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Abstract—The bi-directional communication capabilities that
emerged into the smart power grid play a critical role in the grid’s
secure, reliable and efficient operation. Nevertheless, the data
communication functionalities introduced to Advanced Metering
Infrastructure (AMI) nodes end the grid’s isolation, and expose
the network into an array of cyber-security threats that jeopar-
dize the grid’s stability and availability. For instance, malware
amenable to inject false data into the AMI can compromise the
grid’s state estimation process and lead to catastrophic power
outages. In this paper, we explore several statistical spatio-
temporal models for efficient diagnosis of false data injection
attacks in smart grids. The proposed methods leverage the data
co-linearities that naturally arise in the AMI measurements of
the electric network to provide forecasts for the network’s AMI
observations, aiming to quickly detect the presence of “bad
data”. We evaluate the proposed approaches with data tampered
with stealth attacks compiled via three different attack strategies.
Further, we juxtapose them against two other forecasting-aided
detection methods appearing in the literature, and discuss the
trade-offs of all techniques when employed on real-world power
grid data, obtained from a large university campus.

I. INTRODUCTION

Modernizing the aging electric network with advanced
metering infrastructure constitutes a fundamental milestone
posited by utility companies. Over the past few years, millions
of “smart” meters have been deployed [1]; by 2020, an
estimated 90 million devices would be installed in the U.S.
alone [2]. These next-generation AMI meters are equipped
with low-latency two-way communication functionalities that
enable advanced meter diagnostics, accurate accounting and
billing, rapid troubleshooting for outage remediation, and,
most importantly, network observability and controllability [3],
[4]. A prime motivation for the latter is demand response [5],
[6], which is already in place by several utilities1. Via accurate
state-estimation and load forecasting, and by employing the
feedback-loop that next-generation smart meters allow, de-
mand response mechanisms can sustain the grid’s reliable and
energy-efficient operation.

Integrity of the reported data is, thus, critical for the
grid’s secure operation. Erroneous data could compromise the
grid’s state estimation process and this might lead to brown-
outs or black-outs [4], [7]–[9]. Nefarious actors interested in
disrupting the network’s smooth operation could simply launch
the so-termed false data injection (FDI) attacks [10]–[13]

1Examples include, but are not limited to, the Pacific Northwest DR project
(https://www.nwcouncil.org/energy/dr) and the New England DR initiative
(http://nedri.raabassociates.org).

in a coordinated manner to introduce network instabilities.
Several attack strategies have recently been proposed [10],
[12], [14], [15] that can be employed by adversaries to alter
the measurements of critical AMI observations in order to
ultimately misinform the grid’s state estimation process. These
strategies have gained considerable attention from the power
grid community since the attacks proposed can be judiciously
constructed and remain undetected by state-of-the-art state
estimation processes. Albeit the fact that some attack strategies
impose strong assumptions on the information available to at-
tackers (such as knowledge of the grid’s topology and network
characteristics like transmission line impedances, etc.), it is
critical to have data-driven algorithms that can detect these
attacks in a timely and accurate manner.

In this paper, we propose a series of statistical models
and corresponding estimation algorithms aiming towards rapid
detection of FDI attacks. We leverage the spatial (i.e., across
meters) and temporal correlation in data to obtain short-term
forecasts for the data observations provided by the AMI meters
(e.g., the power injections at the system buses and the power
flows across transmission lines). Large deviations between
the forecasted values and their actual readings are treated
as indications of spurious data, and an alert is raised when
these abnormalities persist over time. We tame the false alert
rate using a sequential hypothesis testing framework based on
exponentially-weighted moving average control charts.

Our contributions are twofold: (1) We propose an array of
state-space techniques for rapid identification of FDI anoma-
lies, including univariate and (several variants of) multivariate
autoregressive models as well as a dynamic factor model
that is shown to be particularly appealing as the data dimen-
sion grows. (2) We demonstrate, via realistic IEEE network
topologies (available via MATPOWER [16]) and real-world
data that exhibit non-stationarities, trends and diurnal patterns,
that our algorithms can successfully detect malicious attack
vectors obtained from three different attack strategies that
would otherwise remain undetected by the classical state
estimation techniques [10], [17]. Moreover, we juxtapose our
methods against related projection-based algorithms [18], [19]
and showcase the performance of all methods under a large
spectrum of scenarios, including seemingly innocuous attacks.

