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ABSTRACT

Microfluidic impedance cytometry is a powerful system to measure micro and nano-sized particles
and is routinely used in point-of-care settings disease diagnostics and other biomedical
applications. However, small objects near a sensor’s detection limit are plagued with relatively
significant background noise and are difficult to identify for every case. While many data
processing techniques can be utilized to reduce noise and improve signal quality, frequently they
are still inadequate to push sensor detection limits. Here, we report the first demonstration of a
novel signal averaging algorithm effective in noise reduction of microfluidic impedance cytometry
data, improving enumeration accuracy and reducing detection limits. Our device uses a 22 um tall
by 100 pm wide (with 30 um wide focused aperture) microchannel and gold coplanar
microelectrodes that generates an electric field, recording bipolar pulses from polystyrene
microparticles flowing through the channel. In addition to outlining a modified moving signal
averaging technique theoretically and with a model dataset, we also performed a compendium of
characterization experiments including variations in flow rate, input voltage, and particle size.
Multi-variate metrics from each experiment are compared including signal amplitude, pulse width,
background noise, and signal-to-noise ratio (SNR). Incorporating our technique resulted in
improved SNR and counting accuracy across all experiments conducted, and the limit of detection
improved from 5 um to 1 um particles without modifying microchannel dimensions. Succeeding
this, we envision implementing our modified moving average technique to develop next generation
microfluidic impedance cytometry devices with an expanded dynamic range and improved
enumeration accuracy. This can be exceedingly useful for many biomedical applications, such as
infectious disease diagnostics where devices may enumerate larger-scale immune cells alongside

sub-micron bacterium in the same sample.
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INTRODUCTION

Detecting micro and nano-sized objects has been widely explored over the last 70 years and is
critical for many disciplines including medical diagnostics (Clausen et al., 2018; Evander et al.,
2013; U. Hassan et al., 2017; U. Hassan & Bashir, 2014), environmental protection (Carminati et
al., 2014; Ciccarella et al., 2016; Guo et al., 2015), and other industries (Bredar et al., 2020; Shi et
al., 2021; Teass et al., 1998; Xu et al., 2016; Zhang et al., 2021). To accomplish this, one of the
most common and promising methods may be electrochemical impedance spectroscopy (EIS)
which measures the electrical properties of objects in response to an electric potential. While
numerous configurations have been researched and implemented, typically this consists of bonded
electrodes to generate an electric field on the surface of microchannels that facilitate microfluidic
flow. EIS has many advantages over other micro-scale detection options, including a diversity of
materials which can be measured (e.g., proteins (Baraket et al., 2017; Mok et al., 2014; Panneer
Selvam & Prasad, 2017), immune cells (U. Hassan et al., 2017; Watkins et al., 2013), pathogens
(Lam et al., 2013), particulate matter (Carminati et al., 2014; Ciccarella et al., 2016), and more
(Guo et al., 2015; Shi et al., 2021; Teass et al., 1998; Zhang et al., 2021)), label-free detection
capabilities, requiring small sample volumes, relatively inexpensive fabrication options, and the
multiplexing ability to quantify many different materials altogether (Ashley & Hassan, 2021;
Prakash et al., 2020). Additionally, at low voltages the detection process is non-destructive to
sample analytes, and many EIS systems can be performed without manual sample pre-processing
(Baraket et al., 2017; U. Hassan et al., 2017, p. 64). A powerful tool, EIS or more specifically

microfluidic impedance cytometry (MIC) is continuing to make improvements in micro-sized



object detection with innovations in fabrication methods and post-data collection digital

processing.

A substantial bottleneck MIC and other micro-scale detection sources deal with are limits of
the detection resolution. Indeed, the ability to measure smaller materials opens various pathways
to greater sample understanding and measurement versatility. Currently, there is a balance between
fabrication complexity, sensing dimensions, and external signal acquisition factors with the MIC
accuracy and limit of detection. For example, materials such as proteins, antibodies, and DNA
have been measured using MIC for a few decades now and can be detected with a relatively simple
to fabricate device (Saleh & Sohn, 2003). However, in doing so the sensing region has a limiting
dimension of 1 um, and such a scheme is unable to simultaneously measure objects larger than
that. Even objects near that aperture would have high clogging susceptibility and thus poor device
quality control at that scale. To extend the dynamic range for MIC, an optimized balance must be

achieved along with techniques that can reduce background noise from existing systems.

