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Abstract—This paper examines GNSS phase windup, which we 

define to be the combined effects of three-dimensional rotation and 

antenna phase patterns on carrier-phase measurements. 

Specifically, phase windup equations are presented for antennae 

with spatially varying phase patterns, for instance phase patterns 

defined as a function of the satellite line-of-sight direction, as might 

be characterized by azimuth and zenith angles. We observe that a 

description both of the geometric rotation and also of the antenna 

phase pattern are needed to accurately evaluate phase windup for 

a general antenna. Furthermore, we show that there is not a 

unique approach for computing phase windup; in fact, correctly 

computing phase windup requires adjusting the model to match 

the calibration method used to obtain the antenna phase pattern.  
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I.  INTRODUCTION 

It is widely understood that GNSS carrier-phase 

measurements are influenced both by the relative range and by 

the relative rotation between the receive and transmit antennae. 

The term phase windup is commonly used to describe these 

rotation-dependent effects. Modeling phase-windup is 

particularly important for real-time kinematic (RTK) and 

precise-point positioning (PPP) applications [1]-[3], as well as 

for standalone applications involving dynamic platforms such as 

spacecraft [4],[5]. In some precision applications, two receive 

antennae are used differentially to remove phase windup effects 

[6]-[8]. In other applications, a single antenna is used so that 

rotational effects can be exploited to observe orientation or 

angular velocity [9]-[12]. 

For the vast majority of GNSS applications, phase windup 

can either be neglected or modeled simply. This paper considers 

the specific case of using an innovative antenna on a platform, 

such as a spacecraft or an aircraft, that rotates in three 

dimensions. Tools for modeling phase windup in these 

applications are not yet well developed in the research literature. 

At present, for example, it is possible to run an RF simulator 

using a known antenna pattern, but it is not trivial to program the 

simulator to account for phase windup in three dimensions. 

Phase windup effects are the result of the interaction between 

a circularly polarized signal and the receive antenna. GNSS 
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signals are designed to be right-hand circularly polarized 

(RHCP), but it is important to note that GNSS transmitters also 

create a small left-hand circularly polarized (LHCP) component 

along lines-of-sight (LOS) away from the boresight axis, which 

is the name given to the primary transmission axis of the 

antenna. It is useful to visualize the RHCP signal as a helix 

traveling through space and rotating around the boresight axis. 

The wrapping of the helix represents a steady progression of the 

signal’s reference phase, which is in turn observed by the GNSS 

receiver. The reference phase increases with range from 

transmitter to receiver; however, the reference phase also 

increases if the receive antenna spins in the same sense as the 

helix. It is as if rotation and translation motions are coupled, at 

least in the sense that they are indistinguishable from the 

receiver’s point of view. 

  

Fig. 1.  Vizualization of a right-hand circularly polarized signal 

A key detail is that phase windup results from interactions of 

an electric field with the receive antenna. As such, it is intuitive 

that any general model of phase windup must be related to both 

geometric rotation and to the antenna phase pattern, which we 

will also call the antenna calibration pattern in this paper. For 

simple antenna designs, phase windup may be dominated by 

purely geometric effects as modeled, for instance, in the seminal 

paper by Wu et al. [13]. Nonetheless, the purely geometric 

analysis of Wu is only an approximation, albeit a good one, as 

pointed out by Beyerle [14]. The Beyerle paper observed that, 

when the receive and transmit antennae are both idealized RHCP 
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crossed-dipoles, the phase windup depends on the full antenna 

phase pattern (including both RHCP and LHCP components) if 

the LOS axis is tilted significantly from the boresight axes of 

both antennae. 

The paper by Beyerle emphasizes the relevance of modeling 

phase windup as the combined result of geometric rotations and 

antenna calibration patterns; however, the paper stops short of 

developing approaches for analyzing general calibration 

patterns. To be specific, [14] considers only crossed-dipole 

antennae; moreover, the antenna model considered was a three-

dimensional (3D) complex vector. This approach of describing 

the antenna gain pattern as a complex vector is common in 

computational packages that solve Maxwell’s equations [15] and 

in antenna theory textbooks [16],[17]; however, GNSS 

practitioners more commonly model antenna calibration patterns 

as complex scalar functions defined over two dimensions (e.g. 

over azimuth/elevation or azimuth/zenith coordinates) [18]-[24].  

The primary goal of this paper is to address this gap by 

adapting phase windup models to account for arbitrary 

calibration patterns. In the process we note that different 

techniques can be used to obtain an antenna calibration and, 

accordingly, that the phase windup model must be matched 

specifically to the calibration method used. 

The remainder of the paper is organized as follows. First, we 

develop a measurement model for carrier phase that accounts for 

windup. Second, we discuss methods for representing the 

antenna calibration pattern. Third, we review equations for 

relating phase windup to geometric rotation. Next, we outline 

two different approaches for calibration of the antenna pattern, 

noting that each results in a different equation for phase windup. 

The paper closes with a simulation-based evaluation of the 

equations presented in the paper and a brief conclusion. 

II. MEASUREMENT MODEL 

This section reviews modeling of the carrier-phase 

measurement, which is well characterized in the existing 

literature, for example in [1] and [25]. The carrier-phase 

measurement is commonly used to infer the true range 𝑟𝐻/𝐺  

between reference points, from point G on the satellite antenna 

to point H on the receive antenna. For this reason, the carrier-

phase Φ is sometimes reported in length units; however, in this 

paper, we will model Φ  in radian units.  Thus, the range 

dependency must be converted to radian units by a factor 
2𝜋

𝜆
, 

where 𝜆 is the carrier wavelength. Carrier-phase also depends on 

clock bias b, tropospheric delay T, and ionospheric delay I, terms 

which are also typically expressed in range units and which must 

be scaled accordingly, as in the following expression modeling 

the carrier-phase measurement. 

Φ =
2𝜋

𝜆
(𝑟𝐻/𝐺 + 𝑏 + 𝑇 − 𝐼) + 2𝜋𝑁 + 𝛼 + 𝛽 + 𝜂 (1) 

The remaining terms in the model are expressed in radian units. 

The first term after the parentheses is the ambiguity 𝑁𝜆, where 

N is an integer. Other terms include the antenna correction 𝛼, 

which accounts for phase windup including the effects of the 

antenna calibration pattern; the moment-arm term 𝛽 , which 

accounts for phase offset due to the displacement of the antenna 

phase center when rotated about a designated reference point; 

and the measurement noise term 𝜂.  

If the receive antenna is static, then rotations (e.g. due to the 

satellite’s orbit about the Earth) are slow, and both the 𝛼 and 𝛽 

terms can be estimated as unmodeled drift in the clock term b. 

However, if the receive antenna is rotating rapidly, then it is 

useful to expand the models for 𝛼 and 𝛽 in more detail, as both 

are sensitive to rotation. 

A. Antenna Correction 𝛼 

The antenna correction can be modeled concisely [13],[14] 

as a dot product of the complex gain vectors G and H, which 

describe the calibration patterns of the transmit and receive 

antennae, respectively: 

𝛼 = ∠𝐆 ⋅ 𝐇 + 2𝜋𝑀. (2)  

The dot product of the two gain patterns is a complex scalar, 

from which the phase angle is extracted by the angle operator ∠. 

The range of the operator is (−𝜋, 𝜋), but 𝛼 can take any real 

value: 𝛼 ∈ (−∞, ∞. ) The antenna ambiguity M is introduced to 

reconcile the difference by accounting for 𝛼 wrapping outside 

the range of the angle operator.  

Notably, the variable names G and H represent a somewhat 

nonstandard notation for the vector gain patterns of the transmit 

and receive antennae. By contrast, a typical GNSS link budget 

might use subscripts to distinguish between antennae (e.g. a T 

subscript for transmit and an R subscript for receive). To 

maintain a compact mathematical notation in this paper, we 

instead use subscripts to identify different coordinate systems. 

To avoid overloading subscripts, we use different variable 

names (rather than subscripts) for distinguishing the receiver and 

transmitter gain patterns. The letter H was chosen for the receive 

antenna because it is sequential. (G comes before H in the 

alphabet, just as transmitter comes before receiver in radio 

navigation.) Conveniently, our approach in this paper does not 

require analysis of a magnetic field (commonly denoted as H in 

the electromagnetics literature), which leaves the variable H 

available to describe the receive antenna. 

In this paper, our goal will be to transform the vector patterns 

G and H into scalar patterns describing antenna response to 

RHCP and LHCP components of the received signal, as the latter 

form is commonly used in GNSS analyses. To appreciate the 

distinction, it is useful to briefly summarize the derivation of (2). 

