an alternative to bulky laboratory-based flow cytometers and hematology analyzers?®. In our past studies,
we have also used a biochip in conjunction with SBFMs for quantification of nCD64 and leukocytes at the

POC-,

Many challenges remain to develop an ideal SBFM capable of mimicking the functionality of a benchtop
microscope by allowing the imaging of multiple fluorophores and offering the user different levels of
magnifications. In addition, with more than 1.5 billion new smartphones getting sold every year®' with
significantly different imaging models and camera settings, SBFMs should be generic in nature and not
limited to a single device. Furthermore, they should offer compatibility with microfluidic devices and not
just limited to imaging specimens on a glass slide. To the best of our knowledge, no such SBFM has yet

been reported which satisfies all the above-mentioned criteria.

In this article, we present the design and working of a modular SBFM that satisfies the criteria mentioned
above. Our SBFM is capable of working with a multitude of smartphones. The lens used for creating the
necessary magnification and the filters employed for creating the necessary darkfield image are all easily
swappable. This allows our SBFM to work with multiple fluorophores and capture images at multiple

magnification levels as desired by the user. We have imaged human peripheral blood leukocytes and



polystyrene beads tagged with green and red fluorophores using our setup at two different magnification
levels. Furthermore, to automate the quantification process of the imaged beads and leukocytes, we
developed a machine learning model based on an artificial neural network (ANN). The ANN was trained
through multiple training algorithms and its performance was compared to the particle counts obtained from
the control (ImagelJ). Lastly, we performed statistical analysis to determine if there was a statistically

significant difference between the counts predicted from the ANN based algorithm and the control.

Materials and methods

Resolution quantification:

A 1951 USAF resolution test chart from Edmund optics (Catalog # R1DS1P) was used to measure the
resolution of the designed SBFM. Samsung Galaxy S9+ and Nokia Lumia 1020 were used along with lens
(focal length= 10 mm) and the resolution test chart was imaged using both smartphones. Pixel intensities of
the obtained images were analysed by using ImageJ to quantify the resolution of the SBFM when used in
conjunction with each of these devices. A target in the test chart was deemed resolvable if the corresponding
pixel intensity peaks obtained from its image were clearly distinguishable.

Green fluorescent bead imaging on SBFM:

Green fluorescent microbeads with a mean diameter of 8.3 um were acquired from Banglabs (Product #
UMDGO003). These specific beads were chosen because they are comparable in size to human lymphocytes
(smaller diameter leukocytes). A long pass filter with a cut-off value of 500 nm was used along with lens A
(15 mm focal length) for imaging. Different concentrations of these beads were prepared by adding them in
1X PBS buffer. Subsequently, a 2 pl sample with varying concentrations of microbeads was placed inside
the smartphone setup for imaging. The fluorescent beads were excited using the light emitted by the
smartphone setup’s blue LED’s and imaged by a Samsung Galaxy S9+ used in conjunction with lens A (15

mm focal length) and 500 nm long pass filter.

Red fluorescent bead imaging on SBFM:

Red fluorescent microbeads with a mean diameter of 10 um were acquired from Thermofisher Scientific
(Catalog # F8834). To image red fluorescent beads, a long pass filter with a cut-off value of 593 nm was

used along with lens A (15 mm focal length). Different concentrations of these beads were prepared by



adding them in 1X PBS buffer. Subsequently, a 2 pl sample with varying concentrations of microbeads was
placed inside the smartphone setup for imaging. The fluorescent beads were excited using the light emitted
by the smartphone setup’s green LED’s and imaged by a Samsung Galaxy S9+ used in conjunction with lens

A (15 mm focal length) and 593 nm long pass filter.

Human subject statement:

Human blood samples were obtained from anonymous patients at Robert Wood Johnson Medical Hospital.
The blood samples were de-identified by the hospital staff before providing to investigators. Our study is
approved by Institutional Review Board (IRB) at Rutgers, The State University of New Jersey and Robert
Wood Johnson Medical Hospital (IRB application # Pro2018002356). All experiments in the current study
were performed in accordance with the IRB protocol ethical guidelines. Patients were selected for whom a
lactate test was ordered, and we were provided de-identified left-over blood samples which didn’t require

the informed consent in accordance with the IRB guidelines.

