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Abstract

Remote sensing imagery can provide critical information on the magnitude and

extent of damage caused by forest pests and pathogens. However, monitoring

short-term changes in deciduous forest condition caused by defoliating insects

is challenging and requires approaches that directly account for seasonal vegeta-

tion dynamics. We implemented a previously published harmonic modeling

approach for forest condition monitoring in Google Earth Engine and systemat-

ically assessed the relative ability of condition change products generated using

various model parameterizations for predicting pest abundances and defoliation

during the 2016–2018 gypsy moth (Lymantria dispar) outbreak in southern

New England. Our comparisons revealed that most models made reasonable

predictions of changes in canopy condition and egg and larval abundances of L.

dispar, indicating a strong correlation between our harmonic-based estimates of

condition change and defoliator activity. The greatest differences in predictive

ability were in the spectral domain, with assessments based on Tasseled Cap

Greenness, Simple Ratio, and the Enhanced Vegetation Index ranking among

the top models, and the commonly used Normalized Difference Vegetation

Index consistently exhibiting poorer performance. We also observed notable

differences in the magnitude of scores for different baseline periods. Addition-

ally, we found that Landsat-based condition scores better explained larval abun-

dance than egg mass counts, which have historically been used as a proxy for

later-season larval abundance, indicating that our remote sensing approach may

be more accurate and cost-effective for generating consistent retrospective

assessments of L. dispar population abundance in addition to estimates of

canopy damage. These findings provide important linkages between spectral

changes detected using a harmonic modeling approach and biophysical aspects

of defoliator activity, with potential to extend monitoring and prediction to

regional or even continental scales.

Introduction

Outbreaks of indigenous and non-native forest pests and

pathogens can have far-reaching economic and ecological

impacts (Dale et al., 2001; Dukes et al., 2009; Logan

et al., 2003) and monitoring the extent and severity of

pest and pathogen outbreaks is necessary for effective

large-scale forest management (e.g. Hargrove et al., 2009).

However, the vast geographical scale of forest monitoring

poses a massive logistical and economic challenge, and

outbreaks of defoliating insects, such as European gypsy

moth (Lymantria dispar), forest tent caterpillar
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(Malacosoma disstria), saddled prominent (Heterocampa

guttivitta), and spruce budworm (Choristoneura fumifer-

ana), remain challenging to assess due to the heteroge-

neous and ephemeral nature of defoliation severity and

vegetation response. With improved access to remote

sensing datasets and cloud-based processing resources,

both near-real-time monitoring and retrospective assess-

ment are becoming increasingly prevalent (e.g. Coops

et al., 2020; Norman & Christie, 2020; Senf et al., 2017).

Thus, there remains a critical need to assess the utility of

multi-temporal satellite imagery for detecting and charac-

terizing defoliator outbreaks.

Effective monitoring of defoliator impacts using satel-

lite imagery relies on observations of both defoliated and

non-defoliated states, and numerous methodologies for

quantifying deviations from reference or “baseline” con-

ditions have been proposed (e.g. Ch�avez et al., 2019; Ols-

son et al., 2016; Rock et al., 1986; Spruce et al., 2011;

Townsend et al., 2012). These methods can produce esti-

mates of both the magnitude and extent of pest damage;

however, choice of a baseline to monitor against is a key

element of change detection processes (Norman & Chris-

tie, 2020). Rather than compare imagery from different

time periods, harmonic regression models fit to time ser-

ies of reflectance observations can be used to generate

“synthetic” images that represent predicted reflectance

values for specific dates (Zhu et al., 2015). Prior work

has demonstrated advantages of a harmonic condition

monitoring approach for detecting changes in forest con-

dition in response to a recent L. dispar outbreak in

southern New England including greater spatial and tem-

poral resolution relative to aerial survey methods (Pas-

quarella et al., 2017, 2018a). Resulting products have

been used in studies correlating spore deposition of the

L. dispar fungal pathogen E. maimaiga with defoliation

(Elkinton et al., 2019), determining how nitrogen dynam-

ics interact with defoliation (Conrad-Rooney et al., 2020),

and estimating impacts of multi-year defoliation events

on streamflow and seasonal water yield (Smith-Tripp

et al., unpubl. data). However, improved access to cloud-

based datasets and computing resources has resulted in

new opportunities for developing and testing methods

that rely on dense time series of satellite imagery (Gore-

lick et al., 2017).

In this study, we used a new google earth engine (GEE)

implementation of the condition monitoring approach

described in Pasquarella et al. (2017) to evaluate the pre-

dictive ability of Landsat-based condition scores for esti-

mating L. dispar abundance and damage. Specifically, we

address two questions:

1 How well do spectral estimates of vegetation condition

change correlate with the abundance of defoliating

pests, or with actual defoliation?