First, the electric field in the vicinity of the receiver is modeled 

as an oscillating function in time, with a reference phase set by 

(1), excluding the antenna correction 𝛼: 

𝐄 = √𝑃𝐆𝑒𝑗((𝜔𝑐+𝜔𝑑)𝑡+Φ−𝛼). (3)  

Here P is power, G is the vector antenna calibration pattern for 

the transmit antenna, 𝜔𝑐 is the carrier frequency, and 𝜔𝑑 is the 
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Doppler shift. The vector G is a complex function, reflecting 

phase shift and amplitude scaling as a function of the LOS 

direction from the transmitter to receiver. 

If a far-field assumption is made, implying that the receive 

and transmit antennae are separated by a long distance, then the 

electric field E has planar wavefronts at the receiver, and the 

receive antenna’s output voltage can be modeled as 

𝑣 = (𝐆 ⋅ 𝐇 )√𝑃𝑒𝑗(Φ−𝛼)𝑒𝑗(𝜔𝑐+𝜔𝑑)𝑡. (4)  

This equation introduces H, the vector calibration pattern for the 

receive antenna. For now we assume H is defined about the 

phase center rather than about some other reference point on the 

receive antenna (but we will relax this assumption shortly by 

introducing 𝛽, below).  

The antenna correction term is the phase of the dot product 

in (4). If we introduce a variable D to describe the dot product’s 

magnitude, we have 

𝐆 ⋅ 𝐇 = 𝐷𝑒𝑗α, (5)  

and consequently 

𝑣 = 𝐷√𝑃𝑒𝑗Φ𝑒𝑗(𝜔𝑐+𝜔𝑑)𝑡. (6)  

When the GNSS receiver performs coherent integration to 

remove the last term of (6), the carrier-phase can be extracted as 

Φ. The key point here is that equation (2), which models the 

antenna correction term α, is directly related to the vector dot 

product that modulates the received signal, as described by (4). 

B. Moment-Arm Term 𝛽 

In physical terms, the carrier phase measurement should 

reflect translation between the phase centers of the receive and 

transmit antennas; however, the measurement equation (1) was 

intentionally framed in terms of reference points rather than 

phase centers, with the term 𝛽  introduced to reconcile the 

difference. As this section will justify, the equation for 𝛽 is  

𝛽 =
2𝜋

𝜆
(𝐫𝑂/𝐻 ⋅ 𝐤̂), (7)  

where 𝐫𝑂/𝐻 represents the vector (sometimes called the moment 

arm) from the receive-antenna reference point H to the phase-

center O. Note that capital italics are used here to indicate a 

physical point in space (in contrast with capital bold letters, 

which are used to represent vectors). 

Before deriving (7), it is worth considering why a distinction 

might be made between a reference point and a phase center. 

One reason is that a given antenna may have multiple phase 

centers, one for each GNSS signal frequency (as shown in Fig. 

2). Identifying a single reference point simplifies the process of 

combining GNSS measurements across frequencies. Another 

consideration is that the phase center may lie in empty space, 

outside the antenna housing (see Fig. 2). Specifying a reference 

point at a physical location on the device, such as at the center 

of the electronics package (called mechanical phase center in 

[27]) or at the mounting point, clarifies interpretation of the 

carrier measurement. In fact, to support general sensor fusion, it 

may even be preferable to locate the reference point on a 

structure rigidly attached to the antenna (e.g. at the center-of-

mass of a vehicle). For all these reasons, the measurement 

equation (1) refers to reference points rather than phase centers. 

As defined above, the vector 𝐫𝑂/𝐻  describes the relative 

position of the receive-antenna phase center O to its reference 

point H. For simplicity, let us assume the phase center and 

reference point for the transmit antenna are collocated at G. In 

this case, the carrier measurement should depend on the length 

of the vector 𝐫𝑂/𝐺, from G to O.  By vector addition [26]: 

𝐫𝑂/𝐺 = 𝐫𝑂/𝐻 + 𝐫𝐻/𝐺. (8)  

More precisely, the carrier measurement depends only on the 

vector’s magnitude, which can be obtained by dotting (8) with 

𝐤̂, the unit vector in the LOS direction from G to H:  

𝐤̂ =
𝐫𝐻/𝐺

‖𝐫𝐻/𝐺‖
 . (9)  

When the moment arm is much shorter than the distance 

between receiver and transmitter, the LOS vector is essentially 

the same to both points O and H, and hence it is a very reasonable 

approximation to write 𝐤̂ ≈ 𝐫𝑂/𝐺/‖𝐫𝑂/𝐺‖ . Applying this 

approximation and dotting (8) with 𝐤̂ gives: 

𝑟𝑂/𝐺 = 𝐫𝑂/𝐻 ⋅ 𝐤̂ + 𝑟𝐻/𝐺. (10)  

Substituting (7) into (1), then combining range terms with 

(10), gives:  

Φ =
2𝜋

𝜆
(𝑟𝑂/𝐺 + 𝑏 + 𝑇 − 𝐼) + 2𝜋𝑁 + 𝛼 + 𝜂. (11) 

This equation is equivalent to (1) except in that it makes explicit 

the underlying physics that relate the carrier phase measurement 

to the location of the receive-antenna phase center O. The utility 

of the original equation (1), as compared to (11), is that the 

former allows for an arbitrary receive-antenna reference point.  

  

Fig. 2.  Representative phase centers for a GNSS antenna, adapted from [27]. 
In this special case, the phase centers are collinear and happen to lie outside 

the physical extent of the antenna. 

L1 Phase Center >
L5 Phase Center >

Mechanical Center >
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Antenna Centerline
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The form of the moment-arm correction term 𝛽  is 

intentionally made similar to that of the phase windup term 𝛼, 

since the gain-pattern may be calibrated for an arbitrary 

reference point (such that the reported pattern is actually the sum 

𝛼 + 𝛽). 

III. ANTENNA MODELS 

This section represents the key contribution of the paper, in 

that it introduces a method to convert the antenna calibration 

pattern from a vector field, like G or H, into a scalar field defined 

over all possible LOS. This conversion is significant because 

phase windup is most precisely described using a vector gain 

pattern, yet manufacturers most often specify the gain pattern as 

a scalar field (e.g., a function of azimuth and elevation angle) 

since scalar-field gain patterns are much easier to use when the 

antenna is stationary. The conversion is implemented using a 

change of coordinates, which we will introduce and then 

subsequently illustrate using a canonical example: the case of the 

RHCP crossed-dipole antenna. 

A. Coordinate Systems 

Quantifying the vector gain patterns G and H requires a 

coordinate system. In this paper, we use Cartesian coordinates 

fixed to an antenna where the z-direction is aligned with the 

boresight axis in the direction of signal travel. In other words, 

the z-direction is outward along the boresight for the transmit 

antenna and inward along the boresight for the receive antenna; 

this choice simplifies later math, because the antenna-fixed 

bases for the receive and transmit antennae are aligned when the 

antennae are in their nominal configuration, as shown in Fig. 3. 

The x-axis and y-axis are defined as orthogonal vectors in the 

plane perpendicular to the boresight axis, which is the ground 

plane for some antennae. Label the orthonormal set of basis 

vectors fixed to the transmit antenna as {𝐠̂𝑥 , 𝐠̂𝑦 , 𝐠̂𝑧} and the set 

fixed to the receive antenna as {𝐡̂𝑥, 𝐡̂𝑦 , 𝐡̂𝑧}.  

GNSS systems use RHCP signals, meaning that the phase on 

the 𝐠̂𝑥  axis leads the phase on the 𝐠̂𝑦  axis by 90°. The 

transmitted signal is right handed in the sense that it travels in 

the 𝐠̂𝑧 direction while corkscrewing around that axis, curling in 

the direction of the fingers on a right hand with its thumb pointed 

in the 𝐠̂𝑧  direction. For the nominal configuration, with the 

receive and transmit antennae aligned, the arriving signal is also 

right-handed about the receive-antenna’s 𝐡̂𝑧 axis.  

 

Fig. 3.  Cartesian basis vectors for transmitter and receiver. The z-axis aligns 
with each antenna’s boresight (in the direction of intended signal travel); the 

x-axis leads the y-axis in the right-hand sense. 

