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Abstract

Coarse woody debris (CWD) is an important component in forests, hosting a variety of
organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed
a process-based model using literature, field observations, and expert knowledge to assess
woody debris decomposition in forests and the movement of wood C into the soil and atmo-
sphere. The sensitivity analysis was conducted against the primary ecological drivers (wood
properties and ambient conditions) used as model inputs. The analysis used eighty-nine cli-
mate datasets from North America, from tropical (14.2° N) to boreal (65.0° N) zones, with
large ranges in annual mean temperature (26.5°C in tropical to -11.8°C in boreal), annual
precipitation (6,143 to 181 mm), annual snowfall (0 to 612 kg m®), and altitude (3 t0 2,824 m
above mean see level). The sensitivity analysis showed that CWD decomposition was
strongly affected by climate, geographical location and altitude, which together regulate the
activity of both microbial and invertebrate wood-decomposers. CWD decomposition rate
increased with increments in temperature and precipitation, but decreased with increases in
latitude and altitude. CWD decomposition was also sensitive to wood size, density, position
(standing vs downed), and tree species. The sensitivity analysis showed that fungi are the
most important decomposers of woody debris, accounting for over 50% mass loss in nearly
all climatic zones in North America. The model includes invertebrate decomposers, focusing
mostly on termites, which can have an important role in CWD decomposition in tropical and
some subtropical regions. The role of termites in woody debris decomposition varied widely,
between 0 and 40%, from temperate areas to tropical regions. Woody debris decomposition
rates simulated for eighty-nine locations in North America were within the published range
of woody debris decomposition rates for regions in northern hemisphere from 1.6° N to 68.3°
N and in Australia.
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coordinates of the eighty-nine sites for obtaining
climate data to analyze the model sensitivity are in
S1 Table. S1, S2, S4 and S5 Tables have been
added to let readers and model users can see the
data we used, enabling them to also test the model
using those data. The climate, coordinates and
altitude of corresponding locations were from
Daymet database used to analyze the model
sensitivity, as long as the data are downloaded
from Daymet and used to parameterize the model,
the results from the model outputs can be used to

compare with the results shown in this manuscript.

The data in Table 1, S1 and S2 Tables are needed if
anyone who wants to test this model. Other data
used to parameterize the model are in this
manuscript. S4A and S4B Table are those data
collected for the comparison of modeling results
and those from other studies.
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Introduction

Coarse woody debris (CWD) is an important component of forest carbon (C) pools [1, 2], and
is structurally and functionally important for forest ecosystems [3, 4]. CWD provides habitats
for a large variety of organisms [2], influences the potential risk of wild fires [5, 6], and plays
important roles in C and nutrient cycling in forest ecosystems [7-12]. CWD is also important
for mitigating climate change due to its size and relatively slow decomposition (wood mass
loss to various decomposition processes, including biological consumption, fragmentation,
and chemical dissolution) [13, 14]. Accordingly, assessing decomposition of CWD in forests is
fundamental to understanding the importance of CWD in forest C cycling under changing cli-
mate and in response to forest management.

CWD decomposition can be divided into three processes: 1) chemical dissolution that
occurs when water/rain acts as a solvent dissolving soluble materials in the wood [2]; 2) physi-
cal processes that include leaching of soluble material, wood fragmentation from seasonal and
diurnal temperature differences, and external forces such as wind and water; and 3) biological-
decomposition from the combination of bacterial, fungal and invertebrate organisms that
dominate wood decomposition processes in nearly all ecosystems [2, 15-17].

Fungi have a key role in CWD decomposition in various eco-environments, with lignin
removed or altered by both white-rot and brown-rot fungi [18]. Soft-rot fungi can decompose
cellulose as brown-rot fungi do [2], however, they can tolerate high moisture, poor aeration,
and low temperature [19-23], making them important for wood decomposition in very wet or
extremely cold areas [24].

Decomposition of fine woody debris has been widely studied to assess its role in nutrient
cycling [13], but less is known regarding the impact of CWD decomposition on soil nutrient
pools due to its slow decomposition [25], which makes it difficult to assess CWD decomposi-
tion over a long time period under changing environmental conditions.

There are many factors that can influence CWD decomposition, including CWD proper-
ties, such as tree species, wood density, wood size, wood position (standing vs. down) [26], the
type and species of wood-decomposers, and various ambient conditions, especially tempera-
ture and precipitation. Consequently, wood decomposition is a complicated process and diffi-
cult to measure, and unsurprisingly, different empirical decomposition models have been
suggested for estimating wood mass loss under different eco-environmental conditions,
including exponential (either single or multiple) and more complex decomposition models [7,
26-29]. Although empirical decomposition models are easy to use, they are mainly limited by
the need to obtain reliable decomposition equations for specific study sites or from certain
regions. However, mechanistic models are developed from expert knowledge, long-term expe-
riences, and multiple field observations, which can give much better estimates of wood decom-
position across a wide range of forest and climate conditions.

There are several computer models used to estimate CWD decomposition. For example,
Yin [30] developed a computer model based on the methodology suggested by Agren and
Bosatta [31] to analyze C and nitrogen dynamics in forest soils. Yasso, a process-based soil C
model with a woody litter decomposition subroutine, was used to assess woody litter decom-
position, and the results were consistent with the litterbag data from Canada [32, 33]. On the
basis of these two computer models, Zell et al. [34] developed a computer model used to reana-
lyze woody debris decomposition using the same data as Yin [30]. Although these models are
not completely process-based, they do give better estimations of CWD decomposition than
simple empirical models.