Preparation of leukocytes for fluorescent imaging:

100 pl of whole blood was poured in a 15 ml conical centrifuge tube. 1 ml RBC lysis media (ThermoFisher
scientific, Cat. #: 00-4333-57) was added to whole blood and mixed gently by pipetting. This solution was
then incubated at 25°C for 10 minutes to lyse the red blood cells present in the sample. After 10 minutes, 2
ml of 1X PBS was added into the mixture to stop the lysing process. The mixture was then centrifuged at
300g for 5 minutes. The supernatant was then removed from the centrifuge tube by pipetting and a palette
of leukocytes was left behind. These leukocytes were then resuspended in RPMI 1640 Medium from

ThermoFisher Scientific (Catalog number: 11875085) and were gently stirred to get a uniform concentration.

A green nuclear stain was used to make these isolated leukocytes fluoresce for imaging and counting
purposes. Stock solution for the nuclear stain was prepared by adding 3 pl of SYTO 16, (ThermoFisher
Scientific, Catalogue Number: S7578), in 1 ml of 1X PBS. SYTO 16 stock solution and the isolated
leukocytes were then added in a 1:1 ratio in a 1.5 ml Eppendorf tube and were incubated in dark for 15

minutes at room temperature. The leukocyte isolation process from whole blood is shown in Figure 1.
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Figure 1: Flowchart explaining the protocol for leukocyte isolation from whole blood and the addition of
nuclear stain for fluorescent imaging.

Benchtop fluorescent microscope:

Images of the different bead and leukocyte concentrations were also imaged using Olympus [X81 fluorescent
microscope with a 465-495 nm excitation and 515-555 nm emission filters. These images were used as a

control for comparison with the SBFM’s images to verify the accuracy of the SBFM.

Leukocyte and bead quantification using ImageJ:

Image] was used a control method for quantifying the beads and leukocytes imaged through the SBFM. The
obtained images were first converted into 8-bit format and then the thresholding function in ImageJ was used
to encapsulate the regions of interest. The pixel size and the circularity range are then provided to get the
final count. Because leukocytes are not completely round, the circularity was kept in a range of 0.6 to 1,
where 1 represents a perfect circle. The flowchart shown in Figure S1 represents the steps involved in getting

a particle count from an image using ImageJ.

Leukocyte and bead quantification using artificial neural networks (ANN):

MATLAB was used to develop the image processing algorithm for quantifying the particles (leukocytes and
beads) in the images obtained using the SBFM. The developed algorithm is based on the imfinddcircles()
function of MATLAB and takes in the size range of particles to be quantified. First, we generated 10 possible
counts for sensitivity values ranging from 0.87- 0.96. Multivariate regression was performed on this data
using artificial neural networks in MATLAB. The network diagram of the double layer feed forward artificial
neural network with sigmoid neurons and softmax output is shown in Figure S2. The designed neural
network consisted of 10 neurons (hidden layer) and 1 neuron (output layer). The input to the neural network
contained the 10 counts generated earlier using sensitivity values from 0.87 to 0.96. For training the neural
network, 93 SBFM images were used, and their particle counts are listed in Table S1. This network was

then trained using three different training methods. For each training method, ten different networks were



created resulting in a net total of 30 networks. The flowchart given in Figure S3 outlines the process of

determining counts from SBFM images using the developed ANN.

Statistical analysis:

Three artificial neural networks were selected with highest accuracy and their counts were compared to the
control counts (Imagel) to determine if there exists a statistically significant difference between them. First,
Shapiro-Wilks test was applied on each data set to determine its normality. Bartlett’s test was then used to
determine if there was any significant difference between the variances of the data sets. ANOVA was also
used to determine if a statistically significant difference existed among the data sets. For post-hoc analysis,
Tukey’s test was used to determine if individual differences existed between each data set. A significance

level of (o= 0.05) was used. These statistical analyses were carried out using R.