Simple strategies to reduce noise include digital signal processing after data collection. Many
such approaches are already employed in MIC to remove baseline drift and other noise-dominating
frequency regimes (U. Hassan et al., 2015; X. Liu et al., 2014; T. Sun et al., 2007). By only
reducing noise in frequency alone, many noise contributions are neglected, and signal quality can
remain inadequate especially as a majority of data points collected represent background noise.
One technique yet to be coupled with time-domain MIC is common signal averaging (CSA), which
is the principle that noise is random and when data points averaged together will reduce to smaller
values relative to desired signal, improving signal quality (Umer Hassan & Anwar, 2010). CSA
has been employed with many periodic electrical signal collection schemes such as

electrocardiography (Kamath et al., 2011) and pulse oximetry (Janssens et al., 2011; Sukor et al.,



2011), as well as superimposed image averaging in optical coherence tomography (Baumann et
al., 2019; Berger et al., 2014) and even robotic stabilization (Balara et al., 2018; Khurana & Nagla,
2018). For these cases, however, the signal must occur at a consistent defined period, and the total
data points are subdivided by the number of samples averaged at once. As is, it would be difficult
to translate CSA to MIC since detected object incidences are random and the relative pulse data
points are few, which may lose temporal resolution if total data points must be empirically

subdivided.

Given the unique non-periodic nature of MIC data, we investigated and found that the moving
average algorithm will be the most suitable signal averaging technique to be used. Here, rather
than subdividing the data during averaging, an average is taken at the beginning of the next original
data point, which levels off high variance data. The result is a data sparring signal processing
technique that does not sacrifice on noise reduction potential. This interdisciplinary technique has
been used in some biomedical (Chen et al., 2006; Manikandan & Soman, 2012) and robotic
(Redhyka et al., 2015) applications, but is primarily utilized to predict stock market trends (de
Souza et al., 2018; Ellis & Parbery, 2005; Metghalchi et al., 2012). Many moving average
iterations exist (Vandewalle et al., 1999), but we focused on simple moving averaging (SMA) in
this study, which averages each data point with equal weight and has the highest retention of
original dataset properties. SMA may provide a simple and quick approach to reduce noise and
improve detection limits without disrupting the balance of fabrication, sensitivity, and design

complexity.

Here, we present a MIC device (Fig. 1a) coupled with a modified SMA algorithm to reduce
background noise in time-domain data. Polystyrene (PS) microparticles are measured in a

microfluidic channel with dual-grounded gold electrodes (Fig. 1b) that form a bipolar pulse when



the middle electrode is voltage stimulated and forms an electric field (Fig. S1). This signal is
improved using channel focusing regions (Fig. 1¢) which increase PS particle amplitude. With this
method, 1 um PS particles are indistinguishable from background noise (Fig. 1d), but after
applying our modified SMA technique to the same dataset, noise is significantly reduced and these
particles can be qualitatively identified from their bipolar amplitudes (Fig. 1e). These properties
can also be quantified based on noise variance, signal amplitude, and their relative signal-to-noise
ratio (SNR). After defining mathematically, the principles of SMA and modelling its behavior,
experiments were conducted with varying flow rates, input voltage, and particle sizes to
characterize SMA effects and determine its potential to improve the sensor accuracy and limit of
detection. To the best of our knowledge, this is the first demonstration of signal averaging used

with MIC, or with random-incidence time-domain data of impedance-based detection.
MATERIALS AND METHODS
Gold electrode microfabrication

Gold electrodes were rendered by spin coating Microposit s1813 photoresist (Kayakuam,
Tokyo, JPN) above a 4” borosilicate wafer (University Wafer, South Boston, MA, USA) at 3000
rpm, forming a 1.55 um layer. After baking at 115°C for 60 seconds, the wafer is exposed to UV
light at 150 mJ/cm? using a mask aligner and mask with rendered microelectrode design. The wafer
is then submerged in Microposit MF-319 photodeveloper (Kayakuam, Tokyo, JPN) under slight
agitation for 30 seconds or until features are visible. Wafers are submerged in hydrochloric acid
for 45 minutes to etch glass in the electrode feature regions. After soft baking at 60°C for 15
minutes, the surface is treated with oxygen plasma. This is followed by 250 nm of chromium and
750 nm of gold sputtered above the s1813 photoresist. When submerging in acetone and under

ultrasonic agitation, metal is removed except for the electrode regions through lift-off. A diamond-



bladed saw is then used to cut out individual electrode designs. The gold electrode fabrication

process is depicted by Fig. S2.

For the final design, gold microelectrodes have a 100 um width and are spaced 150 um apart

(Fig. 1b). Gold connection pads are fabricated with a 3 mm width.
Microfluidic channel fabrication and soft lithography

SU-8 3025 photoresist (Kayakuam, Tokyo, JPN) was spin-coated above a 4” silicon wafer
(University Wafer, South Boston, MA, USA) at 4000 rpm, forming a 1.5 pm layer. After soft
baking at 95°C for 5 minutes, the wafer is then exposed to UV light at 150 mJ/cm? using a mask
aligner and mask to form the microfluidic channels. The wafer is rinsed with SU-8 developer
(Kayakuam, Tokyo, JPN) for 4 minutes or until channel features are visible. After rinsing with
isopropyl alcohol, the wafer is hard baked at 300°C for 30 minutes. The wafer surface is then
treated with (3-Aminopropyl)triethoxysilane (Sigma Aldrich, St. Louis, MO, USA) to retain

microchannel structure during soft lithography. Microchannel fabrication is detailed in Fig. S3.