In Cartesian coordinates, a circularly polarized signal can be 

described using complex numbers, where the imaginary number 

j represents a 90° phase lead and its negative (-j) represents a 90° 

phase lag. Thus, an RHCP basis vector with unit magnitude can 

be written 𝐠̂𝑅 =
𝟏

√𝟐
(𝐠̂𝑥 − 𝑗𝐠̂𝑦), and an LHCP basis vector can 

be written similarly. Because the component of the electric field 

is always zero parallel to the LOS vector 𝐤̂, however, the LHCP 

and RHCP basis vectors must be constructed carefully by first 

rotating into a coordinate system where the x-axis and y-axis are 

defined to be orthogonal to 𝐤̂ . For this purpose, introduce 

intermediate bases {𝐠̂𝑥
′ , 𝐠̂𝑦

′ , 𝐤̂} and {𝐡̂𝑥
′ , 𝐡̂𝑦

′ , 𝐤̂}, which are fixed 

to the transmit and receive antennae respectively. Since the 

associated x and y-vectors for the transmitter are orthogonal to 

the LOS, a polarization basis can now be defined: 

𝐠̂𝑅
′ =

𝟏

√𝟐
(𝐠̂𝑥

′ − 𝑗𝐠̂𝑦
′ )

𝐠̂𝐿
′ =

𝟏

√𝟐
(𝐠̂𝑥

′ + 𝑗𝐠̂𝑦
′ )

 (12)  

A similar transformation can be defined for the receiver. The 

result is a pair of polarization bases, {𝐠̂𝑅
′ , 𝐠̂𝐿

′ , 𝐤̂} and {𝐡̂𝑅
′ , 𝐡̂𝐿

′ , 𝐤̂}, 

the first for the transmitter and the second for the receiver. These 

intermediate bases are illustrated in Fig. 4, which shows a 

configuration where the boresight directions of the antenna and 

receiver are not aligned. 

 

 

Fig. 4.  Antenna geometry for an arbitrary LOS vector 𝐤̂ 
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With the polarization bases defined, it is now possible to 

describe any vector in polarization coordinates. For instance, the 

transmitter’s vector antenna pattern G can be transformed into a 

coordinate pair (p,q) by dotting with the associated polarization 

basis vectors. 

𝑝 = 𝐠̂𝑅
′ ⋅ 𝐆

𝑞 = 𝐠̂𝐿
′ ⋅ 𝐆

 (13)  

The third component is always zero (𝐤̂ ⋅ 𝐇 = 𝐤̂ ⋅ 𝐆 = 0), since 

the electric field is planar. 

The receiver’s vector antenna pattern H can likewise be 

transformed into a coordinate pair (r,s). 

𝑟 = 𝐡̂𝑅
′ ⋅ 𝐇

𝑠 = 𝐡̂𝐿
′ ⋅ 𝐇

 (14)  

Equivalently, the polarization coordinates can be written in 

matrix form as 

[
𝑝
𝑞
0

] = [ 𝐔𝑐𝑝
] [ 𝐑𝐺𝑐𝐺𝑐

′

] [𝐆]𝐺𝑐
 (15)  

and 

[
𝑟
𝑠
0

] = [ 𝐔𝑐𝑝
] [ 𝐑𝐻𝑐𝐻𝑐

′

] [𝐇]𝐻𝑐
. (16)  

These equations rely on a unitary matrix 𝐔𝑐𝑝
 converting 

between Cartesian and polarization coordinates as well as a pair 

of rotation matrices, [ 𝐑𝐺𝑐𝐺𝑐
′

]  and [ 𝐑𝐻𝐻𝑐
′

] . The first of these 

rotation matrices maps from 𝐺𝑐 , which refers to the transmitter 

boresight-aligned basis {𝐠̂𝑥, 𝐠̂𝑦 , 𝐠̂𝑧}, to 𝐺𝑐
′ , which refers to the 

transmitter LOS-aligned basis {𝐠̂𝑥
′ , 𝐠̂𝑦

′ , 𝐤̂}. Similarly, the second 

rotation matrix maps from the receiver boresight-aligned to the 

receiver LOS-aligned basis, meaning from {𝐡̂𝑥 , 𝐡̂𝑦 , 𝐡̂𝑧}  to 

{𝐡̂𝑥
′ , 𝐡̂𝑦

′ , 𝐤̂}.  

As for the unitary matrix 𝐔𝑐𝑝
, let us start by defining its 

inverse 𝐔𝒑𝑐 , which converts from polarization coordinates to 

Cartesian coordinates.  

𝐔𝒑𝑐 =
𝟏

√𝟐
[

1 1 0
−𝑗 𝑗 0

0 0 √𝟐

]. (17)  

The columns of this matrix are simply the coefficients of (12) 

when the following dot products are evaluated:  

𝐔𝒑𝑐 = [

𝐠̂𝑥
′ ⋅ 𝐠̂𝑅

′ 𝐠̂𝑥
′ ⋅ 𝐠̂𝐿

′ 𝐠̂𝑥
′ ⋅ 𝐤̂

𝐠̂𝑦
′ ⋅ 𝐠̂𝑅

′ 𝐠̂𝑦
′ ⋅ 𝐠̂𝐿

′ 𝐠̂𝑦
′ ⋅ 𝐤̂

𝐤̂ ⋅ 𝐠̂𝑅
′ 𝐤̂ ⋅ 𝐠̂𝐿

′ 𝐤̂ ⋅ 𝐤̂

]. (18)  

The inverse of this matrix is 𝐔c𝑝
= ( 𝐔𝑝𝑐 )−1 = ( 𝐔̅𝑝𝑐 )𝑇, where 

the overbar in the last term indicates the complex conjugate. It is 

important to recall that when taking the transpose of a complex 

matrix (an operation also called the Hermitian), each complex 

entry of the transposed matrix should be conjugated. A conjugate 

transpose operation must be used to compute all dot products. 

Note that the dot products in (18) are straightforward to evaluate 

with (12), because the coefficients of the leading vector are real, 

so the conjugate operation has no effect.  

B. Evaluating Antenna Phase Contribution 𝛼 

The RHCP polarization coordinates r is what we seek to 

describe the antenna calibration pattern as a complex scalar field 

over all LOS directions. This section derives a relationship that 

uses the calibration pattern r to compute the antenna phase 

correction 𝛼, even when the receive antenna is rotating. To be 

general, we will also consider the LHCP component of the 

signal, which allows 𝛼 to be computed even when the electrical 

field arriving at the receiver is elliptically polarized (meaning a 

mix of RHCP and LHCP components [17]).  

To compute 𝛼 in terms of polarization coordinates, we return 

to our fundamental equation (2), which expressed 𝛼  as a dot 

product. Using matrices, the dot product can be evaluated as 

𝐆 ⋅ 𝐇 =  [𝐆]𝐺𝑐
𝑇 [ 𝐑𝐻𝑐𝐺𝑐 ][𝐇]𝐻𝑐

. (19)  

The rotation matrix [ 𝐑𝐻𝑐𝐺𝑐 ]  converts from the receiver’s 

boresight-aligned basis to the transmitter’s boresight aligned 

basis. By substituting (15) and (16), we can expand (19). 

𝐆 ⋅ 𝐇 =  [
𝑝̅
𝑞̅
0

]

𝑇

[ 𝐔𝑐𝑝
] [ 𝐑𝐻𝑐

′𝐺𝑐
′

] [ 𝐔̅𝑐𝑝
]

𝑇
[
𝑟
𝑠
0

] (20)  

As desired, this equation has extracted the receive antenna 

pattern in terms of polarization coordinates (r,s). The expression 

also describes the local electric field in terms of polarization 

coordinates (p,q). To further simplify (20), we leverage a 

remarkable identity. If the rotation matrix [ 𝐑𝐻𝑐
′𝐺𝑐

′

] is written in 

terms of a single angle (i.e. the angle 𝜓 from 𝐠̂𝑥
′  to 𝐡̂𝑥

′  about the 

common 𝐤̂ axis), then 

[ 𝐑𝐺𝑐
′𝐻𝑐

′

] = [ 𝐑𝐻𝑐
′𝐺𝑐

′

]
𝑇

= [
cos 𝜓 sin 𝜓 0

−sin 𝜓 cos 𝜓 0
0 0 1

] (21)  

and  

[ 𝐔𝑐𝑝
] [ 𝐑𝐻𝑐

′𝐺𝑐
′

] [ 𝐔̅𝑐𝑝
]

𝑇
= [

𝑒𝑗𝜓 0 0
0 𝑒−𝑗𝜓 0
0 0 1

] (22)  

Substituting into (20) gives 

𝐆 ⋅ 𝐇 = 𝑝̅𝑟𝑒𝑗𝜓 + 𝑞̅𝑠𝑒−𝑗𝜓. (23)  
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The equation is a dot product in polarization coordinates, where 

the rotations between the two antennae are characterized by a 

spin angle 𝜓 about the LOS axis. Computing 𝛼 with (2), which 

extracts the phase angle from (23), we have 

𝛼 = ∠(𝑝̅𝑟𝑒𝑗𝜓 + 𝑞̅𝑠𝑒−𝑗𝜓) + 2𝜋𝑀. (24)  

Note that the pair (p,q) can be used to describe either the 

transmit antenna or the local electric field, since they are 

proportional (i.e. 𝐄 = 𝛾𝐆, where 𝛾 is a real scalar).  