2 How do different harmonic baseline parameterizations

perform in estimating pest abundance or defoliation?

Our results confirm the utility of Landsat-based condi-

tion change scores as a proxy for changes in defoliator

populations and canopy condition during a regional-scale

outbreak event and offer new insights into the sensitivity

of harmonic baselines for forest condition monitoring.

Materials and Methods

Study system

We used field datasets collected during the 2016–2018
gypsy moth outbreak in southern New England for our

analyses. Introduced to Massachusetts in 1869, the Euro-

pean gypsy moth is well-established in the northeastern

US (Elkinton & Liebhold, 1990). As a generalist defolia-

tor, gypsy moths are known to feed on the foliage of

numerous tree species, with Quercus, Populus, and Larix

species being among the most common hosts (Liebhold

et al., 2000). While periodic outbreaks have occurred for

over a century, the 2016–2018 outbreak was the first

widespread irruption in this region since the successful

establishment of the fungal pathogen Entomophaga mai-

maiga in 1989 (Andreadis & Weseloh, 1990; Hajek et al.,

1995). We focused on field data and Landsat-based condi-

tion assessments from 2017, as this year represented peak

outbreak conditions as well as maximum overlap among

our reference datasets.

Landsat-based forest condition monitoring
workflow

The GEE platform provides both the Landsat datasets and

image processing tools needed to scale harmonic-based

condition monitoring analysis and enables more opera-

tional product generation. As a key step in this analysis,

we adapted the Landsat-based condition monitoring

approach presented in Pasquarella et al. (2017) to run

from the GEE Code Editor (Fig. 1). Details on methods

are provided in Appendix S1.

Baseline model experiments

We used this GEE condition monitoring workflow to

develop a series of 32 experiments that consider a variety

of parameter choices for establishing multi-year “base-

line” models representing relatively stable forest condi-

tions for each Landsat pixel in our study area. We tested

a full set of factors including (a) spectral vegetation index

used for model fitting, (b) baseline-modeling period, (c)

frequencies of harmonic regression terms, and (d) differ-

ences in Landsat time series input imagery (Table 1).
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Spectral transforms

Vegetation indices that combine the red, near infrared

(NIR), and shortwave infrared (SWIR) bands are typically

used for detecting changes in canopy cover and condition

(Rullan-Silva et al., 2013), and we focused on a subset of

indices that are well-characterized by harmonic functions,

i.e. indices that rely primarily on the visible and NIR

bands. Previous analyses (Pasquarella et al., 2017, 2018a)

were based on time series of tasseled cap greenness

(TCG), which is a linear combination of six Landsat opti-

cal bands that contrasts absorption in the visible and

second short-wave infrared bands with reflectance in the

near-infrared as distinctive properties of green vegetation

(Crist, 1985; Crist & Kauth, 1986). However, due to dif-

ferences in data structures and sensor calibration, Tasseled

Cap coefficients are sensor-dependent, making it difficult

to generalize to different instruments. We therefore tested

other common vegetation indices, including the normal-

ized difference vegetation index (NDVI; Huete et al.,

2002; Jackson & Huete, 1991; Kriegler et al., 1969;

Tucker, 1978), the enhanced vegetation index (EVI; Huete

et al., 2002), and the simple ratio (SR; Jackson & Huete,

1991).

Endlap
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Scene

Path

Fit harmonic “baseline” 
models for each Landsat 
scene in original UTM Zone

Get model with max 
number of observations 
within each Path using 
.qualityMosaic()

Export in UTM, one 
asset for each Path 
(Image Collection)

Calculate prediction, 
residual and 
condition score for 
each date and 
average by Path 

Reproject to 
Albers, weighted 
average by Path

Get monitoring 
period images, 
keep in original 
UTM

UTM 19N

UTM 18N

Albers Conic

Figure 1. Remote sensing workflow in google earth engine (GEE). Harmonic baseline models are fit for stacks of images within individual

Landsat scene footprints. Scene-based results are then merged by orbital Path to remove duplicate models for the same image acquisition date.

Baseline model images, including harmonic regression coefficients, number of observations used for fitting and model RMSE, are exported and

saved in native UTM projection. Baselines are then used to generate predictions for images acquired during a user-specified monitoring period

(May 1–September 30, 2017 in this study), and residuals (observed minus predicted values) as well as condition scores (residuals normalized by

baseline RMSE are calculated for each Path acquisition date. Scores are averaged over the monitoring period to generate a mean condition score

for each Path. Finally, mean scores for individual Paths are reprojected to a common coordinate system (Albers Equal Area Conic) and combined

using a weighted average based on the number of observations used for monitoring. The result is a seamless season-integrated condition

assessment product with an average condition score (RMSE-normalized spectral deviation from baseline conditions) for each 30-m pixel.