Before soft lithography, polydimethylsiloxane (PDMS) is formed by combining 10 parts of
Sylgard 184 elastomer base with 1 part curing agent (Dow, Midland, MI, USA). After thorough
mixing, the solution is poured over channel features on the silicon wafer and cured at room
temperature for 30 minutes under vacuum followed by baking at 60°C for 1 hour and at
atmospheric pressure. Once cured, PDMS molds are cut and removed from the wafer with the
embedded channel structures. A stereomicroscope is used to align and puncture inlet and outlet
holes with a biopsy punch and PDMS channels are then cleaned with ethanol under sonic agitation

for 45 minutes.



The final channel dimensions yield a 1 cm long channel that is 100 pm wide and 22 pum tall,
with two focusing regions that reduce the width to 30 um and has a 20 um path length (Fig. 1c).

Both focusing regions are spaced 280 um between midpoints.
Device connections and equipment interfacing

The PDMS channel and gold electrodes are treated with oxygen plasma using a plasma
chamber (100W power for 60 seconds at 60 cm? per min of oxygen under vacuum). Immediately
after, the PDMS is aligned using a stereomicroscope and placed above the microelectrodes with
focusing regions positioned between outer electrodes (Fig. 1¢). After soft baking for 1 hour at
60°C, syringe tubing was inserted into PDMS inlet and outlet holes and syringe needles are
inserted into the opposite end to facilitate media infusion using a syringe and the NE-300 syringe
pump (Southpointe Surgical Supply, Coral Springs, FL, USA). Silver conductive epoxy
components (Digi-Key Electronics, Thief River Falls, MN, USA) are combined to connect
microfluidic devices with custom printed circuit boards (PCB, Sunstone Circuits, Mulino, OR,
USA) and baked at 60°C for 1 hour. The PCB then connects with a custom Veroboard which
facilitates transimpedance amplification for signal detection using HF2TA current amplifiers
(Zurich Instruments, Zurich, SUI) from outer electrodes and inputs an AC voltage signal at a 303
kHz frequency to the middle electrode using a lock-in amplifier (Zurich Instruments, Zurich, SUI).
PS particles (1, 3, 5, 7, and 9 um diameters, 2.5% w/v, Spherotech, Lake Forest, IL, USA) are

diluted in 1X phosphate buffered saline (PBS) and flow is driven through a syringe pump.
Signal acquisition, processing, and sampling algorithm

Signal acquisition process flow is outlined in the supplementary information (Fig. S4). First,

current output from the device is converted to voltage and undergoes transimpedance



amplification. The signal is further combined using a differential amplifier and data is stored at a
250 kHz sampling rate. A PCle-6361 data acquisition card (16 bit, 2MB/s max) performs data
recording, and all steps are managed on a LabView control program (National Instruments, Austin,

TX, USA).

Subsequent digital filters are applied using MATLAB (version R2020B, MathWorks, Natick,
MA, USA). A 4" order Butterworth filter is used for high (20 Hz cut-off) and low (100 kHz cut-
off) pass filters, while a 1% order Butterworth filter is used for the band-stop filters to remove

powerline interference (60 Hz and 120 Hz removed) using the Signal Processing Toolbox of

MATLAB. See Fig. S5 for more detail.

After data collection and filtering (Fig. 1d), the MATLAB code then analyses and sets a
threshold of values greater than 5 times the background noise to differentiate PS particle detection.

Here, background noise (o) is quantified as the root means squared of the first 5,000 data points.

o= |=%ix? (1)

Where m represents the number of data points and x is their respective voltage values. After
defining a threshold, the bipolar amplitude for a particle (AV;) is measured as the difference

between the positive and negative peaks, collected as 1000 data points + the threshold.
AVr = AVpax = AVipin (2)

The algorithm stores each bipolar amplitude across the dataset. To ignore two or more PS particles
flowing through the electric field at once, bipolar amplitudes are binned into 6 discrete categories,

and the most common category is selected to represent bipolar amplitudes for one particle flowing



through the channel (AV7 1 ps) which normalizes the device sensitivity to only count 1 PS particle.

The SNR is calculated based off this signal mode.
SNR = 20log, o (“225) (3)

Higher SNR indicates particles are better apparent, and an SNR greater than 20 is the cut-off for

discernible sensing.

As a metric of particle transit time, the full width-half maximum (FWHM) was determined
from particle pulses by measuring the number of data points greater than half the particle maximum

value.

