Remote Sensing in Ecology and Conservation

ZSL

LET'S WORK
FOR WILDLIFE

Open Access

ORIGINAL RESEARCH

Predicting defoliator abundance and defoliation
measurements using Landsat-based condition scores

Valerie J. Pasquarella’

, James G. Mickley?3, Audrey Barker Plotkin®, Richard G. MacLean®,

Riley M. Anderson®, Leone M. Brown?’, David L. Wagner?, Michael S. Singer® & Robert Bagchi?

"Department of Earth & Environment, Boston University, 685 Commonwealth Avenue, Boston Massachusetts, 02215,
’Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut,

3Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon,

“Harvard Forest, Harvard University, Petersham, Massachusetts,

SMassachusetts Department of Conservation and Recreation Division of Water Supply Protection, Belchertown, Massachusetts,
®Department of Biology, Wesleyan University, Middletown, Connecticut,

“Environmental Studies Program, Tufts University, Medford, Massachusetts, USA

Keywords

Defoliation, forest pests, Google Earth
Engine, gypsy moth, Landsat time series,
remote sensing

Correspondence

Valerie J. Pasquarella, Department of Earth &
Environment, Boston University, 685
Commonwealth Avenue, Boston, MA 02215.
Tel: +1 908 405 6557; Fax: +1 617 353
8399; E-mail: valpasg@bu.edu

Editor: Mat Disney
Associate Editor: Doreen Boyd

Received: 29 September 2020; Revised: 21
March 2021; Accepted: 12 April 2021

doi: 10.1002/rse2.211

Remote Sensing in Ecology and
Conservation 2021;7 (4):592-609

Introduction

Outbreaks of indigenous and non-native forest pests and
pathogens can have far-reaching economic and ecological
impacts (Dale et al., 2001; Dukes et al., 2009; Logan
et al, 2003) and monitoring the extent and severity of

Abstract

Remote sensing imagery can provide critical information on the magnitude and
extent of damage caused by forest pests and pathogens. However, monitoring
short-term changes in deciduous forest condition caused by defoliating insects
is challenging and requires approaches that directly account for seasonal vegeta-
tion dynamics. We implemented a previously published harmonic modeling
approach for forest condition monitoring in Google Earth Engine and systemat-
ically assessed the relative ability of condition change products generated using
various model parameterizations for predicting pest abundances and defoliation
during the 2016-2018 gypsy moth (Lymantria dispar) outbreak in southern
New England. Our comparisons revealed that most models made reasonable
predictions of changes in canopy condition and egg and larval abundances of L.
dispar, indicating a strong correlation between our harmonic-based estimates of
condition change and defoliator activity. The greatest differences in predictive
ability were in the spectral domain, with assessments based on Tasseled Cap
Greenness, Simple Ratio, and the Enhanced Vegetation Index ranking among
the top models, and the commonly used Normalized Difference Vegetation
Index consistently exhibiting poorer performance. We also observed notable
differences in the magnitude of scores for different baseline periods. Addition-
ally, we found that Landsat-based condition scores better explained larval abun-
dance than egg mass counts, which have historically been used as a proxy for
later-season larval abundance, indicating that our remote sensing approach may
be more accurate and cost-effective for generating consistent retrospective
assessments of L. dispar population abundance in addition to estimates of
canopy damage. These findings provide important linkages between spectral
changes detected using a harmonic modeling approach and biophysical aspects
of defoliator activity, with potential to extend monitoring and prediction to
regional or even continental scales.

pest and pathogen outbreaks is necessary for effective
large-scale forest management (e.g. Hargrove et al., 2009).
However, the vast geographical scale of forest monitoring
poses a massive logistical and economic challenge, and
outbreaks of defoliating insects, such as European gypsy
moth  (Lymantria  dispar), forest tent caterpillar
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(Malacosoma disstria), saddled prominent (Heterocampa
guttivitta), and spruce budworm (Choristoneura fumifer-
ana), remain challenging to assess due to the heteroge-
neous and ephemeral nature of defoliation severity and
vegetation response. With improved access to remote
sensing datasets and cloud-based processing resources,
both near-real-time monitoring and retrospective assess-
ment are becoming increasingly prevalent (e.g. Coops
et al., 2020; Norman & Christie, 2020; Senf et al., 2017).
Thus, there remains a critical need to assess the utility of
multi-temporal satellite imagery for detecting and charac-
terizing defoliator outbreaks.