Design of smartphone-based fluorescent microscope:

A 3D CAD model of the smartphone-based fluorescent microscope was made using SolidWorks 2016. The
smartphone-based microscope consists of two main parts, the bottom and the top portion as shown in Figure
2A. The bottom portion contains two cavities, one for the imaging of fluorescent samples and the other for
placement of batteries. Additionally, the bottom portion also contains two openings for the placement of
LED’s which are used for fluorescent excitation. Each opening contains a set of three individual LED’s, one
is green and the other is blue in colour. Blue LED’s, (Product no: 516-2800-1-ND) were purchased from
Digi Key corporation and green LED’s from Adafruit (Product ID: 300). A bandpass filter with a centre
wavelength of 470 nm and bandwidth of ~40 nm (Chroma Inc, Product no. ET470/40x) is used as an
excitation filter for blue LED’s. However, for green LED’s, a bandpass filter with 535 nm centre wavelength
and bandwidth of 50 nm (Chroma Inc., Product no. ET535/50m) is used. As shown in Figure 2B, the top
portion of the microscope contains a slot for the placement of the lens which works in conjunction with the
smartphone lens to form relay lens system, thus, creating the necessary magnification for imaging. Two
lenses with different focal lengths were procured from Edmund optics which can be used interchangeably
depending on the magnification and field of view (FOV) requirements. Lens A (Edmund optics, Stock #27-
691), with 15mm focal length offers a bigger FOV but lesser magnification compared to lens B (Edmund

optics, Stock #45-208), which has a 10 mm focal length. Since these lenses have different diameters, they



are first placed in their individual lens holders which makes it possible to use them with the same top portion.
For adjusting the depth of focus, 4 screws were placed in the top portion which can be manually rotated to
adjust the depth of focus of the microscope as shown in Figure 2C. Furthermore, the top portion also contains
the slot for the placement of excitation filter which can be easily replaced corresponding to the type of
fluorophore being use. In case of green fluorophores, a long pass filter with a cut-off value of 500 nm
(Semrock, Product no: FF01-500/LP-23.3-D) is used, whereas, in case of red fluorophores, a long pass filter
with a cut-off value of 593 nm (Semrock, Product no: FF01-593/LP-25) is used. To further improve the
quality of the created dark field, a cover shield is used, which minimizes the amount of excitation light
getting through to the camera sensor. The designed microscopic smartphone attachment was 3D printed

(Markforged, Mark two) using Onyx thermoplastic material.
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Figure 2: (A) Disbanded 3D CAD Model of the designed microscopic SBFM, (B) (I) Dimensions of the
SBFM, (II) Underside of the bottom portion with battery slot, (C) 3D printed SBFM with Samsung Galaxy
S9+. (D) 1951 USAF resolution test chart imaged from the SBFM using Lumia 1020. (E) The pixel intensity
plots of Group 7 element 1 showing a resolution of 3.9 pm.



Results
Multiple smartphone options offered by SBFM:

The SBFM is generic in nature and can be used with a multitude of smartphones. For the purpose of this
study, a Samsung Galaxy S9+ was used to conduct the fluorescent beads and leukocytes quantification
experiments. Lumia 1020 and an iPhone XS were used for checking the capability of our SBFM to handle
smartphones from different companies. We found the performance of the SBFM to be satisfactory with all
of the aforementioned smartphones. The images taken from Lumia 1020 and iPhone XS can be seen in
Figure S4. No manual adjustments need to be made in the SBFM when switching between different
smartphones for imaging. The user can easily switch between smartphones and simply place the smartphone

of choice on top of the SBFM and start taking images with the new smartphone immediately.

Optical resolution:

Nokia Lumia 1020 and Samsung Galaxy S9+ were both used to quantify the spatial resolution of the designed
SBFM. Lumia 1020 has an internal lens of 7.2 mm focal length and Galaxy S9+ uses a 4.3 mm one. When
used in conjunction with Lens B (10 mm focal length), Lumia 1020 and Galaxy S9+ offer magnification
ratios equal to 0.72 and 0.43, respectively. The 1951 USAF resolution test chart imaged from Lumia 1020
is shown in Figure 2D. Pixel intensities of vertical and horizontal lines of Group 7 element 1 shown in
Figure 2e point to a maximum spatial resolution of 3.9 um for the SBFM when used with Lumia 1020.
Figure S5 shows the 1951 USAF resolution test chart when imaged from Galaxy S9+. Pixel intensities of
vertical and horizontal lines of Group 6 element 3 point to a maximum spatial resolution of 6.2 um for the

SBFM when used with Galaxy S9+.

