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THE PAST, PRESENT, AND FUTURE OF NETWORK MONITORING: A PANEL DISCUSSION
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ABSTRACT
Traditional statistical process monitoring (SPM) provides a useful starting point for framing
and solving network monitoring problems. In this paper the panelists discuss similarities
and differences between the two fields and they describe many challenges and open prob-
lems in contemporary network monitoring research. The panelists also discuss potential out-
lets and avenues for disseminating such research.
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Question

Practitioners in quality engineering, statistics, and
beyond have long been accustomed to statistical process
monitoring (SPM) and change-point analyses, as a
means to detect change in multivariate processes.
What, in your view, sets network monitoring apart
from these more traditional monitoring problems?

Reisi and Paynabar

There is a close connection between statistical process
monitoring (SPM) and network monitoring. SPM is
mainly concerned with detection of a change in the
mean and/or covariance structure of a sequence of
multivariate variables or features. A network monitor-
ing problem can be translated into a multivariate pro-
cess monitoring problem by extracting a set of
features or parameters of networks to be monitored
using SPM methods. For example, one can extract a
group of centrality measures, including degree, betwe-
enness, and closeness centrality, and monitor them
using multivariate CUSUM or EWMA charts
(McCulloh and Carley 2011; Woodall et al. 2017).
More complex features, defined based on scan statis-

tics, have also been used for network monitoring,
which are more suitable for local change detection
(Priebe et al. 2005). In contrast to the feature-based
approaches, model-based network monitoring
approaches construct a statistical or probabilistic
model, such as a stochastic block or a multivariate
Poisson model, that explains the interconnection
among the nodes in the network. The parameters of
the model are then monitored using SPM (Dong,
Chen, and Wang 2020; Wilson, Stevens, and Woodall
2019; Yu, Woodall, and Tsui 2018). Statistical models
such as logistic regression and generalized linear mod-
els have also been considered for modeling a sequence
of attributed networks (Ebrahimi et al. 2021; Gahrooei
and Paynabar 2018; Azarnoush et al. 2016). These
approaches resemble the profile monitoring techni-
ques in SPM where functional data are summarized
by a set of parameters associated with basis functions
that are monitored using SPM methods. In general,
network modeling or feature extraction is a necessary
step for network monitoring.

Another connection between SPM and network
monitoring pertains to the application of network
monitoring techniques to multivariate process
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monitoring. One may view network monitoring from
the covariance monitoring perspective. Network moni-
toring aims to detect changes in the interactions
among components. If each of the variables of a
multivariate process are modeled as nodes of a net-
work, connected through their level of correlation (or
a general similarity measure), then a sequence of net-
works is created from multivariate data streams, and
can be monitored thusly.

It should be noted that although a variety of multi-
variate monitoring problems have been studied in the
SPM literature – including change detection in auto-
correlated and dynamic processes – similar problems
have yet to be addressed in network monitoring. For
example, temporal dependency of the network snap-
shot has not been adequately studied. A handful of
studies integrated state-space formulation into the net-
work modeling to capture the natural dynamics of the
networks (Ebrahimi et al. 2021; Gahrooei and
Paynabar 2018; Zou and Li 2017). Additionally, more
work is required to study extraction of the best set of
features or an appropriate model that captures both
spatial and temporal characteristics of a network
sequence. For example, how to capture the sparsity,
the modularity, and complex heterogeneous temporal
patterns of dynamic networks are the questions to be
addressed for designing a successful network monitor-
ing approach.

Sengupta

A network of n nodes is usually represented as a bin-
ary adjacency matrix, A, such that Aij ¼ 1 if nodes i
and j are connected, and Aij ¼ 0 otherwise. A time
series of networks can be represented as a time series
of adjacency matrices, denoted by fAð1Þ, :::,AðtÞ, :::g:
It is therefore natural for SPM practitioners to inter-
pret each adjacency matrix as a multivariate observa-
tion and view network monitoring as an example of
multivariate process monitoring. While this is a legit-
imate viewpoint from first principles, a few distinct
aspects of network data should be kept in mind.

First, each adjacency matrix is composed of n2

random variables for directed networks and
n
2

� �

random variables for undirected networks. Even for
moderate values of n, say n¼ 100, the number of vari-
ables, 104, becomes much larger than what is typically
encountered in multivariate SPM. In fact, it is com-
mon for the number of variables to be larger than the
number of time points, which makes the problem
high-dimensional in addition to multivariate.

In order to reduce the dimension of the problem,
network monitoring is often carried out by focusing
attention on a particular set of network summaries
(e.g., nodal measures of centrality), rather than the
entire adjacency matrix. While this seems akin to
multivariate SPM, there is an important difference. In
multivariate SPM, typically the variables being moni-
tored are well-defined and directly observed. In con-
trast, network summaries used for monitoring are
being defined by the user as functions of the observed
network data, and may not be complete descriptions
of network behavior.