Effective monitoring of defoliator impacts using satel-
lite imagery relies on observations of both defoliated and
non-defoliated states, and numerous methodologies for
quantifying deviations from reference or “baseline” con-
ditions have been proposed (e.g. Chavez et al., 2019; Ols-
son et al., 2016; Rock et al., 1986; Spruce et al., 2011;
Townsend et al., 2012). These methods can produce esti-
mates of both the magnitude and extent of pest damage;
however, choice of a baseline to monitor against is a key
element of change detection processes (Norman & Chris-
tie, 2020). Rather than compare imagery from different
time periods, harmonic regression models fit to time ser-
ies of reflectance observations can be used to generate
“synthetic” images that represent predicted reflectance
values for specific dates (Zhu et al., 2015). Prior work
has demonstrated advantages of a harmonic condition
monitoring approach for detecting changes in forest con-
dition in response to a recent L. dispar outbreak in
southern New England including greater spatial and tem-
poral resolution relative to aerial survey methods (Pas-
quarella et al., 2017, 2018a). Resulting products have
been used in studies correlating spore deposition of the
L. dispar fungal pathogen E. maimaiga with defoliation
(Elkinton et al., 2019), determining how nitrogen dynam-
ics interact with defoliation (Conrad-Rooney et al., 2020),
and estimating impacts of multi-year defoliation events
on streamflow and seasonal water yield (Smith-Tripp
et al., unpubl. data). However, improved access to cloud-
based datasets and computing resources has resulted in
new opportunities for developing and testing methods
that rely on dense time series of satellite imagery (Gore-
lick et al., 2017).

In this study, we used a new google earth engine (GEE)
implementation of the condition monitoring approach
described in Pasquarella et al. (2017) to evaluate the pre-
dictive ability of Landsat-based condition scores for esti-
mating L. dispar abundance and damage. Specifically, we
address two questions:

1 How well do spectral estimates of vegetation condition
change correlate with the abundance of defoliating
pests, or with actual defoliation?

Predicting Abundance and Defoliation Using Landsat

2 How do different harmonic baseline parameterizations
perform in estimating pest abundance or defoliation?
Our results confirm the utility of Landsat-based condi-

tion change scores as a proxy for changes in defoliator

populations and canopy condition during a regional-scale
outbreak event and offer new insights into the sensitivity
of harmonic baselines for forest condition monitoring.

Materials and Methods

Study system

We used field datasets collected during the 2016-2018
gypsy moth outbreak in southern New England for our
analyses. Introduced to Massachusetts in 1869, the Euro-
pean gypsy moth is well-established in the northeastern
US (Elkinton & Liebhold, 1990). As a generalist defolia-
tor, gypsy moths are known to feed on the foliage of
numerous tree species, with Quercus, Populus, and Larix
species being among the most common hosts (Liebhold
et al., 2000). While periodic outbreaks have occurred for
over a century, the 20162018 outbreak was the first
widespread irruption in this region since the successful
establishment of the fungal pathogen Entomophaga mai-
maiga in 1989 (Andreadis & Weseloh, 1990; Hajek et al,,
1995). We focused on field data and Landsat-based condi-
tion assessments from 2017, as this year represented peak
outbreak conditions as well as maximum overlap among
our reference datasets.

Landsat-based forest condition monitoring
workflow

The GEE platform provides both the Landsat datasets and
image processing tools needed to scale harmonic-based
condition monitoring analysis and enables more opera-
tional product generation. As a key step in this analysis,
we adapted the Landsat-based condition monitoring
approach presented in Pasquarella et al. (2017) to run
from the GEE Code Editor (Fig. 1). Details on methods
are provided in Appendix SI.

Baseline model experiments

We used this GEE condition monitoring workflow to
develop a series of 32 experiments that consider a variety
of parameter choices for establishing multi-year “base-
line” models representing relatively stable forest condi-
tions for each Landsat pixel in our study area. We tested
a full set of factors including (a) spectral vegetation index
used for model fitting, (b) baseline-modeling period, (c)
frequencies of harmonic regression terms, and (d) differ-
ences in Landsat time series input imagery (Table 1).
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Calculate prediction,
residual and
condition score for
each date and
average by Path

an

Figure 1. Remote sensing workflow in google earth engine (GEE). Harmonic baseline models are fit for stacks of images within individual
Landsat scene footprints. Scene-based results are then merged by orbital Path to remove duplicate models for the same image acquisition date.
Baseline model images, including harmonic regression coefficients, number of observations used for fitting and model RMSE, are exported and
saved in native UTM projection. Baselines are then used to generate predictions for images acquired during a user-specified monitoring period
(May 1-September 30, 2017 in this study), and residuals (observed minus predicted values) as well as condition scores (residuals normalized by
baseline RMSE are calculated for each Path acquisition date. Scores are averaged over the monitoring period to generate a mean condition score
for each Path. Finally, mean scores for individual Paths are reprojected to a common coordinate system (Albers Equal Area Conic) and combined
using a weighted average based on the number of observations used for monitoring. The result is a seamless season-integrated condition
assessment product with an average condition score (RMSE-normalized spectral deviation from baseline conditions) for each 30-m pixel.

Reproject to
Albers, weighted
average by Path

Export in UTM, one Get monitoring

Fit harmonic “baseline” Get model with max t mo

models for each Landsat number of observations  asset for each Path perloc_l images,
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UTM 18N
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Table 1. Experimental parameters used for the baseline model comparison.

