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Many species face extinction risks owing to climate change, and there is an
urgent need to identify which species’ populations will be most vulnerable.
Plasticity in heat tolerance, which includes acclimation or hardening, occurs
when prior exposure to a warmer temperature changes an organism’s
upper thermal limit. The capacity for thermal acclimation could provide pro-
tection against warming, but prior work has found few generalizable patterns
to explain variation in this trait. Here, we report the results of, to our knowl-
edge, the first meta-analysis to examine within-species variation in thermal
plasticity, using results from 20 studies (19 species) that quantified thermal
acclimation capacities across 78 populations. We used meta-regression to
evaluate two leading hypotheses. The climate variability hypothesis predicts
that populations frommore thermally variable habitats will have greater plas-
ticity, while the trade-off hypothesis predicts that populations with the lowest
heat tolerance will have the greatest plasticity. Our analysis indicates strong
support for the trade-off hypothesis because populationswith greater thermal
tolerance had reduced plasticity. These results advance our understanding of
variation in populations’ susceptibility to climate change and imply that
populations with the highest thermal tolerance may have limited phenotypic
plasticity to adjust to ongoing climate warming.

1. Introduction
Climate change is increasing the frequency and severity of extremeweather events
across both aquatic and terrestrial environments [1,2]. In particular, heatwaves have
caused mass mortalities of habitat-forming species andmay reshape entire ecosys-
tems over the coming century [3,4]. There is an urgent need to understand how
thermal limits vary within and across species in order to predict vulnerability to
changing temperature regimes [5].Most of thiswork has focused onmeasurements
of individual species’ thermal tolerances made in single populations at single
points in time. However, several factors may contribute to intraspecific variation
in thermal limits, including both phenotypic plasticity and variation among indi-
viduals in the magnitude of that plasticity. Phenotypic plasticity describes the
ability of a single genotype to produce two ormore phenotypes in response to vari-
ation in the environment [6–8]. Thermal plasticity, also known as acclimation, or
hardening, occurs when prior exposure to different temperatures changes an
organism’s upper or lower thermal limit [9–12].

In recent years, there has been great interest in quantifying and predicting
phenotypic plasticity in wild populations of plants and animals, because it
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may act as a buffer against extinction risk from climate
change, allowing vulnerable populations to adjust their
physiology in order to maintain homeostasis [12–20]. Species
and populations may vary substantially in their capacity for
thermal acclimation, so there is a need to understand what
factors contribute to variation in this trait [14,21–23]. Consid-
ering intraspecific variation in thermal plasticity is important
both because of the implications for a species’ evolutionary
potential, and because it implies that some populations are
more vulnerable to climate warming than others.

There are two competing hypotheses to explain why organ-
isms might vary in their capacity for thermal tolerance
acclimation (hereafter, thermal acclimation). One possibility is
that variation in this trait is shaped largely by variation in the
environment (hereafter, the variability hypothesis), with organ-
isms from more thermally variable and/or seasonal habitats
having greater plasticity, as variable climates would select for
greater thermal niche breadths [24–28]. In this case, organisms
from more thermally stable environments would have the
lowest acclimation capacity and therefore are expected to be
the most vulnerable to warming [29–32]. An alternate hypoth-
esis suggests that variation in thermal plasticity is governed
largely by trade-offs (hereafter, the trade-off hypothesis)
[12,21,26,33,34]. If high upper thermal limits are costly (for
example, the energetic cost of making heat shock proteins
[35]), then organisms might invest either in the ability to
maintain a high upper thermal limit, or greater plasticity in
these limits, so that those with the highest upper thermal
limits would be expected to have the lowest plasticity.
In these cases, we might expect organisms from the warmest
habitats to be the least able to adjust to further warming [12].

Gunderson & Stillman [36] tested the ability of these
hypotheses to explain variation in thermal plasticity among
232 species of ectotherms. They found little support for either
scenario, suggesting that variation in the capacity for thermal
acclimation may be too idiosyncratic to be explained by any
generalizable patterns across ecosystems. However, it may be
difficult to identify forces that shape trait variation using inter-
specific comparisons because correlations among traits can be
produced either by selection or physiological trade-offs.
Selection may generate associations among traits when corre-
lated environmental conditions produce correlated selection
pressures [37–40]. Alternatively, physiological trade-offs can
produce negative associations among traits if allocation of
resources to one trait results in fewer resources available for
another. It is often difficult to untangle the effects of correlated
selection and physiological trade-offs. For example, if warmer
habitats also tend to be less seasonal, correlated selection can
generate a negative correlation between upper thermal limits
and plasticity. However, physiological trade-offs can also
produce negative correlations between heat tolerance and plas-
ticity, making it difficult to determine the cause of observed
correlations. This problem is compounded over longer periods
of evolutionary time, and when one population is used as a
proxy for an entire species.