For many GNSS applications where the LOS direction is 

nearly parallel to the transmitter boresight, and where the signal 

is nearly pure RHCP, we can further simplify. If the LHCP 

component is q = 0, then (24) becomes 

𝑞 = 0  →    𝛼 = ∠(𝑝̅𝑟) + 𝜓 + 2𝜋𝑀. (25)  

This equation clearly illustrates how both the gain pattern and 

geometric rotation impact 𝛼. In the pure RHCP case modeled by 

(25), the first term represents a correction due to the antenna 

phase pattern and the second term is simply proportional to the 

rotation angle about the LOS axis.  

C. Crossed Dipole Antennae 

To appreciate the difference between the antenna models in 

Cartesian and polarization coordinates, it is instructive to 

consider a canonical example, that of the RHCP crossed-dipole 

antenna. This antenna is the baseline for many studies modeling 

phase windup, including those of Wu [13] and Beyerle [14]. 

As reported by Beyerle, the Cartesian model of the RHCP 

crossed-dipole (evaluated about its phase center) can be 

computed for the transmitter pattern as 

𝐆 = 𝐶𝑔(𝐈̿ − 𝐤̂𝐤̂) ⋅ (𝐠̂𝑥 − 𝑗𝐠̂𝑦) (26)  

and for the receiver pattern as 

𝐇 = 𝐶ℎ(𝐈̿ − 𝐤̂𝐤̂) ⋅ (𝐡̂𝑥 − 𝑗𝐡̂𝑦). (27)  

Here Cg and Ch are arbitrary gains that do not affect phase angle 

calculations. The identity tensor is denoted 𝐈̿. These expressions 

take an RHCP basis vector and remove the LOS component 

through the dot product with (𝐈̿ − 𝐤̂𝐤̂), which is a projection 

operation. 

Starting with these equations, we derived the corresponding 

equations in polarization coordinates, as detailed in Appendix A. 

The end result is that the equivalent expressions written in terms 

of (p,q) for the transmitter and (r,s) for the receiver are 

[
𝑝
𝑞] =

𝐶𝑔

√2
[

cos 𝑍𝑔 + 1

(cos 𝑍𝑔 − 1)𝑒−𝑗2𝐴𝑔
] (28)  

and 

[
𝑟
𝑠
] =

𝐶ℎ

√2
[

cos 𝑍ℎ + 1

(cos 𝑍ℎ − 1)𝑒−𝑗2𝐴ℎ
]. (29)  

Here (𝐴𝑔, 𝑍𝑔 ) are the Azimuth and Zenith angle of the LOS 

vector 𝐤̂  relative to the transmitter basis {𝐠̂𝑥, 𝐠̂𝑦 , 𝐠̂𝑧} , and 

(𝐴ℎ, 𝑍ℎ) are the Azimuth and Zenith angle of the LOS vector 𝐤̂ 

relative to the receiver basis {𝐡̂𝑥, 𝐡̂𝑦 , 𝐡̂𝑧}. If the derivation is 

correct, we expect that the Cartesian models (26) and (27) and 

the polarization-coordinate models (28) and (29) should produce 

the same phase correction 𝛼 . This verification test will be 

evaluated in Section VI. 

An important detail here is that equations (28) and (29) are 

representative of how calibration patterns are often represented 

for physical hardware. This is to say, even when a closed form 

model is not available, antennae are often calibrated to produce 

a phase-correction surface as a function of an Azimuth/Zenith or 

an Azimuth/Elevation angle pair, with the form 𝑟(𝐴ℎ, 𝑍ℎ). In 

some cases, these surfaces are represented with a lookup table, 

in other cases they are represented with a polynomial fit or with 

spherical harmonics [20]. 

IV. LOS ROTATION ANGLE 

In order to use polarization coordinates to compute 𝛼 using 

(24), the missing detail is to evaluate the spin angle 𝜓 about the 

LOS axis. This section reviews two such methodologies, both of 

which are drawn from the existing literature. 

A. Euler Angle Method 

Three-dimensional (3D) rotations are often characterized 

using Euler angles [26]. A set of Euler angles consists of three 

scalar angles defined about three specified axes. For antenna 

characterization, it is most convenient to consider a set of Body 

ZYZ Euler angles, where two rigid bases are related by rotation 

angles defined sequentially about the z-axis, y-axis, and z-axis 

of the second basis. 

The orientation of the receiver relative to the transmitter can 

be decomposed into two successive 3D rotations, one relating an 

intermediate basis L to the transmitter basis G, and a second 

relating the receiver basis H to the common intermediate basis 

L. The intermediate basis L is defined to align with the LOS 

vector, and consists of orthonormal basis vectors {𝐢̂, 𝐣̂, 𝐤̂}. The 

vectors 𝐢̂ and 𝐣̂ can be selected as any vector pair for which 𝐣̂ =

𝐤̂ × 𝐢̂. From these basis vectors, the rotation matrix 𝐑𝐿 𝐺 can be 

created to map from {𝐠̂𝑥 , 𝐠̂𝑦 , 𝐠̂𝑧}  to {𝐢̂, 𝐣̂, 𝐤̂} . Similarly, the 

rotation matrix 𝐑𝐻 𝐿  can be created to map from {𝐢̂, 𝐣̂, 𝐤̂}  to 

{𝐡̂𝑥 , 𝐡̂𝑦, 𝐡̂𝑧}. If the Body ZYZ angles for 𝐑𝐿 𝐺 are defined to be 

{𝜙1, 𝜙2, 𝜙3} and if the Body ZYZ angles for 𝐑𝐿 𝐻 are defined to 

be {𝜃1, 𝜃2, 𝜃3}, then the LOS spin angle can be written : 

𝜓 = 𝜙1 + 𝜙3 − 𝜃1 − 𝜃3. (30)  

This result is obtained from [13] as explained in Appendix B. 
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Although Euler angles are useful for mathematical analysis, 

they pose a number of difficulties for numeric implementation, 

including non-uniqueness, singularities, and a need to evaluate 

computationally intensive inverse-trigonometric functions. To 

streamline numeric implementation, an alternative vector-based 

approach is desired to obtain 𝜓. 

B. Effective Dipole Method 

A vector-based method for extracting the LOS rotation angle 

𝜓  is the effective dipole approach [5],[13]. Importantly, this 

approach is computationally efficient and singularity free. The 

idea is to define two “effective” (linearly polarized) dipoles 

oriented perpendicular to the boresight axes of the transmit and 

receive antennae. The effective dipoles are: 

𝐃𝑔 = 𝐠̂𝑥 − 𝐤̂(𝐤̂ ⋅ 𝐠̂𝑥) − 𝐤 × 𝐠̂𝑦. (31)  

and 

𝐃ℎ = 𝐡̂𝑥 − 𝐤̂(𝐤̂ ⋅ 𝐡̂𝑥) − 𝐤 × 𝐡̂𝑦. (32)  

These effective dipoles can be used to compute 𝜓 as 

𝜓 = atan2(𝐤 ⋅ (𝐃𝑔 × 𝐃ℎ), 𝐃𝑔 ⋅ 𝐃ℎ). (33)  

V. CALIBRATION 

This section revisits the antenna gain pattern, to consider 

how the LOS rotation angle 𝜓 plays into the calibration process. 

The key contribution of this section is to demonstrate that the 

antenna calibration pattern is not unique, and that the baseline 

phase correction model (24) must be modified if the calibration 

procedure induces spin. 

In order to demonstrate this point, we consider two 

calibration procedures. In the first procedure, we assume that 

each LOS direction is sampled using a three-axis rotation stage, 

which performs a Body ZYZ rotation on the receive antenna; in 

the second procedure, we assume a two-axis rotation stage, 

which performs a Body ZY rotation. Both procedures produce a 

calibration surface over a range of Azimuth and Zenith angles; 

however, the calibration surfaces will not necessarily agree. 

In analyzing these two procedures, we assume all other 

details are the same other than the process for rotating the receive 

antenna. Importantly, we assume calibration in an anechoic 

chamber with high carrier-to-noise ratio, such that measurement 

noise and multipath errors are negligibly small. We assume 

rotations occur about the same reference point for both rotation 

stages. We assume that the receive antenna is sufficiently far 

from the transmit antenna that a far-field assumption is justified. 

Also, we assume that the transmitter can be configured either 

with an RHCP or with an LHCP antenna, to transmit a purely 

circularly polarized signal such that r and s can be calibrated 

separately. In other words, we assume that the RHCP calibration 

surface is measured in an electric field with (p,q) = (1,0) and the 

LHCP surface, with (p,q) = (0,1). Finally, we assume that the 

calibration is referenced to a neutral configuration, in which the 

basis vectors for the transmitter and receiver are aligned, as 

shown in Fig. 3. 