Parameter Description Options tested

Vegetation index used for both monitoring and prediction Tasseled Cap Greenness (TCG)

Normalized Difference Vegetation Index (NDVI)
Simple Ratio (SR)

Enhanced Vegetation Index (EVI)

2000-2010

2005-2015

1/365.25, 2/365.25 (h12)

1/365.25, 3/365.25 (h13)

All available observations (full)

Single-sensor (16d)

Spectral transforms
Baseline period Years included in baseline model fitting
Set of harmonic frequencies used for baseline model fitting

Harmonic frequencies

Frequency of Landsat observations, choice to include or
exclude Landsat 7 due to Scan Line Corrector artifacts

Time series image inputs

second short-wave infrared bands with reflectance in the

Spectral transforms . L . .
near-infrared as distinctive properties of green vegetation

Vegetation indices that combine the red, near infrared
(NIR), and shortwave infrared (SWIR) bands are typically
used for detecting changes in canopy cover and condition
(Rullan-Silva et al., 2013), and we focused on a subset of
indices that are well-characterized by harmonic functions,
i.e. indices that rely primarily on the visible and NIR
bands. Previous analyses (Pasquarella et al., 2017, 2018a)
were based on time series of tasseled cap greenness
(TCG), which is a linear combination of six Landsat opti-
cal bands that contrasts absorption in the visible and

(Crist, 1985; Crist & Kauth, 1986). However, due to dif-
ferences in data structures and sensor calibration, Tasseled
Cap coefficients are sensor-dependent, making it difficult
to generalize to different instruments. We therefore tested
other common vegetation indices, including the normal-
ized difference vegetation index (NDVIL; Huete et al,
2002; Jackson & Huete, 1991; Kriegler et al., 1969;
Tucker, 1978), the enhanced vegetation index (EVI; Huete
et al., 2002), and the simple ratio (SR; Jackson & Huete,
1991).
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Baseline period

We considered two different baseline periods, 2000-2010
and 2005-2015, for direct comparison with previous
results. Both periods represent pre-outbreak conditions in
Connecticut and Massachusetts. If undisturbed forest con-
ditions are assumed to be relatively stable in terms of
long-term phenology, any recent subset of years should
theoretically result in similar baseline model estimates.
However, the 2000-2010 period includes only imagery
from Landsat 5 (L5) and Landsat (L7), while the 2005—
2015 period also incorporates Landsat 8 (L8) acquisitions,
and year-to-year differences in the timing and number of
clear observations across the Landsat record as well as
assumptions about stable reference periods remain an
important source of testable uncertainty in the quality
and utility of baseline regression results.

Harmonic frequencies

Baseline modeling was performed using a linear least
squares regression with observed spectral values as the
response and six predictor terms: intercept, slope, and two
harmonic sine and cosine pairs (Pasquarella et al., 2017).
For each of the four spectral indices, we tested two different
harmonic model specifications that varied the frequencies
of the second sine and cosine terms. The first option paired
an annual frequency with a bi-annual frequency (i.e. peri-
odicity of 1 and 2). The second paired an annual frequency
with a tri-annual frequency (i.e. periodicity of 1 and 3).
The choice of harmonic frequencies (“h12” or “h13”) used
for the baseline regression may result in differences in
model fit, particularly when there is strong asymmetry in
seasonal reflectance profiles that is not well-characterized
by a single annual harmonic. These differences are expected
to manifest as variability in baseline model root mean
squared error (RMSE), which will in turn influence assess-
ment results, since baseline RMSE is used to normalize dif-
ferences between observed and predicted values in
condition score calculation (Pasquarella et al., 2017).

Time series image inputs

The L7 scan line corrector (SLC) failure causes notable
spatial artifacts in condition assessment products, pre-
sumably due to differences in number and timing of
observations across scan line gaps. Therefore, we experi-
mented with fitting baseline models to time series of all
available observations (“full”) versus using L7 only when
L5 and L8 images are not available (“16d”). This allowed
us to test trade-offs between utilizing the maximum tem-
poral density of time series inputs and minimizing impact
of SLC artifacts.

Predicting Abundance and Defoliation Using Landsat

Existing “reanalysis” product

We included an existing assessment product, the “reanaly-
sis” result (Pasquarella, 2018b), and to compare the origi-
nal workflow implementation with new results generated
using GEE. The reanalysis product used a 2000-2010
baseline fit to full time series of TCG using annual and
tri-annual harmonic frequencies. Rather than assume this
existing product represented a target output, we consid-
ered it relative to the GEE results in our baseline assess-
ment analysis.

