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Abstract—This paper examines GNSS phase windup, which we
define to be the combined effects of three-dimensional rotation and
antenna phase patterns on carrier-phase measurements.
Specifically, phase windup equations are presented for antennae
with spatially varying phase patterns, for instance phase patterns
defined as a function of the satellite line-of-sight direction, as might
be characterized by azimuth and zenith angles. We observe that a
description both of the geometric rotation and also of the antenna
phase pattern are needed to accurately evaluate phase windup for
a general antenna. Furthermore, we show that there is not a
unique approach for computing phase windup; in fact, correctly
computing phase windup requires adjusting the model to match
the calibration method used to obtain the antenna phase pattern.
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L INTRODUCTION

It is widely understood that GNSS carrier-phase
measurements are influenced both by the relative range and by
the relative rotation between the receive and transmit antennae.
The term phase windup is commonly used to describe these
rotation-dependent  effects. Modeling phase-windup s
particularly important for real-time kinematic (RTK) and
precise-point positioning (PPP) applications [1]-[3], as well as
for standalone applications involving dynamic platforms such as
spacecraft [4],[5]. In some precision applications, two receive
antennae are used differentially to remove phase windup effects
[6]-[8]. In other applications, a single antenna is used so that
rotational effects can be exploited to observe orientation or
angular velocity [9]-[12].

For the vast majority of GNSS applications, phase windup
can either be neglected or modeled simply. This paper considers
the specific case of using an innovative antenna on a platform,
such as a spacecraft or an aircraft, that rotates in three
dimensions. Tools for modeling phase windup in these
applications are not yet well developed in the research literature.
At present, for example, it is possible to run an RF simulator
using a known antenna pattern, but it is not trivial to program the
simulator to account for phase windup in three dimensions.

Phase windup effects are the result of the interaction between
a circularly polarized signal and the receive antenna. GNSS

signals are designed to be right-hand circularly polarized
(RHCP), but it is important to note that GNSS transmitters also
create a small left-hand circularly polarized (LHCP) component
along lines-of-sight (LOS) away from the boresight axis, which
is the name given to the primary transmission axis of the
antenna. It is useful to visualize the RHCP signal as a helix
traveling through space and rotating around the boresight axis.
The wrapping of the helix represents a steady progression of the
signal’s reference phase, which is in turn observed by the GNSS
receiver. The reference phase increases with range from
transmitter to receiver; however, the reference phase also
increases if the receive antenna spins in the same sense as the
helix. It is as if rotation and translation motions are coupled, at
least in the sense that they are indistinguishable from the
receiver’s point of view.

Antenna G (Transmit)

N

Antenna H (Receive)

Fig. 1. Vizualization of a right-hand circularly polarized signal

A key detail is that phase windup results from interactions of
an electric field with the receive antenna. As such, it is intuitive
that any general model of phase windup must be related to both
geometric rotation and to the antenna phase pattern, which we
will also call the antenna calibration pattern in this paper. For
simple antenna designs, phase windup may be dominated by
purely geometric effects as modeled, for instance, in the seminal
paper by Wu et al. [13]. Nonetheless, the purely geometric
analysis of Wu is only an approximation, albeit a good one, as
pointed out by Beyerle [14]. The Beyerle paper observed that,
when the receive and transmit antennae are both idealized RHCP
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crossed-dipoles, the phase windup depends on the full antenna
phase pattern (including both RHCP and LHCP components) if
the LOS axis is tilted significantly from the boresight axes of
both antennae.

The paper by Beyerle emphasizes the relevance of modeling
phase windup as the combined result of geometric rotations and
antenna calibration patterns; however, the paper stops short of
developing approaches for analyzing general calibration
patterns. To be specific, [14] considers only crossed-dipole
antennae; moreover, the antenna model considered was a three-
dimensional (3D) complex vector. This approach of describing
the antenna gain pattern as a complex vector is common in
computational packages that solve Maxwell’s equations [15] and
in antenna theory textbooks [16],[17]; however, GNSS
practitioners more commonly model antenna calibration patterns
as complex scalar functions defined over two dimensions (e.g.
over azimuth/elevation or azimuth/zenith coordinates) [18]-[24].

The primary goal of this paper is to address this gap by
adapting phase windup models to account for arbitrary
calibration patterns. In the process we note that different
techniques can be used to obtain an antenna calibration and,
accordingly, that the phase windup model must be matched
specifically to the calibration method used.

The remainder of the paper is organized as follows. First, we
develop a measurement model for carrier phase that accounts for
windup. Second, we discuss methods for representing the
antenna calibration pattern. Third, we review equations for
relating phase windup to geometric rotation. Next, we outline
two different approaches for calibration of the antenna pattern,
noting that each results in a different equation for phase windup.
The paper closes with a simulation-based evaluation of the
equations presented in the paper and a brief conclusion.

II. MEASUREMENT MODEL

This section reviews modeling of the carrier-phase
measurement, which is well characterized in the existing
literature, for example in [1] and [25]. The carrier-phase
measurement is commonly used to infer the true range 1y
between reference points, from point G on the satellite antenna
to point H on the receive antenna. For this reason, the carrier-
phase @ is sometimes reported in length units; however, in this
paper, we will model @ in radian units. Thus, the range

dependency must be converted to radian units by a factor 277[,

where A is the carrier wavelength. Carrier-phase also depends on
clock bias b, tropospheric delay 7, and ionospheric delay 7, terms
which are also typically expressed in range units and which must
be scaled accordingly, as in the following expression modeling
the carrier-phase measurement.

O =2(ry)g+b+T—1)+2nN +a+f+7 (1)

The remaining terms in the model are expressed in radian units.
The first term after the parentheses is the ambiguity NA, where
N is an integer. Other terms include the antenna correction a,

which accounts for phase windup including the effects of the
antenna calibration pattern; the moment-arm term £, which
accounts for phase offset due to the displacement of the antenna
phase center when rotated about a designated reference point;
and the measurement noise term 7.

If the receive antenna is static, then rotations (e.g. due to the
satellite’s orbit about the Earth) are slow, and both the a and 8
terms can be estimated as unmodeled drift in the clock term b.
However, if the receive antenna is rotating rapidly, then it is
useful to expand the models for @ and f in more detail, as both
are sensitive to rotation.