II. RELATED WORK

Data attacks have been studied significantly over the past
few years [19]–[27]. In [20], we employ a “network kriging”

2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

978-1-5386-7954-8/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2022 at 02:00:10 UTC from IEEE Xplore.  Restrictions apply. 



model to detect attacks on AMI meters based on observations
from a subset of “trusted” nodes. In [21], the problem of
detecting aberrant behavior of residential smart meters is
tackled from the home-area network perspective. [22] presents
a mixed-integer programming method that determines the
smallest subset of measurements that need to be protected to
render FDI attacks ineffective. [23] studies a graph theoretic
method for securing an optimal set of meter measurements
so that state estimation is not compromised. A linear mea-
surement model (i.e., a vector autoregressive one) is derived
in [19] to handle both SCADA and PMU measurements.

In [24], detection of FDI attacks is formulated as a matrix-
factorization problem. The work in [25] establishes a sequen-
tial hypothesis testing framework based on the likelihood ratio
that is amenable to distributed realization. A multilayer neural-
network is studied in [26], trained as a binary classifier to
identify the presence of FDI attacks. In [27], the authors
propose distributed attack detection mechanisms along with
a hypothesis testing criterion based on the quickest detection
framework. In [28], a comparative study of three supervised
learning techniques for detecting FDI attacks is performed,
namely support vector machines, k-nearest neighbor and ex-
tended nearest neighbor.

Detection based on state forecasts has also been considered
in [18], [19]. We examine both methods in section VI. These
state-space approaches consider the dynamic nature of the
system’s state evolution, and generate state forecasts and
Kalman-based state filtering to infer system anomalies. Both
methods employ techniques to describe the dynamics of the
system state (e.g., the nodal voltages and angles); the authors
in [18] use Holt’s exponential smoothing, whereas in [19] an
autoregressive model is fit based on historical data on the
system’s state.

III. STATE ESTIMATION

Utility operators employ remote sensors and meters to
receive fine-grained measurements such as power injections
(loads or generators) on buses and power flows on branches.
The measurements are utilized to estimate the state variables
of the system, including phase angles and bus voltages. The
relationship between the observed and system variables is
non-linear, and a common approximation used in practice to
simplify the analysis is the DC model approximation. The DC
state estimator relates measurements to system state variables
as follows [17],

z = Hx+ e, (1)

where z is a vector of m observations (known), x is an n vector
of state variables (unknown), and H is the m × n Jacobian
matrix (which is a function of the network’s topology and line
admittances). The error term e represents measurement noise.

The model corresponds to an overdetermined system of
linear equations2 and can be solved as a weighted least-
squares problem [17]. Its solution provides the state estimator
x̂, namely x̂ = (H>WH)−1H>Wz, where W is a diagonal

2Equivalently, this can be considered as linear regression [10], [29].

matrix with m entries the reciprocals of the variances of the
measurement errors captured by e.

For bad data processing, one can consider the residuals
defined as r = z − Hx, and calculate the estimate r̂ =
z−Hx̂ [17]. The statistic3 J(x̂) := ‖z −Hx̂‖2 (‖·‖ represents
the Euclidean norm) follows a chi-squared distribution with
m−n degrees of freedom, and can be harnessed to detect bad
data. Specifically, an alarm is triggered when J(x̂) ≥ τ(u)2,
where τ(u)2 indicates the critical value at a user-defined
confidence level u that controls the false alarm rate.

IV. THREAT MODEL

The work of Liu et al. [10] drew attention onto a family
of “data attacks” that can circumvent the bad data detection
criterion discussed above. They coined the term “false data
injection attacks” to denote attack vectors that can be injected
into the measurement system so that the corrupted measure-
ments would yield a manipulated and false state estimate.
The attack vectors are not simply random perturbations of the
meter observations, but are rather carefully crafted in an effort
to be stealthy and remain undetected by bad data processing
techniques, such as the one in section III. In this paper, our
threat model consists of data attacks inspired by [10]. We
consider the following attack strategies.

