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Abstract 

Portable smartphone-based fluorescent microscopes are becoming popular owing to their ability to provide 

major functionalities offered by regular benchtop microscopes at a fraction of the cost. However, 

smartphone-based microscopes are still limited to a single fluorophore, fixed magnification, the inability to 

work with a different smartphones, and limited usability to either glass slides or cover slips. To overcome 

these challenges, here we present a modular smartphone-based microscopic attachment. The modular design 

allows the user to easily swap between different sets of filters and lenses, thereby enabling utility of  multiple 

fluorophores and magnification levels. Our microscopic smartphone attachment can also be used with 

different smartphones and was tested with Nokia Lumia 1020, Samsung Galaxy S9+, and an iPhone XS. 

Further, we showed imaging results of samples on glass slides, cover slips, and microfluidic devices. A 1951 

USAF resolution test target was used to quantify the maximum resolution of the microscope which was 

found to be 3.9 μm. The performance of the smartphone-based microscope was compared with a benchtop 

microscope and we found an R2 value of 0.99 using polystyrene beads and blood cells isolated from human 

blood samples collected from Robert Wood Johnson Medical Hospital. Additionally, to count the particles 

(cells and beads) imaged from the smartphone-based fluorescent microscope, we developed artificial neural 

networks (ANNs) using multiple training algorithms, and evaluated their performances compared to the 

control (ImageJ). Finally, we did ANOVA and Tukey’s post-hoc analysis and found a p-value of 0.97 which 

shows  that no statistical significant difference exists between the performance of the trained ANN and 

control (ImageJ).  
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Introduction 

Modern laboratories are equipped with a wide range of analytical instruments. Among these, fluorescent 

microscopes are of particular importance, especially in the fields of biology and material science 1,2. They 

enable identification of cells and cellular components with a high precision. By tagging the specimen with 

multiple different probes, fluorescent microscopy can simultaneously identify several target molecules3,4. In 

addition to fluorescent microscopes, other benchtop instruments, such as flow cytometers and hematology 

analyzers are also heavily utilized in clinical laboratories for the purpose of disease diagnosis and patient 

prognosis by analyzing various biomarkers in clinical samples such as whole blood. In particular, both flow 

cytometers and hematology analyzers are used for various blood cells enumeration and their membrane 

antigens quantification. These measurements are routinely monitored in the hospitals for a variety of 

diseases, especially patient stratification with infectious diseases. Though these modern devices are 

extremely precise and equipped with a lot of functional modalities, they are highly expensive (e.g., cost 

thousands of dollars), lacks portability and require trained personnel to operate. Recently, researchers have 

developed multiple smartphone-based biosensors to provide low cost, portable, and efficient alternatives to 

the traditional bulky benchtop instruments found in lab settings5.  

Smartphone-based fluorescent microscopes (SBFMs) have a great potential to be used as point of care 

platforms for diagnostics, healthcare, and environmental monitoring6.  Modern smartphones are equipped 

with cutting edge camera units which allow to capture high quality images. SBFMs have been employed in 

a wide range of settings that include the detection of different biomarkers including proteins and nucleic 

acids7-11. Ozcan et.al reported the quantification of red and white blood cells as well as hemoglobulin from 

whole blood using a smartphone-based microscope12. Moreover, SBFMs have also been employed for the 

detection of parasites13 as well as imaging the nanoparticles and viruses14. The design and working of a multi 

color smartphone-based fluorescence microscope capable of imaging two fluorophores at two magnification 

levels has been demonstrated15. Researchers have also reported the use of colored lenses along with 

smartphones to image multiple fluorophores16. SBFMs have also been used for monitoring drug-induced 

nephrotoxicity on an organ on chip (OOC) platform17. Lee et al.18 demonstrated the adaptation of a 

smartphone's camera to function as a compact lens less microscope in ambient light. The method is based 

on the shadow imaging technique where the sample is placed on the surface of the image sensor, which 

captures direct shadow images under illumination. A hand-held smartphone based quantitative phase 