A. Antenna Correction a

The antenna correction can be modeled concisely [13],[14]
as a dot product of the complex gain vectors G and H, which
describe the calibration patterns of the transmit and receive
antennae, respectively:

a=+G-H+ 2rM. 2)

The dot product of the two gain patterns is a complex scalar,
from which the phase angle is extracted by the angle operator £.
The range of the operator is (—m, ), but @ can take any real
value: @ € (—o0, c0.) The antenna ambiguity M is introduced to
reconcile the difference by accounting for & wrapping outside
the range of the angle operator.

Notably, the variable names G and H represent a somewhat
nonstandard notation for the vector gain patterns of the transmit
and receive antennae. By contrast, a typical GNSS link budget
might use subscripts to distinguish between antennae (e.g. a 7
subscript for transmit and an R subscript for receive). To
maintain a compact mathematical notation in this paper, we
instead use subscripts to identify different coordinate systems.
To avoid overloading subscripts, we use different variable
names (rather than subscripts) for distinguishing the receiver and
transmitter gain patterns. The letter H was chosen for the receive
antenna because it is sequential. (G comes before H in the
alphabet, just as transmitter comes before receiver in radio
navigation.) Conveniently, our approach in this paper does not
require analysis of a magnetic field (commonly denoted as H in
the electromagnetics literature), which leaves the variable H
available to describe the receive antenna.

In this paper, our goal will be to transform the vector patterns
G and H into scalar patterns describing antenna response to
RHCP and LHCP components of the received signal, as the latter
form is commonly used in GNSS analyses. To appreciate the
distinction, it is useful to briefly summarize the derivation of (2).
First, the electric field in the vicinity of the receiver is modeled
as an oscillating function in time, with a reference phase set by
(1), excluding the antenna correction a:

E = \/ﬁGej((wC+wd)t+<D—a)' (3)

Here P is power, G is the vector antenna calibration pattern for
the transmit antenna, w, is the carrier frequency, and w, is the



Doppler shift. The vector G is a complex function, reflecting
phase shift and amplitude scaling as a function of the LOS
direction from the transmitter to receiver.

If a far-field assumption is made, implying that the receive
and transmit antennae are separated by a long distance, then the
electric field E has planar wavefronts at the receiver, and the
receive antenna’s output voltage can be modeled as

v = (G - H)VPe/(®-Deilwctwalt, (4)

This equation introduces H, the vector calibration pattern for the
receive antenna. For now we assume H is defined about the
phase center rather than about some other reference point on the
receive antenna (but we will relax this assumption shortly by
introducing S, below).

The antenna correction term is the phase of the dot product
in (4). If we introduce a variable D to describe the dot product’s
magnitude, we have

G-H = Del*, (5)
and consequently
v = DVPe/Pei(@ctwalt, (6)

When the GNSS receiver performs coherent integration to
remove the last term of (6), the carrier-phase can be extracted as
@. The key point here is that equation (2), which models the
antenna correction term «, is directly related to the vector dot
product that modulates the received signal, as described by (4).

B. Moment-Arm Term 3

In physical terms, the carrier phase measurement should
reflect translation between the phase centers of the receive and
transmit antennas; however, the measurement equation (1) was
intentionally framed in terms of reference points rather than
phase centers, with the term [ introduced to reconcile the
difference. As this section will justify, the equation for £ is

B= 2771(1'0/11 -i{), (N

where 1y, represents the vector (sometimes called the moment
arm) from the receive-antenna reference point H to the phase-
center 0. Note that capital italics are used here to indicate a
physical point in space (in contrast with capital bold letters,
which are used to represent vectors).

Before deriving (7), it is worth considering why a distinction
might be made between a reference point and a phase center.
One reason is that a given antenna may have multiple phase
centers, one for each GNSS signal frequency (as shown in Fig.
2). Identifying a single reference point simplifies the process of
combining GNSS measurements across frequencies. Another
consideration is that the phase center may lie in empty space,
outside the antenna housing (see Fig. 2). Specifying a reference

point at a physical location on the device, such as at the center
of the electronics package (called mechanical phase center in
[27]) or at the mounting point, clarifies interpretation of the
carrier measurement. In fact, to support general sensor fusion, it
may even be preferable to locate the reference point on a
structure rigidly attached to the antenna (e.g. at the center-of-
mass of a vehicle). For all these reasons, the measurement
equation (1) refers to reference points rather than phase centers.

As defined above, the vector 1y, describes the relative
position of the receive-antenna phase center O to its reference
point H. For simplicity, let us assume the phase center and
reference point for the transmit antenna are collocated at G. In
this case, the carrier measurement should depend on the length
of the vector ry /¢, from G to O. By vector addition [26]:

Yo/6 = Yo/u + Thyc- )]

More precisely, the carrier measurement depends only on the
vector’s magnitude, which can be obtained by dotting (8) with
Kk, the unit vector in the LOS direction from G to H:

i{ — TH/G (9)

Iea/6ll

When the moment arm is much shorter than the distance
between receiver and transmitter, the LOS vector is essentially
the same to both points O and H, and hence it is a very reasonable
approximation to write k = r, 6/ ||r0 /G || . Applying this
approximation and dotting (8) with k gives:

To/G:ro/H'i(‘i'rH/G. (10)

Substituting (7) into (1), then combining range terms with
(10), gives:

q>=27”(r0/6+b+T—I)+2nN+a+n. (11)

This equation is equivalent to (1) except in that it makes explicit
the underlying physics that relate the carrier phase measurement
to the location of the receive-antenna phase center O. The utility
of the original equation (1), as compared to (11), is that the
former allows for an arbitrary receive-antenna reference point.

| Antenna Centerline

L1 Phase Center > a)
L5 Phase Center> O

Mechanical Center > z
Mounting Point >
Fig. 2. Representative phase centers for a GNSS antenna, adapted from [27].

In this special case, the phase centers are collinear and happen to lie outside
the physical extent of the antenna.



The form of the moment-arm correction term [ is
intentionally made similar to that of the phase windup term «,
since the gain-pattern may be calibrated for an arbitrary
reference point (such that the reported pattern is actually the sum

a+f).

III. ANTENNA MODELS

This section represents the key contribution of the paper, in
that it introduces a method to convert the antenna calibration
pattern from a vector field, like G or H, into a scalar field defined
over all possible LOS. This conversion is significant because
phase windup is most precisely described using a vector gain
pattern, yet manufacturers most often specify the gain pattern as
a scalar field (e.g., a function of azimuth and elevation angle)
since scalar-field gain patterns are much easier to use when the
antenna is stationary. The conversion is implemented using a
change of coordinates, which we will introduce and then
subsequently illustrate using a canonical example: the case of the
RHCP crossed-dipole antenna.