Monitoring period

To test the effect of varying baseline parameterizations on
ability to predict metrics of canopy change and defoliator
abundance using condition scores, we applied baseline
models to a fixed monitoring period that included all
Landsat acquisitions from May 1 to September 30, 2017.
We generated predicted values for each acquisition date
during the monitoring period, calculated condition scores
(observed minus predicted spectral value, divided by base-
line RMSE), then averaged scores over the monitoring
period to produce a final “season-integrated” assessment
following methods described in Pasquarella et al. (2017).
The May 1 to September 30 monitoring period was
selected to be consistent with previous analyses and cap-
tures the phenology of defoliation and recovery in south-
ern New England. Lymantria dispar completes one life
cycle per season: it hatches in late spring, develops
through 56 in stars with peak feeding (defoliation) in
late June, and pupates by early July (Doane & McManus,
1981). Defoliated trees may produce a new flush of leaves
(e.g. de Beurs & Townsend, 2008); however, the defolia-
tion signal is expected to persist even as refoliation
occurs. Thus, averaging condition scores for all observa-
tions during the monitoring period should produce a rel-
atively robust estimate of overall change in forest
condition that is suitable for comparison with field-based
measurements collected during the same period.

Field datasets

The 32 baseline model experiments were evaluated using
measurements from two networks of field sites (Table 2).
The Quabbin Watershed defoliation survey (the “defolia-
tion” study) rapidly examined late-season L. dispar damage
in 2017. Six ~350 hectare “hotspot representing a range of
forest types and Landsat condition scores were selected
across the Quabbin Reservoir Watershed (Fig. 2). Within
each hotspot, 100 random points were identified and sam-
pled on the ground using horizontal point sampling (2.296
BAF; Bitterlich, 1947) between 21 September and 6
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Table 2. Key attributes of the field datasets.

V. J. Pasquarella et al.

Field plots Defoliation Lymantria dispar abundance
Location Central Massachusetts, US Eastern Connecticut, US
Timing 2017 2017, 2018

Surveys conducted September 21-October 6
Random points stratified by forest type and
damage in 2017

Sample design

Plot design and survey
approach
Key measurements

(N = 486 sites)

breast height (dbh)

Variable-radius point sampling, rapid assessment

Tree defoliation status, species, and diameter at

May (egg mass counts), June (larval surveys)

Blocked forest fragments of contrasting area selected from CLEAR
dataset (Vogt et al., 2007)

Sample of four trees at vertices of 125-m triangle (>10-cm dbh)
(N = 96 sites, 384 trees)

Egg mass counts, larval abundance

October, 2017, before canopy senescence (e.g. Fig. 2B). For
each tree at a point, species; defoliation class (1 = 75%-—
100% foliage remaining, 2 = 50%—75% foliage, 3 = 25%-—
50% foliage, 4 = 0%-25% foliage); diameter at breast
height (by 5-cm size classes); and canopy exposure (1 = full
sun, 2 = partially shaded, 3 = mostly shaded) were
recorded. The defoliation estimate for each tree represented
net canopy damage after defoliation, including any recov-
ery of new foliage after cessation of gypsy moth larval feed-
ing in early July. Because of time constraints, sampling was
completed for only 486 of the 600 points. Of these, three
points had no trees because of recent timber harvest, and
were therefore excluded from the analysis.

The Eastern Connecticut study (the “Lymantria” study)
sampled forest fragments across a 3500 km” area. Sam-
pled forest fragments ranged from 3 to 1013 ha and were
arranged in 13 blocks, each including 2-3 neighboring
fragments of different areas. Surveys of L. dispar abun-
dance were conducted in 2017 and 2018 at 32 forest sites,
though we focused only on 2017 measurements to facili-
tate comparison with the defoliation study. Each of the
32 fragments contained three sampling points arranged in
a triangle, spaced 125 m apart (Fig. 2C). At each point,
the closest tree >10-cm diameter at breast height from
the center point in each cardinal direction was selected
and identified to species (four trees per sampling point
for a total of 12 trees per site). In May of each year, we
wrapped 20-cm wide burlap at chest height around the
tree bole to serve as a day-time refuge and pupation site
for late instar larvae (Wagner, 2005). We counted L. dis-
par egg masses on the bottom two meters of tree trunks
in May, and L. dispar larvae on the bottom two meters of
the trunks and under the burlap in early June and again
in late June.

Baseline model evaluation

Condition scores were extracted for each field plot loca-
tion such that plot centers were associated with the

nearest Landsat pixel (30-m scale), and sampled values
were exported from GEE as CSV data tables. We con-
ducted all model evaluation analyses in R (R Develop-
ment Core Team, 2019), using the tidyverse package
(Wickham et al, 2019) for data wrangling, glmmTMB
(Brooks et al., 2017) for running generalized linear mixed
models (GLMM), bbmle (Bolker & R Development Core
Team, 2020) for model AIC comparisons, and the easys-
tats ecosystem and sjPlot (Liidecke, 2019; Liidecke et al.,
2019) to calculate R* values and generate figures.