Table 1. Experimental parameters used for the baseline model comparison.

Parameter Description Options tested

Spectral transforms Vegetation index used for both monitoring and prediction Tasseled Cap Greenness (TCG)

Normalized Difference Vegetation Index (NDVI)

Simple Ratio (SR)

Enhanced Vegetation Index (EVI)

Baseline period Years included in baseline model fitting 2000–2010

2005–2015

Harmonic frequencies Set of harmonic frequencies used for baseline model fitting 1/365.25, 2/365.25 (h12)

1/365.25, 3/365.25 (h13)

Time series image inputs Frequency of Landsat observations, choice to include or

exclude Landsat 7 due to Scan Line Corrector artifacts

All available observations (full)

Single-sensor (16d)
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Baseline period

We considered two different baseline periods, 2000–2010
and 2005–2015, for direct comparison with previous

results. Both periods represent pre-outbreak conditions in

Connecticut and Massachusetts. If undisturbed forest con-

ditions are assumed to be relatively stable in terms of

long-term phenology, any recent subset of years should

theoretically result in similar baseline model estimates.

However, the 2000–2010 period includes only imagery

from Landsat 5 (L5) and Landsat (L7), while the 2005–
2015 period also incorporates Landsat 8 (L8) acquisitions,

and year-to-year differences in the timing and number of

clear observations across the Landsat record as well as

assumptions about stable reference periods remain an

important source of testable uncertainty in the quality

and utility of baseline regression results.

Harmonic frequencies

Baseline modeling was performed using a linear least

squares regression with observed spectral values as the

response and six predictor terms: intercept, slope, and two

harmonic sine and cosine pairs (Pasquarella et al., 2017).

For each of the four spectral indices, we tested two different

harmonic model specifications that varied the frequencies

of the second sine and cosine terms. The first option paired

an annual frequency with a bi-annual frequency (i.e. peri-

odicity of 1 and 2). The second paired an annual frequency

with a tri-annual frequency (i.e. periodicity of 1 and 3).

The choice of harmonic frequencies (“h12” or “h13”) used

for the baseline regression may result in differences in

model fit, particularly when there is strong asymmetry in

seasonal reflectance profiles that is not well-characterized

by a single annual harmonic. These differences are expected

to manifest as variability in baseline model root mean

squared error (RMSE), which will in turn influence assess-

ment results, since baseline RMSE is used to normalize dif-

ferences between observed and predicted values in

condition score calculation (Pasquarella et al., 2017).

Time series image inputs

The L7 scan line corrector (SLC) failure causes notable

spatial artifacts in condition assessment products, pre-

sumably due to differences in number and timing of

observations across scan line gaps. Therefore, we experi-

mented with fitting baseline models to time series of all

available observations (“full”) versus using L7 only when

L5 and L8 images are not available (“16d”). This allowed

us to test trade-offs between utilizing the maximum tem-

poral density of time series inputs and minimizing impact

of SLC artifacts.

Existing “reanalysis” product

We included an existing assessment product, the “reanaly-

sis” result (Pasquarella, 2018b), and to compare the origi-

nal workflow implementation with new results generated

using GEE. The reanalysis product used a 2000–2010
baseline fit to full time series of TCG using annual and

tri-annual harmonic frequencies. Rather than assume this

existing product represented a target output, we consid-

ered it relative to the GEE results in our baseline assess-

ment analysis.

Monitoring period

To test the effect of varying baseline parameterizations on

ability to predict metrics of canopy change and defoliator

abundance using condition scores, we applied baseline

models to a fixed monitoring period that included all

Landsat acquisitions from May 1 to September 30, 2017.

We generated predicted values for each acquisition date

during the monitoring period, calculated condition scores

(observed minus predicted spectral value, divided by base-

line RMSE), then averaged scores over the monitoring

period to produce a final “season-integrated” assessment

following methods described in Pasquarella et al. (2017).

The May 1 to September 30 monitoring period was

selected to be consistent with previous analyses and cap-

tures the phenology of defoliation and recovery in south-

ern New England. Lymantria dispar completes one life

cycle per season: it hatches in late spring, develops

through 5–6 in stars with peak feeding (defoliation) in

late June, and pupates by early July (Doane & McManus,

1981). Defoliated trees may produce a new flush of leaves

(e.g. de Beurs & Townsend, 2008); however, the defolia-

tion signal is expected to persist even as refoliation

occurs. Thus, averaging condition scores for all observa-

tions during the monitoring period should produce a rel-

atively robust estimate of overall change in forest

condition that is suitable for comparison with field-based

measurements collected during the same period.

Field datasets

The 32 baseline model experiments were evaluated using

measurements from two networks of field sites (Table 2).