FWHM == for x; > s (4)

Where m is the number data points (x;) with a greater voltage value than half of AV, ,, for one
particle pulse, and f; is the device sampling rate set to 250 kHz. FWHM was measured and stored

in MATLAB for only positive particle pulses.
Statistical evaluations

All studies evaluating significance between three or more groups was performed with a one-
way ANOVA, with a null hypothesis of all group means are equal and alternative hypothesis of at
least one group mean is unequal, and an a of 0.05. A Levene’s test with all studies did not find
significance, confirming homogeneity of variance, and a Tukey’s post hoc test was conducted for
studies which rejected the ANOV A null hypothesis. For studies comparing groups before and after
signal averaging or only two groups, an unpaired T-test was conducted with a null hypothesis of
the groups means being equal, an alternative hypothesis of the means being unequal, and an o of

0.05. Error bars displayed on figures represent one standard deviation away from the mean.



Signal averaging model

To validate our mathematical modelling as proof-of-concept, at first, a test dataset was
generated in MATLAB featuring 200,000 data points of zeros followed by 200,000 data points of
a simple waveform (i.e., sin(x)) with a sampling rate of 0.001 to model signal averaging trends
(Fig. S6). Subsequently, White Gaussian noise was added to the signal using the awgn() function
with a 12.3 SNR input using the Communications toolbox in MATLAB. Noise, bipolar amplitude,
and SNR were calculated and were stored for increasing number of data points involved in sample
averaging from 2 to 100. The technique and rationale behind the performed signal averaging
method is dissected in the Theory section and implemented with this test dataset to reduce noise

(Fig. S7).
THEORY

The most common signal averaging (CSA) method for physiological data averages an n
number of data points from an original dataset (ODS) in series with N total data points, essentially

subdividing the dataset by n (Umer Hassan & Anwar, 2010; Stupin et al., 2017):

1 ni
A== Y
j=n(i-1)+1

()

Where n represents the number of data points averaged together in the signal averaging technique,
and x are the individual data points collected from the ODS. While computationally simple, CSA

halves the dataset size for each n subdivision.

N
Nesa = 008 (6)




This makes it more susceptible to sample aliasing for average and high frequency data. Higher
sampling rates can overcome this, but at the cost of massive dataset files which may not be viable
in all environments. Additionally, resolution will degrade for metrics which function on the time
domain (e.g., pulse width) that has proven useful in impedance cytometry determination (Feng et

al., 2019; Norton et al., 2019; Prakash et al., 2020).

In contrast, signal averaging method applied for this work relies on a modified simple moving
average (SMA) which deviates from CSA to preserve the number of data points while not
sacrificing on noise reduction. With SMA, an average is taken from n data points and the next
SMA value begins on the next ODS data point rather than the next data point not included in n

like CSA.

n+i-1

SMA(i) = % Z %,

j=i
(7)

This is modified from a standard simple moving average as it starts with the first data point and
selects succeeding points up until the selected signal averaging term n, rather than starting with
the last data point and working backwards (Vandewalle et al., 1999). Concurrently, the only data

points lost are the last n values in the set.

Nsya = Nops —n (8)

While more signal averages must be computed versus CSA, the result is a resilient dataset to
sample aliasing. SMA better suits impedance cytometry as object pulses happens rapidly (order of
ms) and maximum intensity or pulse width data may be misrepresented from data point

subdivisions.



The result from SMA leads to reductions in both bipolar amplitude and background noise but
at different rates. If a dataset x(k) is a function of both noise (x,,,;s.) and desired signal (xy), and

has a f; sampling rate:

x (%) = Xs (]%) *+ Xnoise (]%) )]

Periodic signals that are statistically dependent with summate constructively and remain constant

through n signal averaging.

(10)

Following this, Gaussian white noise is considered by assuming random and statistically
independent values that inhabits the signal and with a zero average (u,,ise) after correcting for

baseline drift (Marmarelis, 2004).

Unoise = 0 (11)

Then averaging n number of data points will reduce noise at a characteristic rate based on standard

deviation alone (o).

n
1
Zx]nmse ( ) ; yno? =

j=1

S

2
Vn
(12)

A relationship for SNR can then be predicted from the equation defined in the “Signal acquisition,

processing, and sampling algorithm” section



k
SNRgya = 201085, <xj,';(f S)> = SNRgps + 20log;o(Vn) (13)

Vn

SNR therefore increases with SMA assuming periodic signals and only Gaussian white noise.

RESULTS

Trends over the number of data points averaged together

Bipolar differential voltage amplitudes from 9 um PS particles were recorded with our
impedance cytometry device along with background noise measurements to determine the SNR
without SMA. For the example experimental study, this included a 5V AC input voltage at 303
kHz and 15 pL/min flow rate. SMA was then performed with increasing number of signals
averaged per iteration, from 2 to 100 data points averaged for each SMA data point. After
measuring bipolar amplitudes, noise, and SNR for each SMA, we compared those values based on
our model data and by directly following the equations derived in the Theory section. For all cases,
starting values were normalized to the original experimental bipolar amplitude and noise to better

visualize trends from SMA.