To test whether Landsat condition scores predicted
observed changes in forest canopy condition at the Mas-
sachusetts field sites, we constructed models with mean
defoliation score of the trees at each sample point as the
response variable. We calculated the mean defoliation
score using the midpoint of the defoliation class for each
tree such that the mean defoliation score for each point
was a continuous proportion bounded by 0.125 and
0.875. We fit GLMMs assuming a beta error distribution
(logit link; Douma & Weedon, 2019), and included hot-
spot as a random intercept term to control for landscape-
level variation.

To test whether Landsat condition scores predicted L.
dispar abundance from the Connecticut field sites, we
constructed GLMMs with larval abundance or egg
masses as the response variable. We pooled counts of
egg masses or larval abundance across the four trees at
each survey point, and included a random intercept
term for site to control for landscape-level variation.
The residuals from initial models that assumed a Pois-
son distribution of errors were overdispersed, so we
assumed negative binomial distributions for the errors
in the models presented here (Richards, 2008). Though
data were collected in additional years, we fit models
using only 2017 data for more direct comparison with
the defoliation study. Since L. dispar egg mass counts
have been used to estimate larval population abundance
(Liebhold et al., 1994), we also fit models using egg
mass counts as a predictor of larval abundance to
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(A)

2000m 125m

Figure 2. Field sites: (A) overview, showing the Connecticut and Massachusetts plot locations and Landsat scene boundaries, including overlap
and endlap) areas; green shading indicates pixels with greater than 75% forest cover (source: USDA USFS, 2016 TCC Product Suite); (B) an
example hotspot from the Massachusetts defoliation study; white points indicate defoliation sample sites; (C) an example of two survey sites from
Lymantria dispar study in Connecticut; white points indicate the vertices of a 125 m triangle within each Lymantria dispar study site, egg masses
and caterpillars on the bark of burlap-wrapped trees were counted on four trees spaced five meters in each cardinal direction from each vertex.
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compare the predictive ability of Landsat change in con-
dition versus egg mass counts.

We used AIC scores to evaluate the performance of dif-
ferent baseline models. We considered all models with a
AAIC <6 as feasible alternatives within a 95% model set
(Richards, 2005). To quantify the ability of each model to
explain observed variation in the response variable, we
calculated marginal and conditional R* values (Nakagawa
& Schielzeth, 2013), where marginal RrR? represents the
proportion of deviance explained by fixed factors (Land-
sat condition score), and conditional R* represents the
deviance explained by both fixed factors and random fac-
tors (CT site or MA hotspot). The combination of these
metrics provides insights into the relative performance of
the 32 GEE baseline experiments, as well as the existing
reanalysis product, for predicting field-based measures of
L. dispar abundance and impacts.

Results

Defoliation dataset (Massachusetts)

Comparison of AIC scores for the defoliation survey data
indicate that the 2005-2015 baseline fit to time series of
all available TCG observations using annual and tri-
annual harmonic frequencies was the best predictor of net
changes in canopy condition (Fig. 3), and explained 60%
of the variance in ground-observed defoliation (marginal
R? = 0.60, conditional R*> = 0.63). All other models had
substantially higher AIC scores (AAIC > 6) suggesting
that this baseline significantly outperformed other param-
eterizations. However, marginal and conditional R* values
were similar to the reanalysis results, indicating that the
existing products explained a comparable amount of vari-
ability in canopy change estimates. Mapped results for the
best-performing baseline for the defoliation survey data
showed widespread low- to moderate-magnitude changes
in condition, with pockets of higher-magnitude change
(Fig. 4A and B), and there was a significant negative rela-
tionship between condition assessment scores and net
defoliation (Fig. 4C; f = —0.52 £ 0.039, = —13.34,
P < 0.001).

Larval abundance dataset (Connecticut)

Comparison of AIC scores for the L. dispar larval dataset
indicated that the 20002010 baseline fit to a time series
of SR observations with a 16-day repeat (limited use of
L7 imagery) using annual and tri-annual harmonic fre-
quencies was the best predictor of larval abundance
(Fig. 5), and explained 46% of the variance in abundance
estimates (marginal R? = 0.46, conditional R® = 0.73).
However, SR baselines for the same 2000-2010 period fit

V. J. Pasquarella et al.

to the full time series and using annual and bi-annual
harmonics showed closely comparable results, and 19
other baselines were within the 95% model set
(AAIC < 6.00), with similar marginal R* values to the top
model. While the marginal R*> for the larval models
tended to be lower than those for the defoliation dataset,
the conditional R* were higher, indicating that site/land-
scape factors were more important in Connecticut and
accounted for a larger portion of variation in larval abun-
dance. The reanalysis product did not perform well for
this dataset. Mapped results for the top-ranked baseline
for the L. dispar larval dataset (Fig. 6A and B) showed
similar distribution but lower magnitude condition scores
compared to the top model for the defoliation survey
(Fig. 4), and a significant negative relationship between
larval abundance and defoliation scores (Fig. 6C;
f = —0.60 + 0.094, z = —6.57, P < 0.001).

