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Fast and Scalable Algorithm for Detection of Structural Breaks in Big VARModels

Abolfazl Safikhani, Yue Bai, and George Michailidis

Department of Statistics and Informatics Institute, University of Florida, Gainesville, FL

ABSTRACT
Many real time series datasets exhibit structural changes over time. A popular model for capturing their
temporal dependence is that of vector autoregressions (VAR), which can accommodate structural changes
through time evolving transition matrices. The problem then becomes to both estimate the (unknown)
number of structural break points, together with the VAR model parameters. An additional challenge
emerges in the presence of very large datasets, namely on how to accomplish these two objectives in
a computational efficient manner. In this article, we propose a novel procedure which leverages a block
segmentation scheme (BSS) that reduces the number of model parameters to be estimated through a
regularized least-square criterion. Specifically, BSS examines appropriately defined blocks of the available
data, which when combined with a fused lasso-based estimation criterion, leads to significant compu-
tational gains without compromising on the statistical accuracy in identifying the number and location
of the structural breaks. This procedure is further coupled with new local and exhaustive search steps to
consistently estimate the number and relative location of the break points. The procedure is scalable to big
high-dimensional time series datasets with a computational complexity that can achieveO

(√
n
)
, where n is

the length of the time series (sample size), compared to an exhaustive procedure that requires O (n) steps.
Extensive numerical work on synthetic data supports the theoretical findings and illustrates the attractive
properties of the procedure. Finally, an application to a neuroscience dataset exhibits its usefulness in
applications. Supplementary files for this article are available online.
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1. Introduction

Multivariate stationary time series models represent an effective
toolkit for modeling interactions of entities observed over time
with numerous applications across different scientific fields
including engineering, social sciences, biology, and economics.
However, many real datasets do not satisfy the stationarity
assumption (see, e.g., discussion in Cho and Fryzlewicz (2015)
for financial data and a specific example of log-returns of stocks
exhibiting structural breaks due to economic shocks in Lin
and Michailidis (2017), as well as Ombao, Von Sachs, and Guo
(2005) for brain signal data). Hence, there has been interest in
models that can accommodate the presence of nonstationarity.
Piecewise stationary models comprise a popular class due
to their simple form, but also wide applicability. Their main
assumption is that the model parameters remain constant over
stretches of time and only change at certain time points called
“break points.” In the most general setup, both the number of
break (change) points and their locations are unknown and
need to be estimated from the data together with the model
parameter values before and after each break point. Detecting
the break points and estimating all other parameters requires
a search over all time points, which for large datasets becomes
computationally expensive.

Due to the wide applicability of time series models exhibit-
ing structural breaks, there exists a large body of literature

CONTACT Abolfazl Safikhani a.safikhani@ufl.edu Department of Statistics and Informatics Institute, University of Florida, Gainesville, FL 32611-7011.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

addressing the problem of change point detection (see, e.g.,
the earlier books by Basseville and Nikiforov 1993; Csörgö and
Horváth 1997, and more recently the review article by Aue and
Horváth 2013). This literature can be categorized into three
groups with respect to the number of time series components
considered by the model—that is, univariate, multivariate, and
high-dimensional.

Most of the earlier work focused on the univariate “signal
plus noise” model, where mean shifts occur between change
points. More recently, the focus has shifted to more complex
models. For example, Davis, Lee, and Rodriguez-Yam (2006)
used a minimum description length procedure to locate break
points in univariate auto-regressive models, Fryzlewicz and
Subba Rao (2014) developed a detection method for piece-
wise constant parameter ARCH model, while Aue, Rice, and
Sönmez (2018) developed a method for detecting shifts in the
mean of functional data models. Another line of research has
examined the case of multiple change points; for example,
Harchaoui and Lévy-Leduc (2010) used a total variation
penalty to find sudden changes in the mean structure and
the computational complexity of the proposed procedure
is of order O

(
n log n

)
, where n is the sample size, while

Fryzlewicz (2017) applied a tail-greedy Haar transformation
to consistently estimate the break points with computational
complexity of order O

(
n log2 n

)
. Moreover, Killick, Fearnhead,

and Eckley (2012) introduced a pruning step within a dynamic
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programming (DP)-based procedure to detect break points
with computational complexity of order O

(
n log n

)
. In the

multivariate case with the number of time series p fixed, Preuss,
Puchstein, and Dette (2015) proposed a nonparametric method
to detect anomalies in the auto-covariance function of a mul-
tivariate (second order) piecewise stationary process, Ombao,
Von Sachs, and Guo (2005) developed a spectral representation
to locate the break points with computational complexity of
order O

(
n log2 n + n3 log n

)
(see also Rinaldo et al. (2020) for

similar ideas for linear regression models), while in Matteson
and James (2014), a nonparametric method is developed for
detecting abrupt changes in a distribution over time, with
computational complexity of order O

(
n2
)
. Further, Kaul et al.

(2021) established inference procedures for the location of break
points in high-dimensional mean shift models. In Wang et al.
(2019), an l0-optimization procedure is utilized for break point
detection in VAR models with computational complexity of
orderO

(
n2Lasso(n)

)
, while in Leonardi and Bühlmann (2016),

an exact DP algorithm is proposed to detect changes in high-
dimensional linear regressionwith computational complexity of
orderO

(
n2Lasso(n)

)
, where Lasso(n) is the cost to compute the

Lasso estimator for a sample of size n. Combined with a (wild)
binary segmentation (BS) algorithm, the CUSUM statistics can
consistently detect multiple change-points, in a univariate time
series (Fryzlewicz 2014) and also high-dimensional ones (Cho
and Fryzlewicz 2015; Cho 2016). Roy, Atchadé, and Michailidis
(2017) developed a likelihood-based method for locating a
single break point for high-dimensional Markov random fields
and provide the rate of estimating the change point, as well
as the model parameters. Finally, Safikhani and Shojaie (2020)
used fused lasso and a screening step to estimate multiple break
points in a VAR model with computational complexity of order
O (n) for a fixed number of time series components, and also
establish consistency results for both the break points and the
model parameters, while a similar procedure is developed in
Bai, Safikhani, and Michailidis (2020) to deal with transition
matrices exhibiting low rank and sparse structure.

However, in the presence of relatively few change points and
very long time series, it would be beneficial to devise much
faster algorithms than those available in the current literature.
To that end, this article introduces an algorithm for structural
break detection in high-dimensional piecewise stationary VAR
models that achieves sublinear computational cost in the number
of the observations, by putting mild conditions on the spacing
of consecutive break points. Specifically, it segments the original
time series into kn blocks of size bn (n = knbn) that reduces the
dimensionality of the parameter space to O(kn). The proposed
block segmentation scheme (BSS) speeds up computations in
locating the change points, which together with a screening
procedure (see details in Section 3) identifies consistently all
true change points. This combination reduces—through appro-
priately choosing the block size bn (and hence the number of
blocks kn)—computational complexity from O (n) to approxi-
mately O

(
n
bn + bn

)
for a fixed number of time series compo-

nents, which for relatively sparsely spaced break points becomes
O
(√

n
)
, and thus attractive for a number of applications.

The fastest currentmethod for break point detection in high-
dimensional time series with theoretical guarantees takes at least

O(n) time. Such a computational time becomes prohibitive in
the era of big data where tens of thousands or more temporally
observed data points are easy to collect, as the neuroscience
application discussed in this article shows. On the other hand,
the proposed BSS algorithm reduces this time to O(

√
n) (in the

best case scenario), while exhibiting one of the best detection
accuracy rates in the literature both theoretically and empiri-
cally. Further, the minimum spacing required between consec-
utive true break points in BSS (which is the bottleneck of all
detection methods) is less than most of the currently available
detection methods for multivariate time series, including Cho
and Fryzlewicz (2015), Cho (2016), Wang, Yu, and Rinaldo
(2017), Wang and Samworth (2018), and Barigozzi, Cho, and
Fryzlewicz (2018) (see more details in Remark 6, as well as
numerical comparisons in Section 5.2).

Extensive numerical comparisons with competing methods
(Wang et al. 2019; Safikhani and Shojaie 2020; Cho and Fry-
zlewicz 2015; Cho 2016) show that the BSS algorithm outper-
forms them both in terms of detection accuracy and compu-
tation time; see details in Section 5.2 and Appendix E in the
supplementary material.