Another important distinction concerns the inher-
ent interdependency of interactions within a network.
Such interdependency structures tend to be more
complex than what is typically encountered in multi-
variate SPM. For example, if the behavior of a node
changes over time, this will affect its neighbors, and
it’s neighbors’ neighbors, and those neighbors’ neigh-
bors, and ultimately the entire network at the same
time. Accounting for such dependency is an important
consideration in network monitoring methodology.

Driscoll

To answer this question in one word: complexity!
Networks are complex, and more complex than other
data structures encountered in traditional SPM appli-
cations. When applying traditional process monitoring
techniques to industrial settings, in many cases, the
statistic being monitored is straightforward to meas-
ure. We have methods that work very well for data
measured on a continuous scale, and we have also
developed techniques that handle the complexities
associated with attribute-type data. We have also
developed methods for more complex multivariate
data. In each case, we also have an understanding of
the benefits and shortcomings of the available meth-
odology. However, network data tends to combine
many of the individual complexities seen in industrial
applications into a single dataset.

For instance, multivariate issues arise when consid-
ering a time series of observed matrices, and we must
also acknowledge that networks are expected to evolve
over time. Thus, methods (such as scan-based ones)
that accommodate gradual evolution as well as sea-
sonal changes must be developed. Furthermore, we
have an arsenal of tools to model network data, but as
these models become more flexible and more realistic,
they become increasingly complex, and so too do the
associated monitoring methods.
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Another complexity is the sheer size of network
data. We are well aware that we live in an era of big
data where data is being produced and collected at
staggering rates. This is especially true with network
data. I agree with many current researchers in net-
work monitoring who advocate for the use of simula-
tion to study the properties of proposed monitoring
techniques. Depending on the context of the network
monitoring problem, the computational burden of
such investigations can be very high. Some simula-
tions can take weeks or even months to run. We see
this issue with some applications in industrial settings,
but the prevalence and magnitude of this problem are
both larger in network monitoring contexts.

Michailidis

There are two flavors of network monitoring, the off-
line (retrospective) and the online (prospective) ones.
The former assumes that one has collected univariate/
multivariate data evolving over time and the goal
becomes to identify if there exist change-points and
what their locations are, retrospectively, assuming
some model/mechanism for their temporal evolution.
On the other hand, the online version assumes that
new data are obtained in real time and one is inter-
ested in identifying a change from the current regime
that governs their evolution. There is a very mature
body of literature for both flavors for univariate and
multivariate problems and for various types of statis-
tical models employed to formulate the detection
problem. These include parametric models for changes
in the mean or the variance/covariance of the data
generating distribution, models for changes in the
temporal dynamics of the process, as well as nonpara-
metric approaches.

However, network models offer a number of novel
challenges, including issues related to size, the nature
of the change, and also the type of network model
assumed. A network consisting of n nodes can have
up to n2 edges, in the case of a fully connected net-
work. It can then easily be seen that network monitor-
ing problems become high dimensional in nature,
especially for processes related to the edges. This
presents both computational and technical challenges.
Note that in traditional change-point analysis techni-
ques involving a few hundred processes, the computa-
tional bottleneck comes primarily from the time
dimension T. Specifically, the goal is to come up with
algorithms with near linear complexity in T and avoid
dynamic programming-based ones that exhibit quad-
ratic complexity, despite their generality and (near)

optimal detection properties. However, in network
problems the node and consequently the edge dimen-
sion can be much larger than the time dimension
(n � T). Hence, the former becomes the leading fac-
tor in determining the computational complexity of
detection algorithms. Another complication arising
from the large network dimension is that the data
may be stored across various locations, whose process-
ing may impose additional computational burden.

The computational complexity due to the network
dimension is also related to the nature of the change.
For example, suppose that the network change is
“global” in nature, in the sense that a large portion of
the nodes/edges is impacted. In that case, it is reason-
able to devise a detection algorithm that samples a
subset of nodes/edges and tests for the presence/
absence, or estimates the location, of the underlying
change-points. On the other hand, if the change is
“local” in nature, in the sense that only a small set of
nodes/edges are impacted, then the problem becomes
significantly harder. The total available signal becomes
fairly small, which becomes harder to detect, and usu-
ally requires the construction of more refined detec-
tion algorithms that are computationally expensive.
This problem can be mitigated if domain knowledge
can aid in selecting small sets of nodes or edges that
are of primary interest and only monitor those, or the
network topology has a known a priori structure that
can be leveraged accordingly. An example for the lat-
ter setting may correspond to a network with commu-
nity structure, where it is known that changes are
primarily driven by creation or deletion of connec-
tions (edges) within the community.

Finally, from a technical viewpoint, network struc-
tures can introduce intricate dependencies amongst the
random variables that define the corresponding change-
point detection problem. Hence, obtaining rigorous
results on the performance properties of detection algo-
rithms becomes significantly more challenging.

McCulloh

The key difference in network monitoring compared
with SPM is the network treatment of highly depend-
ent data, where IID assumptions do not hold.
Network methods essentially offer methods to trans-
form highly dependent relational data into a graph
structure where measures can be treated much like
traditional SPM methods.

