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Abstract

Inspired by creatures that have naturally mastered locomotion on the air—water interface, we
developed and built a self-powered, remotely controlled surfing robot capable of traversing this
boundary by harnessing surface tension modification for both propulsion and steering through a
controlled release of isopropyl alcohol. In this process, we devised and implemented novel release
valve and steering mechanisms culminating in a surfer with distinct capabilities. Our robot
measures about 110 mm in length and can travel as fast as 0.8 body length per second. Interestingly,
we found that the linear speed of the robot follows a 1/3 power law with the release rate of the
propellant. Additional maneuverability tests also revealed that the robot is able to withstand

20 mm s~ in centripetal acceleration while turning. Here, we thoroughly discuss the design,
development, performance, overall capabilities, and ultimate limitations of our robotic surfer.

1. Introduction

Many biological organisms such as insects, arachnids,
and even bacteria have the ability to stand upon the
liquid surface of lakes and ponds by taking advan-
tage of surface tension [ 1—-11]. However, among these,
a few have the unique ability to manipulate the sur-
face tension force to also propel themselves across the
liquid surface with a great speed and maneuverabil-
ity. For instance, by releasing lipid-laden excretions
(see figure 1(a)), certain insects can change the local
surface tension (in this case lowering it, like adding
dish soap to water), thereby causing a surface tension
imbalance that pulls the insect in a forward direction.
This phenomenon is known as Marangoni propul-
sion [9, 12—15] and is a method of generating thrust
via creating surface tension gradients. The superb
capability of these organisms to travel atop free sur-
faces is ripe for robotic applications [16, 17]. Indeed,
from mechanically driven robotic systems designed to
walk and jump across the water—air interface [18—-26]
to chemically driven surfers relying on Marangoni
propulsion for mobility [27-43], researchers have
been attempting to develop surface dwelling robots
that mimic the locomotion of anthropods for decades.

However, a close inspection of the literature
(especially on Marangoni surfers) reveals that the vast
majority of the designed robots are rudimentary, in
that either they are self-powered, but move in an
uncontrolled fashion, or are powered and actively
controlled through external means. Examples of the
former include the so-called ‘soap boat’ [41], ‘cocktail
boat’ [29], and other similar designs [28, 30, 32, 35,
36, 38—40, 44—47] that have been around since the
time of Rayleigh [27]. Recent studies using thermo-
capillary action to initiate Marangoni propulsion
[42, 48] are examples of the latter, where objects at the
interface are remotely manipulated through the use
of externally powered lasers. An exception among the
robots designed to date are the Marangoni surfers of
Kwak et al [33, 34, 37], which include remote steer-
ing capabilities (both active and passive) and are self-
powered. However, even these designs have notable
limitations, such as a lack of active directional and/or
speed control.

To address these technological deficiencies, we
developed and built a self-powered surfing robot (see
figure 1(b)) that stands atop the free surface of water
and uses Marangoni propulsion, through a controlled
release of isopropyl alcohol (IPA), for locomotion
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Figure 1. (a) Mesovelia secreting a drop of lipid-laden liquid waste. Reprinted from [12], Copyright (2007), with permission
from Elsevier. (b) Our surfing robot inspired by the use of Marangoni propulsion among insects.

of its main components. See also figure 3 and video 1 of SM.

Figure2. CAD model of the full robot assembly (shown in (a) isometric, (b) top, and (c) side views) along with the annotated list
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and maneuvering, while having the additional capa-
bility of being remotely controlled in both direction
and speed. These features were achieved by devising
a needle valve and a swiveling extension tube (both
custom-made) that control the release rate and loca-
tion of IPA, respectively. These mechanisms are pow-
ered by a pair of remotely controlled servos and are
responsible for adjusting the speed and orientation
of the surfer. As an added benefit of these methods
for directional and speed control, there are no noisy
engines or propellers in our design, making it virtu-
ally silent in operation. Also, fewer disturbances are
introduced into the bulk of the liquid, thereby reduc-
ing the drag and making the robot more alike to the
insects whose propulsion behavior it strives to mimic.
With these attributes, our Marangoni surfer is ideal
for a variety of practical applications. For example,
with the simple addition of a small camera, it can eas-
ily be used by biologists, nature photographers, and
wildlife experts to get up close to hard to reach aquatic

locations and even skittish wildlife for photography
or videography. This technology can also be used to
monitor for invasive species in or near bodies of water.
Lastly, with the silent and small nature of our robot,
this design is a perfect candidate for surveillance in
or near aquatic locations. In the following sections,
we will first describe the design, development, and
fabrication of the robot (section 2). Then, we will
present the results of the performance tests, discuss
the implications (section 3), and, finally, provide a
brief summary of our work (section 4).