The proposed BSS poses a number of technical challenges
for establishing consistency of the number, locations and VAR
model parameters that are satisfactory resolved in this study.
The first involves selection of the block size bn that needs to
be adequately large to reduce computational time (through its
impact on the number of blocks kn), but also not exceedingly
large that would lead to missing any of the true break points.
Further, very large block sizes would also make it impossi-
ble to verifying the restricted eigenvalue (RE) condition (Basu
and Michailidis 2015) needed to establish theoretical guaran-
tees provided by BSS. This issue is carefully addressed through
Assumption A3 and also in Remark 3 and Section 4.1. In addi-
tion, the BSS method introduces several additional theoreti-
cal/technical challenges including the introduction of a local
screening step based on a corresponding local information cri-
terion to “thin out” candidate change points, the subsequent
verification of the RE and deviation bound (DB) conditions for
the local screening step, see Theorems 3 and 4.

The remainder of the article is organized as follows. Section 2
introduces the modeling framework, while Section 3 provides
a detailed description of the proposed methodology based on
BSS. Asymptotic properties of the BSS method including the
consistency of the number of break points and their locations
are established in Section 4, while the computational complexity
of BSS is discussed in Section 4.1. The numerical performance
of the proposed BSS in various simulation settings together
with a real data application are presented in Sections 5 and 6,
respectively.

2. Model Formulation

We start by introducing a piecewise stationary VAR(q) model
exhibiting several break points. This model comprises of
independent stationary VAR(q) processes concatenated at
certain time points, henceforth called break points. This
modeling framework is similar to the one developed in Safikhani
and Shojaie (2020); see also model 1 in Wang et al. (2019).
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Specifically, suppose there exist m0 break points 0 < t1 <

· · · tm0 < T (with t0 = 0 and tm0+1 = T) in such a way that for
tj−1 ≤ t < tj, we have:

yt = �(1,j)yt−1 + · · · + �(q,j)yt−q + �
1/2
j εt , (1)

for j = 1, 2, . . . ,m0 + 1, where yt is a p-dimensional vector
of observations at time t, �(l,j) ∈ R

p×p is a sparse coefficient
matrix corresponding to the lth lag of a VAR process of order
q during the jth stationary segment, and εt is a white-noise
process with zero mean and variance matrix �j (see additional
discussion on distributional assumptions in Section 4). In each
segment [tj−1, tj), all model parameters are assumed to be fixed.
However, the auto-regressive (AR) parameters�(l,j) will change
values between segments. The error covariance is assumed to
be �j = σ 2I across all segments (similar to Wang et al. 2019;
see definition 1 andmodel 1), since segment-specific covariance
structure for the error terms may introduce nontrivial identifi-
ability issues. Specifically, the latter choice may lead to identi-
cal second order structure of the stochastic processes involved
before and after a break point through simultaneous changes
in both the transition matrices and the covariance of the error
term.

In this setup, the number of break pointsm0, their locations
tj, j = 1, . . . ,m0, the VAR parameters �(q,j) together with the
covariance matrix are unknown in each segment. The objective
is then to detect the break points tj, in a computationally efficient
manner that is also scalable for very large values ofT. Of interest
is also to estimate accurately the VAR parameters �(l,j), under a
high-dimensional regime (p � T).

Notation: Denoting �(.,j) = (
�(1,j) . . . �(q,j)) ∈ R

p×pq,
define the number of nonzero elements in the kth row of �(.,j)

as dkj, k = 1, 2, . . . , p and j = 1, 2, . . . ,m0 + 1. Further, for
each j = 1, 2, . . . ,m0 + 1 and k = 1, . . . , p, denote by Ikj the
set of all column indexes of �

(.,j)
k at which there is a nonzero

term, where �
(.,j)
k denotes the kth row of �(.,j). Let Ij = ∪kIkj

and dj = ∑p
k=1 dkj. Let d

�
n = max1≤j≤m0+1 dj be the maximum

sparsity of the model amongm0 + 1 segments.
Note that our theoretical analysis deals with the high-

dimensional case, wherein p, m0 and the sparsity levels dkj
increase with the sample size, T. Specifically, we define p ≡ p(n)
andm0 ≡ m0(n) and dkj ≡ dkj(n), where n = T−q+1, and we
use the suppressed n-index throughout the article. In addition,
we denote the transpose of a matrix A as A′, denote |S| as the
cardinal of a setS . For a vector v ∈ R

p, we use ||v||1, ||v||2, ||v||∞
to represent �1, �2, and �∞ norm, respectively. We use ||A||1,
||A||F and ||A||∞ to represent

∑
ij |Aij|, Frobenius norm of

matrix A and maxij |Aij|, respectively. We also denote the
minimum distance between two consecutive break points by
�n = min1≤j≤m0+1 |tj − tj−1|.

3. A BSS-Based Algorithm

The main idea of BSS is to partition the time points into blocks
of size bn and fix the VAR parameters within each block. To this
end, define a sequence of time points q = r0 < r1 < ... <

rkn = T + 1 which play the role of end points for the blocks;
that is, ri+1 − ri = bn for i = 0, ..., kn − 2, and kn = 
 n

bn � is
the total number of blocks. Next, we form the following linear
regression:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′
q
...

y′
r1−1
y′
r1
...

y′
r2−1

...

y′
rkn−1
...
y′
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Y

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y ′
q−1
... 0 . . . 0

Y ′
r1−2

Y ′
r1−1 Y ′

r1−1
...

... . . . 0
Y ′
r2−2 Y ′

r2−2

...
...

. . .
...

Y ′
rkn−1−1 Y ′

rkn−1−1 Y ′
rkn−1−1

...
... . . .

...
Y ′
T−1 Y ′

T−1 Y ′
T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

X

⎛⎜⎜⎜⎝
θ ′
1

θ ′
2
...

θ ′
kn

⎞⎟⎟⎟⎠
︸ ︷︷ ︸




+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε′
q
...

ε′
r1−1
ε′
r1
...

ε′
r2−1

...

ε′
rkn−1
...

ε′
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

E

, (2)

where Y ′
l =

(
y′
l . . . y

′
l−q+1

)
1×pq

, Y ∈ R
n×p, X ∈ R

n×knpq, 
 ∈
R
knpq×p and E ∈ R

n×p. Note that in this parameterization, θi �=
0 for i ≥ 2 implies a change in the VAR coefficients. Therefore,
for j = 1, . . . ,m0, the structural break points tj can be estimated
as block-end time point ri−1, where i ≥ 2 and θi �= 0. We can
rewrite the linear regression model (2) in vector form as

Y = Z� + E, (3)

where Y = vec(Y) ∈ R
np×1, Z = Ip ⊗ X ∈ R

np×πb ,
� = vec(
) ∈ R

πb×1 and E = vec(E) ∈ R
np×1,

with ⊗ denoting the tensor product of two matrices
and πb = knp2q.

The model parameters � can be estimated via regularized
least squares. We introduce two �1 penalty terms to handle the
growing number of nonzero parameters due to the number of
break points m0, as well as the number of time series p. The
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initial estimate of parameter � is given by

�̂ = argmin�

1
n
||Y − Z�||22 + λ1,n||�||1

+ λ2,n

kn∑
i=1

∥∥∥∥∥∥
i∑

j=1
θj

∥∥∥∥∥∥
1

. (4)

Problem (4) uses a fused lasso penalty (Tibshirani et al. 2005),
with two �1 penalties controlling the number of break points
and the sparsity of the VAR model. This problem is convex
and can be solved efficiently with available algorithms. Asymp-
totic results of this estimator are established in Theorem 1 in
Section 4.

Denote the sets of indices of blocks with nonzero jumps and
corresponding estimated change points obtained from solving
Equation (4) by

În = {̂
i1,̂ i2, . . . ,̂ im̂

} =
{
i :
∥∥�̂i

∥∥2
F �= 0, i = 2, . . . , kn

}
,

and

Ân = {̂
t1,̂ t2, . . . ,̂ tm̂

} = {
ri−1 : i ∈ În

}
.

The total number of estimated change points in this step
corresponds to the cardinality of the set Ân; let m̂ = |Ân|. Then,
the relationship between θ̂j’s and �̂j’s is given by

�̂1 = θ̂1, and �̂j =
îj∑

k=1
θ̂k, j = 2, . . . , m̂,

(5)
where

{
θ̂k, k = 1, . . . , kn

}
arematrix form parameters estimated

from Equation (4).
Note that the block size bn acts as a tuning parameter that

regulates the number ofmodel parameters to be estimated, given
by πb = 
 n

bn �p2q. In the extreme case with bn = 1, BSS reverts
to an exhaustive search of all time points to locate the structural
breaks. Nevertheless, bn cannot also be too large. In Section 4
(AssumptionA3), we provide conditions that bn needs to satisfy.