 

microscopy employing transport of intensity equation method has also been demonstrated19. Jung et al.20 

presented a portable multi-contrast microscope operating on a smartphone platform. Based on color-

multiplexing of illumination angles, the microscope enabled acquisition of bright field, dark field, and 

differential phase contrast images in a single shot. Identification of fluorescently labelled pathogenic bacteria 

has been recently demonstrated using a SBFM21. Knowlton et al.22 developed a SBFM incorporating 

magnetic focusing technology to increase the application of the platform to a broad range of biomedical 

assays. Shan et al.23 developed a fluorescent microscope for on-site quantitative Hg2+ measurement based on 

a fluorescent biosensor. Recently, a smartphone-based fluorescent microscope with a hydraulically driven 

optofluidic lens was used for the quantification of glucose with high accuracy24. Another smartphone-based 

microscope employed deep learning for the automated screening of sickle cells25. Fresh tissue samples have 

been imaged at cellular resolution using smartphone-based epifluorescence microscopy26. Another recently 

published study reported the use of a smartphone-based microscope for the detection of norovirus in water 

samples with high precision27. Another smartphone-based particle counting platform was recently reported 

as an alternative to bulky laboratory-based flow cytometers and hematology analyzers28.   In our past studies, 

we have also used a biochip in conjunction with SBFMs for quantification of nCD64 and leukocytes at the 

POC29,30. 

Many challenges remain to develop an ideal SBFM capable of mimicking the functionality of a benchtop 

microscope by allowing the imaging of multiple fluorophores and offering the user different levels of 

magnifications. In addition, with more than 1.5 billion new smartphones getting sold every year31 with 

significantly different imaging models and camera settings, SBFMs should be generic in nature and not 

limited to a single device. Furthermore, they should offer compatibility with microfluidic devices and not 

just limited to imaging specimens on a glass slide. To the best of our knowledge, no such SBFM has yet 

been reported which satisfies all the above-mentioned criteria. 

In this article, we present the design and working of a modular SBFM that satisfies the criteria mentioned 

above. Our SBFM is capable of working with a multitude of smartphones. The lens used for creating the 

necessary magnification and the filters employed for creating the necessary darkfield image are all easily 

swappable. This allows our SBFM to work with multiple fluorophores and capture images at multiple 

magnification levels as desired by the user. We have imaged human peripheral blood leukocytes and 



 

polystyrene beads tagged with green and red fluorophores using our setup at two different magnification 

levels. Furthermore, to automate the quantification process of the imaged beads and leukocytes, we 

developed a machine learning model based on an artificial neural network (ANN). The ANN was trained 

through multiple training algorithms and its performance was compared to the particle counts obtained from 

the control (ImageJ). Lastly, we performed statistical analysis to determine if there was a statistically 

significant difference between the counts predicted from the ANN based algorithm and the control. 

 

Materials and methods 

 

Resolution quantification: 

A 1951 USAF resolution test chart from Edmund optics (Catalog # R1DS1P) was used to measure the 

resolution of the designed SBFM. Samsung Galaxy S9+ and Nokia Lumia 1020 were used along with lens  

(focal length= 10 mm) and the resolution test chart was imaged using both smartphones. Pixel intensities of 

the obtained images were analysed by using ImageJ to quantify the resolution of the SBFM when used in 

conjunction with each of these devices. A target in the test chart was deemed resolvable if the corresponding 

pixel intensity peaks obtained from its image were clearly distinguishable. 

Green fluorescent bead imaging on SBFM:  

Green fluorescent microbeads with a mean diameter of 8.3 µm were acquired from Banglabs (Product # 

UMDG003). These specific beads were chosen because they are comparable in size to human lymphocytes 

(smaller diameter leukocytes). A long pass filter with a cut-off value of 500 nm was used along with lens A 

(15 mm focal length) for imaging. Different concentrations of these beads were prepared by adding them in 

1X PBS buffer. Subsequently, a 2 µl sample with varying concentrations of microbeads was placed inside 

the smartphone setup for imaging. The fluorescent beads were excited using the light emitted by the 

smartphone setup’s blue LED’s and imaged by a Samsung Galaxy S9+ used in conjunction with lens A (15 

mm focal length) and 500 nm long pass filter.  