A. Coordinate Systems

Quantifying the vector gain patterns G and H requires a
coordinate system. In this paper, we use Cartesian coordinates
fixed to an antenna where the z-direction is aligned with the
boresight axis in the direction of signal travel. In other words,
the z-direction is outward along the boresight for the transmit
antenna and inward along the boresight for the receive antenna;
this choice simplifies later math, because the antenna-fixed
bases for the receive and transmit antennae are aligned when the
antennae are in their nominal configuration, as shown in Fig. 3.
The x-axis and y-axis are defined as orthogonal vectors in the
plane perpendicular to the boresight axis, which is the ground
plane for some antennae. Label the orthonormal set of basis
vectors fixed to the transmit antenna as {gx, g, gz} and the set

fixed to the receive antenna as {ilx, By, ilz}.

GNSS systems use RHCP signals, meaning that the phase on
the g, axis leads the phase on the g, axis by 90°. The
transmitted signal is right handed in the sense that it travels in
the g, direction while corkscrewing around that axis, curling in
the direction of the fingers on a right hand with its thumb pointed
in the g, direction. For the nominal configuration, with the
receive and transmit antennae aligned, the arriving signal is also
right-handed about the receive-antenna’s h, axis.

8y

Antenna G (Transmit)

h, h, AntennaH (Receive)

Fig. 3. Cartesian basis vectors for transmitter and receiver. The z-axis aligns
with each antenna’s boresight (in the direction of intended signal travel); the
x-axis leads the y-axis in the right-hand sense.

In Cartesian coordinates, a circularly polarized signal can be
described using complex numbers, where the imaginary number
Jj represents a 90° phase lead and its negative (-f) represents a 90°
phase lag. Thus, an RHCP basis vector with unit magnitude can
be written g, = % (gx —-j gy), and an LHCP basis vector can

be written similarly. Because the component of the electric field
is always zero parallel to the LOS vector k, however, the LHCP
and RHCP basis vectors must be constructed carefully by first
rotating into a coordinate system where the x-axis and y-axis are
defined to be orthogonal to k. For this purpose, introduce
intermediate bases {g;, gy i{} and {B;, il’y,i(}, which are fixed
to the transmit and receive antennae respectively. Since the
associated x and y-vectors for the transmitter are orthogonal to
the LOS, a polarization basis can now be defined:

(12)

A similar transformation can be defined for the receiver. The
result is a pair of polarization bases, {g;, gL i(} and {il;;, h;, i(},
the first for the transmitter and the second for the receiver. These
intermediate bases are illustrated in Fig. 4, which shows a
configuration where the boresight directions of the antenna and
receiver are not aligned.

Antenna G (Transmit)

‘I ilx Antenna H (Receive)

Fig. 4. Antenna geometry for an arbitrary LOS vector k

h,



With the polarization bases defined, it is now possible to
describe any vector in polarization coordinates. For instance, the
transmitter’s vector antenna pattern G can be transformed into a
coordinate pair (p,g) by dotting with the associated polarization
basis vectors.

=8.-G
=g 13

The third component is always zero (k - H = k - G = 0), since
the electric field is planar.

The receiver’s vector antenna pattern H can likewise be
transformed into a coordinate pair (7,s).

I
= =7

~=~

r = H
14
s H (14)

Equivalently, the polarization coordinates can be written in
matrix form as

p g
g] = [PUe]|“R%] G, (15)
and
r !
[3] = [Pue] ["R¥e] [H],,. (16)

These equations rely on a unitary matrix PU° converting
between Cartesian and polarization coordinates as well as a pair

of rotation matrices, [GCRGC] and [HCRH ] The first of these

rotation matrices maps from G, , which refers to the transmitter
boresight-aligned basis {?;x, g, gz}, to G;, which refers to the
transmitter LOS-aligned basis {g;, gy i(}. Similarly, the second
rotation matrix maps from the receiver boresight-aligned to the
receiver LOS-aligned basis, meaning from {ilx, ily, ilz} to
{h, by, k}.

As for the unitary matrix PU€, let us start by defining its
inverse “UP, which converts from polarization coordinates to
Cartesian coordinates.

1 1 0
V2
0 0 V2

The columns of this matrix are simply the coefficients of (12)
when the following dot products are evaluated:

8.8 g8 8k
v =g, -2 g2 8 k| (18)
kg, kg kok

The inverse of this matrix is U = ( ‘UP)~! = ( °UP)7, where
the overbar in the last term indicates the complex conjugate. It is
important to recall that when taking the transpose of a complex
matrix (an operation also called the Hermitian), each complex
entry of the transposed matrix should be conjugated. A conjugate
transpose operation must be used to compute all dot products.
Note that the dot products in (18) are straightforward to evaluate
with (12), because the coefficients of the leading vector are real,
so the conjugate operation has no effect.

B. Evaluating Antenna Phase Contribution a

The RHCP polarization coordinates » is what we seek to
describe the antenna calibration pattern as a complex scalar field
over all LOS directions. This section derives a relationship that
uses the calibration pattern » to compute the antenna phase
correction ¢, even when the receive antenna is rotating. To be
general, we will also consider the LHCP component of the
signal, which allows a to be computed even when the electrical
field arriving at the receiver is elliptically polarized (meaning a
mix of RHCP and LHCP components [17]).

To compute a in terms of polarization coordinates, we return
to our fundamental equation (2), which expressed a as a dot
product. Using matrices, the dot product can be evaluated as

G-H = [G]% [*R¥][H],,. (19)
The rotation matrix [GCRHC] converts from the receiver’s

boresight-aligned basis to the transmitter’s boresight aligned
basis. By substituting (15) and (16), we can expand (19).