A. Random FDI attacks [10]
We assume an attacker that has limited access to meters. Let

the accessible set be Im = {i1, . . . , im}. The attacker aims to
find an attack vector a = (a1, . . . , am)> such that ai = 0 for
i /∈Im and a is a linear combination of the columns of H . It
can be easily shown that when the bad measurement vector
za = z+a is utilized to get the state estimate, the falsified state
estimate x̂bad will yield a residual za−Hx̂bad that lies below
the detection threshold τ(u)2. This attack requires knowledge
of the Jacobian matrix H (which might be non-trivial for an
attacker to obtain), but the vector a can be easily constructed
via column transformations of the matrix H (see [10], Eq. 7).

B. Minimal FDI attacks [14]
Sandberg et al. [14] introduce two security indices that

quantify the least effort required to achieve stealthy attacks
while remaining below the detection radar. They formulate
two optimization problems whose solutions provide sparse and
small magnitude attacks. We focus on the small magnitude
(“minimal”) attack strategy, since the methodology in [10] is
essentially providing sparse attack vectors as well. To construct
the “minimal” attack vector, one needs to solve the following
convex optimization problem:

βk := min
c
‖Hc‖1

subject to 1 =
∑
i

Hkic. (2)

Notably, this attack strategy focuses on a specific meter k,
and the solution c∗ can be rescaled such that a∗ = αkHc

∗

3In practice, J(x̂) is calculated using the measurement error variances as
scaling factors (see [17], p.219).
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and the measurement attack za = z + a∗ attains the minimal
amount of power ‖a∗‖1.

C. PCA-based Blind FDI attacks [12]
The above-mentioned attack strategies require knowledge of

the Jacobian matrix H , which is usually not readily available
to adversaries. The authors in [12] study a new attack which is
completely data-driven4. In particular, the authors compose at-
tack vectors based solely on the measurements captured by the
m-vector z. In particular, the “blind” attack vector is defined
as, aPCA = HPCAc, where HPCA is a matrix whose columns
are the first n eigenvectors that correspond to the largest n
eigenvalues obtained via principal component analysis (PCA)
of the sample covariance matrix Σz = 1

T Z
>Z. Z is the

(centered) T ×m measurement matrix, and c := (c1, . . . , cn)
is a non-zero random vector with ci ∼ N(0, σ2

i ). The attack
magnitude can be tuned via the σi knob (see section VI).

V. PROPOSED DETECTION METHODOLOGY

This section introduces the proposed techniques. We start
by introducing univariate and multivariate autoregressive (AR)
models. The univariate AR(p) models are network “agnostic”
(i.e., the predictions take no spatial considerations, but rather
borrow strength solely from temporal correlations), but are
extremely robust and fast when it comes to their parameter
estimation since fewer unknown parameters are required to
be learned. They further provide a solid baseline for the
performance of the vector autoregressive (VAR) models.

The proposed VAR models are natural extensions of the
AR models, but have stronger predictive power since they
capture both spatial and temporal correlations in the data.
However, as the dimensionality of the problem grows (viz.,
the number of measurements / features m), VAR training be-
comes cumbersome and problematic since multiple parameters
need to be estimated (see section VI). For example, with
a VAR model of order p, there are pm2 parameters to be
learned. Consistent estimation of model parameters requires a
large number of data points, which might not be a feasible
requirement in large electric networks (e.g., due to memory
/ storage constraints). We try to alleviate this by examining
also regularized VAR models [30] (i.e., VAR models with
penalties that constrain the number of unknown parameters).
Furthermore, we introduce dynamic factor models (DFM) [31],
[32] that are better tailored for large problems when the
amount of variation in the data can be explained by only a
few common factors (indeed, the measurement matrix of the
real-world data we study is low-ranked). To the best of our
knowledge, dynamic factor analysis techniques have not been
explored before for modeling electricity data.

A. Vector Autoregression

VAR(p) models have been well-studied and are known to
have good properties for forecasting power consumption data

4The proposed method indeed does not require knowledge of H , but is
better tuned using knowledge of the number of network states n.

and other SCADA states [33]. An m-dimensional5, zero-mean,
stationary process zt modeled as VAR(p) is given by zt −
φ1zt−1 − · · · − φpzt−p = wt, where φi are m×m transition
matrices, and (wt) is a vector white noise process with zero
mean and covariance Σ.

Given the data {z0, . . . , zT }, the estimation problem can be
casted to a linear regression one [30]:z

>
T
...
z>p


︸ ︷︷ ︸
Y

=

z
>
T−1 · · · z>T−p
...