Egg mass abundance dataset (Connecticut)

Comparison of AIC scores for the L. dispar egg masses
dataset indicated that the 20002010 baseline fit to a time
series of all available TCG observations using annual and
bi-annual harmonic frequencies was the best predictor of
egg mass counts (Fig. 7), and explained 43% of the vari-
ance in count data (marginal R> = 0.43, conditional
R* = 0.87). The comparable model using annual and tri-
annual frequencies, as well as the reanalysis product, per-
formed very similarly, and 13 models were within the 95%
model set (AAIC < 6.00). The difference between marginal
R? values and conditional R* values were even greater for
the egg mass dataset compared to larval dataset, indicating
more variability of egg mass abundance among sites than
larvae or canopy defoliation. Mapped results for the top-
ranked baseline for the L. dispar egg masses data were very
similar to the top-ranked defoliation model, tending to
show widespread changes in condition and high magnitude
scores (Fig. 8A and B). There was a significant negative
relationship between defoliation scores and egg mass abun-
dance (Fig. 8C; f = —1.92 £ 0.327, z = —5.86, P < 0.001).

Comparing the relative ability of egg masses and
remote-sensed defoliation to predict larval abundance, we
found that egg mass counts were poorer predictors of lar-
val caterpillar abundance (marginal R* = 0.08, conditional
R? =0.72, Fig. 9) than Landsat-based condition scores
(Fig. 5).

Comparison of condition scores across
baselines

The distributions of condition scores from the various
baseline experiments and the existing reanalysis product
for the L. dispar and defoliation plots varied in magnitude
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Figure 3. Baseline model comparison for 2017 defoliation results (Massachusetts plot network). Models are ranked according to AAIC score (first
column, green), and marginal and conditional R? values are also included for each model. Red line indicates the approximate 95% model set
(models with a AAIC < 6). Parameterization options are shown as a binary heatmap, with light cells indicating which option (spectral, harmonic,
baseline period, and temporal inputs) was used for a given baseline experiment in order to visualize patterns relative to baseline rankings. **

indicates reanalysis results.

and range (Fig. 10). All condition scores were calculated
based on the same 2017 Landsat observations and were
normalized by their corresponding baseline RMSE. This
accounted for differences in scaling across different spec-
tral vegetation indices such that differences among baseli-
nes result from differences in predicted values as well as

the quality of baseline fit. Of the four spectral indices
considered, NDVI produced scores that generally fell
within the range of expected baseline noise (between —1
and 1 times the baseline RMSE) during this known out-
break year, which partially explains its poor performance
relative to other indices. The 2005-2015 baselines tended
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Figure 4. Mapped results and regression analysis for the top model for the defoliation dataset (TCG, 2005-2015, h13, full). (A) Zoomed view of
Massachusetts plot sites (n = 486), which are clustered in six “hotspots” indicated by white circles. (B) Overview for the full southern New
England study area. (C) Regression model predictions for fitted ground defoliation as a function of Landsat-based defoliation score, black lines
indicate model residuals, and the 95% confidence interval on predictions is indicated by gray shading.

to produce more negative scores than comparable 2000—
2010 baselines, and these differences are perhaps most
apparent in the NDVI and SR experiments.

Discussion

Using only Landsat-based condition scores as a predictor,
our models explained up to 60% of the variation in
observed canopy change and up to 45% of the variation
in L. dispar egg mass and larval abundance during the
2017 gypsy moth outbreak across field sites in Connecti-
cut and Massachusetts after accounting for landscape-
level variation (Figs. 3, 5, and 7). Historically, egg mass
counts have been used as a proxy for later-season larval
abundance, especially with regard to predicting where
control measures might be needed (Doane & McManus,
1981; Liebhold et al., 1994). When compared to condition
scores, however, egg masses only explained 8% of the
variation in larval abundance. Thus, while egg mass
counts remain useful for predicting larval abundance and
damage in the immediate future, our remote sensing
approach may be more accurate and cost-effective for

generating consistent retrospective assessments of L. dis-
par abundance. Additionally, while it is difficult to rigor-
ously quantify changes in canopy biomass and leaf-area
once an outbreak is underway, we found that condition
scores were a strong predictor of observed changes in
canopy condition and can characterize relative differences
in defoliation severity. Therefore, while model rankings
and the magnitude of condition scores were somewhat
sensitive to Landsat image inputs and baseline model
parameterization, many models were able to characterize
observed patterns in outbreak populations of L. dispar as
well as defoliation impacts relatively well, and our results
suggest harmonic-based condition scores are generally a
suitable proxy for both changes in host condition and
pest abundance over broad spatial extents.

Of the parameters tested, the spectral vegetation index
used for harmonic model fitting and condition monitor-
ing was perhaps the most important determinant of
model quality. TCG and SR were consistently among the
top-ranked models, while NDVI-based models exhibited
relatively poor explanatory ability across all field-based
datasets. Vegetation change studies using MODIS imagery

600 © 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.