Red fluorescent bead imaging on SBFM:  

Red fluorescent microbeads with a mean diameter of 10 µm were acquired from Thermofisher Scientific 

(Catalog # F8834). To image red fluorescent beads, a long pass filter with a cut-off value of 593 nm was 

used along with lens A (15 mm focal length). Different concentrations of these beads were prepared by 



 

adding them in 1X PBS buffer. Subsequently, a 2 µl sample with varying concentrations of microbeads was 

placed inside the smartphone setup for imaging. The fluorescent beads were excited using the light emitted 

by the smartphone setup’s green LED’s and imaged by a Samsung Galaxy S9+ used in conjunction with lens 

A (15 mm focal length) and 593 nm long pass filter.  

Human subject statement: 

Human blood samples were obtained from anonymous patients at Robert Wood Johnson Medical Hospital. 

The blood samples were de-identified by the hospital staff before providing to investigators. Our study is 

approved by Institutional Review Board (IRB) at Rutgers, The State University of New Jersey and Robert 

Wood Johnson Medical Hospital (IRB application # Pro2018002356). All experiments in the current study 

were performed in accordance with the IRB protocol ethical guidelines. Patients were selected for whom a 

lactate test was ordered, and we were provided de-identified left-over blood samples which didn’t require 

the informed consent in accordance with the IRB guidelines.  

Preparation of leukocytes for fluorescent imaging:  

100 µl of whole blood was poured in a 15 ml conical centrifuge tube. 1 ml RBC lysis media (ThermoFisher 

scientific, Cat. #: 00-4333-57) was added to whole blood and mixed gently by pipetting. This solution was 

then incubated at 25°C for 10 minutes to lyse the red blood cells present in the sample. After 10 minutes, 2 

ml of 1X PBS was added into the mixture to stop the lysing process. The mixture was then centrifuged at 

300g for 5 minutes.  The supernatant was then removed from the centrifuge tube by pipetting and a palette 

of leukocytes was left behind. These leukocytes were then resuspended in RPMI 1640 Medium from 

ThermoFisher Scientific (Catalog number: 11875085) and were gently stirred to get a uniform concentration.  

A green nuclear stain was used to make these isolated leukocytes fluoresce for imaging and counting 

purposes. Stock solution for the nuclear stain was prepared by adding 3 µl of SYTO 16, (ThermoFisher 

Scientific, Catalogue Number: S7578), in 1 ml of 1X PBS. SYTO 16 stock solution and the isolated 

leukocytes were then added in a 1:1 ratio in a 1.5 ml Eppendorf tube and were incubated in dark for 15 

minutes at room temperature. The leukocyte isolation process from whole blood is shown in Figure 1. 





 

created resulting in a net total of 30 networks. The flowchart given in Figure S3 outlines the process of 

determining counts from SBFM images using the developed ANN. 

Statistical analysis:  

Three artificial neural networks were selected with highest accuracy and their counts were compared to the 

control counts (ImageJ) to determine if there exists a statistically significant difference between them. First, 

Shapiro-Wilks test was applied on each data set to determine its normality. Bartlett’s test was then used to 

determine if there was any significant difference between the variances of the data sets. ANOVA was also 

used to determine if a statistically significant difference existed among the data sets. For post-hoc analysis, 

Tukey’s test was used to determine if individual differences existed between each data set. A significance 

level of (α = 0.05) was used. These statistical analyses were carried out using R.  

Design of smartphone-based fluorescent microscope:  

A 3D CAD model of the smartphone-based fluorescent microscope was made using SolidWorks 2016. The 

smartphone-based microscope consists of two main parts, the bottom and the top portion as shown in Figure 

2A. The bottom portion contains two cavities, one for the imaging of fluorescent samples and the other for 

placement of batteries. Additionally, the bottom portion also contains two openings for the placement of 

LED’s which are used for fluorescent excitation. Each opening contains a set of three individual LED’s, one 

is green and the other is blue in colour. Blue LED’s, (Product no: 516-2800-1-ND) were purchased from 