By comparing variation in thermal tolerance among
populations of the same species, we increase the chances of
observing evidence for true trade-offs among traits. This is
because populations are subject to fewer obscuring effects
of correlated selection pressures as there has been less
evolutionary time between populations than between
species. [41]. In addition, measurements of traits from individ-
ual populations are matched with environmental conditions
for that population, rather than the range of conditions experi-
enced by the species as awhole. To date, most macroecological
studies of thermal physiology have focused on interspecific
variation, giving an incomplete picture of not only themechan-
isms, but also the impacts and extent of variation in the
plasticity of thermal tolerance. Considering the intraspecific
variation in thermal plasticity is important both because of
the implications for a species’ evolutionary potential, and
because it means that some populations could be more vulner-
able to climatewarming than others. Finally, there is a growing
appreciation that the ecological effects of intraspecific trait vari-
ation may equal or even exceed those of interspecific variation
for some important traits [42,43].

Here, we report the results of a meta-analysis examining
intraspecific patterns of thermal plasticity. We synthesize
the results of 20 empirical studies that use common garden
laboratory experiments to quantify thermal limit acclimation
capacities across multiple populations of 19 species. We
observed strong support for the trade-off hypothesis, with
the most heat-tolerant populations having the lowest acclim-
ation capacity. Our analysis advances our understanding of
forces shaping variation in species’ responses to climate
change and points to the need for future work that examines
among-population variation in thermal plasticity.
2. Methods
(a) Literature search and criteria for inclusion
Studies that measure thermal tolerance plasticity typically collect
organisms from nature and acclimatize them to different temp-
eratures for defined periods of time in the laboratory before
measuring thermal tolerance. Important methodological con-
siderations for these types of studies include: (i) for how long
and at what temperature organisms are acclimated, (ii) how
fast the temperature is changed, and (iii) whether measurements
are made on field collected or F1 individuals, given that parental
conditions are known to influence thermal plasticity. To identify
publications for use in our study, we followed preferred report-
ing items for systematic reviews and meta-analyses (PRISMA)
guidelines (electronic supplementary material, figure S1) [44].
We searched titles, abstracts and keywords in Web of Science
(Clarivate Analytics, Philadelphia, USA) using the following
search string: (Thermal OR temperatures) AND (Lethal OR
‘Thermal tolerance’ OR ‘Thermal limit’ OR CTmax OR CTmin
OR LT50 OR ‘freezing tolerance’) AND (‘Local* Adapt*’ OR
‘Latitud* Var’ OR Intraspecific). We conducted an initial litera-
ture search on 24 August 2019 and updated the search on 28
July 2020. We also added studies that we were aware of but
were not returned in the literature search. We used the following
criteria for inclusion, where each study must have: (1) reported
new results of whole-organism upper thermal limit in degrees
Celsius for at least two populations of the same species, (2) exper-
imentally measured thermal tolerance after acclimating all
individuals to at least two temperatures, (3) reported a measure
of error for the thermal tolerance estimate, and (4) not measured
tolerance of introduced species, hybrid lines, cultivars, domesti-
cated species or later generations of experimental laboratory
populations (greater than F2). Although we initially included
both cold and heat tolerance studies, we later excluded cold
tolerance studies from our analysis owing to insufficient data.
Studies of cold tolerance and additional studies that met criteria
(1) and (2) but were excluded based on (3) and/or (4) are listed in
the electronic supplementary material, table S1. We screened
400 publications that measured thermal tolerances across
populations and identified 20 studies to include in our
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meta-analysis, representing 19 species. The studies that were
accepted after looking through titles and abstracts but were
later excluded from our analysis are listed in the electronic
supplementary material, table S1. We extracted data from each
publication using relevant figures, tables, text or electronic
supplementary material. In the case of figures, we used
WEBPLOTDIGITIZER to extract means and error estimates [45].