G-H=

§|T [Pue] [GéRHg] [Poe]" [(Z)] 20)

As desired, this equation has extracted the receive antenna

pattern in terms of polarization coordinates (7,s). The expression

also describes the local electric field in terms of polarization

coordinates (p,q). To further simplify (20), we leverage a
!

remarkable identity. If the rotation matrix [G”RHé] is written in

terms of a single angle (i.e. the angle ¥ from g/, to h/, about the
common K axis), then

. , AT cosyp sinyp 0
[HCRGC] = [GCRHc] = |:_Sinl/) COSlp Ol (2])
0 0 1
and
R 2L IV
[PUC] [GCRHC] [PUC] =] eV (22)
0 0 1
Substituting into (20) gives
G-H=pre/¥ + gse V. (23)



The equation is a dot product in polarization coordinates, where
the rotations between the two antennae are characterized by a
spin angle Y about the LOS axis. Computing a with (2), which
extracts the phase angle from (23), we have

a = 2(pre’¥ + gse V) + 2nM. (24)

Note that the pair (p,q) can be used to describe either the
transmit antenna or the local electric field, since they are
proportional (i.e. E = yG, where y is a real scalar).

For many GNSS applications where the LOS direction is
nearly parallel to the transmitter boresight, and where the signal
is nearly pure RHCP, we can further simplify. If the LHCP
component is ¢ = 0, then (24) becomes

q=0 - a=cs(pr)+y+21M. 25)

This equation clearly illustrates how both the gain pattern and
geometric rotation impact a. In the pure RHCP case modeled by
(25), the first term represents a correction due to the antenna
phase pattern and the second term is simply proportional to the
rotation angle about the LOS axis.

C. Crossed Dipole Antennae

To appreciate the difference between the antenna models in
Cartesian and polarization coordinates, it is instructive to
consider a canonical example, that of the RHCP crossed-dipole
antenna. This antenna is the baseline for many studies modeling
phase windup, including those of Wu [13] and Beyerle [14].

As reported by Beyerle, the Cartesian model of the RHCP
crossed-dipole (evaluated about its phase center) can be
computed for the transmitter pattern as

G=C,(1-kk)- (g, —J&,) (26)
and for the receiver pattern as
H = C,(T1-kk) - (h, — jh,). (27)

Here Cq and Cj, are arbitrary gains that do not affect phase angle
calculations. The identity tensor is denoted I. These expressions
take an RHCP basis vector and remove the LOS component
through the dot product with (T - i(i(), which is a projection
operation.

Starting with these equations, we derived the corresponding
equations in polarization coordinates, as detailed in Appendix A.

The end result is that the equivalent expressions written in terms
of (p,q) for the transmitter and (r,s) for the receiver are

cosZg +1

P1_¢&
[q] V2 [(cos Zy—1)e /g (28)

and

Tl _Cn cosZ, +1 ]
[s] ~ Vz|(cos Z, — 1)e/%4n | 29)

Here (Ag,Z4) are the Azimuth and Zenith angle of the LOS
vector k relative to the transmitter basis {gx, gy,gz}, and

(Ap, Zy) are the Azimuth and Zenith angle of the LOS vector k
relative to the receiver basis {ilx, ily, ilz}. If the derivation is
correct, we expect that the Cartesian models (26) and (27) and
the polarization-coordinate models (28) and (29) should produce
the same phase correction a. This verification test will be
evaluated in Section VI.

An important detail here is that equations (28) and (29) are
representative of how calibration patterns are often represented
for physical hardware. This is to say, even when a closed form
model is not available, antennae are often calibrated to produce
a phase-correction surface as a function of an Azimuth/Zenith or
an Azimuth/Elevation angle pair, with the form r(A4;,Z;). In
some cases, these surfaces are represented with a lookup table,
in other cases they are represented with a polynomial fit or with
spherical harmonics [20].

IV. LOS ROTATION ANGLE

In order to use polarization coordinates to compute a using
(24), the missing detail is to evaluate the spin angle 1 about the
LOS axis. This section reviews two such methodologies, both of
which are drawn from the existing literature.

A. Euler Angle Method

Three-dimensional (3D) rotations are often characterized
using Euler angles [26]. A set of Euler angles consists of three
scalar angles defined about three specified axes. For antenna
characterization, it is most convenient to consider a set of Body
ZYZ Euler angles, where two rigid bases are related by rotation
angles defined sequentially about the z-axis, y-axis, and z-axis
of the second basis.

The orientation of the receiver relative to the transmitter can
be decomposed into two successive 3D rotations, one relating an
intermediate basis L to the transmitter basis G, and a second
relating the receiver basis H to the common intermediate basis
L. The intermediate basis L is defined to align with the LOS
vector, and consists of orthonormal basis vectors {i, B i{}. The
vectors 1 and j can be selected as any vector pair for which j =
k x 1. From these basis vectors, the rotation matrix “R can be
created to map from {g,,8,,8,} to {i,j,k}. Similarly, the
rotation matrix YR’ can be created to map from {i, A i(} to
{Bx, ily, ilz}. If the Body ZYZ angles for “R¢ are defined to be
{¢1, b, 3} and if the Body ZYZ angles for “R¥ are defined to
be {0,, 05, 05}, then the LOS spin angle can be written :

Y=0¢+¢; -0, —05. (30)

This result is obtained from [13] as explained in Appendix B.



Although Euler angles are useful for mathematical analysis,
they pose a number of difficulties for numeric implementation,
including non-uniqueness, singularities, and a need to evaluate
computationally intensive inverse-trigonometric functions. To
streamline numeric implementation, an alternative vector-based
approach is desired to obtain .

B. Effective Dipole Method

A vector-based method for extracting the LOS rotation angle
Y is the effective dipole approach [5],[13]. Importantly, this
approach is computationally efficient and singularity free. The
idea is to define two “effective” (linearly polarized) dipoles
oriented perpendicular to the boresight axes of the transmit and
receive antennae. The effective dipoles are:

D, =8, - k(k-8,)-kxg,. (31)

and

D, =h, —k(k-h,) —kxh,. (32)
These effective dipoles can be used to compute Y as

¥ = atan2(k - (D, x D,),D, - D). (33)

V. CALIBRATION

This section revisits the antenna gain pattern, to consider
how the LOS rotation angle ¢ plays into the calibration process.
The key contribution of this section is to demonstrate that the
antenna calibration pattern is not unique, and that the baseline
phase correction model (24) must be modified if the calibration
procedure induces spin.

In order to demonstrate this point, we consider two
calibration procedures. In the first procedure, we assume that
each LOS direction is sampled using a three-axis rotation stage,
which performs a Body ZYZ rotation on the receive antenna; in
the second procedure, we assume a two-axis rotation stage,
which performs a Body ZY rotation. Both procedures produce a
calibration surface over a range of Azimuth and Zenith angles;
however, the calibration surfaces will not necessarily agree.