Digi Key corporation and green LED’s from Adafruit (Product ID: 300). A bandpass filter with a centre 

wavelength of 470 nm and bandwidth of ~40 nm (Chroma Inc, Product no. ET470/40x) is used as an 

excitation filter for blue LED’s. However, for green LED’s, a bandpass filter with 535 nm centre wavelength 

and bandwidth of 50 nm (Chroma Inc., Product no. ET535/50m) is used. As shown in Figure 2B, the top 

portion of the microscope contains a slot for the placement of the lens which works in conjunction with the 

smartphone lens to form relay lens system, thus, creating the necessary magnification for imaging. Two 

lenses with different focal lengths were procured from Edmund optics which can be used interchangeably 

depending on the magnification and field of view (FOV) requirements. Lens A (Edmund optics, Stock #27-

691), with 15mm focal length offers a bigger FOV but lesser magnification compared to lens B (Edmund 

optics, Stock #45-208), which has a 10 mm focal length. Since these lenses have different diameters, they 



 

are first placed in their individual lens holders which makes it possible to use them with the same top portion. 

For adjusting the depth of focus, 4 screws were placed in the top portion which can be manually rotated to 

adjust the depth of focus of the microscope as shown in Figure 2C. Furthermore, the top portion also contains 

the slot for the placement of excitation filter which can be easily replaced corresponding to the type of 

fluorophore being use. In case of green fluorophores, a long pass filter with a cut-off value of 500 nm 

(Semrock, Product no: FF01-500/LP-23.3-D) is used, whereas, in case of red fluorophores, a long pass filter 

with a cut-off value of 593 nm (Semrock, Product no: FF01-593/LP-25) is used. To further improve the 

quality of the created dark field, a cover shield is used, which minimizes the amount of excitation light 

getting through to the camera sensor. The designed microscopic smartphone attachment was 3D printed 

(Markforged, Mark two) using Onyx thermoplastic material.  

 

 

Figure 2: (A) Disbanded 3D CAD Model of the designed microscopic SBFM, (B) (I) Dimensions of the 

SBFM, (II) Underside of the bottom portion with battery slot, (C) 3D printed SBFM with Samsung Galaxy 

S9+. (D) 1951 USAF resolution test chart imaged from the SBFM using Lumia 1020. (E) The pixel intensity 

plots of Group 7 element 1 showing a resolution of 3.9 µm. 
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Results 

Multiple smartphone options offered by SBFM: 

The SBFM is generic in nature and can be used with a multitude of smartphones. For the purpose of this 

study, a Samsung Galaxy S9+ was used to conduct the fluorescent beads and leukocytes quantification 

experiments.  Lumia 1020 and an iPhone XS were used for checking the capability of our SBFM to handle 

smartphones from different companies. We found the performance of the SBFM to be satisfactory with all 

of the aforementioned smartphones. The images taken from Lumia 1020 and iPhone XS can be seen in 

Figure S4. No manual adjustments need to be made in the SBFM when switching between different 

smartphones for imaging. The user can easily switch between smartphones and simply place the smartphone 

of choice on top of the SBFM and start taking images with the new smartphone immediately. 

Optical resolution: 

Nokia Lumia 1020 and Samsung Galaxy S9+ were both used to quantify the spatial resolution of the designed 

SBFM. Lumia 1020 has an internal lens of 7.2 mm focal length and Galaxy S9+ uses a 4.3 mm one. When 

used in conjunction with Lens B (10 mm focal length), Lumia 1020 and Galaxy S9+ offer magnification 

ratios equal to 0.72 and 0.43, respectively. The 1951 USAF resolution test chart imaged from Lumia 1020 

is shown in Figure 2D. Pixel intensities of vertical and horizontal lines of Group 7 element 1 shown in 

Figure 2e point to a maximum spatial resolution of 3.9 um for the SBFM when used with Lumia 1020. 

Figure S5 shows the 1951 USAF resolution test chart when imaged from Galaxy S9+. Pixel intensities of 

vertical and horizontal lines of Group 6 element 3 point to a maximum spatial resolution of 6.2 um for the 

SBFM when used with Galaxy S9+. 