2. Design and fabrication of the robot

From insects such as Mesovelia (see figure 1(a)), we
identified four distinct features, which we adopted
and built into the design of our robot, that make
for a successful remotely controlled surfer. These
characteristics include the flotation of the robot on
the water—air interface via surface tension, using
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(a)

(c)

and (c) the needle valve. See also video 1 of SM.

Figure 3. Diagrams depicting the internal structures and/or machinery of (a) the fuel tank/body, (b) the steering mechanism,

Marangoni propulsion as a primary means of loco-
motion, having an integrated power source (i.e. being
self-powered), and the ability of actively control-
ling both speed and direction. These traits were
integrated into our robotic surfer through the spe-
cific design and application of the foot-pads, pro-
pellant release mechanism, integrated battery and
fuel sources, and remotely controlled servos, respec-
tively (see figures 1(b) and 2, and video 1 of
(https://stacks.iop.org/BB/16/066014/mmedia) sup-
plementary materials (SM)). The development of the
aforementioned components are described below.
Foot — pads. The feet are the point of contact
with the liquid surface and are essential compo-
nents to make our robot a functional surfer. They
were designed with the objective of providing max-
imum support force from the surface tension while
minimizing the hydrodynamic drag and mass. We
first employed a simple force balance to estimate the
surface contact perimeter necessary to support the
weight of the surfer body (19 g, not including the foot-
pads) plus the weight of fuel (3.14 g for 4 ml of IPA)
[10]. Informed by this analysis, we made two separate
ski-like foot pads (see figure 2 and video 1 of SM) in
the form of elongated ellipses (112 mm by 40 mm)
to serve our initial goals while maintaining the bio-
inspired design. In nature, the supporting force most
anthropods use to stand upon free surfaces is achieved
from the microscopic hairs on their feet and legs
which trap tiny air pockets thereby increasing their
hydrophobicity [12, 49, 50]. To adopt this quality to
our design, we coated the feet with a commercially
available hydrophobic treatment (NeverWet), allow-
ing for greater support from surface tension (~ 78 g
total) due to the increase in contact angle with the free
surface of water. The feet were made from 6 mm thick
ethylene-vinyl acetate foam, which serves a dual pur-
pose by being both light weight and highly buoyant.
This way, if the robot were to hit an obstruction, it

would not sink (like previous attempts reported else-
where), which could destroy the on-board electronics.

Fuel tank /body. The body of the surfer not only
serves as the central base structure connecting the
feet, servos, battery, radio receiver, and control mech-
anisms, but also acts as a storage vessel for the
chemical propellant (in this case IPA, which is cho-
sen for its ease of use, availability, and ubiquity).
With the main body being a hollow cylindrical tank
(3D-printed using Formlabs’ standard grey resin),
we eliminated any unnecessary connective structures,
thereby reducing non-essential weight as much as
possible. The tank is completely open at the front to
avoid flow restrictions from a vacuum, and the nee-
dle valve and extension tube mechanisms are directly
attached to the rear end of the tank (see figure 2
and video 1 of SM). At its current capacity, the tank
can store 4 ml of chemical propellant. However, this
design can be easily adjusted to accommodate higher
volumes if required. To allow gravity to drive a rela-
tively steady release of IPA (especially at low volumes),
a sloped structure was designed into the horizontal
tank (see figure 3(a)). This feature, while adding to
the total weight, keeps the overall mass distribution
along the robot fairly uniform.