Although our data initially included studies that used several
different thermal tolerance metrics, in the end, we included only
the studies that measured the maximum critical thermal limit
(hereafter, CTmax) in our weighted meta-analytic model because
of a lack of comparability in thermal tolerance metrics. This
method weights data points by sample size and error associated
with data collected. Typically, studies in our dataset using the
temperature at which 50% of individuals die (LT50) lacked error
estimates, an important input in meta-analytic models needed
for effect size weighting in our dataset. In addition, plant thermal
tolerance metrics were all based on LT50 estimates and therefore
our dataset is restricted to animals. Because CTmax was the most
commonly used metric, limiting our weighted analysis to studies
that used CTmax returned the most robust dataset. We also com-
pleted an unweighted analysis using all the available data that
fitted our search criteria for upper thermal limits, which is
described more in detail below.

(b) Calculation of effect sizes
To quantify plasticity across studies, we used Hedges’ g, the
standardized mean difference between CTmax at two or more
acclimation temperatures for each population [46]. Hedges’ g
simply quantifies the change in CTmax between acclimation treat-
ments for each population. For studies that used more than two
acclimation temperatures, we used a ‘common control’ approach
[47], such that the CTmax of the lowest acclimation temperature
was the control for all other acclimation temperature treatments.
This approach powerfully uses the most data available but induces
correlation between estimates by reusing the control groups, which
is addressed in the statistics below. A positiveHedges’ g value indi-
cates that the thermal tolerance increased with greater acclimation
temperature, whereas a negative value indicates the thermal toler-
ance decreased. To account for the variation in acclimation
temperatures across studies, we included the difference between
acclimation temperatures as a predictor in ourmodel. Other studies
have used acclimation response ratio (hereafter, ARR; [36]) as a
measurement of plasticity. ARR allows for more data to be used
because this metric standardizes plasticity across thermal tolerance
metrics. In our main analysis, we use meta-analytic methods that
require a sampling variance to be included, which allows for
variation within and between publications to be modelled directly.
For comparability, we also calculated ARR values for all included
studies which are included in the electronic supplementary
material files. We also performed an unweighted analysis to test
whether our results were robust to the inclusion of data that
could not be included in the main analysis.

(c) Modelling approach
We used a weighted inverse-variance random effect meta-
regression [48] to evaluate intraspecific variation in the plasticity
of thermal tolerance. This approach gives greater weight to the
effect sizes calculated from observations with lower error
(greater precision) and is preferred over unweighted or vote
counting approaches [49]. We included four moderators in our
meta-regression: (i) difference in acclimation temperature,
(ii) annual range of temperatures experienced at any given
location, (iii) mean thermal limit of the lower acclimation temp-
erature, and (iv) ecosystem (marine, terrestrial and freshwater).
We included the difference in acclimation temperature as a cov-
ariate because it is well known that plasticity can be influenced
by the difference in acclimation temperatures used in each exper-
iment. To evaluate the variability hypothesis, we used the annual
range of temperatures experienced at every collection location. To
compile these temperature records, we extracted remote-sensed
temperature data from Bio-ORACLE (sea surface temperature)
[50,51] and CHELSA (land and freshwater surface temperature)
[52–54]. We calculated the annual temperature range as the differ-
ence in the maximum temperature of the warmest month minus
the minimum temperature of the coldest month from annual
trends for each population. To evaluate the trade-off hypothesis,
we included the mean thermal limit of the lowest acclimation
temperature as reported by the study. To account for differences
in plasticity by habitat, we included ecosystem as a predictor
because evidence suggests that thermal tolerance plasticity might
be influenced by habitat type [36]. To account for non-indepen-
dence among observations, we modelled the crossed random
effects of study and phylum. To account for the common control
approach, we computed the variance-covariance matrix for effect
size estimates within each study and used this as the weighting
in ourmeta-regression [47]. To enable comparison amongmodera-
tors, we centred and scaled all continuous predictors prior to
analysis. To evaluate our global model for collinearity between
moderators, we calculated variance inflation factors to be less
than two for all predictors, showing that our moderators are not
collinear [55]. We constructed all possible candidate models with
additive predictors and conducted model comparison using cor-
rected Akaike’s information criterion (AICc) to evaluate support
for competing models [56]. Limited sample size did not allow us
to include interaction terms in our modelling. We then used
model averaging to average results from candidate models with
weights greater than one per cent.

To confirm that the results from our inverse-weighted meta-
analytic model would hold if LT50 data were included, we con-
ducted an unweighted analysis. We calculated the ARR for the
comparison of the lowest and highest acclimation temperatures
from each study. We then constructed a linear mixed model
with ARR as the response and thermal limit of the lower acclim-
ation temperature, annual temperature range and ecosystem as
predictors. As in the weighted analysis, we included study and
phylum as random effects. We again constructed all possible
candidate models and conducted model comparison using
AICc to evaluate competing models. We used model averaging
to average results from candidate models with weights greater
than one per cent.