Multiple magnification options offered by SBFM: 

The images of green and red fluorophores particles were obtained with our SBFM by using the protocols 

mentioned earlier and are shown in Figure 3. The only manual adjustment required in the setup will be when 

a user would like to swap a lens to get a different magnification for a different target application. This will 

require a single time manual adjustment of the SBFM to focus the image on smartphone by simply rotating 

the 4 screws shown in Figure 2C. Once the calibration is done for a specific lens, multiple images can be 

taken using any smartphone of choice by placing the smartphone on top of the SBFM and simply clicking 

the capture button of the camera app. Any user with our fixed setup will not perform any manual adjustments 



 

to take images. We also verified the multiple magnification feature of the SBFM by swapping lens A with 

lens B and imaging the samples at the maximum magnification offered by each lens. Figures 3A and 3B 

show the maximum magnification offered by SBFM when lens A is being used, while Figures 3C and 3D 

show the maximum available magnification when particles were imaged using lens B.  

 

Figure 3: (A) Green fluorescent particles imaged with SBFM using lens A and Galaxy S9+. (B) Green 

fluorescent particles imaged with SBFM using lens B and Galaxy S9+. (C) Red fluorescent particles imaged 

with SBFM using lens A and Galaxy S9+. (D) Red fluorescent particles imaged with SBFM using lens B 

and Galaxy S9+ . (Scale bars (A, C) = 50μm; Scale bars (B, D) = 30μm) 

 

Imaging performance of proposed SBFM: 

Green fluorescent beads were imaged by using both smartphone-based microscope and a benchtop 

fluorescent microscope. Figure 4A shows the beads imaged by the smartphone-based microscope and 

Figure 4B shows the beads when imaged under a laboratory benchtop fluorescent microscope. SYTO 16 

tagged leukocytes imaged using the smartphone-based and benchtop microscopes are shown in Figure 4C 

and Figure 4D respectively. Red fluorescent beads were also imaged by using both the SBFM and a 

benchtop fluorescent microscope and are shown in Figure 4E and Figure 4F respectively. ImageJ was used 

to analyze these images to find the particle count and a good correlation was found between the smartphone 

and microscope counts with an R2 = 0.99 as shown in Figure 4G. The Bland-Altman analysis of the data is 

shown in Figure 4H. Bias value obtained is 10 and limits of agreement are (40.65, -20.65). 
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Figure 4: (A) Green fluorescent beads imaged from the designed SBFM and Galaxy S9+. (B) Green 

fluorescent beads imaged from a normal benchtop fluorescent microscope. (C)  Leukocytes imaged from the 

designed SBFM and Galaxy S9+. (D) Leukocytes imaged from a normal benchtop fluorescent microscope. 

(E) Red fluorescent beads imaged from the designed SBFM and Galaxy S9+. (F) Red fluorescent beads 

imaged from a normal benchtop fluorescent microscope. (G) Correlation curve between SBFM count and 

microscope count using ImageJ. (H) Bland Altman analysis of the data resented in (C). (Scale bar = 100μm) 

 

Multivariate regression using artificial neural networks: 

We also analyzed the bead and leukocyte images obtained from the SBFM using the MATLAB based 

artificial neural networks. A two-layer feed-forward artificial neural network with 10 neurons for hidden 

layer and 1 neuron for output layer was used for the model. This network was then trained using different 
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data training algorithms including Levenberg Marquardt, scaled conjugate gradient, and Bayesian 

regularization. For each training method, ten networks were trained. Performance of these trained networks 

was then evaluated by a blinded testing images obtained from the SBFM and comparing their predicted 

counts to the control count obtained through ImageJ. Table S2 lists the performance of each of these 

networks and showcases the average percentage error and the corresponding standard deviation. The best 

three performing neural networks were then picked for a closer evaluation and the resulting comparison plots 

between ANN counts and the control counts (ImageJ) are shown in Figure 5. 