Local screening step: The set Ân of candidate change points
overestimates their number, as the result of Theorem1 shows. To
that end, a screening step to “thin out” redundant break points is
needed. Themain idea is to estimate the VAR parameters locally
on the left and right side of each selected break point in the
first step and compare them to one VAR parameter estimated
from combining the left and right of the selected break point as
one large stationary segment. Then, the sum of squared errors is
calculated on each segment. Now, if the selected break point is
close to a true break point, the sum of squared errors calculated
assuming stationarity around the true break point will be much
larger compared to the sum of squared errors calculated from
two separate VAR parameter estimates on the left and right of
the selected break point. Therefore, we can get consistent esti-
mates of the number of break points by minimizing a localized
information criterion (LIC) comprising of the sum of squared
errors and a penalty term on the number of break points. Next,
the localized screening step is formally defined.

Recall that Ân = {̂
t1, . . . ,̂ tm̂

}
is the set of candidate break

points selected in the first step in Equation (4). Then, for each

subset A ⊆ Ân, we define the following local VAR parameter
estimates: if t̂i ∈ A, then

ψ̂̂ti ,1 = argminψ̂ti ,1

{
1
an

t̂i−1∑
t=̂ti−an

∥∥∥yt − ψ̂ti ,1Yt−1
∥∥∥2
2

+ η̂ti ,1||ψ̂ti ,1||1
}
, (6)

ψ̂̂ti ,2 = argminψ̂ti ,2

{
1
an

t̂i+an−1∑
t=̂ti

∥∥∥yt − ψ̂ti ,2Yt−1
∥∥∥2
2

+ η̂ti ,2||ψ̂ti ,2||1
}
. (7)

If t̂i ∈ Ân\A, then

ψ̂̂ti = argminψ̂ti

{
1

2an

t̂i+an−1∑
t=̂ti−an

∥∥∥yt − ψ̂tiYt−1
∥∥∥2
2

+ η̂ti ||ψ̂ti ||1
}
, (8)

where η̂ti,1 and η̂ti,2 are the tuning parameters for the left and
right side of t̂i, respectively, when t̂i ∈ A. If t̂i ∈ Ân\A, then
there is only one tuning parameter which is denoted by η̂ti .
Note that the dimension of the VAR parameter estimate �̂A
depends on the size of A, that is, �̂A ∈ R

p×(pq(2|A|+(m̂−|A|))) =
R
p×(pq(|A|+m̂)). Also, an is the neighborhood size in which the

VAR parameters are estimated. Now, the LIC can be defined as
follows:

LIC(A; ηn) =
⎧⎨⎩∑

t̂i∈A

⎛⎝ t̂i−1∑
t=̂ti−an

∥∥yt − ψ̂̂ti,1Yt−1
∥∥2
2

+
t̂i+an−1∑
t=̂ti

∥∥yt − ψ̂̂ti,2Yt−1
∥∥2
2

⎞⎠
+

∑
t̂i∈Ân\A

t̂i+an−1∑
t=̂ti−an

∥∥yt − ψ̂̂tiYt−1
∥∥2
2

⎫⎬⎭+ |A| ωn

def= Ln(A; ηn) + |A| ωn, (9)

and

(m̃,̃ tj; j = 1, . . . , m̃) = argmin0≤m≤m̂, s=(s1,...,sm)⊆Ân
LIC(s; ηn). (10)

Denote the set of selected break points from Equation (10)
by

Ãn = {̃t1, . . . ,̃ tm̃}.
Remark 1. The LIC needs m̂ time parameter estimation on
segments of size 2an which is much smaller than the total
sample size n. Further, these m̂ time parameter estimates are
independent of each other, and therefore, can be calculated in
parallel.

Exhaustive Search Step. The LICmanages to eliminate candi-
date break points that are located far from any true break points.
In other words, all selected break points t̃1, . . . ,̃ tm̃ are close
enough to true break points, with the distance being at most
an. However, in an-neighborhoods of each true break point,
there may be more than one estimated candidate break points
remaining in the set Ãn = {̃t1, . . . ,̃ tm̃}. Therefore, examining
the number of clusters in Ãn with sizes at most 2an, leads to
detection of the true number of break points. The last step
involves carefully analyzing each cluster and only keeping one
element in each of them. The latter task can be accomplished
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by employing an exhaustive search for each cluster, which is
computationally inexpensive, since the cluster sizes are at most
2an. To this end, we formally state the exhaustive search step in
the BSS algorithm.

For a set A ⊂ {1, . . . ,T}, define cluster (A, x) to be the
minimal partition of A, where the diameter for each subset is
at most x (for a set B, the diameter of B is defined as diam(B) =
maxa,b∈B |a − b|). Now, denote the subsets in cluster

(
Ãn, 2an

)
by cluster

(
Ãn, 2an

) = {
B1, . . . ,Bm0

}
, where each subset Bi

has a diameter at most 2an. Note that based on Theorem 2 in
Section 4, with high probability converging to one, the number
of subsets in cluster

(
Ãn, 2an

)
is exactlym0.

For each subset Bi, we apply the exhaustive search method
for each time point s in the interval [li, ui] = [min(Bi)−
an, max(Bi) + an]. Specifically, define the final estimated break
point t̃fi as

t̃fi = arg mins∈(li,ui)

⎧⎨⎩
s−1∑

t=min(Bi)−an

∥∥yt − ψ̃i,1Yt−1
∥∥2
2

+
max(Bi)+an−1∑

t=s

∥∥yt − ψ̃i,2Yt−1
∥∥2
2

⎫⎬⎭ , (11)

for i = 1, . . . ,m0, where ψ̃i,1 and ψ̃i,2 are the local VAR
parameter estimates within the R̃n-radius interval of time point
si = median(Bi), that is,

ψ̃i,1 = argminψi,1

{
1
R̃n

si−1∑
t=si−R̃n

||yt − ψi,1Yt−1||22 + η̃i,1||ψi,1||1
}
, (12)

ψ̃i,2 = argminψi,2

{
1
R̃n

si+R̃n−1∑
t=si

||yt − ψi,2Yt−1||22 + η̃i,2||ψi,2||1
}
, (13)

where η̃i,1 and η̃i,2 are the tuning parameters for time point
si = median(Bi), and R̃n is a carefully chosen sequence (see
AssumptionA4 for rates of R̃n). Denote the set of final estimated
change points from (11) by Ãf

n =
{̃
tf1, . . . ,̃ t

f
m0

}
.

Remark 2. The theoretical rate for R̃n is provided in Assump-
tion A4 in Section 4. To obtain theoretical guarantees (esti-
mation consistency), we re-estimate the parameters within R̃n-
radius of median of clusters Bi, which is slightly more than an.
In practice, however, we can just use the local AR parameter
estimates in the second step, that is, from Equations (6) and (7)
to avoid increasing computation time. These local AR estimated
parameters perform very well as investigated in Section 5.

Model Parameter Estimation. The key to consistent estima-
tion of the model parameters is the result of Theorem 1 in
Section 4. This result implies that removing the selected break
points using a large enough Rn-radius neighborhood will also
remove true break points with high probability converging to
one as sample size tends to infinity. We can thus obtain sta-
tionary segments at the cost of discarding some portions of the
observed time series. In otherwords, removing a number of data
(time points) around the identified break points by the previous
steps ensures that the remaining segments are stationary with
high probability. Theorem 1 suggests that the radius Rn can be
as small as nγn (examples of γn include γn = K(log n log p)/n
and γn = K log p√

n for some K > 0, see more details in Remark 3).
However, based on Theorem 3 , in order not to keep any redun-
dant break points, Rn needs to be at least Kd�

n log p for a large
value K > 0.