. . .
...

z>p−1 · · · z>0


︸ ︷︷ ︸

X

φ
>
1
...
φ>p


︸ ︷︷ ︸
B∗

+

w
>
T
...
w>p


︸ ︷︷ ︸

E

vec(Y) = vec(XB∗) + vec(E)

= (I ⊗X )vec(B∗) + vec(E)

Y = Xβ∗ + vec(E), (3)

where Y is Nm × 1, X is a Nm × q matrix, β∗ is a
q-dimensional vector and vec(E) a Nm × 1 vector, with
N = T − p + 1 (the data sample size) and q = pm2 (the
number of coefficients). Estimates for the transition matrices
φ1, . . . , φp can be obtained by the least-squares solution of
the formulated regression problem [34]. However, to impose
sparsity constraints on the vector of coefficients β∗, the
following penalized least-squares problem can be exploited:

arg min
β∈Rq

1

N
‖Y −Xβ‖2 + λN ‖β‖2 ,

The `2-norm constraint reduces the problem to ridge regres-
sion. In our experiments, we utilized R solvers from the
sparsevar library to obtain our VAR “ridge” estimates. The
Lagrange multiplier λN was chosen through cross-validation.
We also employed the MTS library for non-penalized VAR
modeling. We tuned our MTS solver to yield simplified/sparse
transition matrices by retaining only coefficients that are
statistically significant (see [34], Chapter 2).

Anomaly Detection: Given the estimated coefficients, we
can proceed with forecasting-aided FDI detection. Predictions
for t = T+1, . . . are calculated as ẑt = φ̂1zt−1+· · ·+φ̂pzt−p.
To detect “bad data” attacks, we consider the difference
between the forecast and the actual AMI value. The error
et := zt − ẑt, under the hypothesis of no anomalies, follows
a zero-mean Gaussian distribution with covariance Σ̂, the
estimated covariance of the residuals (errors).

To check for FDIA anomalies at time point t, for each
meter j = 1, . . . ,m, we focus on ejt, the j-th component
of the error. To moderate the false positive rate, we employ
an Exponentially Weighted Moving Average (EWMA) control
scheme [35], known as Q-charting in quality control. In partic-
ular, we consider the z-score ζ = ejt/σj , with σ2

j = Σ̂(j, j),
and pass the sequence of z-scores in an EWMA control
chart for detecting “out-of-control” values [35], [36]. Event
detection is based on thresholding a severity metric, defined
as St = (1−λ)St−1+λζt, for a weight λ in (0, 1] and S0 = 0.

5For space economy, we omit the technicalities on AR, a sub-case of VAR.
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The sensitivity of EWMA is tuned by the weight λ and the
threshold parameter Lewma. An alarm is flagged if

|St| > σλLewma or J(x̂) ≥ τ(u)2, (4)

with σ2
λ = λ/(2−λ) and u = 0.05. Note that we also consider

J(x̂) (see section III) as a complementary detection criterion to
make sure the Jacobian matrix H remains under consideration
for detecting “bad data”.

Extensive experimentation suggested that the pair (λ =
.84, Lewma = 4.5) suits our application. It adequately balances
between false alarms (average run-length) and the ability to
determine whether the process under control has “shifted” to
anomalous regimes of certain magnitude.

B. Dynamic Factor Model

Denote as zt = (z1t, z2t, . . . , zmt)
> the corresponding m-

dimensional, zero-mean, time series of AMI meter measure-
ments. We posit the following linear model (we follow the
notation in [32]) for the power data zt, t = 1, 2, . . .,

zt = ΛFt + ξt, (5)

where Λ is the m × r matrix of factor loadings, Ft =
(f1t, . . . , frt)

> is a stationary process of common factors, and
ξt = (ξ1t, . . . , ξmt)

> is a stationary process of idiosyncratic
components. (Ft) and (ξt) are assumed independent. The
observed process zt is, thus, decomposed into two latent
orthogonal components; a common component, Ft, driven by
(few) r � m common factors, and an idiosyncratic one,
ξt, modeled as Gaussian white noise with zero mean and
covariance Ψ. To capture the dynamics of the factors, we
assume that (Ft) admits a VAR representation6, namely

Ft = AFt−1 + wt, (6)

where A is the transition matrix, and (wt) is a sequence
of independent and identically distributed (Gaussian) random
vectors with zero mean and covariance Q.