In analyzing these two procedures, we assume all other
details are the same other than the process for rotating the receive
antenna. Importantly, we assume calibration in an anechoic
chamber with high carrier-to-noise ratio, such that measurement
noise and multipath errors are negligibly small. We assume
rotations occur about the same reference point for both rotation
stages. We assume that the receive antenna is sufficiently far
from the transmit antenna that a far-field assumption is justified.
Also, we assume that the transmitter can be configured either
with an RHCP or with an LHCP antenna, to transmit a purely
circularly polarized signal such that » and s can be calibrated
separately. In other words, we assume that the RHCP calibration
surface is measured in an electric field with (p,q) = (1,0) and the
LHCP surface, with (p,q) = (0,1). Finally, we assume that the

calibration is referenced to a neutral configuration, in which the
basis vectors for the transmitter and receiver are aligned, as
shown in Fig. 3.

A. Body ZYZ Calibration

First consider the Body ZYZ calibration procedure. This
procedure uses three rotation stages even though, technically,
only two stages are needed to cover all azimuth and zenith angles
describing the LOS direction. The redundant angle can be used
to remove spin introduced by rotating the receive antenna
through to any given azimuth. This is to say, the Euler angle set
{6,, 0,, 65} used to rotate the receive antenna relative to the test
chamber is opposite to the azimuth and zenith angles that
describe the rotation of the LOS vector k relative to the antenna
boresight-fixed basis:

Ah = _91 and Zh. = _92. (34)

Manipulating (30) to ensure that ¥ is constant, we see the third
rotation stage should configured such that 6; = —6; = A,.

The calibration procedure then progresses through a
predefined sequence of motions to sample the carrier-phase in a
pure RHCP field at all relevant azimuth-zenith pairs, to give
pr(An, Zy). Here the R subscript refers to RHCP calibration,
where the alternative is an L subscript referring to the LHCP
calibration. If phase is tracked continuously during the
calibration process, then each sample can be differenced from
the initial sample acquired when the antennas are aligned. The
initial samples for the RHCP and LHCP tests are pgq and py,
respectively.

Subtracting the initial measurement removes many
confounding effects and helps to reveal the desired calibration
pattern. It is evident from (1) that all terms are removed in the
test except for the clock b, which may drift over time, and the
antenna correction a, which is needed for the calibration
process. Note that the moment-arm f is effectively zero, since
we assume the rotation stage rotates about the desired reference
point on the antenna.

If clock drift can be removed, either by using a common
clock for both receiver and transmitter or by estimating clock
drift separately, then the measurement difference directly reveals
the antenna phase shift relative to the neutral configuration. For
the RHCP data collection run, for instance, we can write:

Pr(An, Zp) — pro = a(Ap, Zp) — a(0,0). (35)

Further simplification is possible if we recognize that, for a
pure RHCP signal, the antenna phase a can be evaluated with
(25). Since the LOS rotation angle i and the transmitter phase
£p are constant throughout the experiment, the only terms that
do not cancel in (35) are the receiver RHCP calibration
r(Ap, Zp,) and the integer M. If the calibration angle for the
reference configuration r(0,0) is set to be zero, then substituting
(25) into (35) gives



Pr(An Zp) — pro = £71(Ap, Zp) + 2mAM. (36)

where AM denotes the number of phase-wraps since the start of
calibration. Leveraging this result, we can calibrate the RHCP
phase pattern to be

DRr(An.Zr)
DRro

r(Ap, Zp) = exp(j(pr(An Zn) — Pro))- (37)

This expression includes both phase and amplitude scaling,
where the initial amplitude for the RHCP trial is Dgo and where
each subsequent amplitude is Dz (A, Z,) forming a ratio that
can be estimated, for example, from the signal-to-noise ratio. By
analogy, a complex calibration surface can be derived for the
LHCEP trial to give

DL(ApZp)
Dro

s(An, Zy) = exp((pL(An, Zy) — pro))- (33)

The terms in this equation for the LHCP analogs to the terms in
(37). Together, (37) and (38) support online evaluation of the
antenna correction via (24) in terms of the physical rotation of
the antennae, as characterized by the LOS spin angle 1.

B. Body ZY Calibration

Second consider the Body ZY calibration procedure. In this
case, since the third Euler angle is fixed at zero, the LOS rotation
1 changes for each azimuth, with ¥ (4, Z,) — ¥(0,0) = —6,,
by (30). The resulting Body ZY antenna calibration gives two
surfaces:

. Dr(Ap.Z1) .
r*(Ap, Zp) = RT'Lohexp(](pR(Ah,Zh) — Pro)) (39

and

DL(AnZh)
Dro

S*(An, Zy) = exp(j(p, (An, Zp) — Pro))- (40)

Here the star superscript is introduced to distinguish the Body
ZY calibration from the prior results. Because the LOS spin
angle is non-zero in the Body ZY, we can write the following
equation to relate the starred variables back to the earlier values
obtained by (37) and (38) for Body ZYZ calibration:

r*(Ap, Zp) = re4n (41)
and
s*(Ay, Z) = seti4n, (42)

The difference between the two calibrations is illustrated below
in Fig. 5, which shows the calibration surfaces (4}, Z;,) on the
left and r*(Ay, Z;,) on the right.

Importantly, the antenna correction a given by (24) does
compute the correct result for the Body ZY calibration surfaces
r* and s*, unless the LOS spin angle is removed from (41) and

(42) in post-processing. As an alternative, (24) can be
reformulated by substituting (41) and (42) to give a Body ZY
antenna correction equation:

a=cs(pr eV + g s'e V) + 2nM. (43)

Body ZY

Body ZYZ
90

Fig. 5. Comparison of RHCP calibration surface for calibrations using a
three-axis Body ZYZ rotation stage (left) and a two-axis Body ZY rotation
stage (right). The color scale on the left plot ranges from © (yellow) to -n
(dark blue).

Here the star notation is also added to the transmitter patterns p*
and q* for consistency as well as the residual LOS rotation angle
1*, where this angle removes the azimuth (first Euler angles)
contributions from (30) to give

Y* = s — 0;. (44)

A convenient formula for this angle correction is given in [13]:
P* = sign (i(- (g;, X il;,)) acos(gg, . ilg,) (45)

Whether one of the two calibration strategies is “more
correct” than the other is something of a philosophical question.
In both cases, the phase windup « results from a combination of
geometric rotation and antenna calibration; both approaches
model these phenomena, and both are correct. The upshot is that
there are multiple valid calibration approaches, each with its own
formula for combining the calibrated phase pattern with a
representation of geometric rotation to compute the phase
correction a.