The first model was trained with scaled conjugate gradient method, and the corresponding error histogram 

and mean squared error (124.64) plots are shown in Figure S6. Hinton diagram representing the weight and 

bias values of all neurons in the hidden and output layers is shown in Figure S7 and combined regression 

plot for training, validation, and testing data is shown in Figure S8. Additionally, the correlation plot 

between the ANN and ImageJ count is shown in Figure 5A, which shows a correlation of R2= 0.99 and a 

slope of 0.88. The Bland Altman analysis of the same data is shown in Figure 5B, which shows the average 

error to be equal to 28.41 and the limits of agreement are (95.00, -38.17). The mean percentage error for this 

network was -9% with a standard deviation of 7.44%. The bias and the weight values of the neurons in the 

trained network are shown in Table S3. The second model was also trained with scaled conjugate gradient 

method, and the corresponding error histogram and mean squared error (217.72) plots are shown in Figure 

S9. Hinton diagram representing the weight and bias values of all neurons in the hidden and output layers is 

shown in Figure S10 and combined regression plot for training, validation, and testing data is shown in 

Figure S11. Additionally, the correlation plot between the second ANN and ImageJ count is shown in 

Figure 5C, which shows a correlation of R2= 0.99 and a slope of 0.89. The Bland Altman analysis of the 

same data is shown in Figure 5D, which shows the average error to be equal to 23.46 and the limits of 

agreement are (88.27, -41.33). The mean percentage error for this network was -6.31% with a standard 

deviation of 6.92%. The bias and weight values of the neurons in the trained network are shown in Table 

S4.  The third model was trained with Bayesian regularization method, and the corresponding error histogram 

and mean squared error (3.99) plots are shown in Figure S12. Hinton diagram representing the weight and 

bias values of all neurons in the hidden and output layers is shown in Figure S13 and combined regression 

plot for training, validation, and testing data is shown in Figure S14. Additionally, the correlation plot 

between the said ANN and ImageJ count is shown in Figure 5E, which shows a correlation of R2= 0.99 and 



 

a slope of 0.93. The Bland Altman analysis of the same data is shown in Figure 5F, which shows the average 

error to be equal to 13.71 and the limits of agreement are (92.36, -64.94). The mean percentage error for this 

network was -2.9% with a standard deviation of 13.65%. The bias and weight values of the neurons in the 

trained network are shown in Table S5. In Table 1, we have showcased the training and performance 

characteristics of the three artificial neural networks.  

  

Figure 5: (A) Correlation curve between counts from NN1 (scaled conjugate gradient) and ImageJ. (B) Bland 

Altman analysis of the data presented in (A). (C) Correlation curve between counts from NN2 (scaled 

conjugate gradient) and ImageJ.  (D) Bland Altman analysis of the data presented in (C). (E) Correlation 
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curve between counts from NN3 (Bayesian regularization) and ImageJ. (F) Bland Altman analysis of the 

data presented in (E). 

 

 

Table 1: Comparison between the performance of ImageJ (control) and the different methods used to train 

the artificial neural network for particle counting.  

 

Statistical analysis: 

Statistical analysis was performed using R to evaluate whether the counts predicted by the three ANN based 

algorithms deviated significantly from the ones obtained through control (ImageJ). The boxplots for all the 

particles count images from both control and the ANN model can be seen in Figure 6A. First, Shapiro-Wilk 

tests were performed to determine the normality of the data. The Shapiro-Wilk tests yielded the values: 

W=0.94691, p-value=0.6321 for ImageJ, W=0.93759, p-value=0.5266 for Scaled Conjugate Gradient 1 

(SCG1 i.e., ANN model 1); W=0.93105, p-value=0.4583 for Scaled Conjugate Gradient 2 (SCG2 i.e., ANN 

model 2); and W=0.92748, p-value=0.4236 for Bayesian Regularization (BR i.e., ANN model 3). The high 

p-values in all the cases indicate that the data does not deviate significantly from normality. Next, we 

determined if the variances among the data sets are equivalent using Bartlett’s test to assess if ANOVA could 

be performed. The Bartlett’s test yielded a p-value = 0.9504, proving that the variances do not differ 

significantly. One-way ANOVA was subsequently performed and yielded the values (F-value=0.0792, p-

value=0.9709), highlighting, there is no significant difference among the 4 populations. For better 

visualization, we also performed Tukey’s Honestly Significant Difference (HSD) test for individual 

comparison of data sets and found no statistically significant difference among the sets as evident from 

Figure 6B. 

