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ABSTRACT

In this article, the panelists broadly discuss the definition of network monitoring, and how it
may be similar to or different from network surveillance and network change-point detec-
tion. The discussion uncovers ambiguity and contradictions associated with these terms and
we argue that this lack of clarity is detrimental to the field. The panelists also describe exist-
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ing and emerging applications of network monitoring, which serves to illustrate the wide

applicability of the tools and research associated with the field.

Question

The problem of detecting change in network data goes
by different names in different fields, and some names
reflect different nuances of the problem. With the aim
of formulating an encompassing definition for this area
of work, discuss what comes to mind when you read
the  phrases  “network  monitoring”,  “network
surveillance”, or “network change-point detection”.
What is your preferred moniker for this discipline,
and why?

McCulloh

Perhaps no other field of science suffers from more
ambiguous and conflicting definitions than network
science, known in different disciplines as social net-
work analysis, or graph theory, or cyber-physical net-
works, or neural networks. The oldest definition,
graph theory, encompasses the mathematical founda-
tions for the analysis of entities and their relation-
ships. Unfortunately, to the layman, a graph is often
confused with a chart or data visualization, thus net-
works gain more traction in business applications. So
much of the terminology used is propelled by what is

understood by the nontechnical business leader that
drives the applications and use-cases for science.

Many different disciplines have contributed to the
scientific literature surrounding networks, often
unaware of the advances in those other disciplines.
For example, it is very reasonable that a physicist
exploring network science in the 21st century would
be unaware of Moreno’s publication proposing social
physics in 1934 involving social interactions among
elementary students and launching the field of mod-
ern-day social network analysis (Moreno 1934).

The growth of data and modern awareness of net-
works has increased the number of people conducting
research in the field and has given rise to greater
interest in network problems. For example, Barabasi
and Albert’s concept of preferential attachment
(Barabasi and Albert 1999) published in 1999 was
proposed in research correspondence between Nobel
laureates Herbert Simon, Allen Newell, and their col-
league Harrison White in the 1950s. At that time,
however, the availability of data, computational
resources, and applied problems left their work in
relative obscurity for nearly a half century.

Despite the growth of scholarly network publica-
tions and the emergence of academic conferences on
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network science, the term network still finds multiple
meanings and multiple applications. In my experience,
applications are as diverse as computer/information
technology (IT) networks, social networks, or protein
interaction networks in biology. The terms “network
monitoring” or “network surveillance” in an IT net-
work treats the network as a fixed, tangible object and
sensors are placed to detect certain signatures across
the network that may indicate a threat. This is very
different from monitoring a social network for organ-
izational changes or social media for the introduction
of propaganda campaigns.

To my knowledge the earliest use of the term
“network monitoring” was McCulloh, Carley, and
Webb (2007) where statistical process monitoring
methods were applied to intelligence data on the Al-
Qaeda terrorist organization. This research, which
began in 2004 was initiated at the U.S. Military
Academy at West Point following the National
Research Council report on Network Science and
established the Army’s Network Science Center. At
that time, network monitoring was the application of
statistical process monitoring methods to highly
dependent social network data collected on adversarial
and extremist networks. Also referred to as social net-
work change detection (SNCD), these methods
enabled detection of small changes in media and
online information networks that provided reliable
early warnings to large-scale, coordinated attacks in
Iraq and Afghanistan. Military data scientists were
able to recognize that the change in an adversarial
organization did not occur at the time of attack, but
rather as the organization began to plan and resource
the attack. The application of network monitoring
allowed analysts to detect organizational changes
quickly, before attacks occurred, enabling them to
operate within the enemy’s decision cycle and
gain advantage.

These methods have also been applied in the con-
text of cyber network security. Rather than simply
looking for gross changes in IP traffic or some other
metric, social network methods allow analysts to
model the structure of the cyber network and detect
small changes resulting from adversarial attacks or
other threats in a zero-trust framework. In this man-
ner, network monitoring does not mean surveillance
of specific actors or content, but rather the application
of statistical process monitoring methods to graph-
level social network measures that may indicate struc-
tural changes in the network. Given the ambiguity
and wide range of terms and definitions, my preferred
term of choice is “statistical network monitoring” to

indicate the type of analysis or methods and the use
of the more common lay term for dependent data.