V. J. Pasquarella et al.

O 00 N O Ul & WN

Rank
N NN NNNNNNNRRHERRBRBRRB B 2
W 00 N O U D W N K O OOLONOOUM~MWNREO
11 1

w W
= O
1 1

w
N
1

w
w
1

AAIC
SR

. > Bl
Marginal R W w
RN
. o O
Conditional R? -JPSEPS
®

EVI

TCG
h12
h13

Predicting Abundance and Defoliation Using Landsat

*%

2000-2010
2005-2015
16d TS

Figure 5. Baseline model comparison for 2017 larval survey/caterpillar results (Connecticut plot network). Models are ranked according to AAIC
score (first column, purple), and marginal and conditional R? values are also included for each model. Red line indicates the approximate 95%
model set (models with a AAIC < 6). Parameterization options are shown as a binary heatmap, with light cells indicating which option (spectral,
harmonic, baseline period, and temporal inputs) was used for a given baseline experiment in order to visualize patterns relative to baseline

rankings. ** indicates reanalysis results.

have often relied on NDVI due to higher spatial resolu-
tion of the MODIS visible and NIR bands (e.g. Chavez
et al., 2019; Jepsen et al., 2009; Spruce et al., 2011). How-
ever, NDVI signals are known to saturate in regions of
high vegetation biomass (e.g. Huete et al., 1997) and visu-
alizing the distribution of spectral values by month for
our field sites confirms low variability in NDVI values

during growing season months (June—September) relative
to TCG, SR, and EVI (Appendix S2). It is worth noting
that comparable analysis using L. dispar data for 2018 (a
non-outbreak year) did include NDVI among top-ranked
models (Appendix S3), suggesting that there may be
stronger correlation when population and defoliation sig-
nals are both low. However, we suspect that the observed

© 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 601



Predicting Abundance and Defoliation Using Landsat

V. J. Pasquarella et al.

°

2000
1500

1000
Detected Change in Forest Condition

Normal Large

500

Fitted Larval Abundance

Moderate

-500

Defoliation Score

Figure 6. Mapped results and regression analysis for the top model for the larva/caterpillar dataset (SR, 2000-2010, h13, 16d). (A) Zoomed view
of Connecticut plot sites (n = 96), which are distributed to sample forest fragments across the broader landscape; plot locations are indicated by
circled white points. (B) Overview for the full southern New England study area. (C) Regression model prediction for fitted larval abundance as a
function of Landsat-based defoliation score, black lines indicate model residuals, and the 95% confidence interval on predictions is indicated by

gray shading.

low dynamic range and saturation effects make NDVI less
effective for characterizing more variable conditions dur-
ing an outbreak year, and thus support our conclusion
that NDVI is not a reliable indicator of forest health and
condition.

Though we found TCG often outperformed other vege-
tation indices, potentially due to combined weighting of
visible, NIR, and SWIR information, sensor-specific dif-
ferences in available spectral bands and corresponding
wavelengths may limit the utility of the TCG transform
for future work. For example, integrating observations
from the Sentinel-2 series would require a different set of
coefficients and harmonization process (e.g. Shi & Xu,
2019). Commercial high-resolution instruments like
PlanetScope sensors also offer opportunities to improve
spatial and temporal solution; however, imaging is cur-
rently limited to the visible and NIR bands. In this case,
our findings suggest that SR is a better choice than NDVI
for monitoring changes in forest conditions, at least in
temperate deciduous forests.

The somewhat higher rankings of “h13” relative to
“h12” harmonic frequencies may be explained by the
higher frequency of the second term in the “h13” pairing,

which is likely better suited for characterizing asymme-
tries in the seasonal profiles of vegetation indices. The
tests of “full” compared with “16d” time series inputs
were inconclusive. It is generally assumed that harmonic
regression is robust to variability in input frequency and
density of Landsat observations, however, spatial artifacts
from Landsat 7 remain evident in mapped results when
scan lines are present in baseline and/or monitoring per-
iod imagery. These artifacts are most prevalent near scene
boundaries, and would be expected to have a greater
impact on CT sites, however, differences in scores do not
indicate a clear preference among time series options and
the distribution of sites may fail to adequately test the
effects of this parameterization choice.

Results concerning the choice of years to include in the
baseline modeling period were also inconclusive, with the
20052015 baseline generally ranking higher in terms of
predictive ability for defoliation sites, while the 2000—
2010 baseline exhibited stronger performance for the L.
dispar abundance sites. The mapped results ( 4, 6, and 8)
and the distribution of condition scores for our plot sites
(Fig. 10) suggest that the baseline period is a source of
considerable variability, and differences in magnitude of
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scores and model rankings warrant further exploration
and testing over a larger set of baseline periods. We
assumed that longer decadal-scale reference periods were
preferable to shorter baselines and that a single, fixed-
reference period (e.g. 2000-2010) could be used across a
broad spatial extent in our study. However, forest pest
outbreaks exhibit complex spatial dynamics (Foster et al.,

2013). For gypsy moth outbreaks, the Northeast will differ
from more southern and western regions of the US in
timing and additional biotic factors may also come into
play. For instance, E. maimaiga is believed to be responsi-
ble for the dampening outbreak population cycles in the
Northeast for several decades prior to the 2016-2018
event (i.e. Hajek & van Nouhuys, 2016). Thus, testing
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additional baseline options and improving criteria for
baseline selection will be important next steps for general-
izing the approach used in this study to regions that have
experienced more persistent yet spatially and temporally
variable outbreak cycles.