Fig. 2 graphs the changes in bipolar amplitude (Fig. 2a), noise (Fig. 2b), and SNR (Fig. 2¢)
with increasing number of data points averaged in the SMA algorithm following trends from the
theoretical changes (dotted line), from our cyclic model data (dashed line) and from our
experimental data (purple). For all cases, results closely follows the trend of noise reduction by
the square root of the number of data points averaged together in forming the SMA data.
Additionally, the model data only has a slight drop-off in bipolar amplitude after a few SMA
iterations, but it decreases at a slower rate than noise, resulting in the SNR continuously improving

with more SMA iterations. However, for our experimental data the bipolar amplitude from PS



particles has a constant decrease in amplitude, to the degree that the rate of bipolar amplitude
reduction exceeded noise reduction after a certain number of data points averaged in the SMA
algorithm. This is visualized in Fig. 2c as an inflection point is reached in SNR at approximately
34 data points averaged to form the SMA model before SNR begins to decline with increasing data

points averaged.

There are many reasons why the experimental data may fail to reach theoretical signal
averaging potentials. One justification may be the presence of non-Gaussian pink noise in the
experimental system even after filtering, as noise for experimental data does remain higher after
SMA compared to the theoretical change and model changes (Antal et al., 2001) (Fig. 2b).
Additionally, the theoretical trends are for synchronous, cyclic signals that are predicted to occur
within the same period (Umer Hassan & Anwar, 2010). This remains apparent for the model, which
were evaluating signals from a sine wave without changes in wavelength or breaks in waveform,
and as such signal amplitude remained relatively steady. In the experiments, particle pulses are not
periodic in occurrence and are more likely to have variations in pulse width from passing over the
electric field at different heights. For heterogenous waveforms produced from PS particles to form
the dataset, signal averaging is not perfectly constructive and is inversely proportional to the
number of data points averaged. However, a degree of signal averaging markedly improves SNR
up to a certain point, and for each experiment conducted some degree of signal averaging improved

SNR.

In the following sections, mentions of results after SMA occur at the number of data points
averaged that produced the highest SNR for that experiment. A compendium of the number of data

points averaged together for the maximum SNR from each experiment is provided in Table S1.

Microfluidic flow rate optimizations



Experiments with different input flow rates were performed to optimize conditions for particle
detection sensitivity, ensure counting accuracy, and observe trends from SMA for flow rate
variations. Five different input flow rates were measured from 5 to 25 pL/min using 9 pum PS

particles and an input voltage of 5 V with a 303 kHz AC frequency.

Fig. 3 details these results based on previous particle metrics such as PS bipolar amplitude
(Fig. 3a), noise (Fig. 3b), and SNR (Fig. 3c). Here, there are no statistically significant (p > 0.05)
differences between flow rates for bipolar amplitude, noise, or SNR between the original data and
the data after applying the SMA algorithm. This indicates the variations in flow rates studied did
not impact device performance, and all of them in their original form had an SNR of 26 dB or
greater (Fig. 3c). However, there was significance for each flow rate when comparing each original
dataset to their SMA counterpart for both bipolar amplitude, noise, and SNR (p < 0.05 for all
cases), indicating the effects SMA has in improving SNR for each flow rate, which was now
greater than 35 dB. While not a significant trend, there is a decline in maximum SNR with
increasing flow rate after SMA. One justification for this may be a combination of slightly
increased background noise from faster fluid flow (M. Liu & Franko, 2014) in the microfluidic
channel through the sensing zone and less number of data points devoted to PS pulses as revealed
by the decrease in FWHM with increasing flow rate (Fig. 3d). Indeed, signal pulses that have less
data attributed to them may decline quicker from SMA, and this is confirmed as their maximum
SNR was achieved with less data points averaged together than slower flow rates (Table S1). This
also indicates the importance for adopting SMA versus CSA as CSA would more rapidly reduce
the data points describing the PS pulses with the number of data points averaged and degrade their

amplitude representation.



The change in transit time per particle and the number of particles counted per flow rate was
also recorded to ensure accurate particle counting using our device. Fig. 3d reveals a decrease in
FWHM per particle for increasing flow rates that is consistent with a 3™ power exponential
decrease (R? = 0.996) as flow rate and average fluid velocity over the electric field have a cubic
relationship based on Hagen-Poiseuille flow. Using a constant PS concentration of 40 particles/uL.
across each flow rate, there is a linear trend (R? = 0.987) in the number of particles counted per
second (Fig. 3e). From this, the measured particle concentration is determined from each flow rate
and it is found none of them statistically deviated from the given 40 particles/uL concentration (p

> (0.05) and their means have a less than 10% error from the true concentration (Fig. 3f).
Variations in input voltage amplitude