Multiple magnification options offered by SBFM.:

The images of green and red fluorophores particles were obtained with our SBFM by using the protocols
mentioned earlier and are shown in Figure 3. The only manual adjustment required in the setup will be when
a user would like to swap a lens to get a different magnification for a different target application. This will
require a single time manual adjustment of the SBFM to focus the image on smartphone by simply rotating
the 4 screws shown in Figure 2C. Once the calibration is done for a specific lens, multiple images can be
taken using any smartphone of choice by placing the smartphone on top of the SBFM and simply clicking

the capture button of the camera app. Any user with our fixed setup will not perform any manual adjustments



to take images. We also verified the multiple magnification feature of the SBFM by swapping lens A with
lens B and imaging the samples at the maximum magnification offered by each lens. Figures 3A and 3B
show the maximum magnification offered by SBFM when lens A is being used, while Figures 3C and 3D

show the maximum available magnification when particles were imaged using lens B.

Figure 3: (A) Green fluorescent particles imaged with SBFM using lens A and Galaxy S9+. (B) Green
fluorescent particles imaged with SBFM using lens B and Galaxy S9+. (C) Red fluorescent particles imaged
with SBFM using lens A and Galaxy S9+. (D) Red fluorescent particles imaged with SBFM using lens B
and Galaxy S9+ . (Scale bars (A, C) = 50um; Scale bars (B, D) = 30um)

Imaging performance of proposed SBFM:

Green fluorescent beads were imaged by using both smartphone-based microscope and a benchtop
fluorescent microscope. Figure 4A shows the beads imaged by the smartphone-based microscope and
Figure 4B shows the beads when imaged under a laboratory benchtop fluorescent microscope. SYTO 16
tagged leukocytes imaged using the smartphone-based and benchtop microscopes are shown in Figure 4C
and Figure 4D respectively. Red fluorescent beads were also imaged by using both the SBFM and a
benchtop fluorescent microscope and are shown in Figure 4E and Figure 4F respectively. Imagel] was used
to analyze these images to find the particle count and a good correlation was found between the smartphone
and microscope counts with an R? = 0.99 as shown in Figure 4G. The Bland-Altman analysis of the data is

shown in Figure 4H. Bias value obtained is 10 and limits of agreement are (40.65, -20.65).
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Figure 4: (A) Green fluorescent beads imaged from the designed SBFM and Galaxy S9+. (B) Green
fluorescent beads imaged from a normal benchtop fluorescent microscope. (C) Leukocytes imaged from the
designed SBFM and Galaxy S9+. (D) Leukocytes imaged from a normal benchtop fluorescent microscope.
(E) Red fluorescent beads imaged from the designed SBFM and Galaxy S9+. (F) Red fluorescent beads
imaged from a normal benchtop fluorescent microscope. (G) Correlation curve between SBFM count and
microscope count using ImageJ. (H) Bland Altman analysis of the data resented in (C). (Scale bar = 100 um)

Multivariate regression using artificial neural networks:

We also analyzed the bead and leukocyte images obtained from the SBFM using the MATLAB based
artificial neural networks. A two-layer feed-forward artificial neural network with 10 neurons for hidden

layer and 1 neuron for output layer was used for the model. This network was then trained using different



data training algorithms including Levenberg Marquardt, scaled conjugate gradient, and Bayesian
regularization. For each training method, ten networks were trained. Performance of these trained networks
was then evaluated by a blinded testing images obtained from the SBFM and comparing their predicted
counts to the control count obtained through ImageJ. Table S2 lists the performance of each of these
networks and showcases the average percentage error and the corresponding standard deviation. The best
three performing neural networks were then picked for a closer evaluation and the resulting comparison plots

between ANN counts and the control counts (ImageJ) are shown in Figure 5.