Needle valve. The controlled release of the pro-
pellant has been attempted in previous Marangoni
surfer designs. However, most have relied on passive
means of control, i.e. calibrating a desired release rate
and holding it constant [33, 34, 37]. Our design, on
the other hand, has the ability of actively controlling
the release rate of the propellant remotely through
the novel implementation of a custom-created nee-
dle valve at the point of release (see figure 3(c) and
video 1 of SM). Controlled by a remotely-operated
servo, the position of the needle can be manipulated
to block or restrict the flow of propellant to achieve
the desired flow rate, which, in turn, adjusts the speed
of the robotic surfer.
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Steering mechanism. Steerablity is another distin-
guishing feature that separates surfers today from the
time of Rayleigh, yet, the amount of progress that
has been made is an indication of the difficulty of
realizing this capability. Previously considered mech-
anisms for the directional manipulation of surfers
(be it passive keels [37], actively controlled oars [33],
or externally powered lasers [42, 48]), though func-
tional, lack active control, are not self-powered, or
adversely affect the surfing performance by introduc-
ing additional drag. Our surfer utilizes Marangoni
propulsion not only as a mode of locomotion, but
for steering as well, which eliminates unnecessary
drag while maintaining the self-powered nature of
the design. The steering mechanism operates by alter-
ing the bilateral release location of the propellant (see
figure 3(b) and video 1 of SM), causing asymmetrical
applied forces on the two foot-pads, which results in a
change in the direction. The mechanism is driven by
an actively controlled servo that is rigidly connected
to the extension tube, which is a separate component
from the main body and directly connects to the rear
of the robot (see figure 2(b)). The steering mecha-
nism allows for the extension tube to swivel and relo-
cate the point at which the propellant is released (see
figure 3(c) and video 1 of SM).

Remote controls. The remote control of both
speed and direction is a critical feature of this robot
for it to be of practical use. To achieve this, we imple-
mented a micro-receiver (OrangeRx R614XN) and
a remote transmitter (Spektrum DX7s) traditionally
used for remotely controlled planes, cars, and boats
(see figure 1(b) and video 1 of SM). With this receiver,
we are able to simultaneously connect to two micro-
servo motors (HobbyKing HK-5320s) achieving the
ability to control both functionalities and power them
with a small on-board battery (Turnigy Nano-Tech
150 mAh1S3.7 V25C LiPoly). Although others have
utilized similar technology to remotely control their
robotic surfers [33, 34], none have had the combined
capabilities of our design.

3. Performance of the robot

To assess the overall capabilities of our Marangoni
robot and to identify its optimal configuration, we
performed two sets of experiments focusing on the
translational speed and maneuverability of the surfer.
Having already calculated and confirmed the proper
size of foot-pads, we first characterized how fast the
robot travels as a function of two parameters: the
release rate of IPA (denoted by g) and the distance
from the release site to the back of the foot-pads
(denote by d, see figure 2(b)). Then, we examined the
obstacle avoidance capability of the robot. All experi-
ments were performed in an open-air cylindrical tank
of diameter 1.47 m filled with 0.4 m-deep water.

For the speed tests, we captured the motion of
the Marangoni surfer on video while traveling in a
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straight line for various values of the IPA release rate,
q and release location d (see figure 4(a)). The speed
was then extracted from the recorded data (see, e.g.
video 2 of SM) using video analysis software (Tracker)
in combination with a linear scale floated on the sur-
face of the water during the tests for reference (see
figure 4(a) and video 2 of SM). The release rate of IPA
was adjusted by setting the controls of the transmitter
to discrete position marks, thereby changing the rela-
tive position of the needle valve and the correspond-
ing flow rate. The precise volumetric flow rate for
each setting was measured prior to the experiments
to ensure the accuracy and consistency of each test.
The release distance was altered by using extension
tubes (see figure 2) of different lengths. The results of
the speed tests are presented in figure 5(a), with the
speed (denoted by U) described in both mms™! and
£/s, where ¢ = 112 mm is the body length of the robot
shown in figure 2(b). The IPA flow rates that were
tested range from 0.02 to 0.15 mls~!, while the release
distance was initially set to d = 0 and then increased
in 5 mm increments to a maximum of d = 20 mm.
Negative values of d were not considered due to the
lack of sufficient lateral stability and the tendency to
spin even without active steering.