To test the effects that publication bias would have on our
results, we calculated Rosenberg’s fail-safe number [57], which
is the number of hypothetical unpublished studies with a null
result that would have to be included in our analysis to change
our results (also known as the ‘file drawer effect’). We calculated
our threshold as 5n + 10 (where n is the number of independent
publications) [57]. We conducted all analyses with R (v. 3.6.3)
[58] using the packages ‘metafor’, [59] ‘raster’, [60] ‘tidyverse’,
[61], ‘MuMIn’ [62] and ‘glmmTMB’ [63].
3. Results
Our literature search identified 400 publications, of which 20
studies met our inclusion criteria. All 20 included studies
that used ectotherms, including seven arthropods, 11 chor-
dates and two molluscs (table 1). Species studied included
nine from terrestrial, six frommarine and five from freshwater
environments. Studies quantified plasticity in 4.94 popu-
lations on average, with a median of three populations
(s.d. = 3.27). Overall, studies reported positive values of
Hedges’ g with confidence intervals for most studies that
did not cross zero, indicating that acclimation resulted in



Table 1. List of publications and associated meta-data used in our weighted analysis. (Note: Reference [64] collected organisms from seven populations, but
only two were used in our analysis because five populations were in the species’ introduced range.)

study species number of populations number of temperatures ecosystem

Barria & Bacigalupe [65] Pleurodema thaul (frog) 2 2 terrestrial

Bugg et al. [66] Acipenser fulvescens (fish) 2 3 freshwater

Chen et al. [67] Buergeria japonica (frog) 2 2 terrestrial

Darveau et al. [68] Couesius plumbeus (fish) 3 4 freshwater

Diamond et al. [69] Temnothorax curvispinosus (ant) 3 5 terrestrial

Dong et al. [70] Cellana toreuma (limpet) 3 2 marine

Enriquez-Urzelai et al. [71] Rana temporaria (frog) 7 2 terrestrial

Fangue et al. [72] Fundulus heteroclitus (fish) 2 7 marine

Fernando et al. [73] Atractosteus spatula (fish) 3 3 freshwater

Healy et al. [74] Tigriopus californicus (copepod) 10 2 marine

Jensen et al. [75] Orchesella cincta (insect) 7 2 terrestrial

Kellermann et al. [76] Drosophila melanogaster (fruit fly) 2 6 terrestrial

Kelley et al. [77] Carcinus maenas (crab) 2 2 marine

Manis & Claussen [78] Rana sylvatica (frog) 5 2 terrestrial

Philips et al. [79] Lampropholis coggeri (skink) 13 2 terrestrial

Tepolt & Somero [64] Carcinus maenas (crab) 7 2 marine

Underwood et al. [80] Oncorhynchus clarkii pleuriticus (fish) 3 3 freshwater

Wang et al. [81] Lottia limatula (limpet) 2 3 marine

Weldon et al. [82] Ceratitis capitata (fruit fly) 8 3 terrestrial

Yu et al. [83] Rhynchocypris oxycephalus (fish) 2 4 freshwater
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increased thermal limits (figure 1). The sum of model Akaike
weights was highest for models including the thermal limit of
the lowest acclimation temperature and difference in acclim-
ation temperature as covariates, and these two estimates
were the only parameters to deviate from zero. Our meta-ana-
lytic regression indicated that there is evidence for a strong
negative effect of thermal tolerance on plasticity (figures 2a
and 3, estimate =−1.98154, s.e. = 0.23090, p < 0.001). However,
we observed no effect of thermal variability on plasticity
(figures 2c and 3, estimate =−0.03316, s.e. = 0.04630, p =
0.474). We also did not observe an overall effect of the ecosys-
tem on plasticity (figure 3; electronic supplementary material,
table S1). The difference in acclimation temperature covariate
had a highly positive effect (figures 2b and 3; estimate =
0.65522, s.e. = 0.05657, p < 0.001). Our unweighted analysis
also supports the results from theweighted analysis (electronic
supplementary material, table S3). Thermal limit of the lower
acclimation temperature was a strong predictor of plasticity
(estimate =−0.064, s.e. = 0.010, p < 0.001). By contrast, this
model did not reveal an effect of annual temperature range
(estimate = 0.001, s.e. = 0.004546, p = 0.8069).