Michailidis

Networks are complex objects consisting of nodes and
edges and the terms network monitoring, network
surveillance and network change-point detection
depend both on the nature of the network under con-
sideration and its function. For example, there are
physical and/or engineered systems with network
structure, such as protein-protein interaction networks
in biology, or computer, communications, power and
road networks. The nodes in such networks corres-
pond to physical entities (e.g., proteins, computers or
other network devices, cities) and the edges are also
physical entities or express physical interactions (e.g.,
a transmission line in a power network, a road con-
necting two destinations in a road network, or the
interaction process between binding regions of pro-
teins in the respective biological network). Further,
such networks carry out specific functions (e.g., power
from generating stations to consumers, or information
in the form of packets from one computer to
another). In the case of engineered systems, networks
are designed with specific operating characteristics in
mind (e.g., amount of traffic to be carried per unit of
time, degree of resilience in fulfilling its function in
the presence of various interruptions, etc.).

There are also other types of networks, such as
social and even “association” networks. Nodes in
social networks correspond to various types of social
actors and edges represent various forms of interac-
tions (e.g., physical, organizational, digital, etc.),
whereas nodes in “association” networks can represent
both physical entities similar to those in physical or
social networks, but also properties of them (e.g.,
expression levels of genes, blood oxygen level depend-
ent response of brain regions as measured by func-
tional magnetic resonance imaging technologies, or
some measure of liquidity of commercial and invest-
ment banks), while the edges correspond to some
measure of statistical association between the nodes.
Such networks may have multiple functions, including
connecting people and exchanging information
through a social media platform, to developing
hypotheses to be validated through follow-up experi-
mentation in the case of changes in the gene associ-
ation network under disease progression.

Network monitoring for physical networks usually
refers to systematic processes put in place by their
owners/administrators to ensure that all its



components operate according to operating specifica-
tions and the network as a whole fulfills its function.
Taking a computer network as an example, its admin-
istrator is interested in identifying in a timely manner
crashed, frozen or overloaded servers, failing/failed
switches and routers, and so forth. The end goal is to
intervene to fix failures or initiate preventive mainten-
ance actions. In the longer term, network monitoring
can also aid in capacity planning to upgrade the capa-
bilities of the network, by improving the underlying
infrastructure (e.g., install new routing software, or
higher throughput switches in a computer network)
and also expanding the capacity of the edges (e.g., add
lanes in a road network segment). On the other hand,
network monitoring for other types of networks usu-
ally refers to identifying stable patterns in its charac-
teristics and also transient or long-lasting deviations
from them, as well as emerging trends. For example,
in a network that captures voting patterns amongst
legislators, network monitoring may reveal patterns of
ideological cohesion of members of both the same
political party and across parties, and also realign-
ments over time. At the technical level, network mon-
itoring relies on techniques of outlier, anomaly and
change-point detection.

Network surveillance for physical networks shares
many of the objectives of network monitoring, but a
key distinction is that it can be done by organizations
that are not the network owners/administrators and
also possibly in a covert manner. For example,
whereas the administrator of a road network may
deploy loop detectors and traffic cameras to monitor
traffic flows, a third party with access to geolocation
information from drivers’ mobile devices can accom-
plish the same task. In the former case, the signal
monitored corresponds to actual vehicle flows,
whereas in the latter to a proxy that represents the
evolving position of the mobile device. Nevertheless,
both signals can provide accurate real time informa-
tion for the status of the road network. Similar exam-
ples arise for computer and communication networks.
On many occasions, the network administrator has a
much more granular view than a third party engaged
in network surveillance.

Network change-point detection broadly aims to
identify changes over time in network characteristics,
in the form of deviations from and return to baseline
patterns, or emergence of new operational regimes. In
a physical/engineering network whose function is to
move traffic through it, change-point analysis usually
focuses on the status of different flows between con-
secutive, or between pairs of source and destination
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nodes. On the other hand, in other types of networks,
change-point analysis and detection usually focuses on
changes in the structure of the topology, and in the
case of “association” networks, in the parameters of
the posited data generating mechanism. For example,
suppose one has access to a sequence of observed
edges for the same set of nodes. One type of change-
point analysis may focus on understanding changes in
the global clustering coefficient, a measure of the
degree to which nodes in the network tend to cluster
together. Another change-point analysis starts by
assuming that the observed network over time is a
realization from a stochastic block model network
generating mechanism; then, the focus of the analysis
becomes to identify at what points in time the param-
eters of the posited model changed and in what ways.