The fields of social network analysis and network
science are also able to apply a useful body of know-
ledge regarding the behavior of certain types of
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networks that can inform analysis, reduce variance,
and result in more statistically powerful analysis. For
example, in a typical social network of random inter-
actions, centrality measures of degree, closeness,
betweenness, and eigenvector centrality are highly cor-
related. As the network exhibits more and more struc-
ture, anomalies occur where a node may take on a
role as a boundary spanner between two or more sub-
groups. In this case, their degree may be relatively low
when compared to betweenness. It is often these
tradeoffs that are most interesting and provide the
most relevant insights. Thus, the application of multi-
variate SPM is highly relevant and useful.

Whether an engineer applies SPM methods to
graph-level data, multivariate measures from the net-
work, or some other transformation, network methods
offer many different ways to treat relational data.
Furthermore, the combinatorics of different combina-
tions of dependent data increases the complexity of
the sample space. This complexity opens up exponen-
tially greater applications and scenarios to explore
from a scientific perspective.

To compound the complexity are the simultaneous
rise in network-based time series methods. Stochastic
Actor-Oriented Models (SAOM) also known as Siena
models provide a statistical framework for co-evolving
nodal and relational variables and their interactions over
time (Snijders, Van de Bunt, and Steglich 2010).
Temporal Exponential Random Graph Models
(TERGM) provide a similar approach where network
structure at one time point may inform future structure
(Hanneke, Fu, and Xing 2010). These frameworks intro-
duce new methods to analyze and treat networks over
time that may both compete with statistical network
monitoring as well as provide new models to consider.

Perry

There are many notable differences between statistical
network monitoring problems and more traditional
statistical process monitoring (SPM) problems. First,
in traditional SPM problems, an assumption is often
made about the parametric distribution of the chart-
ing statistic, usually based on distributional assump-
tions of the data. Consequently, parametric modeling
strategies are quite commonplace. However, in net-
work monitoring problems, the distribution of the
charting statistic is rarely (if ever) known, which
implies perhaps nonparametric or model-free moni-
toring strategies should be considered. In traditional
distribution-free SPM methods, although they require
no distributional assumptions, most require the

monitored data sequence to be independent, and
hence free of autocorrelation. Unfortunately, this
assumption leads to tools with very limited impact on
today’s modern quality engineering practice. Recently,
however, distribution-free monitoring strategies have
been developed that consider autocorrelation and may
have direct application to network monitoring prob-
lems. For example, Perry and Wang (2020) developed
a distribution-free joint monitoring strategy for erg-
odic-stationary univariate continuous processes, which
can permit effective monitoring of almost any covari-
ance-stationary network charting statistic while pro-
viding adequate control of the false alarm rate. Other
plausible methods are given in Qiu, Li, and Li (2020)
for univariate processes and Xue and Qiu (2021) for
multivariate processes. In the same sense, it is also my
view that categorical process monitoring methods can
play a significant role in the future of statistical net-
work monitoring. For example, Perry (2020) proposed
a classification rule based upon the observed values of
two different network statistics (one that measures
reciprocity and another that measures transitivity), in
an effort to classify a network as being hierarchical or
not. Consequently, their network monitoring problem
was reduced to monitoring a simpler categorical pro-
cess, where the false alarm rate was easier to control
and the interpretation of a control chart signal was
relatively straightforward.

Autocorrelation is not the only type of correlation to
be considered when monitoring networks. Homophily,
for example, also induces correlation. With this form of
dependency, the likelihood of any two vertices being
connected depends on the value of one or more attrib-
utes measured at the vertices, e.g., vertices with similar
attributes are more likely to be connected. Similarly,
network motifs are correlated. Consider the simple case
of monitoring the number of triangles in a Bernoulli
graph over time, where the edges between vertices are
IID Bernoulli random variables with parameter p. One
might be tempted to model the triangle count as a
binomial random variable and then apply a binomial-
based control chart for monitoring. However, this
would be flawed since each triangle in the network
shares an edge with 3n� 9 other triangles, where n is
the number of network vertices. Specifically, Perry
(2019) showed that the covariance between any two tri-
angles, say X and Y, in such a network is given by

CovðX,YÞ

¼
p3ð1� p3Þ if X and Y are same triangle

p5ð1� pÞ if X and Y share an edge

0 if X and Y do not share an edge

8><
>:
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and consequently, although the edge counts follow a
binomial distribution, the triangle counts cannot fol-
low a binomial distribution since triangle pairs are
not necessarily independent.

One additional, and very important, difference
between network monitoring and more traditional
SPM applications is the fact that many aspects of net-
works are continually changing, and oftentimes the
observed change is not an anomalous one. This poses
additional challenges for the statistical process moni-
toring practitioner as network charting statistics
should be carefully chosen such that they sufficiently
capture the precise network change phenomenon
of interest.