As a measure of the effect that publication bias could
have on our results, we calculated Rosenberg’s fail-safe
number as 61 862, suggesting that a very large number of
studies would need to be added to change our results. This
is well above our calculated threshold of 110 individual
studies, showing that publication bias probably does not
influence our analysis. Our model did not show any support
for phylum-level random variation (electronic supplementary
material, figure S3).
4. Discussion
Phenotypic plasticity, including the capacity for temperature
acclimation, plays a major role in species’ responses to climate
change [84]. We found that the capacity for thermal acclim-
ation varies substantially within species, adding to previous
work illustrating among-species variation [36]. Our analysis
provides evidence that variation in thermal acclimation
capacity in ectotherms is shaped by trade-offs: within species,
the populations with the highest upper thermal limit also had
the lowest capacity for acclimation. This pattern of intraspeci-
fic variation is consistent with limited data from laboratory
selection studies that revealed decreased plasticity in popu-
lations that were experimentally selected for increased
heat tolerance [85–87]. One possible explanation for the
observed trade-off is that increased thermal limits may
evolve through genetic assimilation of plastic responses
[88]. If increased thermal tolerance evolves by converting
acclimation responses into fixed thermal tolerance limits,
we would expect the evolution of increased heat tolerance
to be accompanied by a loss of plasticity. Transcriptomic
studies have suggested a similar physiological basis for
evolved heat tolerance and plasticity, with heat-tolerant
populations having a higher baseline expression of heat
stress response genes but a smaller change in gene expression
in response to heat stress [89–94].

Many taxa show a strong phylogenetic signal and little
variation in upper thermal limits among closely related
species. This suggests constraint on the evolution of heat tol-
erance, and possibly that substantial molecular changes are
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Figure 1. Forest plot showing effect sizes (Hedges’ g) for each included publication in the weighted analysis ordered in increasing mean effect size. Each point refers
to a pairwise contrast between acclimation temperatures within a population. Error bars denote ± s.d. A positive value refers to an increase in upper thermal limits
with acclimation at higher temperature whereas negative values refer to a decrease in thermal limits. The standardized magnitude of change in thermal limits is the
measure of plasticity used in this study. (Online version in colour.)
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required to increase upper thermal limits [28,95–97]. As a
result, the fixing of a plastic response to temperature may rep-
resent evolutionary ‘low hanging fruit’, requiring relatively
few evolutionary changes to increase tolerance. For example,
in Tigriopus copepods, intraspecific variation in the plastic
upregulation of heat shock protein maps to a single locus,
indicating a simple genetic basis for this response [98]. By
contrast, larger changes in heat tolerance in this species
required changes at many loci, suggesting that fixed thermal
tolerances were more complex [99].

In contrast with the strong support we observed for the
trade-off hypothesis, we observed no correlation between
acclimation capacity and environmental variability. This find-
ing is surprising, given the long-standing prediction in
macroecology that species from thermally variable environ-
ments should tend to have broader thermal niches [22,24,27].
This prediction is borne out across a range of taxa and ecosys-
tems [28,100,101]. However, there are several possible reasons
why plasticity may not consistently contribute to this niche
breadth. Theory predicts that plasticity will be favoured only
when the change in the environment is accompanied by a
reliable cue and sufficient lag time to produce the new optimal
phenotype [6]. As a result, whether or not the capacity for
thermal acclimation is favoured by natural selection depends
fundamentally on the timescale and predictability of thermal
variation [102–104]. Thus, thermally variable environments
with high levels of temporal autocorrelation (‘red noise,’
sensu [105]) might favour plasticity while stochastic daily and
hourly variation might favour broad thermal niches that are
fixed [106]. Our analysis was only able to incorporate the
range of thermal variability, not its predictability. Future
studies could attempt to correlate plasticity with the predict-
ability of temperature variation. Also, because each species’
thermal plasticity has evolved in the context of its specific ther-
mal regime, laboratory acclimation experiments that reflect
natural timescales of thermal variability may be more likely
to elicit a plastic response [107]. Future thermal tolerance
studies should seek to place laboratory acclimation conditions
in the context of natural timescales of thermal variation.