The Quabbin Watershed defoliation survey (the “defolia-

tion” study) rapidly examined late-season L. dispar damage

in 2017. Six ~350 hectare “hotspot representing a range of

forest types and Landsat condition scores were selected

across the Quabbin Reservoir Watershed (Fig. 2). Within

each hotspot, 100 random points were identified and sam-

pled on the ground using horizontal point sampling (2.296

BAF; Bitterlich, 1947) between 21 September and 6
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October, 2017, before canopy senescence (e.g. Fig. 2B). For

each tree at a point, species; defoliation class (1 = 75%–
100% foliage remaining, 2 = 50%–75% foliage, 3 = 25%–
50% foliage, 4 = 0%–25% foliage); diameter at breast

height (by 5-cm size classes); and canopy exposure (1 = full

sun, 2 = partially shaded, 3 = mostly shaded) were

recorded. The defoliation estimate for each tree represented

net canopy damage after defoliation, including any recov-

ery of new foliage after cessation of gypsy moth larval feed-

ing in early July. Because of time constraints, sampling was

completed for only 486 of the 600 points. Of these, three

points had no trees because of recent timber harvest, and

were therefore excluded from the analysis.

The Eastern Connecticut study (the “Lymantria” study)

sampled forest fragments across a 3500 km2 area. Sam-

pled forest fragments ranged from 3 to 1013 ha and were

arranged in 13 blocks, each including 2–3 neighboring

fragments of different areas. Surveys of L. dispar abun-

dance were conducted in 2017 and 2018 at 32 forest sites,

though we focused only on 2017 measurements to facili-

tate comparison with the defoliation study. Each of the

32 fragments contained three sampling points arranged in

a triangle, spaced 125 m apart (Fig. 2C). At each point,

the closest tree >10-cm diameter at breast height from

the center point in each cardinal direction was selected

and identified to species (four trees per sampling point

for a total of 12 trees per site). In May of each year, we

wrapped 20-cm wide burlap at chest height around the

tree bole to serve as a day-time refuge and pupation site

for late instar larvae (Wagner, 2005). We counted L. dis-

par egg masses on the bottom two meters of tree trunks

in May, and L. dispar larvae on the bottom two meters of

the trunks and under the burlap in early June and again

in late June.

Baseline model evaluation

Condition scores were extracted for each field plot loca-

tion such that plot centers were associated with the

nearest Landsat pixel (30-m scale), and sampled values

were exported from GEE as CSV data tables. We con-

ducted all model evaluation analyses in R (R Develop-

ment Core Team, 2019), using the tidyverse package

(Wickham et al., 2019) for data wrangling, glmmTMB

(Brooks et al., 2017) for running generalized linear mixed

models (GLMM), bbmle (Bolker & R Development Core

Team, 2020) for model AIC comparisons, and the easys-

tats ecosystem and sjPlot (L€udecke, 2019; L€udecke et al.,

2019) to calculate R2 values and generate figures.

To test whether Landsat condition scores predicted

observed changes in forest canopy condition at the Mas-

sachusetts field sites, we constructed models with mean

defoliation score of the trees at each sample point as the

response variable. We calculated the mean defoliation

score using the midpoint of the defoliation class for each

tree such that the mean defoliation score for each point

was a continuous proportion bounded by 0.125 and

0.875. We fit GLMMs assuming a beta error distribution

(logit link; Douma & Weedon, 2019), and included hot-

spot as a random intercept term to control for landscape-

level variation.

To test whether Landsat condition scores predicted L.

dispar abundance from the Connecticut field sites, we

constructed GLMMs with larval abundance or egg

masses as the response variable. We pooled counts of

egg masses or larval abundance across the four trees at

each survey point, and included a random intercept

term for site to control for landscape-level variation.

The residuals from initial models that assumed a Pois-

son distribution of errors were overdispersed, so we

assumed negative binomial distributions for the errors

in the models presented here (Richards, 2008). Though

data were collected in additional years, we fit models

using only 2017 data for more direct comparison with

the defoliation study. Since L. dispar egg mass counts

have been used to estimate larval population abundance

(Liebhold et al., 1994), we also fit models using egg

mass counts as a predictor of larval abundance to

Table 2. Key attributes of the field datasets.