Sparks and Paris

The multivariate monitoring of time between commu-
nication events in social media networks is difficult
because events do not generally occur simultaneously,
and this makes it difficult to use time between events
for this purpose. If we are interested in multivariate
SPM, then counting processes may be the way to go.
However, the focus would be on counts that are
expected to correlate quite well. The inherent multi-
variate structure of the social network, particularly
with direct network connections within very large net-
works makes this a very challenging task. A potential
solution is to decompose a large network into disjoint
sub-networks if this is possible without the loss of too
much information. This may make the task more
manageable for very large social networks.

Another challenge associated with social media
monitoring that is typically not seen in traditional
SPM applications is the development of robust prac-
tical plans that can be used in applications that are
efficient at flagging outbreaks for a range of sizes and
starting points in steady state situations. The zero
state situations are less common in social networks,
and are more aligned with the manufacturing of parts
or items.

Parker

As someone who does not actively participate in net-
work monitoring (NM) research, but who has a strong
background in quality engineering and traditional
SPM applications, the discussion’s editors invited me
to provide my outside perspective. Having conducted
a broad, high-level literature survey on the topic, I
found both amiable similarities and striking differen-
ces between these monitoring endeavors. As in most

cases of emerging research applications, what’s new is
often built on and leverages what’s old; that’s if the
research is done well. Of course, that’s not meant to
imply that existing methods are sufficient in tackling
the new challenges of NM. However, I believe that the
conceptual and philosophical foundation of existing
quality methods offer a beneficial perspective for NM.

Clearly, in today’s society, networks are ubiquitous
and serve scientific, health, governmental, industrial,
and personal functions. Statistical research in network
monitoring has applications in a variety of diverse
domains where it is important to characterize, moni-
tor, and detect anomalies in the dynamics between
interconnected entities that exchange information
within a network. To manage the scope of my discus-
sion, I envisioned a physical computer network as a
tangible, motivating case study. However, I believe
that my observations and suggestions are easily
mapped to other network domains.

Definitions are always a good place to start to
make sure we’re solving the “right” problem. When I
think about maximizing research impact, I tend to
favor definitions coming from the stakeholders, the
users, the beneficiaries of the statistical research.
Consistent with that approach and considering phys-
ical computer networks as a motivating case study, I
found a particularly helpful answer to the question
“What is Network Monitoring?” from Cisco1:
“Network monitoring provides the information that
network administrators need to determine, in real time,
whether a network is running optimally. With tools
such as networking monitoring software, administrators
can proactively identify deficiencies, optimize efficiency,
and more.” This definition is broadly applicable to
many network domains, and I will endeavor to high-
light a few of its salient aspects to frame my remarks.

In the first sentence, the phrase “provides the
information” highlights that NM provides actionable
information to make decisions on the state of a net-
work. Furthermore, it is assumed that information
will be partial or incomplete in some sense, and there-
fore the subsequent decisions derived from it will
have inherent uncertainty. Supporting data-driven
decisions made in the presence of uncertainty drives
research into statistical methods, which confirms that
this is a backyard, as Tukey would say, where statisti-
cians could and should play.

Next, the definition points us to the specific deci-
sion context supported by an ultimate utility of
research in statistical methods for NM, namely “to
determine, in real time, whether a network is running
optimally.” An important feature of this phrase is
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“real time”, which seems to inevitably suggest that the
rich, mature library of statistical process monitoring
approaches should offer insights on how to approach
this new challenge. Obviously, the difference from
traditional SPM for computer networks, is that we are
monitoring patterns of bits and bytes, not physical
widgets coming off a factory assembly line. However,
whether the patterns are digital signatures or parame-
terized features of a physical part, both are mathemat-
ical abstractions that allow us to differentiate common
cause and special causes of variation.

To detect a special cause of variation, a cause for
an alarm, both NM and SPM require learning and
describing what’s normal. In SPM, this is usually from
a retrospective analysis of historical data, known as
Phase I analysis, that considers the system’s random
variability, and derives boundaries that indicate
whether our system is under normal operations, or if
it has departed from normal. An important assump-
tion in a Phase I analysis is that the historical data are
largely representative of the data to be monitored in
the future. However, networks are dynamic, changing
and evolving over time, and so a Phase I assumption
of stationarity may not be fully applicable. In indus-
trial SPM, there was a branch of applications in
actively adapting processes that used feedback control-
lers; they may offer helpful ideas when actively moni-
toring a dynamic system. See Jiang et al. (2002) for an
introduction to this application area.

Interestingly enough, the potential causes of devi-
ation from normal operations in NM are often quite
different than in SPM, since they include the potential
for adversarial, intentional disruptions. It’s not com-
mon, or at least not commonly published in the litera-
ture, for a traditional SPM method to be designed to
detect industrial sabotage, however this certainly
would be a special cause. In contrast to quickly detect-
ing system degradation of production machinery,
adversarial disruptions could come without warning
and present themselves as more of a spike in behavior
and might disappear immediately afterwards. Once
again, in contrast to traditional SPM, we often don’t
consider the situation fixing itself once a signal
occurs. Admittedly, I’m generalizing both NM and
traditional SPM applications, however my main point
is that it’s important to recognize the potential sources
of a disruption to strategically design a system to
effectively detect them, and I believe the types of dis-
ruptive signatures differ between NM and trad-
itional SPM.