The first model was trained with scaled conjugate gradient method, and the corresponding error histogram
and mean squared error (124.64) plots are shown in Figure S6. Hinton diagram representing the weight and
bias values of all neurons in the hidden and output layers is shown in Figure S7 and combined regression
plot for training, validation, and testing data is shown in Figure S8. Additionally, the correlation plot
between the ANN and ImagelJ count is shown in Figure 5A, which shows a correlation of R?>= 0.99 and a
slope of 0.88. The Bland Altman analysis of the same data is shown in Figure 5B, which shows the average
error to be equal to 28.41 and the limits of agreement are (95.00, -38.17). The mean percentage error for this
network was -9% with a standard deviation of 7.44%. The bias and the weight values of the neurons in the
trained network are shown in Table S3. The second model was also trained with scaled conjugate gradient
method, and the corresponding error histogram and mean squared error (217.72) plots are shown in Figure
S9. Hinton diagram representing the weight and bias values of all neurons in the hidden and output layers is
shown in Figure S10 and combined regression plot for training, validation, and testing data is shown in
Figure S11. Additionally, the correlation plot between the second ANN and ImageJ count is shown in
Figure 5C, which shows a correlation of R?= 0.99 and a slope of 0.89. The Bland Altman analysis of the
same data is shown in Figure 5D, which shows the average error to be equal to 23.46 and the limits of
agreement are (88.27, -41.33). The mean percentage error for this network was -6.31% with a standard
deviation of 6.92%. The bias and weight values of the neurons in the trained network are shown in Table
S4. The third model was trained with Bayesian regularization method, and the corresponding error histogram
and mean squared error (3.99) plots are shown in Figure S12. Hinton diagram representing the weight and
bias values of all neurons in the hidden and output layers is shown in Figure S13 and combined regression
plot for training, validation, and testing data is shown in Figure S14. Additionally, the correlation plot

between the said ANN and ImageJ count is shown in Figure SE, which shows a correlation of R?= 0.99 and



a slope 0f 0.93. The Bland Altman analysis of the same data is shown in Figure 5F, which shows the average

error to be equal to 13.71 and the limits of agreement are (92.36, -64.94). The mean percentage error for this

network was -2.9% with a standard deviation of 13.65%. The bias and weight values of the neurons in the

trained network are shown in Table S5. In Table 1, we have showcased the training and performance

characteristics of the three artificial neural networks.
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Figure 5: (A) Correlation curve between counts from NN (scaled conjugate gradient) and ImagelJ. (B) Bland
Altman analysis of the data presented in (A). (C) Correlation curve between counts from NN2 (scaled
conjugate gradient) and ImageJ. (D) Bland Altman analysis of the data presented in (C). (E) Correlation



curve between counts from NN3 (Bayesian regularization) and ImagelJ. (F) Bland Altman analysis of the
data presented in (E).

Linear regression, Bland-Altman analysis, & Percent Error

Mean Bland- Bland- Bland- NERGE]
Rvalue squared R? value Altman Altman Altman deviation
error (mean error) (pos. bias) (neg. bias) (%)
1 --- 0.99 ‘ 95.00 -38.17
--- 23.46 88.27 4133 631 692

13.17 92.36 -64.94 -2.90 13.65

Table 1: Comparison between the performance of ImagelJ (control) and the different methods used to train
the artificial neural network for particle counting.

Statistical analysis:

Statistical analysis was performed using R to evaluate whether the counts predicted by the three ANN based
algorithms deviated significantly from the ones obtained through control (ImageJ). The boxplots for all the
particles count images from both control and the ANN model can be seen in Figure 6A. First, Shapiro-Wilk
tests were performed to determine the normality of the data. The Shapiro-Wilk tests yielded the values:
W=0.94691, p-value=0.6321 for ImageJ, W=0.93759, p-value=0.5266 for Scaled Conjugate Gradient 1
(SCG1 i.e., ANN model 1); W=0.93105, p-value=0.4583 for Scaled Conjugate Gradient 2 (SCG2 i.e., ANN
model 2); and W=0.92748, p-value=0.4236 for Bayesian Regularization (BR i.e., ANN model 3). The high
p-values in all the cases indicate that the data does not deviate significantly from normality. Next, we
determined if the variances among the data sets are equivalent using Bartlett’s test to assess if ANOVA could
be performed. The Bartlett’s test yielded a p-value = 0.9504, proving that the variances do not differ
significantly. One-way ANOVA was subsequently performed and yielded the values (F-value=0.0792, p-
value=0.9709), highlighting, there is no significant difference among the 4 populations. For better
visualization, we also performed Tukey’s Honestly Significant Difference (HSD) test for individual
comparison of data sets and found no statistically significant difference among the sets as evident from

Figure 6B.
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Figure 6: (A) Box plots of the particle count data sets obtained from control (ImageJ) and the ANN based
algorithm. (B) Tukey plot of the data shown in (A).

Discussion

An ideal SBFM should offer multiple magnification options, ability to image multiple fluorophores, and
flexibility of platform compatibility e.g., glass slides, microfluidic devices etc. Furthermore, owing to the
extreme variety of smartphones, their camera specification and configurations being changed frequently,
SBFMs should be capable of working with different smartphones to avoid frequent design changes. In Table
S6, we have listed and compared our setup and previously reported SBFMs and the different functionalities
offered by them. Our SBFM is the only design which successfully fulfils all the mentioned criteria

overcoming their geometric and design limitations.

The different spatial resolution offered by Lumia 1020 and Samsung Galaxy S9+ with the SBFM is due to
the different magnification ratios and pixel pitches of their respective camera sensors. At same magnification
ratio, Lumia 1020 will always have a better spatial resolution because it has a higher pixel pitch. However,
the spatial resolution offered by Galaxy S9+ is appropriate for leukocyte counting application as seen from
the presented results. Moreover, it offers better connectivity, more functionality, and a higher computational
power compared to the Lumia 1020. We can also increase spatial resolution with a Galaxy S9+ by using
external lenses with smaller focal lengths to increase the magnification ratio to unity or even higher. There

is however a limit to this, and eventually, the spatial resolution would be limited by the Rayleigh criteria



which states R = %. The numerical aperture (NA) of Galaxy S9+ internal lens is about 0.34, when used

in conjunction with an external lens of the same NA, this would translate into a resolution limit of about 987
nm when working with green fluorophores (A = 550 nm), and about 1.12 pm when working with red

fluorophores (A = 620 nm).

The field of view (FOV) being offered by the SBFM is just as important as the magnification. With larger
magnification results in smaller FOV and vice versa. The field of view offered by the SBFM depends on the
ratio of the focal lengths of the external lens to the smartphones’ lens along with the sensor size of the
smartphone. Samsung Galaxy S9+ has a sensor size of about 5.76 x 4.29 mm and the focal length of its
internal lens is 4.3 mm. Using Galaxy S9+ with lens A (15 mm focal length), results in magnification of 0.29
(4.3/15), and a FOV of about 19.86 x 14.79 mm. When lens B (10 mm focal length) is used, we get
magnification of about 0.43 (4.3/10) and FOV of about approximately 13 x 10 mm. The ability to choose
between having a larger field of view and a larger magnification is an important feature offered by our SBFM
depending on the specific application requirements, imaging area, and particle concentrations etc. Our setup
can be used to work between two different fluorophores at multiple magnification settings, however, user
needs to replace the long pass filter in case of changing the fluorophore setting, or a different magnification

level can be selected by swapping the appropriate lens.

The darkfield created by the combination of top and bottom portion of the SBFM is necessary for fluorescent
microscopy. But in addition to that, it also helps in making the performance of SBFM consistent in different
ambient lighting conditions by minimizing exposure of the sample to external ambient light. The only light
that reaches the sample under consideration is from the SBFM’s excitation LED’s which is why the lighting
condition always remains consistent. The SBFM can, therefore, be used in different ambient lighting

conditions with high accuracy and consistency.