VI. SIMULATION

In this section we use simulation to verify the equations
presented in this paper and explain their significance. To this
end, we simulate the antenna phase correction a for several
example cases.

In all simulation cases, the transmitter is fixed in space, as
described by an inertially fixed basis {g,, g, 8,}. The LOS
vector k is also inertially fixed, implying that the two antennae
are offset but that they are not moving relative to one another.
Except in the first case (which considers ideal circular
polarization), the transmit antenna is modeled as an RHCP



crossed-dipole and the electric field is made elliptically
polarized by tilting the LOS vector by 30° from the transmitter’s
boresight axis. Specifically, we set the LOS vector in the G basis

wbe [i], =0 -2 2.

The receive antenna is configured so that its basis vectors
{Bx, By, ilz} are initially aligned with those of the transmit
antenna. In the simulation, the receive antenna is rotated one full
rotation around a unit vector A = [—0.76 0.46 0.46]". This
rotation is illustrated in Fig. 6, which plots each LOS direction
as a point on a unit sphere. In the figure, a signal arriving along
the boresight of the receive antenna would be shown as a dot at
the North pole. The actual LOS direction k is initially offset 30°
from the North pole (as indicated by a red half-circle). The trail
of cyan dots shows each subsequent LOS direction k as the
receive antenna rotates about the A axis. The rotation axis A is
depicted as a black arrow. During this rotation, the receive
antenna sweeps through a wide range of zenith angles, including
angles below the horizon, which is visualized as the “equator”
of the unit sphere shown in Fig. 6.

For this geometric configuration, we consider four antenna
models and evaluate a. The four models are summarized by
Table 1. The models were selected to enable a new comparison
with each model in the sequence.

A first comparison examines the effects of elliptical
polarization. This comparison involves models (i) and (ii), which
both assume an RHCP crossed-dipole receiver, but which
assume a pure RHCP electric field in one case and an
elliptically-polarized field in the other. The elliptically polarized
electric field is generated by a crossed-dipole transmitter. In the
pure RCHP case, the antenna phase shift is merely a geometric
effect, described by (25); with elliptical polarization, the phase
shift depends on both geometry and the antenna pattern, as
described by the combination of equations (2), (26), and (27).

A second comparison verifies the equivalence of using
Cartesian or polarization coordinates. We expect the two
methods will be equivalent. To test this, we consider the RHCP
crossed-dipole receive antenna subject to elliptical polarization.
We compute a using a Cartesian vector formulation in model
(i1) and then using polarization-coordinates in model (iii).

A final comparison illustrates how the polarization-
coordinate formulation generalizes for analysis of general
antenna patterns. For this case, we introduce a perturbed
crossed-dipole, with a phase pattern that wraps in Azimuth, the
result of adding an exponential term to the » component of
conventional dipole antenna described by (29) to obtain:

T _¢Cn coth+1] —j24
[s]_\/i cosZ, —1)° " (46)

This perturbed antenna is evaluated as model (iv); the effect of
the perturbation can be assessed by comparison to the
conventional RHCP crossed dipole evaluated as model (iii).

Fig. 6. LOS vector as seen by receive antenna. At each time step, the LOS
vector k is shown as a cyan point on the surface of a unit sphere. These points
circle around the simple rotation axis (black arrow), starting at and returning
to an initial orientation, which is marked as an open half-circle (red).

Table 1. Four models evaluated in simulation

ID | Electric field Receiver a equation

6] Pure RHCP Crossed-dipole (25), (30)

(i) | Elliptically Crossed-dipole (2),
Polarized (Beyerle model) (26), 27)

(iii) | Elliptically Crossed-dipole (24),
Polarized (Polarization coord.) | (28),(29)

(iv) | Elliptically Perturbed (46)
Polarized crossed-dipole

This set of models represents a logical progression through
the contributions of prior papers to the contributions of this
paper. Wu’s seminal paper [13] considered model (i), the case of
a crossed-dipole receive antenna in a pure RHCP electric field.
Beyerle’s paper [14] considered model (ii), with the crossed-
dipole receive antenna in an elliptically polarized electric field.
By attempting to recreate Beyerle’s results in polarization
coordinates with model (iii), we verify that our generalized
approach matches Beyerle for a canonical antenna (the RHCP
crossed dipole). Our final case, that of model (iv), illustrates how
our generalized approach extends to arbitrary antenna patterns.

The results of the simulation study conform to expectations.
This is to say that the first two models of an RHCP crossed-
dipole receiver (in pure RHCP and in elliptically polarized



fields, respectively) are expected to produce very similar results.
Indeed, the computed phase shift values a are nearly identical
for models (i) and (ii), as seen by comparing the red-dashed and
blue-solid curves in Fig. 7. The two models only diverge
substantially near a rotation of 8, = 3 radians, where the LOS
vector drops below the receiver’s horizon. In this region, the
LHCP component of the model becomes as large as the RHCP
component, and the two models briefly diverge by as much as
0.67 radians (equivalent to 38° of phase shift).
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Fig. 7. Plot of total phase windup « as a function of the simple rotation angle
6, for models (i)-(iii). Both axes are reported in radian units.

Next, we can evaluate whether models (ii) and (iii) are
equivalent, as we anticipated. Fig. 7 shows models (ii) and (iii)
as the solid-blue curve and the green-triangle points; these two
curves lie on top of each other within machine precision. This
agreement shows that the proposed conversion between the two
coordinate systems (Cartesian and polarization coordinates) is
self-consistent, as expected.

20 . T T
Model (iii) ;
18 [ - Model (iv) / b

phase shift « (rad)
)

O '/// 1 1 1 L 1 1
0 1 2 3 4 5 6 7

0 (rad) about simple rotation axis

Fig. 8. Plot of total phase windup «a as a function of the simple rotation angle
8, for conventional and perturbed antennae, labeled models (iii) and (iv).