Sengupta

To start on a lighthearted note, I am reminded of
Shakespeare’s famous quote from Romeo and Juliet:
“What’s in a name? That which we call a rose, by any
other name would smell as sweet.”

To me, the phrase “network monitoring” indicates
the classical two-phase process monitoring framework
applied to network data (Woodall and Montgomery
2014; Woodall et al. 2017), and in our own work we
have preferred this moniker (Zhao et al. 2018a, 2018b;
Kodali et al. 2020). In Phase I, the user collects a sample
of time-varying networks that represent the in-control
state, and uses this sample to gain an understanding of
the in-control behavior. In Phase II, the user observes
networks successively over time, and the goal is to deter-
mine whether there is a significant deviation from the
in-control state. To make this determination at a given
point in time, the user is only allowed to use the Phase
I sample and the Phase II data collected until that spe-
cific time point.

To me, “network surveillance” is almost synonymous
with “network monitoring”, and several prominent
researchers have used it (Jeske et al. 2018a, 2018b). The
term “surveillance” is commonly used in geospatial pub-
lic health surveillance (Declich and Carter 1994; Teutsch
and Churchill 2000; Patil and Taillie 2003; Kulldorff et
al. 2006), where, after a deviation is detected, it is
important to also identify the specific area which is the
source of the deviation. This task of localizing the devi-
ation is an intrinsic part of surveillance. Whereas in
monitoring, the analogous task of root cause analysis is
important, but considered a separate, downstream task -
not an intrinsic part of monitoring (Zhou, Chen, and
Shi 2004; Dey and Stori 2005). Therefore, it might be
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preferable to use “network surveillance” when localizing
the part of the network that causes the deviation is con-
sidered an intrinsic task, and to use “network mon-
itoring” otherwise.

Some researchers use the phrase “network change-
point detection” to indicate a related but somewhat
different problem. Here, typically there is no Phase I
and Phase II like traditional statistical process moni-
toring. Instead, the entire stream of network data is
available to the user, and the goal is to retrospectively
estimate time points when the model changed. This
problem definition has been used in several recent
statistical papers on network change-point detection,
such as (Barnett and Onnela 2016; Bhattacharjee,
Banerjee, and Michailidis 2018; Wang, Yu, and
Rinaldo 2021).

On a related note, it is important to distinguish
between monitoring of network data and monitoring of
data over a network (Sengupta and Woodall 2018). The
first case arises when we have a time series of networks
and the network structure itself, i.e., nodes and edges, is
the time series variable of interest, e.g., social networks.
The second case arises when the network itself is fixed
over time, and we observe certain node-level or edge-
level variables, and we are interested in monitoring these
variables over time, e.g., the transmission of electric
power via the power grid network.

Driscoll

“Network change-point detection” is my least favorite
for describing the field of detecting changes in net-
work data. Change-point methods are commonly used
in statistical process monitoring during Phase I. These
methods help establish an understanding of baseline
behavior to prepare for real-time monitoring in Phase
II. It is important to use a term for analyzing network
data that is broad enough for the entire field of study
and I find the term change-point detection to be too
specific, applying only to a subset of applications.

In many publications, the terms “network
surveillance” and “network monitoring” seem to be
used interchangeably. I have used both terms to
address network-change research and initially didn’t
think that the terms had different meanings. Upon
further consideration, I find network surveillance to
refer to a specific application of network monitoring.
One dictionary definition of surveillance is, “close
observation, especially of a suspected spy or criminal.”
The term “network surveillance” seems to relate more
closely to the use of monitoring methods to detect or
prevent negative outcomes. Savage et al. (2014) listed

application areas including the detection of important
and influential network participants, the detection of
clandestine organizational structures, and the detec-
tion of fraudulent or predatory activity. The former
two application areas are broader and would fall
under the general term “network monitoring”; using
monitoring methods to detect fraudulent or predatory
activity would more closely align with the term
“network surveillance”. Some other applications of
network surveillance would include identifying key
players in
spammers. I would argue that much of the research in
the field up to this point develops techniques to apply
to network surveillance applications.