A. Body ZYZ Calibration 

First consider the Body ZYZ calibration procedure. This 

procedure uses three rotation stages even though, technically, 

only two stages are needed to cover all azimuth and zenith angles 

describing the LOS direction. The redundant angle can be used 

to remove spin introduced by rotating the receive antenna 

through to any given azimuth. This is to say, the Euler angle set 
{𝜃1, 𝜃2, 𝜃3} used to rotate the receive antenna relative to the test 

chamber is opposite to the azimuth and zenith angles that 

describe the rotation of the LOS vector 𝐤̂ relative to the antenna 

boresight-fixed basis: 

𝐴ℎ = −𝜃1 and 𝑍ℎ = −𝜃2. (34)  

Manipulating (30) to ensure that 𝜓 is constant, we see the third 

rotation stage should configured such that 𝜃3 = −𝜃1 = 𝐴ℎ. 

The calibration procedure then progresses through a 

predefined sequence of motions to sample the carrier-phase in a 

pure RHCP field at all relevant azimuth-zenith pairs, to give 

𝜌𝑅(𝐴ℎ, 𝑍ℎ). Here the R subscript refers to RHCP calibration, 

where the alternative is an L subscript referring to the LHCP 

calibration. If phase is tracked continuously during the 

calibration process, then each sample can be differenced from 

the initial sample acquired when the antennas are aligned. The 

initial samples for the RHCP and LHCP tests are 𝜌𝑅0 and 𝜌𝐿0, 

respectively. 

Subtracting the initial measurement removes many 

confounding effects and helps to reveal the desired calibration 

pattern. It is evident from (1) that all terms are removed in the 

test except for the clock b, which may drift over time, and the 

antenna correction 𝛼 , which is needed for the calibration 

process. Note that the moment-arm 𝛽 is effectively zero, since 

we assume the rotation stage rotates about the desired reference 

point on the antenna.  

If clock drift can be removed, either by using a common 

clock for both receiver and transmitter or by estimating clock 

drift separately, then the measurement difference directly reveals 

the antenna phase shift relative to the neutral configuration. For 

the RHCP data collection run, for instance, we can write:  

𝜌𝑅(𝐴ℎ, 𝑍ℎ) − 𝜌𝑅0 = 𝛼(𝐴ℎ, 𝑍ℎ) − 𝛼(0,0). (35)  

Further simplification is possible if we recognize that, for a 

pure RHCP signal, the antenna phase 𝛼 can be evaluated with 

(25). Since the LOS rotation angle 𝜓 and the transmitter phase 

∠𝑝̅ are constant throughout the experiment, the only terms that 

do not cancel in (35) are the receiver RHCP calibration 

𝑟(𝐴ℎ, 𝑍ℎ)  and the integer M. If the calibration angle for the 

reference configuration 𝑟(0,0) is set to be zero, then substituting 

(25) into (35) gives 
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𝜌𝑅(𝐴ℎ, 𝑍ℎ) − 𝜌𝑅0 = ∠𝑟(𝐴ℎ, 𝑍ℎ) + 2𝜋Δ𝑀. (36)  

where Δ𝑀 denotes the number of phase-wraps since the start of 

calibration. Leveraging this result, we can calibrate the RHCP 

phase pattern to be 

𝑟(𝐴ℎ, 𝑍ℎ) =
𝐷𝑅(𝐴ℎ,𝑍ℎ)

𝐷𝑅0
exp(𝑗(𝜌𝑅(𝐴ℎ, 𝑍ℎ) − 𝜌𝑅0)). (37)  

This expression includes both phase and amplitude scaling, 

where the initial amplitude for the RHCP trial is 𝐷𝑅0 and where 

each subsequent amplitude is 𝐷𝑅(𝐴ℎ , 𝑍ℎ) forming a ratio that 

can be estimated, for example, from the signal-to-noise ratio. By 

analogy, a complex calibration surface can be derived for the 

LHCP trial to give 

𝑠(𝐴ℎ, 𝑍ℎ) =
𝐷𝐿(𝐴ℎ,𝑍ℎ)

𝐷𝐿0
exp(𝑗(𝜌𝐿(𝐴ℎ, 𝑍ℎ) − 𝜌𝐿0)). (38)  

The terms in this equation for the LHCP analogs to the terms in 

(37). Together, (37) and (38) support online evaluation of the 

antenna correction via (24) in terms of the physical rotation of 

the antennae, as characterized by the LOS spin angle 𝜓. 

B. Body ZY Calibration 

Second consider the Body ZY calibration procedure. In this 

case, since the third Euler angle is fixed at zero, the LOS rotation 

𝜓 changes for each azimuth, with 𝜓(𝐴ℎ, 𝑍ℎ) − 𝜓(0,0) = −𝜃1,  

by (30). The resulting Body ZY antenna calibration gives two 

surfaces: 

𝑟∗(𝐴ℎ, 𝑍ℎ) =
𝐷𝑅(𝐴ℎ,𝑍ℎ)

𝐷𝑅0
exp(𝑗(𝜌𝑅(𝐴ℎ, 𝑍ℎ) − 𝜌𝑅0)) (39)  

and 

𝑠∗(𝐴ℎ, 𝑍ℎ) =
𝐷𝐿(𝐴ℎ,𝑍ℎ)

𝐷𝐿0
exp(𝑗(𝜌𝐿(𝐴ℎ, 𝑍ℎ) − 𝜌𝐿0)). (40)  

Here the star superscript is introduced to distinguish the Body 

ZY calibration from the prior results. Because the LOS spin 

angle is non-zero in the Body ZY, we can write the following 

equation to relate the starred variables back to the earlier values 

obtained by (37) and (38) for Body ZYZ calibration: 

𝑟∗(𝐴ℎ, 𝑍ℎ) = 𝑟𝑒−𝑗𝐴ℎ   (41)  

and 

𝑠∗(𝐴ℎ, 𝑍ℎ) = 𝑠𝑒+𝑗𝐴ℎ . (42)  

The difference between the two calibrations is illustrated below 

in Fig. 5, which shows the calibration surfaces 𝑟(𝐴ℎ, 𝑍ℎ) on the 

left and 𝑟∗(𝐴ℎ, 𝑍ℎ) on the right. 

Importantly, the antenna correction 𝛼  given by (24) does 

compute the correct result for the Body ZY calibration surfaces 

𝑟∗ and 𝑠∗, unless the LOS spin angle is removed from (41) and 

(42) in post-processing. As an alternative, (24) can be 

reformulated by substituting (41) and (42) to give a Body ZY 

antenna correction equation: 

𝛼 = ∠(𝑝∗̅̅ ̅ 𝑟∗ 𝑒𝑗𝜓∗
+ 𝑞∗̅̅̅ 𝑠∗𝑒−𝑗𝜓∗

) + 2𝜋𝑀. (43)  

 

 

Fig. 5.  Comparison of RHCP calibration surface for calibrations using a 
three-axis Body ZYZ rotation stage (left) and a two-axis Body ZY rotation 

stage (right). The color scale on the left plot ranges from  (yellow) to - 

(dark blue). 

Here the star notation is also added to the transmitter patterns 𝑝∗ 

and 𝑞∗ for consistency as well as the residual LOS rotation angle 

𝜓∗, where this angle removes the azimuth (first Euler angles) 

contributions from (30) to give 

𝜓∗ = 𝜙3 − 𝜃3. (44)  

A convenient formula for this angle correction is given in [13]: 

𝜓∗ = sign (𝐤̂ ⋅ (𝐠̂𝑦
′ × 𝐡̂𝑦

′ )) acos(𝐠̂𝑦
′ ⋅ 𝐡̂𝑦

′ ). (45)  

Whether one of the two calibration strategies is “more 

correct” than the other is something of a philosophical question. 

In both cases, the phase windup 𝛼 results from a combination of 

geometric rotation and antenna calibration; both approaches 

model these phenomena, and both are correct. The upshot is that 

there are multiple valid calibration approaches, each with its own 

formula for combining the calibrated phase pattern with a 

representation of geometric rotation to compute the phase 

correction 𝛼. 

VI. SIMULATION 

In this section we use simulation to verify the equations 

presented in this paper and explain their significance. To this 

end, we simulate the antenna phase correction 𝛼  for several 

example cases.  

In all simulation cases, the transmitter is fixed in space, as 

described by an inertially fixed basis {𝐠̂𝑥 , 𝐠̂𝑦 , 𝐠̂𝑧} . The LOS 

vector 𝐤̂ is also inertially fixed, implying that the two antennae 

are offset but that they are not moving relative to one another. 