Field plots Defoliation Lymantria dispar abundance

Location Central Massachusetts, US Eastern Connecticut, US

Timing 2017 2017, 2018

Surveys conducted September 21–October 6 May (egg mass counts), June (larval surveys)

Sample design Random points stratified by forest type and

damage in 2017

Blocked forest fragments of contrasting area selected from CLEAR

dataset (Vogt et al., 2007)

Plot design and survey

approach

Variable-radius point sampling, rapid assessment

(N = 486 sites)

Sample of four trees at vertices of 125-m triangle (>10-cm dbh)

(N = 96 sites, 384 trees)

Key measurements Tree defoliation status, species, and diameter at

breast height (dbh)

Egg mass counts, larval abundance
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(A)

(B) (C)

2000m 125m

Figure 2. Field sites: (A) overview, showing the Connecticut and Massachusetts plot locations and Landsat scene boundaries, including overlap

and endlap) areas; green shading indicates pixels with greater than 75% forest cover (source: USDA USFS, 2016 TCC Product Suite); (B) an

example hotspot from the Massachusetts defoliation study; white points indicate defoliation sample sites; (C) an example of two survey sites from

Lymantria dispar study in Connecticut; white points indicate the vertices of a 125 m triangle within each Lymantria dispar study site, egg masses

and caterpillars on the bark of burlap-wrapped trees were counted on four trees spaced five meters in each cardinal direction from each vertex.
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compare the predictive ability of Landsat change in con-

dition versus egg mass counts.

We used AIC scores to evaluate the performance of dif-

ferent baseline models. We considered all models with a

DAIC <6 as feasible alternatives within a 95% model set

(Richards, 2005). To quantify the ability of each model to

explain observed variation in the response variable, we

calculated marginal and conditional R2 values (Nakagawa

& Schielzeth, 2013), where marginal R2 represents the

proportion of deviance explained by fixed factors (Land-

sat condition score), and conditional R2 represents the

deviance explained by both fixed factors and random fac-

tors (CT site or MA hotspot). The combination of these

metrics provides insights into the relative performance of

the 32 GEE baseline experiments, as well as the existing

reanalysis product, for predicting field-based measures of

L. dispar abundance and impacts.

Results

Defoliation dataset (Massachusetts)

Comparison of AIC scores for the defoliation survey data

indicate that the 2005–2015 baseline fit to time series of

all available TCG observations using annual and tri-

annual harmonic frequencies was the best predictor of net

changes in canopy condition (Fig. 3), and explained 60%

of the variance in ground-observed defoliation (marginal

R2 = 0.60, conditional R2 = 0.63). All other models had

substantially higher AIC scores (DAIC > 6) suggesting

that this baseline significantly outperformed other param-

eterizations. However, marginal and conditional R2 values

were similar to the reanalysis results, indicating that the

existing products explained a comparable amount of vari-

ability in canopy change estimates. Mapped results for the

best-performing baseline for the defoliation survey data

showed widespread low- to moderate-magnitude changes

in condition, with pockets of higher-magnitude change

(Fig. 4A and B), and there was a significant negative rela-

tionship between condition assessment scores and net

defoliation (Fig. 4C; b = �0.52 � 0.039, z = �13.34,

P < 0.001).

Larval abundance dataset (Connecticut)

Comparison of AIC scores for the L. dispar larval dataset

indicated that the 2000–2010 baseline fit to a time series

of SR observations with a 16-day repeat (limited use of

L7 imagery) using annual and tri-annual harmonic fre-

quencies was the best predictor of larval abundance

(Fig. 5), and explained 46% of the variance in abundance

estimates (marginal R2 = 0.46, conditional R2 = 0.73).

However, SR baselines for the same 2000–2010 period fit

to the full time series and using annual and bi-annual

harmonics showed closely comparable results, and 19

other baselines were within the 95% model set

(DAIC < 6.00), with similar marginal R2 values to the top

model. While the marginal R2 for the larval models

tended to be lower than those for the defoliation dataset,

the conditional R2 were higher, indicating that site/land-

scape factors were more important in Connecticut and

accounted for a larger portion of variation in larval abun-

dance. The reanalysis product did not perform well for

this dataset. Mapped results for the top-ranked baseline

for the L. dispar larval dataset (Fig. 6A and B) showed

similar distribution but lower magnitude condition scores

compared to the top model for the defoliation survey

(Fig. 4), and a significant negative relationship between

larval abundance and defoliation scores (Fig. 6C;

b = �0.60 � 0.094, z = �6.57, P < 0.001).

Egg mass abundance dataset (Connecticut)

Comparison of AIC scores for the L. dispar egg masses

dataset indicated that the 2000–2010 baseline fit to a time

series of all available TCG observations using annual and

bi-annual harmonic frequencies was the best predictor of

egg mass counts (Fig. 7), and explained 43% of the vari-

ance in count data (marginal R2 = 0.43, conditional

R2 = 0.87). The comparable model using annual and tri-

annual frequencies, as well as the reanalysis product, per-

formed very similarly, and 13 models were within the 95%

model set (DAIC < 6.00). The difference between marginal

R2 values and conditional R2 values were even greater for

the egg mass dataset compared to larval dataset, indicating

more variability of egg mass abundance among sites than

larvae or canopy defoliation. Mapped results for the top-

ranked baseline for the L. dispar egg masses data were very

similar to the top-ranked defoliation model, tending to

show widespread changes in condition and high magnitude

scores (Fig. 8A and B). There was a significant negative

relationship between defoliation scores and egg mass abun-

dance (Fig. 8C; b = �1.92 � 0.327, z = �5.86, P < 0.001).