Another aspect of Cisco’s definition is “to determi-
ne… if a network is running optimally”. Frequently,

when consulting with subject-matter experts, they
often say they want to “optimize” their system. When
I ask them to define the “optimal” state quantitatively,
I usually get a response that would be better described
as wanting to “improve” their system, i.e., find a tra-
jectory of improvement, rather than seeking some
utopian, optimal state where they would cease all fur-
ther research. In practice, the optimal state is often
practically unattainable, since it depends on many
competing factors. I share this difference between the
objective to “improve” and “optimize,” in order to
highlight that NM monitoring seeks continuous
improvement by identifying factors and their relation-
ships with responses that indicate that the dynamic,
evolving system is moving in a direction of
“goodness.” While this may sound like steepest ascent
in response surface methodology would be directly
applicable, my previous comments on lack of system
stationarity combined with a high dimensional factor
space may not make those techniques readily applic-
able. However, I could envision NM benefiting from
an approach known as evolutionary operation
(EVOP), proposed by Box (1957), where small pertur-
bations are intentionally induced during normal oper-
ations to identify a path of process improvement.
Developing methods of in-process designed experi-
mentation with small, not disruptive, changes would
seem to be a very applicable strategy for NM. Hahn
and Dershowitz (1974) and Box and Draper (1969)
are recommended for additional information
on EVOP.

The second sentence in Cisco’s definition indicates
that there is a NM system, consisting of “… tools
such as networking monitoring software, administra-
tors can proactively identify deficiencies, optimize effi-
ciency, and more.” As with traditional SPM, it
requires more than simply implementing a control
chart to practically impact an organization’s overall
quality process, it requires a system that includes
appropriate tools and techniques, decision metrics to
assess goodness, and a response plan to disruptions,
known as an out-of-control action plan (OCAP). It
also requires trained individuals who know how to
use the tools, experts who know how the tools work,
and leaders who understand and appreciate the sys-
tem’s function and value. As a caution to researchers
in the field of NM, it would be instructive to consider
how SPM was eventually adopted in industry and
appreciate and learn from its cultural struggles. With
this emerging field of NM, I expect that there will be
similar struggles, particularly since I expect the
“network administrators” in most cases are not
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statisticians and they may not fully appreciate the
benefits of employing statistical inference. I believe
that for NM techniques to have “big impact”, it will
likely take cultural change to adopt the statistical
research being conducted.

Considering the multiple disciplines engaged in
NM research, a statistical thinking approach is a
unique perspective to offer. Statistical thinking dis-
cussed by Hoerl and Snee (2020) recognizes that all
productive work occurs in interconnected processes
that have inherent variation, and understanding and
reducing the variation is a key to successful quality
improvement. It appears abundantly clear that this
“old” concept remains quite relevant in the emerging,
maturing field of NM.

Editors’ comments

The panelists agree that statistical process monitoring
(SPM) methods provide a useful framework for online
network monitoring, but that without extensions,
modifications, and adaptations, existing SPM methods
do not sufficiently address the various complexities
associated with network monitoring. We agree with
all of the points made by the panelists; here we simply
synthesize and summarize these comments, amplifying
those we feel are particularly important.

First and foremost, network monitoring problems
differ relative to traditional SPM applications in that
the statistic or property that should be monitored is
not always clearcut. Whereas in traditional SPM
applications, the monitored quantity is typically some
well-defined and obvious quality characteristic, in net-
working monitoring applications, what to monitor is
ambiguous. A second important distinction between
networking monitoring and traditional SPM applica-
tions is the dimension of the problem. As several pan-
elists discussed, this has implications for data storage,
computational complexity, effective discrimination of
signal from noise, as well as the feasibility of trad-
itional methods when the dimension of the monitor-
ing statistic exceeds the number of observed time
points. Another important characteristic of network
monitoring not easily handled by traditional SPM
methods is the complex dependence that exists within
and between temporal snapshots of the network. In
particular, the intricate dependencies inherent to an
interconnected system must be adequately accounted
for. Furthermore, networks tend to be dynamic, evolv-
ing gradually and organically over time. It is therefore
important to also accommodate such temporal
dependence and natural change. Traditional SPM

methods must also be adapted to account for a differ-
ent type of change. As Dr. Parker discusses, network-
ing monitoring methods must be able to quickly and
accurately detect fleeting (as opposed sustained)
changes that may possibly be a result of intentional,
malicious actions.

While it is clear that SPM provides a useful starting
point for framing and solving network monitoring
problems, Drs. Reisi and Paynabar highlight a syner-
gistic reciprocity whereby network monitoring meth-
ods may also be useful in framing and solving some
traditional multivariate SPM problems.

Question

What opportunities and open problems do you see for
graduate students and early-career academics who are
interested in network monitoring research? In your
experience, what journals or conference proceedings
have been particularly interested in publishing research
in this area?