The model described above is fully-specified if the param-
eters {Λ, A,Ψ, Q} are known. In practice, though, only the
observations zt, t = 1, . . ., are available. Estimates of the
unknown parameters are obtained as follows (see [37], [38]):
First, one obtains estimates of Λ via principal components
analysis, using a “training” set of observations t = 1, . . . , T ,
by considering the empirical covariance matrix, S, of the
(centered and standardized) data. To obtain the PCA-based
estimate, let S = 1

T

∑T
t=1 ztz

>
t . We denote the singular value

decomposition S = PDP>, where D = diag(d1, d2, . . . , dm)
is a diagonal matrix of eigenvalues in decreasing order, and P
a matrix whose columns are the eigenvectors pj corresponding
to the eigenvalues dj , j = 1, . . . ,m.

Let D̂ = diag(d1, d2, . . . , dr) be the r × r diagonal matrix
of the r-largest eigenvalues, and P̂ = diag(p1, p2, . . . , pr) the

6To keep the notation uncluttered, we present a VAR(1) model here for the
factor dynamics. However, this can be generalized to a VAR(p) process [32].

Algorithm 1 Kalman Filter
State Equation: Ft = AFt−1 + wt with wt ∼ N(0, Q), ∀t
Meas. Equation: zt = Λ̂Ft + ξt with ξt ∼ N(0, Ψ̂), ∀t

Initialize:
1: F0 = 0 and P0 = I
2: for t ∈ {1, . . . } do
3: {Time Updates:}
4: F̂t|t−1 = AF̂t−1 and Pt|t−1 = APt−1A> +Q
5: {Measurement Updates:}
6: Σt|t−1 = Λ̂Pt|t−1Λ̂> + Ψ̂

7: Kt = Pt|t−1Λ̂>(Λ̂Pt|t−1Λ̂> + Ψ̂)−1

8: F̂t = F̂t|t−1 +Kt(zt − Λ̂F̂t|t−1)

9: Pt = (I −KtΛ̂)Pt|t−1
10: end for

associated m×r matrix. Then, the PCA-based solution yields,
for t = 1, . . . , T ,

F̂t = D̂−1/2P̂>zt (7)

Λ̂ = P̂ D̂1/2. (8)

The covariance of the idiosyncratic components is estimated
as Ψ̂ = S − Λ̂>Λ̂. Finally, considering the preliminary
estimates F̂t, the VAR(1) parameters (transition matrix A) and
the covariance matrix Q can be estimated with methods such
as the ones outlined in the previous section.

With estimates of the model parameters at hand, a Kalman
filtering process can be employed for forecasting. The state-
space representation of our model is fully described by the
following measurement and state equations,

zt = Λ̂Ft + ξt and Ft = AFt−1 + wt.

The Kalman smoothing iterative process [39] is illustrated
in Algorithm 1. As new observations zt, t = T + 1, . . .
arrive, the Kalman filter provides a prediction F̂t|t−1 for the
system’s “latent state”, namely the common factors at time t,
based on the history of observations up to t − 1. Using this
“nowcast” for the system state, we can obtain a forecast for
the meters’ measurements for time t, i.e., ẑt := Λ̂F̂t|t−1. The
z-score of the error et := zt − ẑt between the actual meter
value (when it becomes available) and the forecast is then
passed to the EWMA module, as described above. We omit
the details to avoid repetition, but we note that, in this case, the
error covariance matrix is sequentially updated by the filtering
process and given by Σt|t−1.

VI. PERFORMANCE EVALUATION

We evaluate the proposed methods using (1) real-world elec-
tricity data integrated into the MATPOWER framework [16]
and (2) synthetically generated data [32].
Real-world electricity data: The real-world data were ob-
tained from University of Michigan’s electric network, and
correspond to power consumption data from hundreds of AMI
meters installed at campus buildings. We curated time series
of power loads at equally spaced intervals of 2 minutes, and
employed these data traces as power injections in the PQ
and PV buses of various IEEE electric networks available
via MATPOWER. In a sequential manner, and for each time
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Fig. 1: A typical time series of power consumption utilized in our
evaluation. Notice the diurnal pattern and trends.
series data point, we engaged MATPOWER’s DC power
flow solver, namely rundcpf, to obtain the power flows at
all network branches. These process yielded our evaluation
datasets, each containing the measurement T × m matrix Z
and the m×n Jacobian matrix H required by our evaluations7

(e.g., necessary for generating the attack vectors).
Example time-series of the data examined are depicted in

Fig. 1; non-stationarity is evident. We attempt to remove
the evidenced data trends and seasonalities using first-order
differencing. Inspection of the periodogram (not shown here
due to space constraints) and the residual time series obtained
after fitting the studied models to the differenced series showed
no apparent structure in the de-trended data.