Using 9 um PS particles with a constant 15 pL/min flow rate, the effects of peak-to-peak input
voltage were considered in relation to signal averaging. Here, the channel impedance has a direct
relationship with input voltage magnitude (Daniels & Pourmand, 2007), and to a certain extent
increased voltage input leads to greater signal prevalence above background noise with a constant
voltage frequency. There are restrictions to input voltage however, as a linear range defining
voltage and impedance is limited after small values (~less than 10 mV) and beyond this predicting
impedance from input voltage is exceedingly difficult (Barbero et al., 2005). In many cases though,
signal are orders of magnitude smaller than noise for input voltages less than 10 mV, and a lock-
in amplification process is typically used to isolate signal data from noise based on specific
frequency properties (Daniels & Pourmand, 2007; Talukder et al., 2017). In doing so however, the
filtered noise is no longer Gaussian, being filtered out except for a small frequency range, making
these situations incompatible for SMA. Additionally, the conditions for using a lock-in amplifier

for frequency selection are not always feasible, and there are several previous reports which have



found success using larger input voltages (~1-10 V) that maintain Gaussian noise (Caselli et al.,
2021; Ciccarella et al., 2016; U. Hassan et al., 2017, p. 64; Wang et al., 2017). As such, this will

be the input voltage regime assessed for this device.

PS particles were measured with varying input voltages of 0.5, 1, 5 and 10 V. Fig. 4 displays
the changes in bipolar amplitude (Fig. 4a), background noise (Fig. 4b), and SNR (Fig. 4c) using
these different input voltages. For the original data (dark gray), PS pulse bipolar amplitude and
SNR increased for increasing input voltage (only comparing 1 and 5 V were statistically different),
while noise remained relatively unchanged. After SMA for each input voltage (light gray), both
bipolar amplitude and noise were reduced, but noise was reduced at a lower rate leading to a
relative SNR increase. A logarithmic relationship is found for SNR with increasing input voltage
for both the original data (R? = 0.9882) and after SMA (R? = 0.9894), which may be attributed to
the nonlinear relationship between voltage and impedance in these high-voltage regimes (Barbero

et al., 2005).

Representative PS pulses before (Fig. 4d) and after (Fig. 4¢) SMA for each input voltage also
reinforce relative noise reduction and greater particle detection, as the unnoticeable 0.5 and 1 V
pulses (green and blue respectively) in the original data can be differentiated after SMA. This is
further affirmed as SNR increased above 20 dB for both cases after SMA (Fig. 4c). Beyond
qualitative evaluations for measuring pulses, the device was able to assess particle concentration
more accurately from SMA. Fig. 4f reveals the number of particles detected as a function of
increasing data points used in the SMA algorithm. Originally, particle counts were not close to the
actual particle concentration of 160 particles/uL for the 0.5 and 1 V data. However, only after a
few data points are averaged using SMA, true particles pulses are isolated from the noise and

remain within 5% of the true concentration after using more data points in the SMA algorithm



(Table S2). This attests to the ability of SMA to improve particle detection from otherwise noisy

data because of changes in input voltage and upgrade it to an accurate counting device.
Limit of detection analysis with PS particle size variations

To evaluate the limitations of this device coupled with SMA, PS particles with 1, 3, 5, 7, and
9 um diameters were measured in separate solutions using a constant 5 V AC voltage input and a
15 pL/min flow rate. Fig. 5 illustrates these results, including metric changes discussed in previous
sections such as changes in PS pulse amplitudes (Fig. 5a), noise (Fig. 5b), and SNR (Fig. 5c) for
each PS size experiment. For the original data, increasing particle size led to an increase in bipolar
amplitude, while noise remained statistically the same across different sizes (p >0.05), which
corresponds with a linear increase in SNR (maroon, R? = 0.9871). After SMA, again the bipolar
amplitude and noise had characteristic magnitude reductions, which led to increased shifts in SNR.
This is notable primarily for bringing the 1 and 3 um particle solutions above the discernible 20
dB SNR threshold after SMA and likewise lowering the device’s limit of detection (LOD). The
changes in SNR after SMA for different particle sizes also had a linear trajectory (gray, R? =
0.9703), which is the combination of logarithmic changes in SNR for a typical linear increase in
bipolar amplitude and the cubic increase in PS volume per linear diameter changes, as PS volume
scales with displaced media in the channel detection regime and likewise a direct change in
recorded impedance (Sui et al., 2020). This is supported by the cubic increase in bipolar amplitude
relative to particle size shown in Fig. 5a. If this linear change in SNR holds across all particle sizes
and if a 20 dB SNR is the benchmark for accurate detection, the device used in this study originally
could only measure a 3.17 um PS particle, but after SMA it may measure particles as small as 0.56

pum.



Fig. 5 also highlights select bipolar pulses from varying PS sizes before (Fig. 5d) and after
(Fig. 5¢) SMA. Originally, the 1 and 3 um PS particles are difficult to recognize outside the noise
band, and even larger particles such as 5 and 7 um PS particles have an SNR near the discernible
limit. However, after SMA the noise is significantly smoothed relative to PS pulses, and all PS
waveforms are recognizable. Studies were also conducted related the number of data points
averaged in the SMA algorithm to the particle concentration measured by the device (Fig. 5f).
Similar to results from Fig. 4f, particle sizes originally near the 20 dB SNR detection limit were
significantly lower in particle counts versus the true concentration of 300 particles/uL. However,
performing SMA with increasing data points used led to the accurate counting of all particle sizes,
with smaller particles requiring more SMA data points to reach 5% error of the actual
concentration (Table S2). This shows the power SMA has with this device to improve both
accurate counting of micron-sized particles and lower the LOD to measure smaller particles than

originally determined.