Comparing the relative ability of egg masses and

remote-sensed defoliation to predict larval abundance, we

found that egg mass counts were poorer predictors of lar-

val caterpillar abundance (marginal R2 = 0.08, conditional

R2 = 0.72, Fig. 9) than Landsat-based condition scores

(Fig. 5).

Comparison of condition scores across
baselines

The distributions of condition scores from the various

baseline experiments and the existing reanalysis product

for the L. dispar and defoliation plots varied in magnitude
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and range (Fig. 10). All condition scores were calculated

based on the same 2017 Landsat observations and were

normalized by their corresponding baseline RMSE. This

accounted for differences in scaling across different spec-

tral vegetation indices such that differences among baseli-

nes result from differences in predicted values as well as

the quality of baseline fit. Of the four spectral indices

considered, NDVI produced scores that generally fell

within the range of expected baseline noise (between �1

and 1 times the baseline RMSE) during this known out-

break year, which partially explains its poor performance

relative to other indices. The 2005–2015 baselines tended

Figure 3. Baseline model comparison for 2017 defoliation results (Massachusetts plot network). Models are ranked according to DAIC score (first

column, green), and marginal and conditional R2 values are also included for each model. Red line indicates the approximate 95% model set

(models with a DAIC < 6). Parameterization options are shown as a binary heatmap, with light cells indicating which option (spectral, harmonic,

baseline period, and temporal inputs) was used for a given baseline experiment in order to visualize patterns relative to baseline rankings. **

indicates reanalysis results.
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to produce more negative scores than comparable 2000–
2010 baselines, and these differences are perhaps most

apparent in the NDVI and SR experiments.

Discussion

Using only Landsat-based condition scores as a predictor,

our models explained up to 60% of the variation in

observed canopy change and up to 45% of the variation

in L. dispar egg mass and larval abundance during the

2017 gypsy moth outbreak across field sites in Connecti-

cut and Massachusetts after accounting for landscape-

level variation (Figs. 3, 5, and 7). Historically, egg mass

counts have been used as a proxy for later-season larval

abundance, especially with regard to predicting where

control measures might be needed (Doane & McManus,

1981; Liebhold et al., 1994). When compared to condition

scores, however, egg masses only explained 8% of the

variation in larval abundance. Thus, while egg mass

counts remain useful for predicting larval abundance and

damage in the immediate future, our remote sensing

approach may be more accurate and cost-effective for

generating consistent retrospective assessments of L. dis-

par abundance. Additionally, while it is difficult to rigor-

ously quantify changes in canopy biomass and leaf-area

once an outbreak is underway, we found that condition

scores were a strong predictor of observed changes in

canopy condition and can characterize relative differences

in defoliation severity. Therefore, while model rankings

and the magnitude of condition scores were somewhat

sensitive to Landsat image inputs and baseline model

parameterization, many models were able to characterize

observed patterns in outbreak populations of L. dispar as

well as defoliation impacts relatively well, and our results

suggest harmonic-based condition scores are generally a

suitable proxy for both changes in host condition and

pest abundance over broad spatial extents.

Of the parameters tested, the spectral vegetation index

used for harmonic model fitting and condition monitor-

ing was perhaps the most important determinant of

model quality. TCG and SR were consistently among the

top-ranked models, while NDVI-based models exhibited

relatively poor explanatory ability across all field-based

datasets. Vegetation change studies using MODIS imagery

(A) TCG, 2005-2015, h13, full

(B)

(C)

Figure 4. Mapped results and regression analysis for the top model for the defoliation dataset (TCG, 2005–2015, h13, full). (A) Zoomed view of

Massachusetts plot sites (n = 486), which are clustered in six “hotspots” indicated by white circles. (B) Overview for the full southern New