Formally, assume without loss of generality, that we have
selectedm0 break points, denoted by t̃f1, . . . ,̃ t

f
m0 . Then, by The-

orem 3,

P

(
max

1≤j≤m0
|̃tfj − tj| ≤ Rn

)
→ 1,

as n → ∞. Further, denote rj1 = t̃fj −Rn − 1, rj2 = t̃fj +Rn + 1
for j = 1, . . . ,m0, and set r02 = q and r(m0+1)1 = T. Next,
define the intervals Ij = [r(j−1)2, rj1] for j = 1, . . . ,m0 + 1. The
idea is to form a linear regression on ∪m0+1

j=1 Ij and estimate the
AR parameters by minimizing an �1-regularized least squares
criterion. Specifically, we form the following linear regression:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′
q
...

y′
r11
y′
r12
...

y′
r21

...

y′
rm02
...
y′
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Yr

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y ′
q−1
... 0 . . . 0

Y ′
r11−1

Y ′
r12−1

0
... . . . 0

Y ′
r21−1

...
...

. . .
...

Y ′
rm02−1

0 0
...

Y ′
T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Xr

⎛⎜⎜⎜⎝
β ′
1

β ′
2
...

β ′
m0+1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

B

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ ′
q
...

ζ ′
r11

ζ ′
r12
...

ζ ′
r21

...

ζ ′
rm02
...

ζ ′
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Er

. (14)
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This regression can be written in vector form, as

Yr = ZrB + Er (15)

where Yr = vec(Yr) ∈ R
Np×1, Zr = Ip ⊗ Xr ∈ R

Np×π̃ , B =
vec(B) ∈ R

π̃×1, Er = vec(Er) ∈ R
Np×1. Here, r is the collection

of all rj1 and rj2 for j = 0, . . . ,m0 + 1, ⊗ denotes the tensor
product of two matrices, π̃ = (m0 + 1)p2q, Nj = length(Ij) =
rj1 − r(j−1)2 for j = 1, . . . ,m0 + 1 and N = ∑m0+1

j=1 Nj. We
estimate the VAR parameters by solving

B̂ = argminBN
−1 ‖Yr − ZrB‖22 + ρn ‖B‖1 . (16)

The estimator defined in Equation (16) provides simultane-
ously m0 + 1 estimated transition matrices over the estimated
m0 + 1 stationary segments which is computationally attrac-
tive since it requires tuning of a single hyperparameter (ρn).
However, the performance of estimator B̂may be poor in cases
where the sparsity level is unbalanced over them0+1 stationary
segments and/or the number of change point is diverging with
the sample size. In such cases, one could separately estimate the
VAR parameters for each segment. Specifically, for jth segment,
where j = 1 . . . ,m0+1, the following linear regression equation
holds: ⎛⎜⎝y

′
r(j−1)2
...

y′
rj1

⎞⎟⎠
︸ ︷︷ ︸

Yj

=

⎛⎜⎜⎝
Y ′
r(j−1)2−1

...
Y ′
rj1−1

⎞⎟⎟⎠
︸ ︷︷ ︸

Xj

β ′
j +

⎛⎜⎝ζ ′
r(j−1)2
...

ζ ′
rj1

⎞⎟⎠
︸ ︷︷ ︸

Ej

. (17)

where Yj ∈ R
Nj×p, Xj ∈ R

Nj×pq, βj ∈ R
p×pq and Ej ∈ R

Nj×p.
Now, transition matrices in the jth segment can be estimated as

β̃j = argminβjNj
−1
∥∥∥vec(Yj) − (Ip ⊗ Xj)vec(β ′

j )
∥∥∥2
2

+ρn,j

∥∥∥vec(β ′
j )
∥∥∥
1
, (18)

for j = 1 . . . ,m0 + 1, where vec(Yj) ∈ R
Njp×1, Ip ⊗ Xj ∈

R
Njp×p2q, vec(β ′

j ) ∈ R
p2q×1, and vec(Ej) ∈ R

Njp×1.

4. Consistency of the BSS Estimator

We start by stating the assumptions needed to establish proper-
ties of the BSS-based estimator.

A1. For each j = 1, 2, . . . ,m0 + 1, the process y(j)
t =

�(1,j)y(j)
t−1 + · · · + �(q,j)y(j)

t−q + �j1/2εt is a stationary
Gaussian time series. Denote the covariance matrices
�j(h) = cov

(
y(j)
t , y(j)

t+h

)
for t, h ∈ Z. Also, assume that

for κ ∈ [−π ,π ], the spectral density matrices fj(κ) =
(2π)−1∑

l∈Z �j(l)e−
√−1κ l exist; further

max
1≤j≤m0+1

M(fj) = max
1≤j≤m0+1

(
supκ∈[−π ,π ]�max(fj(κ))

)
< +∞,

and

min
1≤j≤m0+1

m(fj) = min
1≤j≤m0+1

(
supκ∈[−π ,π ]�min(fj(κ))

)
> 0,

where �max(A) and �min(A) are the largest and small-
est eigenvalues of the symmetric or Hermitian matrix A,
respectively.

A2. The matrices �(.,j) are sparse. Specifically, for all k =
1, 2, . . . , p and j = 1, 2, . . . ,m0, dkj � p, that is, dkj/p =
o(1). Moreover, there exists a positive constant M� > 0
such that

max
1≤j≤m0+1

∥∥∥�(.,j)
∥∥∥∞ ≤ M�.

A3. There exists a positive constant v such that

min
1≤j≤m0

∥∥∥�(.,j+1) − �(.,j)
∥∥∥
F

≥ v > 0.

Moreover, there exists a vanishing positive sequence γn
such that, as n → ∞,

�n
nγn

→ +∞, limsup
bn
nγn

≤ C < 1/12, and

d�
n

√
log p
nγn

→ 0.

Assumption A1 is standard for sparse VARmodels (see Basu
and Michailidis 2015) and allows us to obtain necessary con-
centration inequalities in high dimensions. This assumption
does not restrict the applicability of the method, since it holds
for large families of VAR models (Basu and Michailidis 2015).
Note that the Gaussian assumption could be relaxed to sub-
Gaussian or sub-Weibull distributional assumptions as long as
the RE and DB conditions hold (Loh and Wainwright 2012).
In Wong et al. (2020), it is verified that these two conditions
hold for a large family of sparse VAR models under certain
mixing conditions. The second part of A1 is also used in the
proof of consistency of the VAR model parameters, once the
break points are detected. Assumption A2 ensures all transition
matrices are sparse which is a common assumption in high-
dimensional VAR models (Basu and Michailidis 2015), while it
controls the magnitudes of elements in all transition matrices
as well. The sequence γn in Assumption A3 is directly related
to the consistency rate for locating the break points tj, where
j = 1, . . . ,m0. Assumption A3 connects this rate to the tuning
parameter chosen in the estimation procedure and also to the
block sizes. Also, this assumption puts a minimum distance-
type requirement on the coefficients in different segments. Note
that the jump sizes

∥∥�(.,j+1) − �(.,j)∥∥
F can potentially converge

to zero at the price of worsening the consistency rate for locating
the break points (seemore details in Remark 5). Assumption A3
can be regarded as the extension of Assumption H2 in Chan,
Yau, and Zhang (2014) for univariate time series to the high-
dimensional case. Note that the last part of Assumption A3
puts an upper bound on the block length, bn and shows its
connection to the sequence γn. More details are provided in the
sequel. Note that in the case in which the locations of the break
points are known, the total sparsity should satisfy d�

n

√
log p
�n

→
0, since d�

n is the maximum sparsity over all stationary seg-
ments, see, for example, Basu and Michailidis (2015). However,
since in our setting, these locations must be estimated from
data, the detection/estimation error of the algorithm should
be accounted for, which yields a slightly stronger condition as
stated in Assumption A3, that is, d�

n

√
log p
nγn → 0.
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Thenext result establishes that the number of selected change
points, m̂, based on Equation (4) will be at least as large as the
true number, m0. Moreover, there exists at least one estimated
change point in a nγn-radius neighborhood of each true change
point. Before stating the theorem, we introduce some additional
notation. Let An = {t1, t2, . . . , tm0} be the set of true change
points. Following Boysen et al. (2009) andChan, Yau, andZhang
(2014), define the Hausdorff distance between two countable
sets on the real line as

dH(A,B) = max
b∈B

min
a∈A |b − a|.

Note that the above definition is not symmetric and therefore
not a real distance. Nevertheless, this is the version of function
dH(A,B) used in the next theorem.

Theorem 1. Suppose A1–A3 hold. Choose λ1,n =
2C1

√
log(n)+2 log(p)+log(q)

n , and λ2,n = C2
bn
n

√
log p
nγn for some large

constants C1,C2 > 0. Then, as n → +∞,
P
(∣∣Ân

∣∣ ≥ m0
) → 1,

and
P
(
dH
(
Ân,An

) ≤ nγn
) → 1.