  
Neural network 

results 
Linear regression, Bland-Altman analysis, & Percent Error 

 Method R value 

Mean 

squared 

error 

R² value 

Bland-

Altman 

(mean error) 

Bland-

Altman 

(pos. bias) 

Bland-

Altman 

(neg. bias) 

Error 

(%) 

Standard 

deviation 

(%) 

NN 1 SCG 0.99 124.64 0.99 28.41 95.00 -38.17 -9.04 7.44 

NN 2 SCG 0.99 217.72 0.99 23.46 88.27 -41.33 -6.31 6.92 

NN 3 BR 0.99 3.99 0.99 13.17 92.36 -64.94 -2.90 13.65 



 

 

Figure 6: (A) Box plots of the particle count data sets obtained from control (ImageJ) and the ANN based 

algorithm. (B) Tukey plot of the data shown in (A). 

 

Discussion 

An ideal SBFM should offer multiple magnification options, ability to image multiple fluorophores, and 

flexibility of platform compatibility e.g., glass slides, microfluidic devices etc.  Furthermore, owing to the 

extreme variety of smartphones, their camera specification and configurations being changed frequently, 

SBFMs should be capable of working with different smartphones to avoid frequent design changes. In Table 

S6, we have listed and compared our setup and previously reported SBFMs and the different functionalities 

offered by them. Our SBFM is the only design which successfully fulfils all the mentioned criteria 

overcoming their geometric and design limitations.  

 

The different spatial resolution offered by Lumia 1020 and Samsung Galaxy S9+ with the SBFM is due to 

the different magnification ratios and pixel pitches of their respective camera sensors. At same magnification 

ratio, Lumia 1020 will always have a better spatial resolution because it has a higher pixel pitch. However, 

the spatial resolution offered by Galaxy S9+ is appropriate for leukocyte counting application as seen from 

the presented results. Moreover, it offers better connectivity, more functionality, and a higher computational 

power compared to the Lumia 1020. We can also increase spatial resolution with a Galaxy S9+ by using 

external lenses with smaller focal lengths to increase the magnification ratio to unity or even higher. There 

is however a limit to this, and eventually, the spatial resolution would be limited by the Rayleigh criteria 

A B



 

which states 𝑅 = 0.61λ𝑁𝐴 . The numerical aperture (NA) of Galaxy S9+ internal lens is about 0.34, when used 

in conjunction with an external lens of the same NA, this would translate into a resolution limit of about 987 

nm when working with green fluorophores (λ = 550 nm), and about 1.12 µm when working with red 

fluorophores (λ = 620 nm). 

The field of view (FOV) being offered by the SBFM is just as important as the magnification. With larger 

magnification results in smaller FOV and vice versa. The field of view offered by the SBFM depends on the 

ratio of the focal lengths of the external lens to the smartphones’ lens along with the sensor size of the 

smartphone. Samsung Galaxy S9+ has a sensor size of about 5.76 x 4.29 mm and the focal length of its 

internal lens is 4.3 mm. Using Galaxy S9+ with lens A (15 mm focal length), results in magnification of 0.29 

(4.3/15), and a FOV of about 19.86 x 14.79 mm. When lens B (10 mm focal length) is used, we get 

magnification of about 0.43 (4.3/10) and FOV of about approximately 13 x 10 mm. The ability to choose 

between having a larger field of view and a larger magnification is an important feature offered by our SBFM 

depending on the specific application requirements, imaging area, and particle concentrations etc.  Our setup 

can be used to work between two different fluorophores at multiple magnification settings, however, user 

needs to replace the long pass filter in case of changing the fluorophore setting, or a different magnification 

level can be selected by swapping the appropriate lens. 

The darkfield created by the combination of top and bottom portion of the SBFM is necessary for fluorescent 

microscopy. But in addition to that, it also helps in making the performance of SBFM consistent in different 

ambient lighting conditions by minimizing exposure of the sample to external ambient light. The only light 

that reaches the sample under consideration is from the SBFM’s excitation LED’s which is why the lighting 

condition always remains consistent. The SBFM can, therefore, be used in different ambient lighting 

conditions with high accuracy and consistency. 