The final comparison demonstrates the motivation for
applying our proposed methodology when the receive antenna is
not a crossed-dipole. To this end, consider a for the perturbed
antenna of model (iv). The results from this model are compared
to the conventional RCHP crossed-dipole, model (iii), in Fig. 8.
In the figure, the crossed-dipole antenna is plotted as a solid-blue
curve and the perturbed antenna, as a dashed-pink curve. The
two antennae exhibit very different phase changes. During a
physical rotation of one revolution (6; = 2 rad) about the
simple rotation axis, a for the conventional antenna changes by
the same amount: 2m rad. The perturbed antenna has an entirely
different behavior, with a changing by 6m rad for the same
rotation. Clearly, this is a case in which both geometric rotation
and antenna calibration must be considered together to
accurately compute phase windup. As an aside, the high
sensitivity of (46) to phase windup might be a disadvantage in
some situations, but an advantage when attempting to infer
attitude and angular velocity from phase angle measurements.

In order to enable other researchers to repeat and extend
these studies, the Matlab simulation script that was used to
generate Fig. 6 through Fig. 8 will be posted as an online
supplement to this article.

VII. CONCLUSION

This paper builds on prior research on modeling GNSS phase
windup. Our contribution is to introduce equations to account for
the combined contributions of geometric rotation and antenna
calibration to the carrier measurement; more specifically, we
focus on calibration models formulated as complex scalar
functions of two angles, such as the Azimuth and Zenith angles
for the arriving signal. Simulations are used to check equation
consistency. For reference, our Matlab-based simulation code is
posted as an online supplement to this article.

In addition to presenting equations to model phase windup
for general antennae, we demonstrate that calibration techniques
are not all equivalent, and that the phase windup model
equations must therefore be matched to the specific approach
used to calibrate the antenna. As an example, we demonstrate
the difference between calibrating an antenna with three rotation
stages (Body ZYZ rotations) as opposed to only two rotation
stages (Body ZY rotations).

The equations presented in this article are particularly
relevant for aerospace platforms that rotate in three dimensions
and that use nonstandard GNSS antennae. For such platforms,
equations (24) and (33) can be used to describe combined phase
windup effects in terms of both a lab-generated antenna
calibration and rotations about the line-of-sight axis.
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APPENDIX A

This Appendix derives the conversion of the RHCP crossed-
dipole model from Cartesian coordinates to polarization
coordinates. That is, we derive equations (28) and (29) from (26)
and (27). To start our derivation, consider (26), which describes
the pattern for the transmit antenna as a 3D vector, using a
Cartesian basis:

G=C,(1-kk)- (8, -jg,) (26)
Applying (13), which defines polarization coordinates, we have

kk) - (2, - Jj&,)
kk) - (8. —jg,)

ng;?'cg(i_

~ = (47)
q=8, C(I—

Expanding with (12) and noting that g’ and g, are defined to be

orthogonal to k, we note g/, - k = gy - k=0,s0

p=2(g,—jg)) (B« —Jj&y)
- . (48)
q= \/_—( ]gy) (gx ]gy)

P =L(8h Be—JBh By +J8) Bx+B)8y) )
0 =28k 8= jBk By —JjB) Bx— B} By)

A subtle point here is that the dot product for complex numbers
is equivalent to a conjugate transpose. With this equation, we
can now take advantage of the property that each entry of a
Rotation matrix is the dot product of a pair of unit basis vectors.
Using this fact, we express the dot products in (49) as entries of

!
the rotation matrix “°R%.

Cg (GinGe _ :Ge G¢ GépGe
\/_(R JORE + R + RS

(50)

p=
o = (s - R, s — )

The subscripts after each rotation matrix denote a particular

!
entry, for instance the xx subscript in Ge Rﬁ; represents the
product of the x-basis vector in G, with the x-basis vector in G..

In this appendix, we consider a calibration that introduces no
net LOS rotation Y. As described in Section V (Calibration), we
can use a Body ZYZ transformation for this purpose. For a Body
ZYZ transformation, with Euler angles {¢;, ¢, ¢}, the
relevant rotation matrix entries can be written [26]:

GegGe

GinG
Ry €183 + S1C5C3

_ [_5153 + 6162(:3 ] ( l)
€103 — 516831

—L=s1c5 = ci6p583

Gegle  Gegle

Here where s and ¢ are used as shorthand to indicate the sine and
cosine functions. The subscript after s or ¢ indicates one of the
Euler angles. For instance, s; = sin (¢5).

To avoid introducing implicit spin about the LOS axis, we
set {¢1, ¢} equal to the Azimuth and Zenith angles {4y, Z,},
and then we choose ¢p; = —¢p; = —A,, as justified by Section
V (Calibration). Simplifying to eliminate ¢; from (51) gives
GéRGC

Gl G
‘Rys [ s2 + c2c,

_ c151(¢c; — 1)]
c15(c; — 1) .

52
c? + sic, (52)

GipGe  GipGe
R R},

Using this relationship between the rotation matrix and the Euler
angles, we can rewrite (50) as

c
p= T‘%(sf + cicy + ¢t + sicy)

Co (2 o2 ; 2 4 g2 - 53
q= ‘/_5(51 +cfc, — 2jersy(c; — 1) = (cf + sicy))
Applying the identity that (sin? y + cos?y) = 1,
Cg
p==0+c)
vz (54)

c , :
4 =% - 2asi-sHe -
In this expression, the first term in parentheses in ¢ can be
factored as (c; — js;)? and converted into an exponential:

C
p=%(cos g, + 1)

o (55)
= %(cos P, — 1)e 2%

As a final step, we can show (55) is equivalent to (28) simply by
substituting {¢q, p,}={Ag, Z,}, as specified above.

Following the same procedure, it is straightforward to
convert (27) into (29), completing the derivation.

APPENDIX B

This Appendix provides additional background on (30),
which is drawn directly from the 14" equation of the seminal
article by Wu [13]. To see the equivalence of (30) to the
corresponding equation from [13], let us first consider the
origins of (30). The spin angle between any pair of antennae for
a given LOS can be determined by starting with both antennae
pointing at each other, with boresights aligned with the LOS
vector. In other words, the antenna basis vectors are aligned and
the boresight vectors align with k. Define this case as the
reference, with zero spin angle ¢ = 0.