Driscoll

My best recommendation for graduate students or
early-career academics who are interested in network
monitoring research is to first become proficient in
some coding-based software like Python, R, etc. You
learn so much more about the complexities of model-
ing and monitoring network data if you are the per-
son who is writing the simulation code. Most articles
that are published mention that the author is happy
to share code. Request code and teach yourself how to
generate data using different network models like the
degree corrected stochastic block model (Karrer and
Newman 2011), for instance. Most colleges and uni-
versities have servers available for computing. Learn
about and use these resources, and develop best prac-
tices to make simulations run faster. Most network
monitoring research requires quite a bit of computing
power. I see this becoming even more important as
we study more complex network data. Having these
computing skills will make you invaluable to any net-
work monitoring research group.

In terms of open problems, I would always encour-
age all researchers to start with the simplest problems
first. For instance, begin with simpler, as opposed to
complicated, network models. Over the past couple of
years, researchers have begun investigating the
impacts of changing aspects of the network model
and the effects of these changes on monitoring per-
formance. We should continue on this path using
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comparative studies. These studies use simulation to
compare different monitoring methods. A great
resource for comparative studies using simulations are
the papers written by Yu et al. (2021) and Kodali et
al. (2020).

One particular research area that shows promise is
the development of methods that not only signal when
something unusual has occurred, but also have the abil-
ity to identify the key players that caused the unusual
events. In Zhao et al. (2018), the researchers use cluster-
ing algorithms to identify anomalous subnetworks. It
would be interesting to develop alternative approaches
for the identification of change-inducing subgroups.

Another promising avenue for future research is to
study false discovery rate properties in the context of
network monitoring. Many of the available network
monitoring techniques use multiple control charts to
simultaneously to monitor the same data, so there is
some concern about having a high number of false
alarms. This research area is also suggested in
Woodall et al. (2017).

In terms of publishing, it seems like many statistics
journals are very interested in network monitoring
and network analysis research. However, I would
encourage researchers in our field to also try to pub-
lish in journals from other concentration areas so that
we can have a broader impact with respect to this
interdisciplinary problem.

Sparks and Paris

This is a fairly new field of research that is enhanced
by most processes becoming digitally oriented, and
therefore a Ph.D. now will set the trends in this field.
Network monitoring will open-up several new fields
of applications, particularly when the methodology is
made available to users. For example, research is
needed at the interface of psychology, classical soci-
ology, computer science, natural language processing
and statistics for research platforms such as the Vent
platform (Malko et al. 2021).

Two research projects in which I have taken part,
which deserve more attention, include the study of
mental health and well-being, as well as monitoring
how diseases spread at major events. In mental health,
it is important to establish the reasons for emotional
changes because social networks are dynamic in
nature, as people either fall into or out of relation-
ships, and as a consequence, their emotional state
could change. In our previous work in disease spread,
we attempted to establish the contribution of major
sporting events in the Australian Football League to

the spread of infectious diseases, and unfortunately we
could not find the link between Winter-related dis-
eases and events that may have contributed to the
spread of these diseases. Our conclusion was that
most Australians stayed away from major events when
they were sick. The spread of diseases on major bus
routes to and from work could be a potential future
area of research; however getting the appropriate data
could be a challenge given the privacy restrictions on
collecting individual’s data (Weiss 2009).

Once a network monitoring methodology is made
available, potential applications will expand beyond
the current horizons. At this point, I believe that con-
ferences will welcome papers that apply efficient tech-
niques for monitoring processes.

Reisi and Paynabar

Computational scalability for network modeling and
monitoring both in terms of network size and tem-
poral resolution is one of the major challenges in this
area that requires further research. Existing literature
in network monitoring is mainly focused on small to
medium size networks with limited solutions for mon-
itoring large networks such as transportation networks
or social media networks. Many existing approaches
are not efficient when the network size is on order of
millions of nodes. For example, approaches that rely
on the EM algorithm or Kalman filtering are ineffi-
cient in estimating the parameters of huge networks
(Gahrooei and Paynabar 2018; Zou and Li 2017). This
inefficiency translates into slow detection of changes,
especially when temporal resolution is high and fast
detection is essential.

The importance of computational scalability is
more apparent in applications like the industrial inter-
net of things (IIOT), in which many sensors and devi-
ces are communicating at high rates and quick
detection of faults or intrusions are critical. If network
monitoring techniques are to be applied to these sys-
tems, fast algorithms that can monitor and rapidly
detect changes in a large-scale networked system
are necessary.