To automate the process of particle counting from the images obtained using the SBFM, we trained multiple
neural networks based on different training algorithms. First, we used Levenberg Marquardt method, it takes
more memory but less time to train and the training stops when there is no improvement in generalization
which is also indicated by an increase in the mean squared error of samples. Second, we used scaled
conjugate gradient method, it takes the least memory of all the methods and the training stops when there is

no improvement in generalization, which is also indicated by an increase in the mean squared error of



samples. Lastly, we used Bayesian regularization method, it takes more time to train but offers better
prediction accuracy and can be used for noisy datasets. In Bayesian regularization, training is stopped on the

basis of a regularization protocol i.e., adaptive weight minimization.

The correlation graphs shown in Figure 4 and Figure S shows a good particle count correlation between
control and SBFM. However, the low intercept values shown in Fig.4G and Figs. SA, 5C, and SE, indicates
the slight under-prediction. One of the possible reasons is the limited sample volume we used for this study
i.e., particles were suspended in the droplets of 2 pl volume. Using higher particle concentrations in smaller
volumes, multiple fluorescent particles may appear clustered together and result in underprediction of the
counts compared a bigger benchtop fluorescent microscope with a higher optical resolution. One possible
way to overcome challenge is to disperse the 2 pul sample over a larger surface area, which will reduce the
clustering of particles and help in improving the efficacy of particle counts?’. In addition, the accuracy can
be further improved by using a lens with an even smaller focal length. This will increase the optical resolution
of the SBFM, and thereby help resolve the clustered particles by the ANN’s, resulting in an improved
accuracy. The different focal length of the lens will also result in changing the effective field-of-view (FOV).
Thus, the lens’s focal length, FOV, and sample volume parameters should be selected based on a target

application.

We used Image] as control particle counts. Image] is an established software that is used for the
quantification of fluorescent particles imaged using different platforms in many laboratories. Though
precise, analysis using ImageJ requires multiple manual processing steps such as thresholding and
conversion of coloured images into grey scale. Furthermore, in terms of moving towards a complete end to
end user product system, Imagel] presents significant difficulties in terms of scaling and implementation on
a smartphone themselves. We therefore developed ANN based algorithm to quantify the fluorescent particles

imaged by the SBFM.

The selection of the training algorithm for ANN depends on the processing time and the computational
memory required. In our case we used 93 images for training, which is a smaller dataset and thus does not
require any significant computational processing to train our models. The results obtained from ANOVA
and Tukey’s test indicate that the performance of the ANN based particle counting algorithms is comprabale

to the control (ImageJ) which is also evident from the calculated p-values. The presented ANN based



algorithm relies on phase coding approach to identify and detect circles and has complexity ranging between
(N?to N*)32, The effect of the algorithms’ complexity is clearly evident from the real-world processing times
of the images obtained through multiple smartphones at different aspect ratios and magnification levels
(Table S7). An interesting observation from Table S7 is that the algorithm takes longer to process images
which have been captured at a higher zoom level. This happens because magnification level is directly
proportional to the pixel diameter of fluorescent particles being imaged. This results in increased

computation because of the inherent nature of phase coding approach.

The presented SBFM along with the particle quantification algorithm can be used for a number of
applications. Our SBFM is fully capable of working in conjunction with PDMS based microfluidic devices
for the quantification of leukocytes at point of care as well®. By binding a different antibody in the
microfluidic device, we can also image and quantify subtypes of leukocytes with specific antigen expressions

such as nCD643.

Conclusions

We have presented the design of a modular SBFM that can be used for imaging multiple fluorophores, has
multiple magnification options, and can be used with multiple smartphones. We imaged fluorescent
polystyrene beads and human leukocytes with the presented SBFM and observed a good correlation between
the performance of our SBFM and a regular benchtop microscope. Furthermore, we developed and trained
multiple artificial neural networks to quantify the beads/leukocytes imaged using the SBFM and found no
statistical difference in its performance compared to the control (Imagel). Even though we have only imaged
fluorescent beads and leukocytes in current study, the presented SBFM with ANN based counting algorithm
can easily be used with microfluidic diagnostic and cell culture devices and can therefore reduce the

dependency on expensive and bulky benchtop fluorescent microscopes.
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