England study area. (C) Regression model predictions for fitted ground defoliation as a function of Landsat-based defoliation score, black lines

indicate model residuals, and the 95% confidence interval on predictions is indicated by gray shading.
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have often relied on NDVI due to higher spatial resolu-

tion of the MODIS visible and NIR bands (e.g. Ch�avez

et al., 2019; Jepsen et al., 2009; Spruce et al., 2011). How-

ever, NDVI signals are known to saturate in regions of

high vegetation biomass (e.g. Huete et al., 1997) and visu-

alizing the distribution of spectral values by month for

our field sites confirms low variability in NDVI values

during growing season months (June–September) relative

to TCG, SR, and EVI (Appendix S2). It is worth noting

that comparable analysis using L. dispar data for 2018 (a

non-outbreak year) did include NDVI among top-ranked

models (Appendix S3), suggesting that there may be

stronger correlation when population and defoliation sig-

nals are both low. However, we suspect that the observed

Figure 5. Baseline model comparison for 2017 larval survey/caterpillar results (Connecticut plot network). Models are ranked according to DAIC

score (first column, purple), and marginal and conditional R2 values are also included for each model. Red line indicates the approximate 95%

model set (models with a DAIC < 6). Parameterization options are shown as a binary heatmap, with light cells indicating which option (spectral,

harmonic, baseline period, and temporal inputs) was used for a given baseline experiment in order to visualize patterns relative to baseline

rankings. ** indicates reanalysis results.
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low dynamic range and saturation effects make NDVI less

effective for characterizing more variable conditions dur-

ing an outbreak year, and thus support our conclusion

that NDVI is not a reliable indicator of forest health and

condition.

Though we found TCG often outperformed other vege-

tation indices, potentially due to combined weighting of

visible, NIR, and SWIR information, sensor-specific dif-

ferences in available spectral bands and corresponding

wavelengths may limit the utility of the TCG transform

for future work. For example, integrating observations

from the Sentinel-2 series would require a different set of

coefficients and harmonization process (e.g. Shi & Xu,

2019). Commercial high-resolution instruments like

PlanetScope sensors also offer opportunities to improve

spatial and temporal solution; however, imaging is cur-

rently limited to the visible and NIR bands. In this case,

our findings suggest that SR is a better choice than NDVI

for monitoring changes in forest conditions, at least in

temperate deciduous forests.

The somewhat higher rankings of “h13” relative to

“h12” harmonic frequencies may be explained by the

higher frequency of the second term in the “h13” pairing,

which is likely better suited for characterizing asymme-

tries in the seasonal profiles of vegetation indices. The

tests of “full” compared with “16d” time series inputs

were inconclusive. It is generally assumed that harmonic

regression is robust to variability in input frequency and

density of Landsat observations, however, spatial artifacts

from Landsat 7 remain evident in mapped results when

scan lines are present in baseline and/or monitoring per-

iod imagery. These artifacts are most prevalent near scene

boundaries, and would be expected to have a greater

impact on CT sites, however, differences in scores do not

indicate a clear preference among time series options and

the distribution of sites may fail to adequately test the

effects of this parameterization choice.

Results concerning the choice of years to include in the

baseline modeling period were also inconclusive, with the

2005–2015 baseline generally ranking higher in terms of

predictive ability for defoliation sites, while the 2000–
2010 baseline exhibited stronger performance for the L.

dispar abundance sites. The mapped results ( 4, 6, and 8)

and the distribution of condition scores for our plot sites

(Fig. 10) suggest that the baseline period is a source of

considerable variability, and differences in magnitude of

(A) SR, 2000-2010, h13, 16d

(B)

(C)

Figure 6. Mapped results and regression analysis for the top model for the larva/caterpillar dataset (SR, 2000–2010, h13, 16d). (A) Zoomed view

of Connecticut plot sites (n = 96), which are distributed to sample forest fragments across the broader landscape; plot locations are indicated by

circled white points. (B) Overview for the full southern New England study area. (C) Regression model prediction for fitted larval abundance as a

function of Landsat-based defoliation score, black lines indicate model residuals, and the 95% confidence interval on predictions is indicated by

gray shading.
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scores and model rankings warrant further exploration

and testing over a larger set of baseline periods. We

assumed that longer decadal-scale reference periods were

preferable to shorter baselines and that a single, fixed-

reference period (e.g. 2000–2010) could be used across a

broad spatial extent in our study. However, forest pest

outbreaks exhibit complex spatial dynamics (Foster et al.,

2013). For gypsy moth outbreaks, the Northeast will differ

from more southern and western regions of the US in

timing and additional biotic factors may also come into

play. For instance, E. maimaiga is believed to be responsi-

ble for the dampening outbreak population cycles in the

Northeast for several decades prior to the 2016–2018
event (i.e. Hajek & van Nouhuys, 2016). Thus, testing

Figure 7. Baseline model comparison for 2017 egg mass count results (Connecticut plot network). Models are ranked according to DAIC score

(first column, brown), and marginal and conditional R2 values are also included for each model. Red line indicates the approximate 95% model

set (models with a DAIC < 6). Parameterization options are shown as a binary heatmap, with light cells indicating which option (spectral,

harmonic, baseline period, and temporal inputs) was used for a given baseline experiment in order to visualize patterns relative to baseline

rankings. ** indicates reanalysis results.
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additional baseline options and improving criteria for

baseline selection will be important next steps for general-

izing the approach used in this study to regions that have

experienced more persistent yet spatially and temporally

variable outbreak cycles.