It is important to use a broad term that will encour-
age researchers to develop tools that can be used in a
broad range of application areas, not just to detect nega-
tive outcomes. In many cases, the same monitoring
technique can successfully be applied to a wide variety
of applications, so by using the term “network mon-
itoring” we are not limiting the impact of our methods
to one subject area. In my opinion, “network mon-
itoring” is the most all-encompassing of the three terms
suggested to describe detecting changes in network data,
and so it is my preferred moniker for this discipline.

terrorist networks and detection of

Perry

Network science is a vast multidisciplinary field of
study spanning such disciplines as physics, social sci-
ence, computer science, statistics, and more. It often
involves the study of complex systems by representing
these systems as networks, e.g., see Newman (2018).
The area of network monitoring is a smaller subset of
the network science discipline and involves the moni-
toring and detection of important changes in one or
more aspects of network systems over time. Although
there are several monikers, my preferred is “statistical
network monitoring”, so as to distinguish between
those monitoring strategies that are mostly descriptive
and those that are inferential. The former involves the
calculation of a sample network charting statistic but
without any real attempt to accurately quantify the
uncertainty in the statistic, e.g., see Tambayong
(2014). Although more challenging, the latter does
make attempts to accurately quantify the uncertainty
in the charting statistic, and consequently, is more in
line with the philosophies of statistical process moni-
toring (SPM), e.g., see Azarnoush et al. (2016) and
Perry (2020). That is, control limits for the charting
statistic can be established such that the false alarm



rate of the monitoring scheme can be adequately con-
trolled at some user-specified level.

Reisi and Paynabar

Characterizing the scope and objectives of this field is
crucial to identifying an appropriate and informative
terminology. The problem of detecting change in net-
work data mainly focuses on identifying a subset of
network data that has spatially or temporally different
behavior from a dominant normal set. This can be
studied in both static, where a single snapshot of the
system is considered, and dynamic networks, where a
sequence of snapshots is analyzed over time. The
objective of change detection for each type is different
(Ranshous et al. 2015). In the former, which is mainly
referred to as “network anomaly detection”, the main
objective is to identify a subset of nodes that illus-
trates different interactions from that of the overall
network (Akoglu, McGlohon, and Faloutsos 2010;
Eberle and Holder 2006; Noble and Cook 2003). For
example, by analyzing the Enron network generated
from email communications between 1998 to 2002,
Akoglu, McGlohon, and Faloutsos (2010) identified a
set of employees with abnormal behavior. These
employees were those who played a role in the famous
Enron scandal.

In the latter, however, a user is interested in identi-
fying time intervals during which the network struc-
ture or node interactions globally or locally changes
from an expected dynamic behavior (Woodall et al.
2017). For example, in the Enron network, one may
investigate to identify the onset of the scandal by ana-
lyzing a sequence of networks which represent weekly
email communications of employees (Dong, Chen,
and Wang 2020; Gahrooei and Paynabar 2018). The
phrases “network monitoring”, or “network change-
point detection” are appropriate for these cases. In
most change detection applications of dynamic net-
works, in addition to identifying the time of change,
one would be interested in pinpointing the portions
of the network affected by assignable causes. This is
known as change diagnosis in the statistical process
monitoring (SPM) literature, which utilizes techniques
from both areas of dynamic and static networks
(Woodall et al. 2017; Ranshous et al. 2015). “Network
surveillance” is mainly used for change detection for
computer and internet networks over time (Jeske et
al. 2018a) and may be perceived as less general.

In short, it would be difficult to suggest one name
that encompasses all aforementioned cases. As the
term “anomaly detection” is common across different
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disciplines, we would like to propose using “static net-
work anomaly detection” and “dynamic network
anomaly detection (and diagnosis).”

Editors’ comments

The reader could be forgiven for getting lost in these
(at times) contradictory viewpoints and definitions of
network monitoring, network surveillance, and network
change-point detection. In the panelists’ responses we
see variation in the use of these terms depending on
who is performing the investigation, and if

the investigation is prospective or retrospective,

the context is to investigate change in network
data or data over physical networks,

the networks are static or dynamic,

the procedures are descriptive or inferential,

the intent is to uncover the root cause of changes,
global or local changes are of interest,

detecting malicious threats is important.