In this theorem, the first tuning parameter could be as large

as λ1,n = O
(√

γn log p
n

)
. The consistency rate for break point

detection in Theorem 1 is nγn, which can be chosen as small
as possible assuming that Assumptions A2 and A3 hold. Note
that γn also depends both on the minimum distance between
consecutive true break points, as well as the number of time
series p. Whenm0 is finite, one can choose γn = (log n log p)/n.
This implies that the convergence rate for estimating the relative
locations of the break points, that is, tj/T using t̂j/T, could be as
low as (log n log p)/n.

Remark 3. Based on Assumption A3, there is a connection
between the consistency rate nγn and the block size bn. For the
choice of γn = K(log n log p)/n for some K > 0, bn can be as
large as log n log p. If we restrict the minimum distance between
consecutive break points to be at least

(√
n log p

)1+ε , then one
could choose γn = K log p√

n and bn = √
n log p. Therefore, there is

a tradeoff between computational gains by BSS and the distance
between consecutive true break points.

To establish the consistency of the screening procedure
(10), we require two additional assumptions. Recall that d�

n =
max1≤j≤m0+1 dj denotes the maximum sparsity of the model
amongm0 + 1 segments.

A4. Let �n = min1≤j≤m0 |tj+1 − tj|. Then, ωn = nγnd�
n
3 and

ωn/an → 0. Also, �n
4 ≥ R̃n = d�

n
2a2n

log p .
A5. There exists a large positive constant c > 0 such that

(a) if there exists one true break point ti in the interval(̂
tj − an ,̂ tj + an

)
such that |̂tj−ti| ≤ Knγn for some positive

constant K, then η̂tj − cd�
n = η̂tj,1 = η̂tj,2 = c

√
d�
nnγn
an ;

(b) if there exists no true break point in the interval(̂
tj − an ,̂ tj + an

)
, then η̂tj = η̂tj,1 = η̂tj,2 = c

√
log p
an .

Assumption A4 essentially puts a lower bound on the min-
imum spacing between consecutive break points (equivalently
an upper bound on the number of true break points allowed, i.e.,
m0) and connects it with the penalty termωn in the local screen-
ing step. Further, Assumption A5 states sufficient conditions on
the rate of tuning parameters in the local screening step in order
to reach optimal consistency rate for locating the true break
points. This specific selection of tuning parameters are mainly
due to the fact that in the presence of break points, one works
withmisspecifiedmodels and hence amore careful and complex
selection of the various tuning parameters are required (Chan
et al. 2017; Roy, Atchadé, and Michailidis 2017). Although the
tuning parameters under this assumption are segment-specific,
this assumption can be relaxed by putting universal rates of
tuning parameters at the cost of worsening the consistency rates
as discussed in Safikhani and Shojaie (2020).

Recall that the selected break points after the local screening
step are denoted by Ãn = {̃t1, . . . ,̃ tm̃}. Further, recall that
for a set A ⊂ {1, . . . ,T}, we define cluster (A, x) to be the
minimal partition of A, where the diameter for each subset is
at most x (for a set B, the diameter of B is defined as diam(B) =
maxa,b∈B |a − b|). Next, we formally state the result for the set
Ãn. The next theorem establishes that the number of clusters
obtained in the LIC screening step are consistent, despite the
fact that the total number of estimated break points can be larger
than the true number of break points.

Theorem 2. Suppose A1–A5 hold. Then, as n → +∞, the
minimizer (m̃,̃ tj, j = 1, . . . , m̃) of (10) satisfies

P
(
m̃ ≥ m0,

∣∣cluster (Ãn, 2an
)∣∣ = m0

) → 1.

Moreover,

P
(
dH
(
Ãn,An

) ≤ nγn, and dH
(
An, Ãn

) ≤ an
) → 1.

Despite the fact that Theorem 2 does not guarantee con-
sistency of the number of break points, it exhibits two advan-
tages compared to Theorem 1: (i) one can estimate consistently
the number of break points by looking at the cardinality of
cluster

(
Ãn, 2an

)
; (ii) all the remaining estimated break points

in Ãn are within an an-neighborhood of at least one true break
point. These advantages are used in the final step of our proce-
dure (exhaustive search) in which we consistently estimate both
the number of break points and their locations. As previously
explained, the exhaustive search step reduces to employing the
prediction error to each subset in cluster

(
Ãn, 2an

)
in order to

remove any additional break points within each cluster and only
select one.

The next theorem establishes that the estimated locations of
the break points obtained through the exhaustive search step are
consistent.

Theorem 3. Suppose A1–A5 hold and η̃j,1 = η̃j,2 = c
√

log p
R̃n

in (12) and (13) with a large enough constant c > 0 for j =
1, . . . ,m0. Then, as n → +∞, there exists a large enough
constant K > 0 such that

P

(
max

1≤j≤m0

∣∣∣̃tfj − tj
∣∣∣ ≤ Kd�

n log p
)

→ 1.
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Remark 4. Theorem 3 shows that the BSS method achieves a
better consistency rate in terms of the localization error than
the DP method developed in Wang et al. (2019)—as shown in
Theorem 1 of Wang et al. (2019), which is Op

(
d�
n
2 log p

)
—and

the three-step procedure (TSP) method developed in Safikhani
and Shojaie (2020)—as shown in Theorem 3 of Safikhani and
Shojaie (2020), which isOp

(
m0d�

n
2 log p

)
—while it matches the

consistency rate of DP after post-processing group Lasso (PGL)
procedure (see Wang et al. 2019, theor. 2).

Remark 5. In Assumption A3, it is possible to relax the
assumption by allowing the jump sizes to vanish as a function
of the sample size, at the cost of worsening the consistency
rates. In fact, the consistency rate in Theorem 3 is of order
Kd�

n log p/min1≤j≤m0

∥∥�(.,j+1) − �(.,j)∥∥2
F . In other words, the

reciprocal of the squared of the minimum jump sizes for AR
parameters appears in the consistency rate for locating the
break points. The new consistency rate depends on how fast
this quantity vanishes. A similar role for a vanishing jump size
appeared inWang et al. (2019); Kaul, Jandhyala, and Fotopoulos
(2019).

Remark 6. The minimum spacing required between consec-
utive break points (�n) is the bottleneck of all detection pro-
cedures. In the proposed BSS method, there is an important
connection between the block sizes bn and �n as stated in
Assumption A3. Specifically, the assumption is that bn/�n → 0
at a certain rate when the sample size tends to+∞. For example,
for the choice of bn = O

(
n1/3

)
, �n must be of order n

2
3+ε

for some small positive ε based on Assumption A4. Although
this assumption may seem strong, it is nevertheless weaker than
many existing detection methods in the literature including the
SBS (Cho and Fryzlewicz 2015) andDCBSmethods (Cho 2016),
wherein �n must be of order nψ for some ψ ∈ (6/7, 1). Note
that the minimum spacing assumption for the BSS method is
stronger than the detection methods developed in Wang et al.
(2019) and Safikhani and Shojaie (2020), and reflects a tradeoff
between a sub-linear break point detection algorithm and the
corresponding minimum spacing allowed.

Finally, after removing data points in an appropriately size
neighborhood of the estimated break points, consistent estima-
tion of the VAR model parameters is achieved, as stated in the
following theorem.

Theorem 4. Suppose A1–A5 hold andm0 is unknown and Rn =
an. Assume also that�n > εn for some large positive ε > 0 and

ρn = C
√

log π̃

N for large enoughC > 0. (Note thatN/n = O(1).)
Then, as n → +∞, the minimizer B̂ of Equation (16) satisfies

∥∥B̂ − �
∥∥

�
= Op

(
(d�

n)
1/�ρn

)
for � = 1, 2.

Theorem 4 verifies that the estimator B̂ achieves the same
consistency rate in the case of stationary sparse VAR models
(Basu and Michailidis 2015) as long as �n > εn for some large
positive ε > 0, which is equivalent of assuming a finite number
of break points. In the case of diverging m0, Corollary 1 states
that separate estimation of model parameters in each segment,

that is, β̃ j, for j = 1, 2, . . . ,m0+1, achieves a similar consistency
rate.

Corollary 1. Suppose A1–A5 hold and Rn = an. Assume that

ρn,j = C
√

log p2q
Nj

for large enough C > 0. Then, as n → +∞,

the minimizer
{
β̃j
}m0+1
j=1 of Equation (18) satisfies∥∥∥vec(β̃ j) − vec(�(.,j))

∥∥∥
�

= Op
(
(dj)1/�ρn,j

)
for

� = 1, 2; j = 1, . . . ,m0 + 1,

where dj = ∑p
k=1 dkj.