Another major challenge in the area of network
monitoring is the detection of small local changes in a
network stream. The current literature mainly consid-
ers the problem of detecting global changes by sum-
marizing networks into a set of global parameters
(Ebrahimi et al. 2021; Dong, Chen, and Wang 2020;
Wilson, Stevens, and Woodall 2019; Gahrooei and
Paynabar 2018; Zou and Li 2017; Azarnoush et al.
2016). Designing algorithms that are sensitive to small
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local changes within the networks is crucial for broad-
ening the applicability of this field to other areas such
as transportation systems and cybersecurity. The main
problem is that an attack to a cyber-physical system
may be designed in a way that it manifests in a local
and distant area of the network (Li et al. 2021).
Monitoring multiplex/multilayer networks with het-
erogeneous interactions is another research opportun-
ity. Many modern systems contain multiple layers of
interactions including physical, correlation, and cyber
interactions and should be modeled by multilayer net-
works (Brunetti et al. 2019). A shock or an intrusion
to any layer can propagate to other layers and cause
significant consequences. Therefore considering the
between-layers interactions is critical for fast detection
and isolating of faults (Dong, Chen, and Wang 2020).
Monitoring of evolving networks is another promising
topic that has not been broadly studied in the litera-
ture of network monitoring. The structure of such
dynamic networks evolves over time by adding or
removing edges and nodes. Many models such as
scale-fee networks (preferential attachment) have been
developed to study evolving networks (Barab�asi 2013).
Nevertheless, monitoring these networks to distinguish
between the removals/additions that are according to
the natural evolution of the network from those that
are excessive or unexpected is challenging, and has
not been widely studied through the lens of SPM.

A few journals are engaged in publishing articles
related to network monitoring problems. The Journal of
Quality Technology (see for example, Gahrooei and
Paynabar [2018]; Azarnoush et al. [2016]), IISE
Transactions (e.g., Ebrahimi et al. [2021]; Woodall et al.
[2017]; Zou and Li [2017]), Quality and Reliability
Engineering International (e.g., Wilson, Stevens, and
Woodall [2019]; Kan and Yang [2017]; Yu et al. [2021]),

and Technometrics (Dong, Chen, and Wang 2020) are
among the ones that are related to the quality control
and SPM community. The ACM international confer-
ence on Knowledge Discovery and Data Mining has also
been involved in this field (e.g., [Akoglu, McGlohon,
and Faloutsos [2010]; Noble and Cook [2003]).

Perry

I believe there are several opportunities in statistical
network monitoring for graduate students and early-
career academics. Below I list those areas I find inter-
esting and potentially fruitful.

Consensus monitoring: Similar to consensus clustering
in complex networks, e.g., see Tandon et al. (2019), one
might also consider consensus monitoring. That is,
explore employing several different monitoring mecha-
nisms and use these to form a majority consensus on
whether or not critical aspects of a network have changed.

Monitoring contact sequences: By monitoring one
or more contact sequences of a network, one can
potentially develop strategies for detecting changes in
the spread of information or disease over time. For
example, Figure 1a shows a contact graph where the
times of contacts between vertices are shown on the
edges. Figure 1b shows a time series plot of the con-
tacts explicitly. See Holme (2005) and Holme and
Saram€aki (2012) for information on contact sequences
and temporal networks in general.

Monitoring network motifs: It is well known in the
network science literature that higher-order local
structural network configurations, i.e., motifs, are
essential to understanding the fundamental structures
that govern the behavior of many complex networks.
For example, Holland and Leinhardt (1971) suggested
transitive triads (Figure 2a) are important for

Figure 1. Illustrative example of (a) a contact graph and (b) the corresponding contact sequence.
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understanding hierarchies and cliques in social net-
works, while Honey et al. (2007) suggested that open
bidirectional wedges (Figure 2b) are important to
understanding structural hubs in the human brain,
where such hubs permit increased levels of informa-
tion flow between distant nodes. These examples, and
others, are given in Benson, Gleich, and Leskovec
(2016). Consequently, monitoring for changes in the
frequency of one or more such motifs of interest can
potentially provide a relatively simple, yet effective
means to detect interpretable change in networks.

Computational challenges: The emergence of online
network-based data has led to the need for fast and scal-
able computational algorithms for general information
extraction and processing. For example, Perry,
Michaelson, and Ballard (2013) proposed a network
clustering model that seeks to optimize a log-likelihood
ratio statistic, often permitting the discovery of densely
connected subgraphs or communities. However, compu-
tational inefficiencies only permitted clustering of rela-
tively small networks (say <500 vertices), significantly
limiting its use in practice. To overcome this limitation,
Ballard and Perry (2019) proposed efficient updating
equations for the model parameter estimates used in
their optimization algorithm. These new contributions
made the clustering strategy of Perry, Michaelson, and
Ballard (2013) tractable for larger networks, and thus,
much more applicable in practice. As another example,
consider the task of counting the number of motifs of a
given type in an observed network. Counting the occur-
rences of a given configuration of interest can be com-
putationally expensive, particularly for large networks.
For instance, consider counting the number of triangles
in an undirected binary network. If there are n vertices,
then the number of triangles can be computed from

T ¼
Xn�2

i¼1

Xn�1

j¼iþ1

Xn
k¼jþ1

AijAikAjk

where, in general, Ast denotes the ðs, tÞth element of
the observed adjacency matrix A of the network. Note

that the time complexity for this approach to calculat-
ing the number of triangles is Oðn3Þ, where n denotes
the number of vertices in the network, and conse-
quently, it becomes less tractable for large networks to
be processed online. Furthermore, if one is to consider
a more complex network motif (say, a configuration
involving four vertices), then one should expect the
time complexity required to count its number of
occurrences to also increase. These examples both
demonstrate how computational complexity can pro-
hibit the practical use of a method, and that any new
statistical network monitoring strategies should be
developed with this in mind.