We think Dr. McCulloh says it best: the field suffers
from ambiguous and conflicting definitions. This con-
fusion makes it difficult to define what the field of
network monitoring is, and what it isn’t. We feel this
is more than a pedantic argument about semantics;
when a discipline is not well-defined, it becomes
unclear who the stakeholders are, who values the
research, and what research is relevant. This has
implications for deciding where to disseminate
research and which problems to work on. It also has
implications for ease and productivity of both inter-
disciplinary and intradisciplinary collaboration.

Dr. Driscoll advocates for the adoption of a term
that broadly encompasses the many different nuances
and facets associated with detecting change in net-
works. We agree with this sentiment, but we also see
the need for a unified collection of terms that clearly
and specifically address some key characteristics of the
problem. However, we also acknowledge that given
existing confusions surrounding terminology, one
should avoid introducing new terms unless they are
informative and helpful.

Although there is disagreement in subtleties associ-
ated with the terms network monitoring, network sur-
veillance, and network change-point detection, there
appears to be some consensus in that the term net-
work monitoring is the most general and therefore the
more preferable term to broadly refer to the body of
work devoted to identifying change in networks. We
subscribe to this viewpoint, but we propose that the
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Table 1. A list of adjectives that may be used to modify the term “network monitoring”.

Adjective

Description

online vs. offline
statistical vs. descriptive
diagnostic

identifying the change itself.
static vs. dynamic

local vs. global
physical vs. association

Used to distinguish contexts and methods in which changes are identified prospectively vs. retrospectively.
Used to distinguish contexts and methods in which the uncertainty of one’s decision is vs. is not emphasized.
Used to describe contexts and methods in which identifying the cause of the change is as important as

Used to distinguish contexts and methods in which one wishes to identify change in a single snapshot vs. a
stream of snapshots of a network.

Used to distinguish contexts and methods in which one wishes to identify local vs. global change in a network.

Used to distinguish contexts involving physical vs. association networks.

term be prefaced by adjectives that clearly indicate the
context of its use. For instance, when performing
online (i.e., prospective and in real-time) network
monitoring versus offline (i.e., retrospective) network
monitoring as described by Dr. Michailidis, we sug-
gest that these contexts be referred to as online net-
work monitoring and offline network monitoring,
respectively. Similarly, statistical network monitoring
versus descriptive network monitoring might be used
to distinguish contexts and methods in which uncer-
tainty quantification is and is not emphasized, as sug-
gested by Dr. Perry. Such adjectives may also be
combined, so as to generate maximally descriptive terms.
For instance, offline statistical network monitoring might
be used to refer to that which the term network change-
point detection commonly refers. Table 1 contains a list
of adjectives that we propose be used with “network
monitoring”, and that give rise to a unified collection of
terms that may be used to accurately describe the many
applications and contexts discussed by the panelists.

Question

What are the predominant applications to which net-
work monitoring is applied now, and what do you see
as emerging application areas? Are there other appli-
cations for which network monitoring could be used
that have not been explored?

Michailidis

Network analysis and monitoring has become ubiqui-
tous across science and engineering. This is due to a
number of factors, including new measurement tech-
nologies (see, e.g., the emergence of various Omics
technologies in molecular biology, or social media
platforms), and the ability of organizations to access,
store and process vast amounts of data (see, e.g., geo-
location and data obtained from sensors). Another
driving factor has been an emerging focus on a sys-
tems view. Systems are entities with interrelated and
interdependent components, wherein changes in some
of them affect other components and the system as a

whole. Networks offer a powerful paradigm for their
analysis and monitoring. Hence, once new measuring
technologies are in place for a new application
domain, network analytics would soon follow.

Reisi and Paynabar

Network monitoring has been predominantly applied
to social and organizational behavior analysis
(Woodall et al. 2017). For example, network monitor-
ing methods have been widely applied to the Enron
email corpus to identify sudden changes in communi-
cations among Enron employees during the com-
pany’s scandal (Dong, Chen, and Wang 2020;
Gahrooei and Paynabar 2018). Network monitoring
has also been applied to communication networks of
terrorist groups (e.g., Al-Qaeda) to detect changes in
their level of communications as early as possible
before it turns into a crisis (McCulloh, Carley, and
Webb 2007). Other examples of applying network
monitoring to social behavior analysis can be found in
(McCulloh and Carley 2011).