Both Theorem 4 and Corollary 1 are stated under Assump-
tionsA1–A5 to ensure that the number and locations of detected
break points are consistent, while the tuning parameter rates
assumed in their respective statements are in accordance with
results for stationary high-dimensional models (Basu and
Michailidis 2015).

To illustrate the individual performance of each step in BSS,
we report its performance based on a single replicate from the
following simulation setting: T = 50, 000, p = 50, q = 1 and
m0 = 2, with the break points located at t1 = �T/3� = 16, 666
and t2 = �2T/3� = 33, 333. The autoregressive coefficients are
chosen to have different sparsity patterns. In this scenario, we
set bn = 500. Figure 1 depicts all selected break points in the
three steps of the algorithm. As seen in the upper left panel, in
the first step (fused lasso) of BSS, the method over-estimates the
number of break points, which confirms the suboptimality of
fused lasso if used alone for break point detection. However, the
true break points are not isolated, as expected from Theorem 1.
For this example, around 20 points are selected as candidate
break points. Some of them are not close to any true break
points, which is why we need the second step in our method
based on screening using the LIC. After the local screening
step, only three break points remain (see plot in the upper right
panel). The method still over-estimates the number of break
points. However, as anticipated by Theorem 2, the number of
clusters is a consistent estimate of the number of break points,
which is 2 in this example. Moreover, note that after the second
step, there are no selected break points far from the true break
points, which confirms the second part of Theorem 2. Finally, as
depicted in the bottom panel of Figure 1, after applying the last
step of BSS, only two selected break points remain, and both are
close to their corresponding true values.

4.1. Computational Complexity Considerations

In the following, the number of break pointsm0 and the number
of time series components p are assumed to be fixed and finite.
An exact calculation of computation time for the BSS method is
hard, due to the presence of several optimization steps within
the BSS algorithm, for which closed form solutions are not
available; hence, numerical approximations are needed. Further,
the number of iterations to reach a small tolerance for such
numerical approximations may not be known (Bleakley and
Vert 2011), which makes it hard to compute exact number of
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Figure 1. Upper left panel: Estimated break points from the first stage of our proposed BSS procedure (Equation (4)) for a single run under Simulation Scenario 2; ∼20
points are selected in the first stage. Upper right panel: Selected break points after the LIC screening step. Bottom panel: Final selected break points.

operations for the BSS algorithm. As a result, computational
complexity calculations presented next, serve as approximations
of the algorithm’s overall computational complexity. Note that
the computational time required in the first step of BSS (penal-
ized regression) is of order O (kn) (Bleakley and Vert 2011).
Further, the computational complexity of each candidate break
point in the local screening step is of order O (2an) (Beck and
Teboulle 2009), since the calculations for each time series com-
ponent can be done separately. This rate is linear with respect
to the sample size an. Finally, the computational complexity of
each candidate break point in the exhaustive search step is of
order O (4an), since the calculations for each segment can be
done separately. Specifically, in the exhaustive search step, it
takes O (2an) for computing the sum of squared errors (SSE)
in Equation (11) and O (2an) for searching the break point that
minimizes the SSE. Note that as mentioned in Remark 2, the
local AR parameter estimates in the exhaustive search step are
the ones estimated in the local screening step (Step 2), hence
their computational times are not considered again in Step 3.
Therefore, the total computational complexity of BSS is of order
O (kn + an). Recall that kn ∼ n/bn and based on Assump-
tionA4, an can essentially be selected as b1+ε

n for a small positive
ε. Thus, the computational complexity of BSS can be written in
terms of bn asO

(
n/bn + b1+ε

n
)
. Selecting bn = 1 yields to linear

computational complexity, while bn ∼ √
n reaches the optimal

computational complexity of ∼ O(
√
n). Specifically, selecting

bn = n
1−ε

2(1+ε) , the computational complexity of BSS is of order
O
(
n

1
2+ ε

1+ε

)
which for a small ε reaches O(

√
n).

It is worth noting that there is a trade-off between the
minimum distance �n allowed between two consecutive break
points, and the computational gains of BSS. The optimal
computational gains (as discussed above) occur when bn =
n

1−ε
2(1+ε) which implies that �n is at least of order ∼ n

1−ε
(1+ε) based

on Assumption A5. However, this assumption is somewhat
strong, and may be violated in selected real datasets. Note that
this rate can be reduced at the cost of increasing computational
time. Specifically, one can set bn = nξ for a small positive
ξ , and obtain computational complexity O

(
nmax((1+ε)ξ ,1−ξ)

)
.

Note that as long as 0 < ξ < 1/2, the BSS method still detects
the break points in sublinear computation time with respect to
the sample size.

5. Performance Evaluation of BSS

We evaluate the performance of BSS with respect to both esti-
mating the number of break points and also their locations. In
all scenarios considered, we set the convergence tolerance to
10−2 for the first fused lasso step of BSS to choose candidate
break points, the covariance matrix of the noise process is set
to �ε = IT and the results are averaged over 100 random
replicates. All simulations are run in R version 4.0.3 on Intel E5-
2698v3 processors with 4 GB of RAM per core.1

5.1. Simulation Scenarios

We consider different simulation settings. Different values for
the sample size T, number of time series components p, AR
order q, block size bn, number of true break points m0 and
structure of AR parameters � are considered as summarized
in Table 1. For all settings, we report the error of locations of
the estimated break points and the selection rate, that is, the
percentage of replicateswhere each break point is correctly iden-
tified. The error of the locations of the estimated break points is

1The R/Rcpp codes to perform the BSS algorithm are available at the author’s
GitHub page: https://github.com/abolfazlsafikhani/BSS-ChangePoint-VAR.

https://github.com/abolfazlsafikhani/BSS-ChangePoint-VAR
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defined as errorj = |t̃fj − tj|, j = 1, . . . ,m0. The selection rate is
calculated as the proportion of replicates, wherein the estimated
break points by BSS are close to each of the true break points.
Specifically, to compute the selection rate, a selected break point
is counted as a “success” for the jth true break point, tj, if it falls
in the interval [tj − tj−tj−1

5 , tj + tj+1−tj
5 ], j = 1, . . . ,m0. Details of

each simulation setting are provided in Table 1.
Setting A (effect of block size bn under small T, small p case).

In scenario A, T = 500, p = 2, q = 1, m0 = 2, t1 = �T
3 �,

t2 = � 2T
3 �, while the AR coefficients are chosen to have a similar

pattern as in Preuss, Puchstein, and Dette (2015), also depicted
in the top left panel of Figure 2. The diagonal elements for three
segments have magnitudes −0.8, 0.8, and −0.8, respectively.
The upper right element is fixed to be 0.1. The block sizes vary
across scenarios. Specifically, in scenarios A.1 to A.3, the block
sizes are selected to be bn = 5, 10, and 15, respectively.

Setting B (t-distributed error case). In scenario B, T = 5000,
p = 15, q = 1,m0 = 2, t1 = �T

3 �, t2 = � 2T
3 �, block size bn = 70

and the AR coefficients are chosen to have the same simple 1-off
diagonal structure, but different magnitude −0.8, 0.8, and −0.8
as depicted in the top right panel of Figure 2. In scenario B, the
error term is set to follow Student’s t-distribution. The degree
of freedom vary across scenarios. Specifically, in Scenarios B.1
to B.4, the degrees of freedom are set to df = 5, 10, 15, and∞,
respectively.

Table 1. Details of model parameters for simulation settings A-D.

Sim T p AR order q block size bn m0 AR structure

A.1 500 2 1 5 2 Simple
A.2 500 2 1 10 2 Simple
A.3 500 2 1 15 2 Simple
B.1 5000 15 1 70 2 Simple
B.2 5000 15 1 70 2 Simple
B.3 5000 15 1 70 2 Simple
B.4 5000 15 1 70 2 Simple
C.1 1000 20 1 31 2 Random
C.2 1000 40 1 31 2 Random
C.3 1000 60 1 31 2 Random
D.1 5000 15 2 70 2 Random
D.2 5000 15 2 70 2 Random
D.3 5000 15 2 70 2 Random

Setting C (High-dimensional case). In scenario C, T = 1000,
q = 1, m0 = 2, t1 = �T

3 � = 333, t2 = � 2T
3 � = 666,

bn = �n 1
2 � = 31 and the location of nonzero AR coefficients

are randomly chosen with repeated entries −0.8, 0.8, and −0.8
as illustrated in the middle panel of Figure 2. The number of
time series components p varies across scenarios. Specifically, in
Scenarios C.1 to C.3, it is set to p = 20, 40, and 60, respectively.
Note that in this setting, the number of parameters are (m0 +
1)p2 = 1200, 4800, 10800, and all of them are larger than the
sample size T which is why this stetting is called the high-
dimensional case.