DISCUSSION

In this research, a microfluidic impedance cytometry device was conceived, and its detection
performance improved through digital signal processing with simple moving averaging; a
technique implemented with this application for the first time. Here, white Gaussian noise is
summed together destructively while consistent bipolar pulse signals are reduced at a slower rate.
The result is data with relatively lower background noise which allows smaller particles to be
detected and greater counting accuracy achieved. Likewise, it was demonstrated that SNR after
SMA increased for each experiment iteration including experiments at different flow rates, with
different input voltages, and for different sized PS particles. Another key takeaway is as we push

the limit of MIC sensing (low flow rates, smaller particle sizes, and lower signal amplitudes), a



greater number of data points averaged together are required in the SMA algorithm for achieving

maximum SNR before the inflection point and SNR decline (Table S1).

The modified simple moving averaging method selected for this application comes with many
considerations. For flow-based impedance detection in a microfluidic channel, a balance is struck
for the flow rate that is slow enough to measure objects with sufficient temporal resolution but
also fast enough to drive particles through the channel midpoint and reduce clogging in the low
aspect-ratio channel dimensions (Dressaire & Sauret, 2017; Thompson et al., 2015). The
compromise is a system with high sampling rates (200 kHz or greater) to adequately measure
particles generating pulses in only a few milliseconds. One straightforward alternative may be to
diminish the channel and detection cross section further, as particles in this system will contribute
a greater impedance shift relative to flowing media and will have greater pulse amplitudes.
However, this approach is limited from greater fabrication complexity, higher device failure from
clogging, and cannot measure nondeformable objects larger than the channel dimensions. With
applications directed towards heterogenous whole blood analysis, white blood cells may be as
large as 15 um in diameter, which is near the limits of our device detection dimensions already
and could not consistently flow through a channel with smaller features. SMA allows for a modest
post-processing approach to improve the LOD without redesigning the channel and sacrificing

larger particle counting.

Since the data representing individual particle pulses is sparse, the averaging method must
have high data point retention to avoid sample aliasing. The modified simple moving averaging
technique fits these requirements, as detailed in Theory section, where the number of data points
lost across the whole file is the number of data points averaged in the SMA algorithm. While even

higher sampling rates may facilitate other signal averaging methods that subdivides the data, they



come at the cost of exceedingly large original file sizes (~100s of MB) after only a few seconds of
recording. This is unsatisfactory notably for common microfluidic impedance counting purposes
such as point-of-care diagnostics (Ashley & Hassan, 2021). From using SMA in this report,
processing time was increased on the order of minutes, totaling less than 10 minutes from sample
collection to applying digital filters, SMA, and analyzing particle metrics. For MICs analyzing
higher particle concentrations or for larger sample volumes to analyze, processing time and file
sizes will proportionally increase. However, this is the case regardless of using SMA, and
implementing SMA adds processing time that would not significantly hinder its application for

general MIC use.

While the power of SMA has been presented with this impedance cytometry configuration,
there are limitations which may prevent its ubiquitous translation with other devices or
environments. Firstly, SMA can only characteristically reduce white Gaussian noise. Other digital
signal processing mechanisms may alter background noise to persist in certain frequencies.
Additionally, sources of pink noise like defects in the physical device materials and resistance
fluctuations in component semiconductors are sometimes unavoidable, and pink noise will not
reduce during SMA at the rate of white noise (Kogan, 2008; Weissman, 1988). It is not to say that
SMA cannot improve signal quality under these conditions, but that the degree of change will be
less drastic and less characterized. Another limitation is that SMA cannot distinguish competitive
analyte species with similar pulse frequencies or exaggerate their amplitude differences, treating
all objects which are counted with equal scrutiny. To better differentiate two or more materials,
other phenotypic properties must be exploited (e.g., measure more electrically sensitive particles,
probe particles at different input frequencies, or use functionalized particles for receptor

attachment and identification) (Ashley et al., 2021; Prakash et al., 2020; Sui et al., 2020). Finally,



the maximum SNR achieved would reach a climax and begin to decline from increasing number
of data points used in the SMA algorithm. This was not consistent to the model periodic data or
representative relationship equations, where SNR should continuously improve with the number
of data points averaged together. Causes for this may include pulse amplitude and width variations,
and pulse occurrences randomly happening, as signal averaging requires cyclic signals that have
consistent occurrences to summate constructively. Though SNR did improve for each experiment
using SMA, the number of data points used in the algorithm to reach the maximum SNR was less
for original data that initially started with higher SNR’s like the 5 or 10 V input voltage
experiments (Table S1). This may be due a higher slope in the pulse waveform, and during
averaging will smooth and flatten out at a faster rate for more data points relative to pulses with
the same width having lower slopes. Similarly, faster flow rate SNRs explored in from flow rate
variation experiments peaked with less data points averaged, but this is due to the smaller pulse
width and fewer data points representing the pulse rather than a change in amplitude. Based on
these conclusions, SMA may serve greater applications in identifying objects near the LOD

threshold rather than further improving signal quality of already distinct signal.