Analysis of financial networks is another applica-
tion in which network monitoring methods have been
utilized. In this context, by monitoring interactions
among financial institutes over time, financial shocks
may be detected. For instance, Ebrahimi et al. (2021)
developed a framework to model and monitor the
dynamics of financial interbank lending networks and
showed that such a network monitoring framework
could have raised alarms to the public prior to the
key events of the 2007-2009 financial crisis. Brunetti
et al. (2019) also studied two interbank market net-
works: correlation networks based on publicly traded
bank returns and physical networks based on inter-
bank lending transactions. Both networks depicted
change in their level of interconnectedness during the
financial crisis.

Detecting changes in computer and information
networks is another major application of network
monitoring. In computer networks, the goal is to
detect malicious intrusion attempts, including spam
campaigns, phishing, denial of service attacks, or any



other anomaly as quickly as possible with the min-
imum number of false alarms. In information net-
works, metrics that indicate the health of the network,
such as traffic flow, are monitored for detection of
such abnormalities (Jeske et al. 2018a).

Emerging applications of network monitoring can
be found in transportation, neuroscience, cybersecur-
ity, and analysis of spatiotemporal data. In transporta-
tion, traffic patterns at the network level are
monitored to detect changes due to extreme events.
Ilbeigi (2019) modeled New York taxi data as a weekly
sequence of traffic networks and monitored the main
topological features of the network to detect changes
in traffic patterns before and after hurricane Sandy.
Due to the size and specific structure of road trans-
portation networks, novel network monitoring algo-
rithms that are tailored to traffic networks are needed.

One recent application of network monitoring is in
the area of neuroscience, more specifically, for analysis
of functional brain networks that are defined based on
functional magnetic resonance imaging (FMRI) or
electroencephalogram (EEG) data. Functional brain
networks are analyzed to understand the dynamics
and modular behavior of the brain for normal people
and patients suffering from neurological diseases such
as epilepsy and Parkinson’s disease (Bassett et al.
2011; Lynall et al. 2010; Bassett and Bullmore 2006).
Network monitoring can be integrated with these
modeling methods to detect changes in the functional
brain network dynamics. For example, early detection
and identification of the onset of seizure attacks may
help with better understanding of how brain function-
ality changes during these attacks.

Cybersecurity is another emerging application of
network monitoring that has not been broadly studied
in the literature. The growing interconnectivity within
the systems by sensors and Internet of Things (IOT)
devices requires new advances in faults and intrusion
detection to improve the resiliency and functionality
of the cyber-physical systems under complex oper-
ational conditions. Network monitoring can play a
significant role in these advances by integrating the
data-driven and model-based methods. For instance,
Li et al. (2021) integrated the state-space modeling
and group lasso techniques to identify and localize
cyberattacks in smart grids. Finally, network monitor-
ing methods can be used for monitoring spatio-tem-
poral data streams. That is, one may transform the
spatiotemporal data into a sequence of networks (for
example, based on the spatial correlation of data
streams), and use network tools for detection of
changes that are difficult to detect in the original
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space. For instance, Kan and Yang (2017) transformed
real time image data into a sequence of networks to
be monitored for detecting abrupt changes.

Sengupta

Cybersecurity and social network analysis appear to
be two primary application areas. I see infrastructural
networks, such as power grid networks and traffic net-
works, to be emerging application areas. One very
promising area where network monitoring could be
used is neuroscience, specifically in studying the
dynamics of human brain networks (Stevens et al.
2009). Network monitoring has the potential to
become a powerful and practical tool to detect or
even predict abnormalities in the brain network
toward diagnosis of diseases.

McCulloh

Network methods offer a powerful framework for the
analysis of highly dependent data, in situations where
the independent and identically distributed (IID)
assumption does not hold. As a result, the most com-
mon applications of network monitoring are in areas
where data is highly dependent. In my work, this is
typically organizational change or changes in commu-
patterns among online
Increasingly, these methods are applied within zero-
trust cyber networks to identify anomalous patterns
that may signal malicious behavior.

Given the wide range of network applications, there
are no doubt many other areas where network moni-
toring may be applied. For example, applications in
life sciences, physical infrastructure networks, and
even transportation networks likely apply some form
of network monitoring today.