We evaluate the detection performance of our algorithms by
manually injecting attacks based on the three attack strategies
(referred as “original” [10], “minimal” [14] and “blind” [12],
hereafter) discussed in section IV. Further, we juxtapose our
techniques against two competitive state-space approaches: (1)
the method by Leite da Silva et al. [18] (named the ”Silva”
method henceforth), and (2) the work by Zhao et al. [19]
(referred as the ”Zhao” method).

1) Setting of Monte Carlo experiments: We assess detection
performance by checking whether the proposed algorithms
(and the two competitors) are able to discover manually
injected attacks in our evaluation datasets. For each of the
three attack types, we randomly select one time point in
our evaluation dataset and inject one group of attacks; the
group consists of five consecutive bad data vectors constructed
by adding the appropriate attack vector, say abad, to the
actual meter measurement zt. Thus, if ti1 denotes the ran-
domly selected time point, the corrupted dataset would contain
zt,bad = zt + abad for t = ti1 , ti2 , . . . , ti5 .

We experiment with several attack magnitudes ‖abad‖. We
run 100 Monte Carlo realizations for each attack size and
record the average detection performance. For each realization,
we study whether the algorithm examined can identify the
attack on all meters affected by abad; a meter i is considered
affected if ai,bad/ ‖abad‖ ≥

√
δ, with δ = 0.01. Specifically,

we assess detection accuracy in terms of the F1-score, i.e., the
harmonic mean of precision and recall. Let Tp, Fp and Fn
denote the number of true positives, false positives and false

7We experimented with IEEE 14-bus (n = 13 states and m = 33
measurement variables), 30-bus (n = 29 and m = 70) and 118-bus (n = 117
and m = 303). We used MATPOWER’s makeBdc to obtain the Jacobian.

negatives, respectively. Precision is defined as Tp/(Tp+Fp)
and recall as Tp/(Tp + Fn); both lie in [0, 1]. If a method
raises an alert, say, 1 time point after the attack onset (recall
that we have a group of 5 attacks), we consider the remaining
4 attacks as successfully detected, and set Tp = 4, Fn = 1.
An algorithm that raised 2 false alerts (i.e., Fp = 2) would
get a score F1 = 0.73.

We adjust the attack magnitude at various signal-to-noise
levels: (1) For the “original” attack strategy, we define
10log(σZ/ ‖abad‖) = SNR, where σZ := var(vec(Z)) and
Z is the T × m measurement matrix. We test for SNR
levels (3, 6, 10, 13, 16, . . . , 25). (2) For the “minimal” strategy,
and when targeting meter k, we define 10log(σk/ ‖abad‖) =
SNR, with σk the standard deviation of meter k. We test
for SNR levels (−5,−4, . . . ,−1, 3, 6, 10). (3) For the “blind”
attack strategy, we tune the σi knob at appropriate levels.

We emphasize here that all attacks are undetectable (or ap-
proximately undetectable in the case of the “blind” attack [12])
using the state-of-the-art J(x̂) criterion (see section III),
despite their attack magnitude. We vary the SNR level in order
to better understand the characteristics of the newly proposed
algorithms under a plethora of maliciously crafted scenarios.

2) Discussion of results: Fig. 2 highlights the main results
of this work. The plots sketch the performance of the six
algorithms at hand, namely AR, VAR (refined8), VAR (ridge),
DFM, “Silva” and “Zhao”. A model selection procedure, based
on the BIC metric, selects the best AR and VAR models, with
a maximum order of pmax = 5 considered. For DFM’s VAR
component, we worked with pmax = 3 and models with r
common factors that explain 90% of the data variability. For
all methods, we use 720 data points (corresponding to one
day) for model estimation / training, and the next 720 points
as the “test” dataset to inject FDI attacks.