Except in the first case (which considers ideal circular 

polarization), the transmit antenna is modeled as an RHCP 
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crossed-dipole and the electric field is made elliptically 

polarized by tilting the LOS vector by 30∘ from the transmitter’s 

boresight axis. Specifically, we set the LOS vector in the G basis 

to be  [𝐤̂]
𝐺

= [0 −
1

2

√3

2
]

𝑇

. 

The receive antenna is configured so that its basis vectors 

{𝐡̂𝑥 , 𝐡̂𝑦, 𝐡̂𝑧}  are initially aligned with those of the transmit 

antenna. In the simulation, the receive antenna is rotated one full 

rotation around a unit vector 𝛌̂ = [−0.76 0.46 0.46]𝑇. This 

rotation is illustrated in Fig. 6, which plots each LOS direction 

as a point on a unit sphere. In the figure, a signal arriving along 

the boresight of the receive antenna would be shown as a dot at 

the North pole. The actual LOS direction 𝐤̂ is initially offset 30∘ 

from the North pole (as indicated by a red half-circle). The trail 

of cyan dots shows each subsequent LOS direction 𝐤̂  as the 

receive antenna rotates about the 𝛌̂ axis. The rotation axis 𝛌̂  is 

depicted as a black arrow. During this rotation, the receive 

antenna sweeps through a wide range of zenith angles, including 

angles below the horizon, which is visualized as the “equator” 

of the unit sphere shown in Fig. 6. 

For this geometric configuration, we consider four antenna 

models and evaluate 𝛼 . The four models are summarized by 

Table 1. The models were selected to enable a new comparison 

with each model in the sequence. 

A first comparison examines the effects of elliptical 

polarization. This comparison involves models (i) and (ii), which 

both assume an RHCP crossed-dipole receiver, but which 

assume a pure RHCP electric field in one case and an 

elliptically-polarized field in the other. The elliptically polarized 

electric field is generated by a crossed-dipole transmitter. In the 

pure RCHP case, the antenna phase shift is merely a geometric 

effect, described by (25); with elliptical polarization, the phase 

shift depends on both geometry and the antenna pattern, as 

described by the combination of equations (2), (26), and (27). 

A second comparison verifies the equivalence of using 

Cartesian or polarization coordinates. We expect the two 

methods will be equivalent. To test this, we consider the RHCP 

crossed-dipole receive antenna subject to elliptical polarization. 

We compute 𝛼 using a Cartesian vector formulation in model 

(ii) and then using polarization-coordinates in model (iii). 

A final comparison illustrates how the polarization-

coordinate formulation generalizes for analysis of general 

antenna patterns. For this case, we introduce a perturbed 

crossed-dipole, with a phase pattern that wraps in Azimuth, the 

result of adding an exponential term to the r component of 

conventional dipole antenna described by (29) to obtain: 

[
𝑟
𝑠
] =

𝐶ℎ

√2
[
cos 𝑍ℎ + 1
cos 𝑍ℎ − 1

] 𝑒−𝑗2𝐴ℎ  (46)  

This perturbed antenna is evaluated as model (iv); the effect of 

the perturbation can be assessed by comparison to the 

conventional RHCP crossed dipole evaluated as model (iii). 

 

 

 

Fig. 6.  LOS vector as seen by receive antenna. At each time step, the LOS 

vector 𝐤̂ is shown as a cyan point on the surface of a unit sphere. These points 

circle around the simple rotation axis (black arrow), starting at and returning 

to an initial orientation, which is marked as an open half-circle (red).  

Table 1. Four models evaluated in simulation 

ID Electric field Receiver 𝜶 equation 

(i)  Pure RHCP Crossed-dipole (25), (30) 

(ii) Elliptically 

Polarized 

Crossed-dipole 

(Beyerle model) 

(2), 

(26), (27)  

(iii) Elliptically 

Polarized 

Crossed-dipole 

(Polarization coord.) 

(24), 

(28),(29) 

(iv) Elliptically 

Polarized 

Perturbed 

crossed-dipole 

(46) 

 

This set of models represents a logical progression through 

the contributions of prior papers to the contributions of this 

paper. Wu’s seminal paper [13] considered model (i), the case of 

a crossed-dipole receive antenna in a pure RHCP electric field. 

Beyerle’s paper [14] considered model (ii), with the crossed-

dipole receive antenna in an elliptically polarized electric field. 

By attempting to recreate Beyerle’s results in polarization 

coordinates with model (iii), we verify that our generalized 

approach matches Beyerle for a canonical antenna (the RHCP 

crossed dipole). Our final case, that of model (iv), illustrates how 

our generalized approach extends to arbitrary antenna patterns.    

The results of the simulation study conform to expectations. 

This is to say that the first two models of an RHCP crossed-

dipole receiver (in pure RHCP and in elliptically polarized 
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fields, respectively) are expected to produce very similar results. 

Indeed, the computed phase shift values 𝛼 are nearly identical 

for models (i) and (ii), as seen by comparing the red-dashed and 

blue-solid curves in Fig. 7. The two models only diverge 

substantially near a rotation of 𝜃𝜆 = 3 radians, where the LOS 

vector drops below the receiver’s horizon. In this region, the 

LHCP component of the model becomes as large as the RHCP 

component, and the two models briefly diverge by as much as 

0.67 radians (equivalent to 38° of phase shift).  

 

Fig. 7.  Plot of total phase windup 𝛼 as a function of the simple rotation angle 

𝜃𝜆 for models (i)-(iii).  Both axes are reported in radian units. 

Next, we can evaluate whether models (ii) and (iii) are 

equivalent, as we anticipated. Fig. 7 shows models (ii) and (iii) 

as the solid-blue curve and the green-triangle points; these two 

curves lie on top of each other within machine precision. This 

agreement shows that the proposed conversion between the two 

coordinate systems (Cartesian and polarization coordinates) is 

self-consistent, as expected. 

 

Fig. 8.  Plot of total phase windup 𝛼 as a function of the simple rotation angle  

𝜃𝜆 for conventional and perturbed antennae, labeled models (iii) and (iv).   

 

The final comparison demonstrates the motivation for 

applying our proposed methodology when the receive antenna is 

not a crossed-dipole. To this end, consider 𝛼 for the perturbed 

antenna of model (iv). The results from this model are compared 

to the conventional RCHP crossed-dipole, model (iii), in Fig. 8. 

In the figure, the crossed-dipole antenna is plotted as a solid-blue 

curve and the perturbed antenna, as a dashed-pink curve. The 

two antennae exhibit very different phase changes. During a 

physical rotation of one revolution ( 𝜃𝜆 = 2𝜋  rad) about the 

simple rotation axis, 𝛼 for the conventional antenna changes by 

the same amount: 2𝜋 rad. The perturbed antenna has an entirely 

different behavior, with 𝛼  changing by 6𝜋  rad for the same 

rotation. Clearly, this is a case in which both geometric rotation 

and antenna calibration must be considered together to 

accurately compute phase windup. As an aside, the high 

sensitivity of (46) to phase windup might be a disadvantage in 

some situations, but an advantage when attempting to infer 

attitude and angular velocity from phase angle measurements. 

In order to enable other researchers to repeat and extend 

these studies, the Matlab simulation script that was used to 

generate Fig. 6 through Fig. 8 will be posted as an online 

supplement to this article. 

VII. CONCLUSION 

This paper builds on prior research on modeling GNSS phase 

windup. Our contribution is to introduce equations to account for 

the combined contributions of geometric rotation and antenna 

calibration to the carrier measurement; more specifically, we 

focus on calibration models formulated as complex scalar 

functions of two angles, such as the Azimuth and Zenith angles 

for the arriving signal. Simulations are used to check equation 

consistency. For reference, our Matlab-based simulation code is 

posted as an online supplement to this article. 

In addition to presenting equations to model phase windup 

for general antennae, we demonstrate that calibration techniques 

are not all equivalent, and that the phase windup model 

equations must therefore be matched to the specific approach 

used to calibrate the antenna. As an example, we demonstrate 

the difference between calibrating an antenna with three rotation 

stages (Body ZYZ rotations) as opposed to only two rotation 

stages (Body ZY rotations). 