Setting D (AR lag effect). In Scenario D, T = 5000, p = 15,
q = 2, m0 = 2, t1 = �T

3 � = 1666, t2 = � 2T
3 � = 3333, and

bn = 70, while the structure of AR coefficients are chosen to be
random in both location and magnitude. All VAR parameters
are depicted in the bottom panel of Figure 2. Specifically, the
�(1), �(3), and �(5) stand for the lag 1 AR coefficients for
the three segments, respectively, while the �(2), �(4) and �(6)

stand for the lag 2 AR coefficients. In Scenario D.1, the values
of lag 1 effect and lag 2 effect in the first segment equal to
−(0.3 + unif(0, 0.05)) and (0.6 + unif(0, 0.05)), the values of
lag 1 effect and lag 2 effect in the second segment equal to
(0.3 + unif(0, 0.05)) and −(0.6 + unif(0, 0.05)), and the values
of lag 1 effect and lag 2 effect in the third segment equal to
−(0.3+unif(0, 0.05)) and (0.6+unif(0, 0.05)), where unif(a, b)
denotes the uniform distribution in the finite interval (a, b). The
magnitudes of lag effects in Scenarios D.2 and D.3 are similar to
D.1, only with different signs. In Scenario D.1, both lag 1 and 2
have jumps, the block size bn = 70. In Scenario D.2, only lag
1 has jumps and the rest are fixed over segments, the block size
bn = 70. In Scenario D.3, only lag 2 has jumps and the rest are
fixed over segments, the block size bn = 70.

For simulation settings A–D, the mean and standard devi-
ation for the estimates’ distance from the true break point, as
well as the selection rate (proportion of correctly identifying the
specific break point) are reported in Table 2. The table clearly
indicates that in all settings, BSS accurately detects both the
number of break points, as well as their locations. The perfor-
mance of the proposed BSS algorithm is robust to the changes
in theARparameters’ zero/nonzero pattern, block size, presence
of heavier tailed errors (consistent with results for stationary

Figure2. (Top) TrueAR coefficients in ScenarioA (left), B (right); (Middle) TrueAR coefficients in Scenario C.1 (left), C.2 (middle), andC.3 (right); (Bottom) TrueAR coefficients
in Scenario D.1 (left), D.2 (middle), and D.3 (right).
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Table 2. Results of BSS performance for simulation settings A–D.

Break point Mean (error) std (error) Selection rate

Simulation A.1
1 2.02 3.1654 1
2 1.69 3.2836 1

Simulation A.2
1 1.6667 3.5399 1
2 1.1111 2.1471 1

Simulation A.3
1 0.697 1.8208 1
2 1.5051 4.5387 0.99

Simulation B.1
1 0.02 0.2 1
2 0 0 1

Simulation B.2
1 0 0 1
2 0 0 1

Simulation B.3
1 0.01 0.1 1
2 0.01 0.1 1

Simulation B.4
1 0 0 1
2 0.01 0.1 1

Simulation C.1
1 0 0 1
2 0.18 1.7019 1

Simulation C.2
1 1.0316 8.5645 0.94
2 0 0 0.97

Simulation C.3
1 4.1837 17.8991 0.96
2 1.0612 8.3836 0.97

Simulation D.1
1 0.03 0.1714 1
2 0.02 0.1407 1

Simulation D.2
1 4.99 20.0809 1
2 6.27 21.2745 1

Simulation D.3
1 0.05 0.219 1
2 0.08 0.3075 1

VAR models (Lin and Michailidis 2017), increasing number
of time series components, and larger number of lags. This
solid performance justifies the data-driven tuning parameter
methods discussed in Appendix D. As expected, the selection
rate in simulation scenario A slightly decreases as the block size
increases (from100% to 99%), whereas the average computation
time drops significantly (∼ %74 computation time reduction
using large block size compared to small block size). Note that
with a decreasing block size bn, BSS can always accommodate
more break points in the model at the cost of increasing the
computation time. The selection rate in simulation Scenario B
is robust to changes in the degrees-of-freedom in the Student’s
t-distributed error. In Simulation C.3, the mean and standard
deviation of distances is larger due to the small T large p setting.
It is worth noting that in SimulationD.2, themean and standard
deviation of errors is slightly larger than other simulation set-
tings. This is mainly due to the smaller jump size. As discussed
in Remark 5, the method allows the jump size to vanish as a
function of the sample size at the cost of worsening the consis-
tency rates.

5.2. ComparisonWith Selected CompetingMethods

Next, we compare the BSS method with the three-stage proce-
dure (TSP) method in Safikhani and Shojaie (2020) and the DP
method in Wang et al. (2019). This comparison is performed in

Table 3. Details of model parameters for simulation settings E and F.

Sim T p AR order q block size bn m0 AR structure

E.1 1000 10 1 10, 15, 20 1 simple
E.2 1000 10 1 10, 15, 20 2 simple
E.3 1000 10 1 10, 15, 20 3 simple
E.4 1000 10 1 10, 15, 20 4 simple
E.5 1000 10 1 10, 15, 20 5 simple
E.6 1000 10 1 10, 15, 20 6 simple

F.1 200 8 1 �n 1
2 � , �n 2

5 �, �n 1
3 � 1 simple

F.2 400 8 1 �n 1
2 � , �n 2

5 �, �n 1
3 � 1 simple

F.3 600 8 1 �n 1
2 � , �n 2

5 �, �n 1
3 � 1 simple

F.4 800 8 1 �n 1
2 � , �n 2

5 �, �n 1
3 � 1 simple

F.5 1000 8 1 �n 1
2 � , �n 2

5 �, �n 1
3 � 1 simple

two steps. First, detection accuracy of these three methods are
compared based on simulation setting E. Second, computational
time of these methods are compared under simulation setting F.
Model settings for Scenarios E and F are summarized in Table 3.
Similar to the four simulation settings A–D, we compute the
selection rate for each true break point which is calculated as
the proportion of replicates, where the estimated break points by
each detectionmethod are close to each of the true break points.
Specifically, a selected break point is counted as a “success” for
the jth true break point, tj, if it falls in the interval [tj− tj+1−tj

5 , tj+
tj+1−tj

5 ], j = 1, . . . ,m0. Finally, in all simulations, the results are
averaged over 100 replicates.

Setting E (detection comparison). In Scenario E, there are
several true break points in the data-generating process with
T = 1000, p = 10, q = 1 with break points being equally
spaced: � T

m0+1�, � 2T
m0+1�, . . . , � m0T

m0+1�. In Scenarios E.1 though
E.6, the true number of break points arem0 = 1, 2, 3, 4, 5, and 6,
respectively. The true coefficient matrices are similar to simula-
tion B, as depicted in Figure 2 (top right panel) with repeated
entries −0.6, 0.6, and −0.6 off the main diagonal. We consider
the BSS method with three different block size settings: large
bn = 20, medium bn = 15 and small bn = 10.

All methods achieve selection rates over 90% (left panel of
Figure 3). In fact, all methods reach 100% when m0 < 5,
while the selection for TSP and BSS with large block size are
within the interval [90%, 100%] for m0 = 5, 6. This is con-
sistent with the discussion in Remark 6 on minimum spacing
between consecutive break points. Specifically, larger block sizes
for BSS imply fewer break points allowed, while medium and
small block sizes yield similar results compared to TSP and DP.
Further, the Hausdorff distance between the set of estimated
and true break points—dH

(
Ãf

n,An
)
—is a reasonable measure

for estimation accuracy of the location of break points. The
middle panel in Figure 3 illustrates the performance of all three
methods in terms of this metric (averaged over 100 replicates).
It can be seen that BSS outperforms the TSP and DP methods
across all settings, while the advantage of BSS becomes more
significant for larger m0 values. On the other hand, the average
computation time (∼5 sec for bn = 10;∼2.5 sec for bn = 15 and
bn = 20) of the BSS method is significantly lower compared to
DP (∼4500 sec) and TSP methods (∼ 500 sec).