We observe that the proposed techniques exhibit good detec-
tion performance in all scenarios considered. In the majority
of SNR settings considered, an F1-score of 0.80 or higher is
achieved, which indicates adequate performance with respect
to 1) finding the actual attacks and 2) not inundating the
system with false positives. Detection accuracy worsens with
attacks of smaller magnitude (i.e., higher SNRs), as expected.
We also evidenced the effect of high-dimensional data (i.e.,
regarding the number of variables m); the (refined) VAR
model model is attaining its highest scores on the smallest
network (IEEE 14-bus) which requires fewer coefficients for
training compared to the other cases. On the other hand, VAR
(ridge) and DFM seem more robust in handling “big data”. We
rigorously study the strengths and weaknesses of all proposed
state-space models in the next subsection.

Switching our attention to the “Silva” and “Zhao” competi-
tors, we observe that no single method outperforms all others
in every strategy and network size. Clearly, the “Silva” and
“Zhao” techniques have good performance in all attack strate-
gies when the injected attacks are large in magnitude, but they
both start lacking behind the DFM and autoregressive tech-

8Modeled via the MTS VAR solver and tuned with refine=TRUE.
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niques as the SNR decreases (i.e., stealth attacks), especially
in the “minimal” and “blind” strategies. It is worth mentioning
that the “Silva” and “Zhao” methods were not susceptible to
excessive false positives, something that can be attributed to
the fact that both algorithms inherently use the Jacobian matrix
H and the state xt that drives the system; at the same time,
these methods make no explicit use of the spatial dependencies
that naturally surface in power grid data, and hence smaller
coordinated attacks remain unnoticed. In practice, an ensemble
of methods seems a reasonable recommendation; we leave this
as an item for future exploration.
Synthetic data: To shed more light onto the mechanics of the
proposed AR, VAR and DFM algorithms, we also performed
sensitivity analysis using the data generating program dis-
cussed in [32]. The program generates data from a stationary
factor-based model with adjustable parameters that control the
variance explained by the first few components and the amount
of cross-correlation between the idiosyncratic components9.

Fig. 3 (left panel) illustrates the computational complexity in
training the 4 studied algorithms for a training window of 720
data points. The AR method is agnostic to the problem size
(we considered training of a single series, since AR training
of multiple series can be done in parallel). The VAR methods
exhibit the worst performance (note the logarithmic scale), and
our recommendation for modeling very large networks would
be the use of DFM models or the use of smaller VAR models
on wisely selected meter clusters.

Fig. 3 (middle panel) showcases the computational com-
plexity on performing the actual predictions. The times shown
are the ones needed to complete one detection cycle of 720
data points. The DFM model performs slightly slower than the
VAR ones, and this is attributed to the measurement update
step of the Kalman filter (see Algorithm 1, line 7). As part
of future work, we plan to examine faster alternatives for
calculation of the Kalman gain Kt in a sequential manner.

The utility of the DFM and VAR (ridge) models as the
problem dimensionality rises is highlighted in Fig. 3 (right
panel). Clearly, learning the model parameters of the “plain”
VAR becomes infeasible as the number of variables, m, grows.
This is expected since the available training points are only
720, and the model to be trained has pm2 unknown parameters
(the order p varies between 1 and 5, and is chosen by the BIC
information theoretic criterion [34]). At the same time, the
DFM and the penalized VAR model seem suitable to tackle
large problems. As an area of future research, we plan to
explore the limitations of DFM and VAR (ridge) models in
extremely large networks, very short training windows and
potentially missing observations.

VII. CONCLUSIONS
This paper studies an array of spatio-temporal statistical

models aiming at the detection of FDI attacks based on fore-
casts. We assess the detection accuracy of our methods under
three different attack strategies that assume a “DC power flow

9We used 3 common factors that admit a VAR(1) representation, and set
the remaining parameters to: u = 0.5, ρ = 0.9, d = 0.5, τ = 0.2 (see
section 5, [32]). We varied the number of features as illustrated in Fig. 3.

model” (a well-studied model for state-estimation in electric
power systems [17]), and juxtapose our performance (using
real-world data!) against competing approaches. Studying the
FDI problem under the more challenging regime of “AC power
flow equations” [40] is left as future work.
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Fig. 2: Detection accuracy evaluation with real-world data and the IEEE 14-, 30-, 118-bus topologies at various SNR settings.
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Fig. 3: Sensitivity analysis of proposed models using synthetic data.
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