The equations presented in this article are particularly 

relevant for aerospace platforms that rotate in three dimensions 

and that use nonstandard GNSS antennae. For such platforms, 

equations (24) and (33) can be used to describe combined phase 

windup effects in terms of both a lab-generated antenna 

calibration and rotations about the line-of-sight axis.  
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APPENDIX A 

This Appendix derives the conversion of the RHCP crossed-

dipole model from Cartesian coordinates to polarization 

coordinates. That is, we derive equations (28) and (29) from (26) 

and (27). To start our derivation, consider (26), which describes 

the pattern for the transmit antenna as a 3D vector, using a 

Cartesian basis: 

𝐆 = 𝐶𝑔(𝐈̿ − 𝐤̂𝐤̂) ⋅ (𝐠̂𝑥 − 𝑗𝐠̂𝑦) (26)  

Applying (13), which defines polarization coordinates, we have 

𝑝 = 𝐠̂𝑅
′ ⋅ 𝐶𝑔(𝐈̿ − 𝐤̂𝐤̂) ⋅ (𝐠̂𝑥 − 𝑗𝐠̂𝑦)

𝑞 = 𝐠̂𝐿
′ ⋅ 𝐶𝑔(𝐈̿ − 𝐤̂𝐤̂) ⋅ (𝐠̂𝑥 − 𝑗𝐠̂𝑦)

. (47)  

Expanding with (12) and noting that 𝐠̂𝑥
′  and 𝐠̂𝑦

′  are defined to be 

orthogonal to 𝐤̂, we note 𝐠̂𝑥
′ ⋅ 𝐤̂ = 𝐠̂𝑦

′ ⋅ 𝐤̂ = 0, so  

𝑝 =
𝐶𝑔

√2
(𝐠̂𝑥

′ − 𝑗𝐠̂𝑦
′ ) ⋅ (𝐠̂𝑥 − 𝑗𝐠̂𝑦)

𝑞 =
𝐶𝑔

√2
(𝐠̂𝑥

′ + 𝑗𝐠̂𝑦
′ ) ⋅ (𝐠̂𝑥 − 𝑗𝐠̂𝑦)

. (48)  

Expanding the product gives: 

𝑝 =
𝐶𝑔

√2
(𝐠̂𝑥

′ ⋅ 𝐠̂𝑥 − 𝑗𝐠̂𝑥
′ ⋅ 𝐠̂𝑦 + 𝑗𝐠̂𝑦

′ ⋅ 𝐠̂𝑥 + 𝐠̂𝑦
′ ⋅ 𝐠̂𝑦)

𝑞 =
𝐶𝑔

√2
(𝐠̂𝑥

′ ⋅ 𝐠̂𝑥 − 𝑗𝐠̂𝑥
′ ⋅ 𝐠̂𝑦 − 𝑗𝐠̂𝑦

′ ⋅ 𝐠̂𝑥 − 𝐠̂𝑦
′ ⋅ 𝐠̂𝑦)

. (49)  

A subtle point here is that the dot product for complex numbers 

is equivalent to a conjugate transpose. With this equation, we 

can now take advantage of the property that each entry of a 

Rotation matrix is the dot product of a pair of unit basis vectors. 

Using this fact, we express the dot products in (49) as entries of 

the rotation matrix 𝐑𝐺𝑐𝐺𝑐
′

. 

𝑝 =
𝐶𝑔

√2
( 𝐑𝑥𝑥

𝐺𝑐𝐺𝑐
′

− 𝑗 𝐑𝑥𝑦
𝐺𝑐𝐺𝑐

′

+ 𝑗 𝐑𝑦𝑥
𝐺𝑐𝐺𝑐

′

+ 𝐑𝑦𝑦
𝐺𝑐𝐺𝑐

′

)

𝑞 =
𝐶𝑔

√2
( 𝐑𝑥𝑥

𝐺𝑐𝐺𝑐
′

− 𝑗 𝐑𝑥𝑦
𝐺𝑐𝐺𝑐

′

− 𝑗 𝐑𝑦𝑥
𝐺𝑐𝐺𝑐

′

− 𝐑𝑦𝑦
𝐺𝑐𝐺𝑐

′

)
. (50)  

The subscripts after each rotation matrix denote a particular 

entry, for instance the xx subscript in 𝐑𝑥𝑥
𝐺𝑐𝐺𝑐

′

 represents the 

product of the x-basis vector in 𝐺𝑐
′ with the x-basis vector in 𝐺𝑐. 

In this appendix, we consider a calibration that introduces no 

net LOS rotation 𝜓. As described in Section V (Calibration), we 

can use a Body ZYZ transformation for this purpose. For a Body 

ZYZ transformation, with Euler angles {𝜙1, 𝜙2, 𝜙3} , the 

relevant rotation matrix entries can be written [26]: 

   [
𝐑𝑥𝑥

𝐺𝑐𝐺𝑐
′

𝐑𝑥𝑦
𝐺𝑐𝐺𝑐

′

𝐑𝑦𝑥
𝐺𝑐𝐺𝑐

′

𝐑𝑦𝑦
𝐺𝑐𝐺𝑐

′ ] = [
−𝑠1𝑠3 + 𝑐1𝑐2𝑐3 𝑐1𝑠3 + 𝑠1𝑐2𝑐3

−𝑠1𝑐3 − 𝑐1𝑐2𝑠3 𝑐1𝑐3 − 𝑠1𝑐2𝑠3
]. (51)  

Here where s and c are used as shorthand to indicate the sine and 

cosine functions. The subscript after s or c indicates one of the 

Euler angles. For instance, 𝑠3 = sin (𝜙3).  

To avoid introducing implicit spin about the LOS axis, we 

set {𝜙1, 𝜙2} equal to the Azimuth and Zenith angles {𝐴𝑔, 𝑍𝑔}, 

and then we choose 𝜙1 = −𝜙3 = −𝐴𝑔, as justified by Section 

V (Calibration). Simplifying to eliminate 𝜙3 from (51) gives 

[
𝐑𝑥𝑥

𝐺𝑐𝐺𝑐
′

𝐑𝑥𝑦
𝐺𝑐𝐺𝑐

′

𝐑𝑦𝑥
𝐺𝑐𝐺𝑐

′

𝐑𝑦𝑦
𝐺𝑐𝐺𝑐

′ ] = [
𝑠1

2 + 𝑐1
2𝑐2 𝑐1𝑠1(𝑐2 − 1)

𝑐1𝑠1(𝑐2 − 1) 𝑐1
2 + 𝑠1

2𝑐2

]. (52)  

Using this relationship between the rotation matrix and the Euler 

angles, we can rewrite (50) as 

𝑝 =
𝐶𝑔

√2
(𝑠1

2 + 𝑐1
2𝑐2 + 𝑐1

2 + 𝑠1
2𝑐2)

𝑞 =
𝐶𝑔

√2
(𝑠1

2 + 𝑐1
2𝑐2 − 2𝑗𝑐1𝑠1(𝑐2 − 1) − (𝑐1

2 + 𝑠1
2𝑐2))

. (53)  

Applying the identity that (sin2 𝛾 + cos2 𝛾) = 1, 

𝑝 =
𝐶𝑔

√2
(1 + 𝑐2)

𝑞 =
𝐶𝑔

√2
(𝑐1

2 − 2𝑗𝑐1𝑠1−𝑠1
2)(𝑐2 − 1)

. (54)  

In this expression, the first term in parentheses in q can be 

factored as (𝑐1 − 𝑗𝑠1)2 and converted into an exponential: 

𝑝 =
𝐶𝑔

√2
(cos 𝜙2 + 1)

𝑞 =
𝐶𝑔

√2
(cos 𝜙2 − 1)𝑒−2𝑗𝜙1

. (55)  

As a final step, we can show (55) is equivalent to (28) simply by 

substituting {𝜙1, 𝜙2}={𝐴𝑔, 𝑍𝑔}, as specified above. 

Following the same procedure, it is straightforward to 

convert (27) into (29), completing the derivation. 

APPENDIX B  

This Appendix provides additional background on (30), 

which is drawn directly from the 14th equation of the seminal 

article by Wu [13]. To see the equivalence of (30) to the 

corresponding equation from [13], let us first consider the 

origins of (30). The spin angle between any pair of antennae for 

a given LOS can be determined by starting with both antennae 

pointing at each other, with boresights aligned with the LOS 

vector. In other words, the antenna basis vectors are aligned and 

the boresight vectors align with 𝐤̂ . Define this case as the 

reference, with zero spin angle 𝜓 = 0.  