To automate the process of particle counting from the images obtained using the SBFM, we trained multiple 

neural networks based on different training algorithms. First, we used Levenberg Marquardt method, it takes 

more memory but less time to train and the training stops when there is no improvement in generalization 

which is also indicated by an increase in the mean squared error of samples. Second, we used scaled 

conjugate gradient method, it takes the least memory of all the methods and the training stops when there is 

no improvement in generalization, which is also indicated by an increase in the mean squared error of 



 

samples. Lastly, we used Bayesian regularization method, it takes more time to train but offers better 

prediction accuracy and can be used for noisy datasets. In Bayesian regularization, training is stopped on the 

basis of a regularization protocol i.e., adaptive weight minimization. 

The correlation graphs shown in Figure 4 and Figure 5 shows a good particle count correlation between 

control and SBFM. However, the low intercept values shown in Fig.4G and Figs. 5A, 5C, and 5E, indicates 

the slight under-prediction. One of the possible reasons is the limited sample volume we used for this study 

i.e., particles were suspended in the droplets of 2 µl volume. Using higher particle concentrations in smaller 

volumes, multiple fluorescent particles may appear clustered together and result in underprediction of the 

counts compared a bigger benchtop fluorescent microscope with a higher optical resolution. One possible 

way to overcome challenge is to disperse the 2 µl sample over a larger surface area, which will reduce the 

clustering of particles and help in improving the efficacy of particle counts29. In addition, the accuracy can 

be further improved by using a lens with an even smaller focal length. This will increase the optical resolution 

of the SBFM, and thereby help resolve the clustered particles by the ANN’s, resulting in an improved 

accuracy. The different focal length of the lens will also result in changing the effective field-of-view (FOV). 

Thus, the lens’s focal length, FOV, and sample volume parameters should be selected based on a target 

application. 

We used ImageJ as control particle counts. ImageJ is an established software that is used for the 

quantification of fluorescent particles imaged using different platforms in many laboratories. Though 

precise, analysis using ImageJ requires multiple manual processing steps such as thresholding and 

conversion of coloured images into grey scale. Furthermore, in terms of moving towards a complete end to 

end user product system, ImageJ presents significant difficulties in terms of scaling and implementation on 

a smartphone themselves. We therefore developed ANN based algorithm to quantify the fluorescent particles 

imaged by the SBFM.  

The selection of the training algorithm for ANN depends on the processing time and the computational 

memory required. In our case we used 93 images for training, which is a smaller dataset and thus does not 

require any significant computational processing to train our models. The results obtained from ANOVA 

and Tukey’s test indicate that the performance of the ANN based particle counting algorithms is comprabale 

to the control (ImageJ) which is also evident from the calculated p-values. The presented ANN based 



 

algorithm relies on phase coding approach to identify and detect circles and has complexity ranging between 

(N2 to N4) 32. The effect of the algorithms’ complexity is clearly evident from the real-world processing times 

of the images obtained through multiple smartphones at different aspect ratios and magnification levels 

(Table S7). An interesting observation from Table S7 is that the algorithm takes longer to process images 

which have been captured at a higher zoom level. This happens because magnification level is directly 

proportional to the pixel diameter of fluorescent particles being imaged. This results in increased 

computation because of the inherent nature of phase coding approach.  

The presented SBFM along with the particle quantification algorithm can be used for a number of 

applications. Our SBFM is fully capable of working in conjunction with PDMS based microfluidic devices 

for the quantification of leukocytes at point of care as well29. By binding a different antibody in the 

microfluidic device, we can also image and quantify subtypes of leukocytes with specific antigen expressions 

such as nCD6430. 

Conclusions 

We have presented the design of a modular SBFM that can be used for imaging multiple fluorophores, has 

multiple magnification options, and can be used with multiple smartphones. We imaged fluorescent 

polystyrene beads and human leukocytes with the presented SBFM and observed a good correlation between 

the performance of our SBFM and a regular benchtop microscope. Furthermore, we developed and trained 

multiple artificial neural networks to quantify the beads/leukocytes imaged using the SBFM and found no 

statistical difference in its performance compared to the control (ImageJ). Even though we have only imaged 

fluorescent beads and leukocytes in current study, the presented SBFM with ANN based counting algorithm 

can easily be used with microfluidic diagnostic and cell culture devices and can therefore reduce the 

dependency on expensive and bulky benchtop fluorescent microscopes.  
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