Selection on heat tolerance may also be moderated by the
Bogert effect, where behavioural thermoregulation buffers
against selection on physiological traits [108–110]. The impor-
tance of the Bogert effect is supported by the fact that upper
thermal limits and acclimation capacity vary relatively little
with latitude in terrestrial ectotherms, but do vary with
latitude in marine taxa which have fewer options for
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Figure 2. Graphs showing outputs from our meta-analytic regression model. Meta-analytic scatter plots show plasticity (standardized change in upper thermal
limits) as a function of (a) standardized mean thermal limit of the lower acclimation temperature, (b) standardized difference in acclimation temperature and
(c) standardized range in annual temperature. All variables were standardized so that the mean is zero. Solid line denotes model predictions, varying terrestrial
ecosystems while holding other predictors at the mean. Dotted line shows 95% prediction intervals. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210765

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 S

ep
te

m
be

r 2
02

1 
behavioural thermoregulation (i.e. owing to sessile life-
history stages and/or the spatial grain size of thermal vari-
ation in the sea) [36,100].

The strong support we observed for the trade-off
hypothesis is surprising, because a much larger meta-analysis
examining interspecific patterns of acclimation capacity did not
find similar support [36]. One possible explanation for this dis-
crepancy is that the longer periods of evolutionary time
between species increases the likelihood that evidence for
trade-offs will be obscured by selection induced by environ-
mental conditions that are correlated with temperature
[37–40]. It is possible, therefore, that the trade-off hypothesis
is universally true but only studies of intraspecific variation
like ours can identify these patterns. Ameta-analysis restricted
to studies that compare acclimation capacity across closely
related species (e.g. within a genus) may be better able to
detect the patterns found in our study. Another possible
reason for the discrepancy between our results and those of
Gunderson and Stillman is the different sample sizes between
the two studies (78 populations across 19 species versus 232
species). As a result, it is possible that publication bias contrib-
uted to the strength of our results, if authorsweremore likely to
publish data that demonstrated plasticity differences between
populations, or more likely to test for differences in plasticity
in species where they had some reason to suspect that
these differences existed, a priori. However, despite our small
sample size, the support we observed for the trade-off hypo-
thesis was extremely strong, borne out in the fail-safe number
of 61 862, the number of unpublished null results that would
have to exist in order to invalidate our results.

Our results are robust across methodologies for measuring
upper thermal tolerance, given that the inclusion of LT50

data in the unweighted analysis matches the conclusions of
the weighted meta-regression. The electronic supplementary
material, table S1 summarizes data from 13 studies that
were excluded from our meta-analysis. Across studies that
measured heat tolerance, five species showed the same pat-
terns observed here, with the lowest plasticity in the most
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Figure 3. Plot showing the parameter estimates for each predictor in the model average in the weighted analysis. Error bars represent 95% confidence intervals.
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tolerant population. Three other species either lacked plasticity
or exhibited indeterminate relationships where the most toler-
ant population was neither the most plastic or the least plastic.
Only one species (the introducedNile perch) showed the oppo-
site pattern, where the most tolerant population was also the
most plastic. The electronic supplementary material, table S1
also summarizes results for five studies of intraspecific vari-
ation in cold tolerance acclimation, which we were unable to
include in our analysis owing to the small number of studies
on this trait. Intriguingly, four out of five of these studies
report that the most cold-tolerant population had the greatest
capacity for acclimation, the exact opposite from the pattern
we observed for heat tolerance. This suggests that the capacity
for cold acclimation does not evolve according to the same
trade-offs as heat acclimation and highlights the need for
more studies of intraspecific variation in this trait.

Our results highlight the importance of intraspecific
variation when forecasting species’ vulnerability to climate
change. Most models of climate change responses assume that
thermal tolerance is fixed within species (niche conservatism);
however, there is a growing recognition that incorporating
intraspecific variation can lead to more accurate predictions of
extinction risk [111]. The studies incorporated in our analysis
highlight three important sources of intraspecific variation:
evolved differences, differences produced by acclimation, and
evolved differences in the capacity for acclimation.

Our results also have important implications for the joint
contributions of plasticity and adaptive evolution to species’
vulnerability to climate change. It is generally recognized
that both plasticity and adaptive evolution may contribute to
climate change responses; but how plasticity and adaptive
evolution will interact to influence extinction risk is less clear
[112,113]. Most theoretical models assume that the buffering
effects of plasticity and adaptation will be additive [114]. How-
ever, if, as our study suggests, the evolution of increased heat
tolerance incurs a loss of thermal acclimation capacity, it will
not tend to confer additional protections above and beyond
those already conferred by plasticity. Our results are based
on a limited number of studies, but the compelling patterns
in our dataset suggest that we may be underestimating
the effects of rising temperatures on species persistence.
Our work highlights the urgent need for more research on
intraspecific variation in thermal plasticity.
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