Next, the receiver and transmitter bases must be adjusted to 

arbitrary orientations relative to the inertial frame. In the process, 

the LOS vector 𝐤̂  remains fixed in the inertial frame while 

shifting to a new direction in each of the antenna frames. One 

way to re-orient the antennae is to use a combination of an LOS-
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axis rotation followed by rotation about a carefully-selected 

orthogonal axis. For instance, to change the LOS vector in the 

receiver frame, rotate the receiver about the boresight by a first 

angle 𝜙𝑧; then select a simple rotation axis 𝛌̂ perpendicular to 

both the boresight and the desired LOS direction 𝐤̂. The first 

rotation (about the boresight 𝐡̂𝑧 ) induces spin; the second 

rotation about the 𝛌̂ vector (orthogonal to both the boresight and 

LOS vectors) induces no spin. This pair of rotations, a Space Z 

rotation followed by a simple rotation, can place the receiver at 

any arbitrary orientation relative to the inertial frame. The 

transmit antenna can be rotated to an arbitrary orientation by a 

similar pair of rotations, starting with a rotation about the 

boresight (by 𝜃𝑧 ) followed by a simple rotation that does not 

induce spin. Considering only geometric effects, the relative spin 

is influenced positively by the receiver and negatively by the 

transmitter. Thus, the total geometric spin is 

𝜓 = 𝜙𝑧 − 𝜃𝑧. (56)  

In order to relate this equation to (30), the pair of simple 

rotations described above must be converted to an equivalent set 

of three Euler angle rotations (e.g. a Body ZYZ rotation). 

Toward this objective, we note that the rotation matrix is a useful 

tool for comparison, since there is a unique rotation matrix for 

any relative orientation. Thus, we can compute the rotation 

matrix that describes the orientation of one antenna relative to 

the inertial frame, first using the twin simple rotations and 

subsequently using the triple Euler Angle (Body ZYZ) rotations. 

Noting the two rotation matrices are equivalent, we can relate 

the simple-spin angle 𝜙𝑧  to the receiver Euler angles 

{ 𝜙1, 𝜙2, 𝜙3 }. The same process can be repeated for the 

transmitter to relate the simple-spin angle 𝜃𝑧 to the transmitter 

Euler angles {𝜃1, 𝜃2, 𝜃3}. 

Start with the twin simple rotations for the receiver. The 

resulting rotation matrix between the final receiver orientation H 

and the initial (inertially-fixed) basis N is 

𝐑𝑁𝐻 = [
cos (𝜙𝑧) sin (𝜙𝑧) 0

−sin (𝜙𝑧) cos (𝜙𝑧) 0
0 0 1

] 𝐑(𝛾, 𝛌). (57)  

On the left-hand side, the first matrix is a space rotation about 

the boresight 𝐡̂𝑧 axis and the second is the simple rotation matrix 

for a rotation of angle 𝛾 about a unit vector 𝛌 such that  

𝛌 = 𝐡̂𝑧 × 𝐤̂ / ‖𝐡̂𝑧 × 𝐤̂‖ . (58)  

This equation implies the vector 𝛌 is perpendicular to both the 

boresight 𝐡̂𝑧  and the LOS vector 𝐤̂ . The form of the simple 

rotation matrix is given in many advanced dynamics and 

robotics textbooks, such as for example in [26]. Note that there 

is a special case when the rotation angle 𝛾 is zero; in this case, 

(58) is singular but does not need to be computed, since the 

rotation matrix 𝐑(𝛾, 𝛌) is simply the identity matrix.  

Proceeding with the nontrivial case, let us expand (57) by 

matrix multiplication. Then extract individual elements of the 

resulting rotation matrix. First consider the [3,3] element, which 

is the lowest diagonal element: 

𝐑𝐻 𝑁[3,3] = cos(γ). (59)  

Summing the other two diagonal elements gives: 

𝑅𝑠𝑢𝑚 = 𝐑𝐻 𝑁[1,1] + 𝐑𝐻 𝑁[2,2] (60)  

with 

𝑅𝑠𝑢𝑚 = cos(𝜙𝑧) ((1 − cos(γ))(𝜆𝑥
2 + 𝜆𝑦

2 ) + 2cos(γ)). (61)  

Here 𝜆𝑥 and 𝜆𝑦 are the coefficients of the simple rotation vector 

about the inertially-fixed x and y axes. The third measure 

describing the simple rotation vector is 𝜆𝑧 = 𝛌 ⋅ 𝐤̂. Note from 

(58) that the cross product makes 𝛌 orthogonal to 𝐤̂, such that 

𝜆𝑧 = 0. Furthermore, because (58) is normalized to ensure that 

𝛌  is a unit vector, then (𝜆𝑥
2 + 𝜆𝑦

2 + 𝜆𝑧
2) = (𝜆𝑥

2 + 𝜆𝑦
2 ) = 1 . 

Hence: 

𝑅𝑠𝑢𝑚 = cos(𝜙𝑧)(1 + cos(γ)). (62)  

Finally, consider the difference of two more rotation-matrix 

elements, the first two off-diagonal terms: 

𝑅𝑑𝑖𝑓𝑓 = 𝐑𝐻 𝑁[2,1] − 𝐑𝐻 𝑁[1,2] (63)  

with 

𝑅𝑑𝑖𝑓𝑓 = sin(𝜙𝑧) ((1 − cos(γ))(𝜆𝑥
2 + 𝜆𝑦

2 ) + 2cos(γ)), (64)  

which, noting that (𝜆𝑥
2 + 𝜆𝑦

2 ) = 1, simplifies to  

𝑅𝑑𝑖𝑓𝑓 = sin(𝜙𝑧)(1 + cos(γ)). (65)  

The rotation matrix 𝐑𝑁𝐻  can equivalently be computed from 

a set of three Body ZYZ Euler angles {𝜙1, 𝜙2, 𝜙3}. This form of 

the rotation matrix is also tabulated in standard dynamics 

textbooks, such as [26]. Using this table, we can write the 

rotation matrix elements in terms of the Euler angles as 

𝐑𝐻 𝑁[3,3] = cos(𝜙2) (66)  

and 

𝑅𝑠𝑢𝑚 = cos(𝜙1 + 𝜙3)(1 + cos(𝜙2)) (67)  

and 

𝑅𝑑𝑖𝑓𝑓 = sin(𝜙1 + 𝜙3)(1 + cos(𝜙2)). (68)  
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It is now possible to match the coefficients of the rotation 

matrix obtained from (57) with the Body ZYZ coefficients.  

Matching (59) and (66), we have 

cos(γ) = cos(𝜙2). (69)  

Now matching the 𝑅𝑠𝑢𝑚  expressions of (62) and (67), then 

substituting (69), we have 

 cos(𝜙𝑧) = cos(𝜙1 + 𝜙3). (70)  

Similarly by matching the 𝑅𝑑𝑖𝑓𝑓 expressions of (65) and (68), 

then substituting (69), we have 

sin(𝜙𝑧) = sin(𝜙1 + 𝜙3). (71)  

By inspection from (70) and (71), and restricting the arguments 

of the trigonometric functions to be on the range 0 to 2𝜋, we see 

𝜙𝑧 = 𝜙1 + 𝜙3. (72)  

In short, the spin angle 𝜙𝑧 of the receiver relative to the inertial 

orientation is equivalent to the sum of the first and third Euler 

angle, 𝜙1  and 𝜙3 , in the Body ZYZ rotation. Normally, it is 

dangerous to sum Euler angles that describe a three-dimensional 

rotation [26]; however, in this case, we have a mathematical 

justification to sum the first and third Body ZYZ Euler angles to 

compute the receiver spin 𝜙𝑧 relative to its initial orientation.  

Following the same approach for the transmitter, we can 

show the parallel result, which is that 

𝜃𝑧 = 𝜃1 + 𝜃3. (73)  

Substituting both (72) and (73) into (56), we recover (30). 

𝜓 = 𝜙1 + 𝜙3 − 𝜃1 − 𝜃3. (30)  

The goal of this supplement was not only to derive (30), but 

also to relate it to the 14th equation of Wu. To do this, consider 

the relative angle 𝜙3 − 𝜃3 in (30), which is defined in this paper 

to be a difference of the third Body ZYZ Euler angles used to 

generate the bases {𝐠̂𝑥
′ , 𝐠̂𝑦

′ , 𝐤̂}  and {𝐡̂𝑥
′ , 𝐡̂𝑦

′ , 𝐤̂} . The angle 

difference represents a relative rotation about 𝐤̂, which can be 

computed from the basis vectors using (44) and (45). 

Substituting (44) into (30) gives 

𝜓 = 𝜙1 + 𝜓∗ − 𝜃3, (74)  

where 

𝜓∗ = sign (𝐤̂ ⋅ (𝐠̂𝑦
′ × 𝐡̂𝑦

′ )) acos(𝐠̂𝑦
′ ⋅ 𝐡̂𝑦

′ ). (45)  

Equation (74) recovers Wu’s equation with one exception. 

The exception is the negative sign in the 𝜃1 term of (74). This 

negative sign can be reconciled by noting that [13] defines the 

receiver azimuth angle about an axis opposite to that used in this 

paper. The different basis convention used in this paper ensures 

that the antenna bases align when the receiver and transmitter 

point at each other (not true for [13]). Correcting for the opposite 

orientations of the receiver boresight axes between papers, we 

see that (74) from this paper is indeed equivalent to the 14th 

equation of Wu. 
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