Next, we compare the computation time for the following
three methods: BSS, DP, and TSP. Five additional simulation
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Figure 3. (Left) Median selection rate for the BSS (large, medium, and small), DP and TSP methods in simulation E; (Middle) Median Hausdorff distance for the BSS (large,
medium, small), DP and TSP methods in simulation E; (Right) Logarithm of average computational time for the BSS (large, medium, and small), DP and TSP methods in
simulation F.

scenarios (F.1–F.5) are considered with model parameter values
summarized in Table 3. Details of the simulation settings are as
follows:

Setting F (computation time comparison). In Scenario F,
p = 8, q = 1, m0 = 2, t1 = �T

3 �, t2 = � 2T
3 �. The AR

coefficients are chosen to have the same simple 1-off diagonal
structure as in Scenario B as shown in the top right panel of
Figure 2 with repeated entries −0.8, 0.8, and −0.8 in the 1-off
main diagonal. The sample size for Scenarios F.1 through F.5 are
T = 200, 400, 600, 800, and 1000, respectively.

The average computation time over 100 replicates (in log-
arithmic scale) for simulation setting F is plotted in the right
panel of Figure 3. BSS with large block sizes is the fastest method
overall, while DP is the slowest one. It is worth noting that BSS
with small block sizes remains faster than both TSP and DP,
while its estimation accuracy and selection rate are the best over
all these methods. In this numerical experiment, the reduction
in computation time in BSS (small block size) compared to TSP
and DP are over 95% and 98%, respectively, while BSS with
medium and large block sizes achieve even a higher reduction
in computation time.

Experiments E and F reveal the fact that BSS-based methods
are among the fastest detection methods for VARmodels, while
their selection rate and estimation accuracy also outperform
some of the current competing methods. The upshot of this
extensive numerical work is that carefully selecting blockswhere
the model parameters are kept fixed offers large computational
gains in change point detection, without sacrificing estimation
accuracy.

We also compared the BSS method to the SBS (Cho and
Fryzlewicz 2015) and DCBS methods (Cho 2016) in terms of
detection accuracy and computation time. Details of this com-
parison are given in Appendix C.

6. An Application to Electroencephalogram (EEG)
Data

We apply BSS, TSP and DP to an EEG dataset analyzed in
Trujillo (2019). In this database, EEG signals from active elec-
trodes for p = 21 channels are recorded at a sampling frequency
of 256Hz, for a total of 187 sec (T ∼ 48,000). The stimulus
procedure tested on the selected subject comprised of three 1-
min duration interleaved sessions with eyes open and closed.
The time series for all 21 EEG channels (after de-trending and

Figure 4. EEG data with 21 channels over 187 sec. Red solid lines locate the two
selected break points using the BSS method with bn = 300 while the black solid
lines represent the true change point locations. The estimated three segments -
from left to right- represent eyes closed (EC), eyes open (EO), and eyes closed (EC),
respectively.

Table 4. Location of break points detected in the EEG data using three estimation
methods with different settings (true change points are t1 = 15, 896 and t2 =
32, 120).

Method Estimated Computation sample
change points time (sec) size

DP (γ = 0.5) 15,552, 16,384, 31,744,
33,600

5222 1500

DP (default setting) – 47,310 1500
TSP 1472 , 26,56 ,10,848 ,15,616,

15,968, 26,112, 32,160
1331 1500

BSS (bn = 200) 15,804, 32,001 1023 48,000
BSS (bn = 250) 15,826, 32,221 1072 48,000
BSS (bn = 300) 15,601, 32,231 1247 48,000

NOTE: The estimated change points based on the sub-sampled dataset are rescaled
back to the original time scale.

scaling the data) are shown in Figure 4. The changes of status
(eyes open (EO) to eyes closed (EC) or eyes closed (EC) to eyes
open (EO)) were estimated to take place at t1 = 15,896 and
t2 = 32,120. We consider these two time points as the “true”
break points, since it is likely for the brain connectivity to change
at these time points due to the stimulus procedure.

BSS with three different block sizes bn = 200, 250, and 300
was applied to this data. As seen in Table 4, all BSS methods
detected two break points around the true ones, that is, t1 =
15,896 and t2 = 32,120. Further, the BSS method is robust to



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 13

Figure 5. Network of Granger causal interactions among EEG channels based on data from Figure 4. Three networks—from left to right—represent eyes closed (EC), eyes
open (EO), and eyes closed (EC), respectively.

the choice of block size bn. The selected break points by the
BSS method with bn = 300 are also depicted in Figure 4 (red
solid lines). While the computation time for BSS was ∼ 20min,
a simple calculation based on the results in Section 5.2 reveals
that it would take 1–2 (∼ 20) days for TSP (DP) to detect
break points on this dataset due to the exceedingly large sample
size. Thus, we did not apply these methods to the original data.
Instead, we applied them on a sub-sampled version of the data
in which 1 in every 32 observations is retained. This was mainly
to reduce the sample size (to ∼ 1500) in order for TSP and DP
to be able to perform detection of break points within hours. A
summary of the results of TSP and DP are reported in Table 4
as well. The TSPmethod selected 7 estimated break points, with
some of thembeing far away from the true ones.Under amanual
selection of the tuning parameter γn = 0.5, the DP method
detected 4 break points around the two true ones, while with
the default setting of γn calculated by cross-validation (selected
as γn = 1), the DP can not detect any change points. The
computation time for TSP (DP) for the sub-sampled data set is
∼ 22min (∼ 87min for the fixed tuning parameter case and
∼ 13 hr for the data-driven tuning parameter case), still larger
than BSS. Note that the sub-sampled data most likely exhibit
different temporal dynamics than the original high-frequency
time series and in addition, size of the jumps are also altered,
both factors contributing to the poor performance of TSP and
DP. However, as previously mentioned, the latter two methods
are computationally expensive (especially DP) for routine use
with such large datasets.

After detecting two change points using BSS with bn = 300,
and in order to provide insights into changes in the neuronal
interactions between the two states—eyes closed (EC) and eyes
open (EO)—we estimated the AR parameters in each segment
(obtained from Equation (18)). The Granger causal network
associated with these estimated transition matrices are depicted
in Figure 5. These networks are constructed as follows. We
discarded observations in the Rn radius neighborhood around
t̃f1 = 15601 and t̃f2 = 32, 231 in order to ensure stationarity
of the remaining observations (Rn = 350). We then used
the �1-penalized least square estimator in Equation (18) to
obtain estimates of the VAR parameters for the three segments.
Network edges in Figure 5 correspond to nonzero estimated
coefficients. It is worth noting that we only plot coefficients that
are at least larger than 10−5 in magnitude. This thresholding
step is motivated by the known over-selection property of lasso
(Shojaie, Basu, andMichailidis 2012) and is used to improve the

interpretability of the estimated networks. Different brain con-
nectivity structures among the three networks are depicted in
Figure 5 and provide further evidence for the presence of break
points in the data set. Moreover, comparing the second network
(eyes open (EO) status) with the first and third networks (eyes
closed (EC) status), although they have many common edges,
they also exhibit several differences. Of interest are the brain
activity changes related to channels within the visual cortex
including P3, Pz, O1, and O2 (Nezamfar et al. 2011). Moreover,
it can be seen that during the second segment (EO), the overall
network connectivity increases compared to the ones in the EC
segments.

7. Concluding Remarks

In this article, we developed a novel scheme that can consistently
identify structural breaks in large scale high-dimensional non-
stationary VAR models while reducing significantly computing
time. The proposed BSS is applicable in settings where there
are relatively few structural breaks compared to the number of
time points available. Key technical developments include the
calibration of the block size and the introduction of a novel
local information criterion for screening out redundant can-
didate change points. Note that as a byproduct of this study,
similar computational gains can be achieved in other models
that employ a similar parameterization; for example, the settings
in Harchaoui and Lévy-Leduc (2010), Chan, Yau, and Zhang
(2014).

SupplementaryMaterial

Appendix: Appendix A contains technical lemmas needed to prove the
main results. Proofs of the main results are given in Appendix B. Details
of the algorithm for solving the optimization problem (4) are given
in Appendix C, while tuning parameter selections are summarized in
Appendix D. Finally, additional comparison results are provided in
Appendix E. (.pdf file)
R code: R code for the developed BSS detection algorithm described in the
article with a PDF file for instruction. (.zip file)
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