Before we discuss the trends of data, for refer-
ence, we compare the speed of our robot to those of
Kwak and Bae [33, 37] that are closest in function-
ality and form to ours. Their first Marangoni surfer
[33] had remote steering capabilities, while also being
similar in scale to our robot (~ 100 mm in length
and ~ 20 g in mass). Opting instead to use methanol
as a propellant, they were able to achieve a speed
of 35 mms™! at a release rate of ~ 0.167 mls™'. A
later revision of their design [37] had a reduced mass
of 11 g by eliminating the steering mechanisms and
associated electronic components. After these alter-
ations, their surfer was able to travel ~ 90 mms™!
with a release rate of ~ 0.038 mls~!. From a com-
parison to these works representing the state-of-the-
art in robotic Marangoni surfers, we can see that our
robot is highly competitive, if not superior, in both
performance and function. With this in mind, we now
analyze the results of figure 5(a). First, we see that
the speed of the surfer increases with the rate of [PA
release, whereas it decreases with increased distance
of release. Within the parameter space we evaluated,
the surfer speed is in fact more sensitive to the release
distance than the IPA release rate. We also observe
that the relation between the surfer speed and the IPA
release rate follows a power law such that I/ oc q'/* as
shown by the dashed line in figure 5(a).

In order to rationalize the observed power law
behavior, we propose a simple scaling analysis based
on an energy argument. Let Re = U/ /v be the flow
Reynolds number, where v is the kinematic viscosity
of water. This dimensionless parameter measures the
relative strength of inertial and viscous forces exerted
on the surfer by the fluid. In our experiments, the
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(a)

Figure4. Schematics of the experimental setups used for (a) speed and (b) obstacle avoidance tests. See also videos 2 and 3 of SM.
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Figure 5. Plots of (a) the linear speed ¢/ and (b) the fuel efficiency € versus the release rate of the chemical propellant g for
different values of the release distance d (see figure 2(b)). The predictions of a simple model is presented in (a) as a dashed line of
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Reynolds number is of order Re ~ O(10°-10%). This
means that the robot operates in the inertial regime,
where the fluid drag on the surfer primarily scales as
Frag U?. The power needed to maintain motion
while overcoming a constant drag force is given by
P = UFqrq. Thus, the power to propel the surfer
across the surface of the water at a speed U should
scale like P oc U°. In our design, the driving power
comes from the release of chemical energy through
lowering the air—water surface tension behind the
surfer. The driving power should therefore change
roughly linearly with the release rate of IPA, i.e. P < q.
From our analysis, it is therefore expected that the
surfer velocity should vary with the release rate to
the power of 1/3, i.e. U oc q'/°. This is confirmed by
the quality of the fit of this scaling argument to the
data in figure 5(a). One implication of these results
is that the speed of the surfer is not particularly sen-

sitive to the release rate, with the result being only a
30% change in velocity over an order of magnitude
change in the release rate. In order to obtain improved
control, future robot designs will include a needle
valve that can provide periodic IPA release to reduce
the minimum release rate that can be achieved and
expand the lower range of surfer speeds that can be
obtained.

To gain additional insights into the performance
characteristics of our robot, we also calculated the
tuel efficiency of the surfer. Here, the fuel efficiency is
defined as & = U /q, and plotted versus the IPA release
rate in figure 5(b). Unlike the robot speed, the fuel
efficiency is highly sensitive to the rate at which IPA
is discharged, and a negative trend in fuel efficiency
is observed with increasing the IPA release rate with
nearly an order of magnitude drop in efficiency over
the range of release rates studied here. These results
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Table 1. Results of obstacle avoidance tests for d = 10 mm, where centripetal accelerations corresponding to successful and failed

attempts are colored green and red, respectively.

D Centripetal acceleration (mm s?)
q(mms?) U (mms?) 1 20 30 2U2 /¢ U/t 2U7 /3¢
0.02 34.2 v v v 20.9 10.4 7.0
0.07 49.1 X v v 43.1 14.4
0.13 61.3 X x v 67.1 33.6

demonstrate that the most efficient operation of the
robot surfer occurs at its lowest speeds. This makes
intuitive sense, as the scaling analysis described above
suggests that the efficiency should scale as £ o< g~ %/3.
This scaling is consistent with the data in figure 5(b).