For determining the optimal signal quality using SMA, the number of data points selected in
the SMA algorithm is most critical. Ideally, an initial sweep should be performed similar to this
report using an SMA with a varying number of data points averaged together to pinpoint the SNR
inflection point. However, it may be estimated that detecting objects with an originally poor SNR
will require a larger number of particles averaged together in the SMA algorithm (Table S1). This
translated to smaller particles and with smaller input voltages with our design and dimensions. For

systems with a poor SNR due to Gaussian noise, the maximum SNR achieved may be from 50—



100 data points used in the SMA algorithm, while a higher starting SNR may reach a maximum

between 5—40 data points.

CONCLUSION

SMA may prove to be a versatile tool that can make MIC more flexible for different conditions.
An improved LOD was shown for this device, and at the length-scales measured opportunities for
more objects as small as individual bacterium may be measured with greater confidence. Other
components could also be sacrificed in the face of certain conditions, such as low-input voltage
requirements in point-of-care settings like battery or solar-powered devices (L. Liu & Choi, 2017;
Montes-Cebrian et al., 2019; A. Sun et al., 2014; Yeh et al., 2017). Future studies will apply the
characterizations determined in this report using SMA to objects beyond PS particles. Specifically,
efforts will be made to ensure greater impedance-based counting accuracy of multiple immune cell
biomarkers to determine pathophysiological conditions such as sepsis, cancer, HIV, or other

difficult to diagnose diseases.
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Figure 1 Overview of microfluidic impedance cytometry system. a) Scheme of custom printed
circuit board (PCB) that onboards microfabricated electrodes and polydimethylsiloxane (PDMS)
channel. b) Image of microfabricated gold electrodes. Middle electrode is stimulated with
voltage input while two exterior electrodes are grounded for impedance detection over the

generated electric field. ¢) Brightfield microscope image of channel detection area with focusing



regions aligned between electrodes. d) Representative results for 1 pm polystyrene (PS) particles
in solution flowing through device after data processing. €) Results for the same dataset after

applying a simple moving average (SMA) which averages every 100 data points and reduces

background noise.
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Figure 3 Results with flow rate variations and after simple moving average (SMA) effects.
Changes in average bipolar amplitude (a), noise amplitude (b), and signal-to-noise ratio (SNR, c)
for detecting 9 um polystyrene (PS) particles with 5V input before (blue) and after (gray) SMA.
d) Average full-width half maximum (FWHM) times for detect PS particles with varying flow
rates (d-f, for original data without SMA) which follows an exponential decrease with flow rate.
e) Average number of PS particles detected per second with constant particle concentration
between experiments. f) Particle concentration calculated from each experiment based on total
particles counted and respective flow rates, compared against the known solution concentration
of 40 particles/uL (d-f, for original data without SMA). Fitted lines: Figure 4 (c) Original y = -
0.0090x + 27.53, After SMA y = -0.35x + 44.46, Figure 4 (d) y =-0.0022x> + 0.037x> — 0.21x +

0.49, Figure 5 (e) y = 3.71x — 0.21.
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Figure 4 Results with input voltage variations and after simple moving average (SMA) effects.
Changes in average bipolar amplitude (a), noise amplitude (b), and signal-to-noise ratio (SNR, c)
for detecting 9 um polystyrene (PS) particles with 15 pL/min flow rate before (dark gray) and
after (light gray) SMA. Example PS pulses before (d) and after (e) SMA for different voltage
inputs. (f) Semi-log plot showing changes in measured number of particles from the counter after
increasing iterations of signal averaging compared to the stock concentration of 160 particles/uL

(black dotted line). Fitted lines: Figure 4 (¢) Original y = 19.33x%%22, After SMA y = 26.95x% 1%,
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Figure 5 Results with polystyrene (PS) particle size variations and after simple moving average
(SMA) effects. Changes in average bipolar amplitude (a), noise amplitude (b), and signal-to-
noise ratio (SNR, c) for detecting PS particles with 5V input and 15 pL/min flow rate before
(maroon) and after (gray) SMA. Example PS pulses before (d) and after (¢) SMA for different
PS particle sizes. (f) Semi-log plot showing changes in measured number of particles from the
counter after increasing iterations of signal averaging compared to the stock concentration of 300
particles/uL (black dotted line). Fitted lines: Figure 5 (¢) Original y = 1.25x + 16.03, After SMA

y = 1.82x+21.02.