We also recommend further exploration of criteria for

setting the monitoring period. Defoliator emergence and

thus timing of impacts are strongly linked with local cli-

mate, particularly spring temperatures and precipitation,

as well as host phenology and predator populations

(Rullan-Silva et al., 2013). Therefore, flexible monitoring

periods will be necessary to account for variability in

these factors over larger spatial extents and target optimal

“biological windows” for detecting pest-specific damage.

Fortunately, gypsy moth population dynamics are well-

studied, and there may be opportunities to link condition

monitoring efforts with insect life stage models such as

BioSIM (R�egni�ere, 1996) and use long-term averages in

pupation phenology to adjust monitoring period in a spa-

tially explicit manner.

Differences in scaling between field-based and remotely

sensed observations, as well as heterogeneity in the forests

and forest conditions sampled may explain differences in

the relative importance of site factors across models.

While the defoliation field survey was specifically designed

to integrate with Landsat-based observations and used

preliminary results from 2017 to help stratify plot loca-

tions, the L. dispar sites were previously established and

data were collected for a more limited sample of trees.

The field efforts also varied in their spatial scope, with

the Massachusetts efforts concentrated within the Quab-

bin Watershed Management Area while the Connecticut

study sampled a much broader landscape (Fig. 2).

Additional site variability likely resulted from localized

differences in the severity and timing of defoliation, with

areas of Connecticut experiencing more severe defoliation

in 2016 than sites in Massachusetts, which were only

patchily impacted until the peak of the defoliation event in

2017. We also expect the strength of correlation between

larval abundance and Landsat-based condition change esti-

mates to increase over the course of the season, as caterpil-

lars need to be large enough to cause sufficient damage to

be detected by remote sensing technology. Yet while later-

season images may better characterize maximum damage,

the lag between the occurrence of damage and acquisition

of clear Landsat observations that can be used for condi-

tion assessment, as well as potential for recovery of foliage

and noise in spectral measurements including atmospheric

(A) TCG, 2000-2010, h12, full

(B)

(C)

Figure 8. Mapped results and regression analysis for the top model for the egg mass dataset (TCG, 2000–2010, h12, full). (A) Zoomed view of

Connecticut plot sites (n = 96), which are distributed to sample forest fragments across the broader landscape; plot locations are indicated by

circled white points. (B) Overview for the full southern New England study area. (C) Regression model predictions for fitted egg mass counts as a

function of Landsat-based defoliation score, black lines indicate model residuals, and the 95% confidence interval on predictions is indicated by

gray shading.
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contamination and cloud shadows, are unavoidable sources

of uncertainty. Assessments based on single-date images

can provide important perspectives on near-real-time

changes in condition; however, averaging across multiple

individual assessments to produce condition score products

like those used in this study remains key in automating

the generation of spatially complete and temporally stable

assessments that do not require substantial human inter-

pretation and can be more readily combined with field-

based measurements.

It is interesting to note that the “reanalysis” product

was ranked second for both the canopy change and egg

mass datasets, but much lower for the larva dataset. The

existing product also did not consistently outperform the

GEE baseline with comparable parameterization, with

condition scores from the reanalysis product tending to

be more negative with a wider interquartile range. These

differences may be attributed to differences in the har-

monic regression approach as well as other pre- and post-

processing steps, including cloud masking and reprojec-

tion, and we recommend the GEE implementation for

future use based on both performance across other

parameterizations and greater reproducibility.

Conclusions

The results of this study provide evidence of strong corre-

lations between Landsat-based condition scores and various

field datasets and suggest it is feasible to predict changes in

canopy cover and L. dispar populations at different life

stages given modeled and observed spectral properties.

Both existing products and those generated using a new

GEE implementation of our condition monitoring

approach serve as suitable proxies for defoliator activity,

with models based on time series of TCG and SR tending

to have the greatest predictive abilities. Looking to the

future, the spatial and temporal resolution of current

Landsat-based products could be further enhanced by inte-

grating imagery from other optical sensors such as

Sentinel-2 and PlanetScope. However, our present ability

to retroactively quantify both the magnitude and extent of

outbreak events over large areas using Landsat time series

has powerful potential for improving forest pest monitor-

ing and management at regional to continental scales.
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Data Availability Statement

R code and tabular datasets used for the harmonic base-

line comparisons are available at github.com/BagchiLab-

Uconn/Forest-Condition-Assessment. This repository also

includes scripts to reproduce the Earth Engine condition

monitoring workflow described in Appendix S1 as well as

a set of map visualizations. Baseline experiment map

products are available as Earth Engine assets and are

archived at doi.org/10.5281/zenodo.4567382.
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