Next, the receiver and transmitter bases must be adjusted to
arbitrary orientations relative to the inertial frame. In the process,
the LOS vector k remains fixed in the inertial frame while
shifting to a new direction in each of the antenna frames. One
way to re-orient the antennae is to use a combination of an LOS-
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axis rotation followed by rotation about a carefully-selected
orthogonal axis. For instance, to change the LOS vector in the
receiver frame, rotate the receiver about the boresight by a first
angle ¢,; then select a simple rotation axis A perpendicular to
both the boresight and the desired LOS direction k. The first
rotation (about the boresight h,) induces spin; the second
rotation about the A vector (orthogonal to both the boresight and
LOS vectors) induces no spin. This pair of rotations, a Space Z
rotation followed by a simple rotation, can place the receiver at
any arbitrary orientation relative to the inertial frame. The
transmit antenna can be rotated to an arbitrary orientation by a
similar pair of rotations, starting with a rotation about the
boresight (by 6,) followed by a simple rotation that does not
induce spin. Considering only geometric effects, the relative spin
is influenced positively by the receiver and negatively by the
transmitter. Thus, the total geometric spin is

Y=¢,—0,. (56)

In order to relate this equation to (30), the pair of simple
rotations described above must be converted to an equivalent set
of three Euler angle rotations (e.g. a Body ZYZ rotation).
Toward this objective, we note that the rotation matrix is a useful
tool for comparison, since there is a unique rotation matrix for
any relative orientation. Thus, we can compute the rotation
matrix that describes the orientation of one antenna relative to
the inertial frame, first using the twin simple rotations and
subsequently using the triple Euler Angle (Body ZYZ) rotations.
Noting the two rotation matrices are equivalent, we can relate
the simple-spin angle ¢, to the receiver Euler angles
{ ¢1, P2, @3 }. The same process can be repeated for the
transmitter to relate the simple-spin angle 6, to the transmitter
Euler angles {6,,6,,05}.

Start with the twin simple rotations for the receiver. The
resulting rotation matrix between the final receiver orientation H
and the initial (inertially-fixed) basis N is

cos (¢,) sin(¢p,) 0
RN = | —sin (¢,) cos (¢,) O|R®H, D). (57)
0 0 1

On the left-hand side, the first matrix is a space rotation about
the boresight h, axis and the second is the simple rotation matrix
for a rotation of angle y about a unit vector A such that

A=h,xk/|h, xk|. (58)

This equation implies the vector A is perpendicular to both the
boresight h, and the LOS vector k. The form of the simple
rotation matrix is given in many advanced dynamics and
robotics textbooks, such as for example in [26]. Note that there
is a special case when the rotation angle y is zero; in this case,
(58) is singular but does not need to be computed, since the
rotation matrix R(y, &) is simply the identity matrix.

Proceeding with the nontrivial case, let us expand (57) by
matrix multiplication. Then extract individual elements of the
resulting rotation matrix. First consider the [3,3] element, which
is the lowest diagonal element:

HRN[3,3] = cos(y). (59)

Summing the other two diagonal elements gives:

Reum = “RM[1,1] + #RV[2,2] (60)
with
Reym = cos(¢,) ((1 — cos(y)) (2% + Af,) + 2cos(y)). (61)

Here A, and A,, are the coefficients of the simple rotation vector
about the inertially-fixed x and y axes. The third measure
describing the simple rotation vector is A, = A - k. Note from
(58) that the cross product makes A orthogonal to k, such that
A, = 0. Furthermore, because (58) is normalized to ensure that
A is a unit vector, then (A2 +22+22) = (2+22)=1.
Hence:

Rgum = cos(¢,)(1 + cos(y)). (62)

Finally, consider the difference of two more rotation-matrix
elements, the first two off-diagonal terms:

Rairr = "RV[2,1] — "RM[1,2] (63)
with

Rairr = sin(¢,) ((1 - cos(y))(/lfc + /1%,) + ZCOS(V)), (64)
which, noting that (A2 + 12) = 1, simplifies to

Rairr = sin(¢,)(1 + cos(y)). (65)

The rotation matrix R can equivalently be computed from
a set of three Body ZYZ Euler angles {¢;, ¢,, ¢3}. This form of
the rotation matrix is also tabulated in standard dynamics

textbooks, such as [26]. Using this table, we can write the
rotation matrix elements in terms of the Euler angles as

HRN[3,3] = cos(¢,) (66)
and

Reum = c0s(¢1 + $3)(1 + cos(2)) (67)
and

Ryifr = sin(¢y + ¢3)(1 + cos(¢y)). (68)
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It is now possible to match the coefficients of the rotation
matrix obtained from (57) with the Body ZYZ coefficients.
Matching (59) and (66), we have

cos(y) = cos(¢,). (69)

Now matching the Rj,,, expressions of (62) and (67), then
substituting (69), we have

cos(¢,) = cos(¢; + ¢3). (70)

Similarly by matching the Rgy;¢; expressions of (65) and (68),
then substituting (69), we have

sin(¢,) = sin(¢p; + ¢3). (71)

By inspection from (70) and (71), and restricting the arguments
of the trigonometric functions to be on the range 0 to 27, we see

¢, = ¢1 + P3. (72)

In short, the spin angle ¢, of the receiver relative to the inertial
orientation is equivalent to the sum of the first and third Euler
angle, ¢p; and ¢, in the Body ZYZ rotation. Normally, it is
dangerous to sum Euler angles that describe a three-dimensional
rotation [26]; however, in this case, we have a mathematical
justification to sum the first and third Body ZYZ Euler angles to
compute the receiver spin ¢, relative to its initial orientation.

Following the same approach for the transmitter, we can
show the parallel result, which is that

6, =0,+0;. (73)
Substituting both (72) and (73) into (56), we recover (30).

Y=¢1+¢3— 0, — 05 (30)

The goal of this supplement was not only to derive (30), but
also to relate it to the 14" equation of Wu. To do this, consider
the relative angle ¢p; — 85 in (30), which is defined in this paper
to be a difference of the third Body ZYZ Euler angles used to
generate the bases {g;, gy i{} and {B;, il;,, i(} . The angle
difference represents a relative rotation about k, which can be
computed from the basis vectors using (44) and (45).
Substituting (44) into (30) gives

Y=¢, +y" -0, (74)
where
Y* = sign (i(- (8, ilg,)) acos(g), - hy). (45)

Equation (74) recovers Wu’s equation with one exception.
The exception is the negative sign in the 8, term of (74). This
negative sign can be reconciled by noting that [13] defines the

receiver azimuth angle about an axis opposite to that used in this
paper. The different basis convention used in this paper ensures
that the antenna bases align when the receiver and transmitter
point at each other (not true for [13]). Correcting for the opposite
orientations of the receiver boresight axes between papers, we
see that (74) from this paper is indeed equivalent to the 14"
equation of Wu.
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