We also recommend further exploration of criteria for
setting the monitoring period. Defoliator emergence and
thus timing of impacts are strongly linked with local cli-
mate, particularly spring temperatures and precipitation,
as well as host phenology and predator populations
(Rullan-Silva et al., 2013). Therefore, flexible monitoring
periods will be necessary to account for variability in
these factors over larger spatial extents and target optimal
“biological windows” for detecting pest-specific damage.
Fortunately, gypsy moth population dynamics are well-
studied, and there may be opportunities to link condition
monitoring efforts with insect life stage models such as
BioSIM (Régniere, 1996) and use long-term averages in
pupation phenology to adjust monitoring period in a spa-
tially explicit manner.

Differences in scaling between field-based and remotely
sensed observations, as well as heterogeneity in the forests
and forest conditions sampled may explain differences in
the relative importance of site factors across models.

While the defoliation field survey was specifically designed
to integrate with Landsat-based observations and used
preliminary results from 2017 to help stratify plot loca-
tions, the L. dispar sites were previously established and
data were collected for a more limited sample of trees.
The field efforts also varied in their spatial scope, with
the Massachusetts efforts concentrated within the Quab-
bin Watershed Management Area while the Connecticut
study sampled a much broader landscape (Fig. 2).
Additional site variability likely resulted from localized
differences in the severity and timing of defoliation, with
areas of Connecticut experiencing more severe defoliation
in 2016 than sites in Massachusetts, which were only
patchily impacted until the peak of the defoliation event in
2017. We also expect the strength of correlation between
larval abundance and Landsat-based condition change esti-
mates to increase over the course of the season, as caterpil-
lars need to be large enough to cause sufficient damage to
be detected by remote sensing technology. Yet while later-
season images may better characterize maximum damage,
the lag between the occurrence of damage and acquisition
of clear Landsat observations that can be used for condi-
tion assessment, as well as potential for recovery of foliage
and noise in spectral measurements including atmospheric
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Figure 9. Abundance of L. dispar from burlap surveys predicted by egg mass counts at the same sites in 2017. Lymantria dispar egg masses
predict larval abundance in 2017, but with considerable variation across points sampled.

contamination and cloud shadows, are unavoidable sources
of uncertainty. Assessments based on single-date images
can provide important perspectives on near-real-time
changes in condition; however, averaging across multiple
individual assessments to produce condition score products
like those used in this study remains key in automating
the generation of spatially complete and temporally stable
assessments that do not require substantial human inter-
pretation and can be more readily combined with field-
based measurements.

It is interesting to note that the “reanalysis” product
was ranked second for both the canopy change and egg
mass datasets, but much lower for the larva dataset. The
existing product also did not consistently outperform the
GEE baseline with comparable parameterization, with
condition scores from the reanalysis product tending to
be more negative with a wider interquartile range. These
differences may be attributed to differences in the har-
monic regression approach as well as other pre- and post-
processing steps, including cloud masking and reprojec-
tion, and we recommend the GEE implementation for
future use based on both performance across other
parameterizations and greater reproducibility.

Conclusions

The results of this study provide evidence of strong corre-
lations between Landsat-based condition scores and various
field datasets and suggest it is feasible to predict changes in
canopy cover and L. dispar populations at different life
stages given modeled and observed spectral properties.

Both existing products and those generated using a new
GEE implementation of our condition monitoring
approach serve as suitable proxies for defoliator activity,
with models based on time series of TCG and SR tending
to have the greatest predictive abilities. Looking to the
future, the spatial and temporal resolution of current
Landsat-based products could be further enhanced by inte-
grating imagery from other optical sensors such as
Sentinel-2 and PlanetScope. However, our present ability
to retroactively quantify both the magnitude and extent of
outbreak events over large areas using Landsat time series
has powerful potential for improving forest pest monitor-
ing and management at regional to continental scales.
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Data Availability Statement

R code and tabular datasets used for the harmonic base-
line comparisons are available at github.com/BagchiLab-
Uconn/Forest-Condition-Assessment. This repository also
includes scripts to reproduce the Earth Engine condition
monitoring workflow described in Appendix S1 as well as
a set of map visualizations. Baseline experiment map
products are available as Earth Engine assets and are
archived at doi.org/10.5281/zenodo.4567382.
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