The maneuverability tests were conducted by
introducing a floating obstacle of diameter D for the
surfer to avoid (see figure 4(b) and video 3 of SM).
The obstacle was placed in the middle of the tank
and anchored to its bottom via a wire cable under
tension, ensuring the obstacle remained stationary
despite the close proximity of flow disturbances due
to the motion of the surfer. The robot was initially
set on a straight path and then manually steered to
bypass the obstacle. Steering was initiated approxi-
mately D/2 before reaching the obstacle. Following
the contour of the obstacle as closely as possible, the
surfer then continued on its initial path after reach-
ing the far side of the obstacle (see figure 4(b) and
video 3 of SM). If the surfer collided with the obsta-
cle or spun out of control during the attempt, then
the maneuver was considered a failure. For a given
release rate, and therefore a given translational speed,
this process was repeated until an obstacle of suffi-
ciently large diameter was found, from which avoid-
ance was possible. This set of tests were carried out for
the fixed release distance of d = 10 mm, which offers a
reasonable trade-off between speed and ease of steer-
ing. While smaller release distances produce higher
speeds, they are also more difficult to steer. Contrarily,
larger release distances, though slower, are less prone
to abrupt changes in direction.

The outcome of the maneuverability tests are pre-
sented in table 1. Here, we examined the ability of
the robot to avoid disks of diameter D = ¢, 2/, and
3¢ at the speeds U = 34.2, 49.1, and 61.3 mms™'.
For each diameter-speed combination, a check mark
in the table indicates that the robot was able to suc-
cessfully go around the disk while a cross denotes
failure to accomplish the mission. Similar to terres-
trial vehicles, we found that the slower the travel-
ing speed, the smaller turning radius the surfer could
achieve. Specifically, the measurements suggest that
the maximum centripetal acceleration achievable by

the surfer under stable conditions is about 20 mms >

(see the boxed values in table 1). Of course, these tests
were conducted while traveling at constant speeds,
and although the data show the inability of the surfer
to make turns with small radii (D < 3¢) at higher
speeds, if one were to slow down when turning and
speed up when going straight, this issue would be
much reduced. Nevertheless, we note that the turn-
ing capability of our robot far exceeds that of its clos-
est peer [33], whose turning radius (according to the
reported measurements) is about five times larger
than that of our robotic surfer at similar speeds.

4. Conclusion

Drawing motivation from organisms that effectively
traverse the air-water interface, we conceptualized
and created a self-powered and remotely-controlled
robotic platform destined for practical applications.
Prioritizing drag reduction and biomimicry in design,
our robotic surfer relies solely on the Marangoni
effect for both propulsion and change of direction.
To make this engineering challenge a reality, we
developed custom-made flow control and steering
mechanisms. These features were complemented with
integrated power and fuel sources, and a remote
transmitter, a receiver, and two servos, overall result-
ing in a non-tethered robotic surfer with unparalleled
functionality. From experimental trials investigating
the robot’s transnational motion, we found that there
is a clear positive trend in the speed with increasing
the release rate of the propellant. We then presented a
scaling analysis justifying the observed power law rela-
tionship between the speed and the consumption rate
of the chemical fuel. We also examined the range of
maneuverability of our robot, and demonstrated its
commendable capabilities for directional change and
obstacle avoidance.

Through assessing the combined abilities and
promising performance of our surfing robot, we
gained a glimpse of its enormous potential. Specif-
ically, our robot serves as a desirable candidate for
accomplishing complicated missions at the free sur-
face of water, where the precise remote-control of
position and speed is essential. A prime example that
would require minimal modification to our current
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design is the directed self-assembly of objects, par-
ticles, or even organisms (such as bacteria or cells)
at the air-water interface. This process has been at
the center of scientists’ attention for decades [51-54],
with implications ranging from advanced manufac-
turing to medicine. Our robot presents a viable solu-
tion to this long-lived conundrum (see, e.g. [42]). In
addition to the currently tangible goal of directed self-
assembly, a more ambitious, yet achievable aspiration
is to make our robot autonomous. With the addition
of an inertial measurement unit coupled with a small
camera as an optical sensor, the robot could be trained
to identify targets, markers, and obstacles and auto-
matically adjust its trajectory in accordance with its
designated task. Through autonomy, the robot could
perform the same tasks previously described while
also being able to optimize its movements.
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