As applications for Artificial Intelligence (AI) con-
tinue to grow, there may be increased opportunities to
monitor algorithms or native cloud processes for
change. For example, BERT neural networks have cre-
ated a significant advance for natural language proc-
essing (Devlin et al. 2018). These methods are so
powerful, algorithms can learn language pre-process-
ing steps, making data and feature engineering more
important than data pre-processing for ultimate per-
formance. Perhaps network monitoring methods can
be applied to neural networks to better detect linguis-
tic drift, changes in discourse, or the presence of
unintended bias over time.

nication communities.
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Driscoll

Network monitoring applications have predominantly
focused on network surveillance problems where the
goal is to detect or prevent some adverse event.
Examples include terrorist networks such as the Al-
Qaeda network seen in Figure 1 of Woodall et al.
(2017) and the Enron email communications depicted
in Figure 2 of the same paper. Another relevant appli-
cation area in this vein is cybersecurity, where interest
lies in the development of tools and methods for the
detection and subsequent prevention of cyber-attacks,
a threat all too common in our society.

Future research should also consider applications
in other areas where the goal is not to detect negative
outcomes. Network monitoring can alert us to
important or influential network participants in a
wide variety of applications. In Motalebi, Stevens, and
Steiner (2021), the researchers illustrate the use of
hurdle blockmodels through two examples. One appli-
cation uses the infamous Enron email data and the
second example reveals the relevance of the method
with a small research collaboration network from the
University of Waterloo’s Statistics & Actuarial Science
Department. This thought-provoking example shows
how we might create our own network datasets to
illustrate our methods.

As we adapt and develop network monitoring tech-
niques for use in additional application areas, we
should also strive to produce more modern and
diverse and publicly available datasets. The Enron
email scandal resulted in the collapse of the company
in 2001. This was 20 years ago, yet the email exchange
data (Shetty and Adibi 2005) is still used extensively
to illustrate and investigate monitoring methodologies.
It would be beneficial to the field if additional datasets
related to more current events were made available.
However, given the proprietary nature of many net-
work monitoring applications, sharing data publicly
may prove to be difficult.

Perry

The predominant applications of statistical network
monitoring strategies seem to emerge from computer
networks, e.g., monitoring for computer network traf-
fic anomalies (Neil et al. 2013). However, social sci-
ence applications have also emerged as motivations
for developing network monitoring strategies, e.g., see
applications highlighted in Savage et al. (2014),
Wilson, Stevens, and Woodall (2019), and Perry
(2020). In the future, many emerging applications of

statistical network monitoring will likely stem from
Industry 4.0.

According to the National Institute of Standards
and Technology (NIST): “Industry 4.0 refers to the
fourth industrial revolution, which connects machines,
people, and physical assets into an integrated digital
ecosystem that seamlessly generates, analyzes, and
communicates data and sometimes takes action based
on that data without the need for human inter-
vention.” Given that the emphasis of Industry 4.0 is
interconnectivity, automation, machine learning, and
real-time data, it is my view that the future of statis-
tical network monitoring research for Industry 4.0
applications is fruitful.

Sparks and Paris

We first note that by “network data”, we refer primar-
ily to social media data, in which people post mes-
sages, sometimes directed to someone else, sometimes
simply to the public, or the whole social media com-
munity at large. We call each message a communica-
tion event, and these events form a network, either
through time or in terms of the relationships among
those who post these messages. Detecting changes
within the network data in this context amounts to
determining whether an unusual pattern of communi-
cation is occurring. We note that this work often
requires a multidisciplinary approach; our team con-
sists of statisticians, natural language processing
experts, and domain experts to inform what type of
change we should be investigating.

Social media networks have revolutionized the way
users interact. In this context, sentiment analysis,
opinion mining, or emotion detection are important
tools for determining feeling or emotion through text
(Ahmed, Tazi, and Hossny 2015; Kaur and Saini 2014;
Ravi and Ravi 2015; Bakshi et al. 2016; Yadollahi,
Shahraki, and Zaiane 2017). In these applications, nat-
ural language processing is used to define sentiments,
emotions, and feelings directly from the text used in
the message. The applications are broadly located in
medical, social and industrial domains.