In my experience, there are several journals that
have been open to publishing my research on net-
works, including Journal of Quality Technology,
Journal of Applied Statistics, Stat, and Computational
Statistics and Data Analysis. Additional journals where
I have seen network monitoring-based research pub-
lished include Quality and Reliability Engineering
International and IISE Transactions.

McCulloh

Research at the intersection of SAOM and TERGM
methods is particularly interesting. This would com-
bine multiple statistical frameworks and treatments
and provide trade space analysis of which methods to
use under different conditions. Another area would
involve the use of reduced graphs, where networks are
efficiently clustered and clusters are treated as nodes
in a “reduced network”. This is also known as a block
model, where relationships are defined between clus-
ters. How do changes in a network compare with its
reduced network? Do insights in one inform the
other? Meta networks involve nodes of different types,
such as people, resources, or locations. How do meta-
networks impact change, changes over time, and the
treatment of network data?

I have not found any journals that have focused on
network monitoring and its applications. Engineering

Figure 2. Two examples of network motifs.
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journals tend to be disinterested in network applica-
tions. Social network journals tend to be disinterested
in statistical process monitoring. Hopefully, this series
of discussion papers will raise interest and increase
research in this area, resulting in more scientific
publications.

Michailidis

Network monitoring problems are more challenging
than their counterparts for multivariate processes, due
to intricate dependencies introduced by the topology
and their large scale nature. Nevertheless, they offer
ample opportunities for developing novel methods for
change-point analysis, especially focusing on fast algo-
rithms. Given the sheer size of networks (n nodes)
and on many occasions the large number of observa-
tions (T), even linear complexity algorithms in n and
T may be too expensive. Hence, there is a strong need
for sublinear algorithms, possibly combined with
recent advancements in sketching techniques that
reduce the dimensionality of the underlying data.
Another challenge comes from the fact that the avail-
able data are stored across many locations and hence
distributed algorithms are required. Further, in many
online monitoring applications, new data may be
obtained in an asynchronous manner and thus the
detection algorithms need to be able to consume such
partial information. An example of the latter setting
comes from sensor networks, wherein due to energy
constraints, not all the sensors are always on. A simi-
lar challenge, but for different reasons arises in net-
work surveillance, since the (possibly covert) surveyor
may be able to access only part of the network.

Given the diverse applications of network monitor-
ing, all corresponding subject matter journals are in
principle interested in work developing methods tail-
ored to problems and data in the corresponding field.
More theoretically focused journals and conference
proceedings in statistics, econometrics, machine learn-
ing, computer science and signal processing routinely
publish work on computationally fast change-point
detection strategies and their theoretical guarantees.

Sengupta

In my opinion, an important class of open methodo-
logical problems is to develop statistically rigorous net-
work monitoring methods that allow flexible
dependence between successive temporal observations.
Much of the existing literature assumes that the tem-
poral network observations are independent of each

other. Accommodating dependence makes the problem
significantly more challenging, but enables monitoring
in a more flexible and realistic setting. I would also like
to encourage greater emphasis on interdisciplinary
research in network monitoring in collaboration with
domain experts from various disciplines.

Generally speaking, I feel that the Quality Control
and Industrial Engineering disciplines have been wel-
coming of network monitoring research. This includes
journals such as Quality Engineering, IISE Transactions,
and Applied Stochastic Models in Business and Industry,
and conferences such as the Quality and Productivity
Research Conference.

Editors’ comments

The responses to the first question in this paper
emphasized a number of important differences
between network monitoring and traditional SPM
applications. As reiterated by the panelists in this sec-
tion, many of those distinctions present practical chal-
lenges and therefore interesting research problems. In
particular, the development of scalable methods that
may be used to monitor very large networks (in a
timely manner and while accounting for the multiple
comparison problem) is of interest. The development
of methods that flexibly accommodate arbitrary cor-
relation structure within and between temporal snap-
shots of the network is similarly of interest.
Comparative studies designed to evaluate the practical
and theoretical performance of existing methods are
also important.

With respect to dissemination of research, like
many of the panelists, we have found the quality
engineering community to be receptive to network
monitoring research. However, like Dr. McCulloh, we
have personally found other communities to be much
less welcoming. Although network science is a very
multidisciplinary field, these disciplines seem to be
siloed and disinterested in each other’s literature and
perspectives. Like Dr. McCulloh, we also hope that
this series of discussion papers encourages the contin-
ued growth of network monitoring research, and we
hope that it begins to break down existing interdiscip-
linary barriers, ultimately fostering greater innovation
and impact in this area.
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