The interface between psychology, classical sociology
and social networks is an expanding field for wellness
monitoring (Healey and Logan 2005). The need to
monitor the well-being of those within the social net-
work requires the interface between computer science,
classical sociology, natural language processing, statistics,
social networks analysis and psychology (Assembling
Teams of Experts in Bonchi et al. (2011)). Monitoring
activities in this context aim to identify individuals who



are at risk of self-harm or suicide on the basis of the
messages they send. In our own work, a team which
includes Professor Maria Kangas (Macquarie University
Psychology Department) is currently monitoring the
network data from a social media platform dedicated to
the expression and sharing of emotions (the Vent plat-
form). Our aim is to identify at-risk individuals that
belong to the Vent network (Malko et al. 2021). The
vents (the posts on the platform) are self-annotated with
a group of core emotions, and other event labels such as
Halloween or Valentine’s Day, group labels such as
LGBT and Asian heritage, and interests labels, like Star
Wars or gaming.

Other applications of social media monitoring
include monitoring criminal activities via social net-
works; see Sparks and Wilson (2019), and Basu and
Sen (2021), for examples. The organizational criminal
activities of outlaw motorcycle gangs have been
explored by Bright and Deegan (2021).

People have also studied social influence in an
attempt to quantify the amount of influence some peo-
ple have on others within a social network, thereby
identifying highly influential individuals. Such analyses
are crucial to accommodate the needs of social network
applications; identifying opinion leaders has widespread
applicability (Oueslati et al. 2021). There are many new
problems and challenges in this context, however. We
believe that the problems are dynamic in nature and
depend on the topic of discussion because of the diver-
sity of social networks (Peng et al. 2018; Samanta,
Dubey, and Sarkar 2021). Distinguishing between posi-
tive influence and negative influence is also a challenge.
Difficulty measuring influence of individuals within a
large social network with big data is another challenge.

Social media monitoring has also been shown to
enhance natural disaster management by providing real-
time data on disasters such as tsunamis, typhoons and
floods (Kim and Hastak 2018; Xue et al. 2021). In this
context, a substantial amount of research has been done
by various researchers to analyze communication events
during disasters. The aim is to develop effective ways of
analyzing and extracting critical information from such
communications so as to detect missing people during
and after an earthquake or tsunami, for example.

Enterprise applications of social media monitoring
are also common. For example, a company can “listen”
to social networks to learn what their customers say
about the company, their competitors, and the market
in general. Taking advantage of social media in this way
provides important social business intelligence that may
improve a company’s competitive edge and their overall
success; such insights enable the company to better
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understand their customer-base, and perceptions of their
brand, facilitating tailored marketing strategies and cus-
tomer-focused decision making. There are a broad range
of monitoring tools available for that purpose, e.g.,
Awario; Audiense; Brand24 and Brandwatch Consumer
Research to name a few.

Editors’ comments

The panelists identify a number of existing and
emerging network monitoring applications, ranging
from cybersecurity in computer networks to disease
diagnosis in brain networks. In terms of existing
applications, network monitoring has traditionally
been used for purposes of threat detection in online
social and communication networks. Network moni-
toring methods have also been used to detect behav-
ioral change in organizational networks, as well as
malicious and adversarial attacks on physical, com-
puter networks. While these applications are still very
relevant, the modern emphasis on interconnected and
networked systems is giving rise to a variety of novel
contexts for which network monitoring is a useful
tool. These emerging application areas include institu-
tional networks in finance, protein-protein interaction
networks in biology, functional brain networks in
neuroscience, and physical infrastructure networks
such as power networks, transportation networks, and
supply chain networks, to name a few. As the world
becomes evermore interconnected, and as advances in
technology facilitate the observation and measurement
of this interconnectedness, new networks and hence
network monitoring applications will arise. Like Dr.
Perry, we anticipate that Industry 4.0 will provide
many such opportunities.

In the context of social media monitoring, Drs.
Sparks and Paris identify a number of interesting and
important applications including monitoring disease
spread, mental well-being and criminal activities.
Social media monitoring may also be used to good
effect in the contexts of natural disaster management,
and business insights. As social media becomes
increasingly enmeshed in our daily lives, such moni-
toring applications are bound to increase in promin-
ence and importance.
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