Because CWD decomposition in a forest is controlled by complex ecological drivers that
interact with other C pools and environmental fluxes, it is necessary to use a mechanistic
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Fig 1. Eighty-nine sites in North America used for model sensitivity analysis. This figure was produced with the
data from Natural Earth. Free vector and raster map data @ naturalearthdata.com; the green square is the location of
Santee Experimental Forest.

https://doi.org/10.1371/journal.pone.0251893.9001

model that reflects inherent biogeochemical processes. Accordingly, we have developed a pro-
cess-based model CWDDAT (Coarse Woody Debris Decomposition Assessment Tool) to sim-
ulate CWD decomposition in forests by targeting CWD properties and ecological drivers, each
of which affect CWD decomposition processes and the transfer of wood C to the atmosphere
and soil by different biological communities.

In this paper we present the main equations used in the CWDDAT for modelling CWD
decomposition in forests and results from a sensitivity analysis using model inputs of the eco-
environmental conditions that impact CWD decomposition. Accordingly, the sensitivity anal-
ysis determined whether wood-decomposers are sensitive to changes in ecological drivers,
such as wood properties and ambient conditions, and whether the computer model is stable
over a range of climatic conditions. Eighty-nine North American climate datasets (Fig 1, S1
and S2 Tables) were obtained from the Daymet database [35] for locations ranging from 14° to
65° N latitude and 58° to 139° W longitude, and between 3 and 2,824 m above mean sea level.
The sensitivity analysis also included different tree species groups (softwood and hardwood),
size classes, wood density, and position of CWD (standing and downed).
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Fig 2. Framework for modelling coarse woody debris decomposition simulation performance. If CWD exists based on
“Condition-Assessment”, the model implements CWD decomposition, otherwise, the model will stop. When fragmentation and/or
leaching occur, the model will assess carbon from CWD decomposition in soil dynamics, including decomposition, leaching and
loss. The solid arrows are used to show the model performance directions: “N” means that the conditions are not satisfied for the
model continuing to run; otherwise, the model will continue to run. If there is CWD and all conditions are good for one decomposer
or all decomposers, the corresponding decay functions are called. The soil functions will be called whether or not there are fragments
from CWD, to assess daily changes in soil moisture, temperature, soil organic carbon, and biological activity in soils.

https://doi.org/10.1371/journal.pone.0251893.9002

Modelling methods
Model framework

The CWDDAT model was developed from coarse woody debris decomposition studies in the
literature [2, 26, 36-38]. It is a process-based tool used to simulate CWD decomposition in for-
ests (Fig 2) with a consideration that CWD decomposition processes are influenced by wood
properties, decomposer community, and ambient conditions, including climate, soil proper-
ties, geographical location, altitude, and land cover. Biological, physical, and chemical pro-
cesses simulated in CWDDAT include: biological action of fungi, termites, and other
invertebrates with bacterial synergy; physical fragmentation and subsequent leaching; and
temperature-dependent chemical reactions with precipitation.
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CWD decomposition

Fragmentation. Fragmentation is an important component of CWD decomposition
because it reduces the original log into smaller pieces, which increases wood surface area [2]. It
is a physical process, whereby external forces, including gravity, shrink-swell due to diurnal
temperature changes, water scouring, freeze-thaw, and animal foraging, breaks the wood into
smaller pieces. Accordingly, fragmentation was estimated as

FGM =Y f x m, (1)

where FGM is the mass of fragments, kg; f; is the coefficient of the factor i; m, is the available
mass for possible fragmentation at time d (day), which can change with time and ecological
conditions. For example, the loss of bark and branches from a log due to gravity can be esti-
mated. The m, at time d (day) was calculated

my =M, x (T, +R,) Xy (2)

where M,; is the largest value of available mass (kg) that is possibly lost at time d; m,, is the
actual available loss to gravity at time d; T; and R, are the coefficients of the temperature dif-
ference and ice, respectively, and (T; + R;) < 1; y is a non-linear time function, y € (0, 1).
Those fragments that separate from CWD are kept on the forest floor and subsequently (see
Biological Process below).

Biological processes. Four principal biological agents were used to describe the decompo-
sition processes: fungi, termites, beetles [39], and bacteria [2]. Fungi are the principal agents
for decomposing CWD (24, 34, 40, 41], and their role in CWD decomposition was assessed by

Eq (3):
MFungi =Y ""B, x C, (3)

where MFungi is CWD mass loss due to the decomposition by fungal group i (mg day™'); B, is
the fungal biomass for group i; C; is the fungal respiration coefficient, 0.0807 [42]. The fungal
biomass was calculated by Eq (4):

Bi:Mixpintix.ﬁ; (4)

where M; is daily available C for fungal group i (kg day™"); P; is fungal growth potential coeffi-
cient for group i [42], P € [0, 1]; ff; is the moisture coefficient of fungal group i; f;; is the coeffi-
cient for temperature. The ranges of temperature and moisture among the fungal groups are
different. The temperature range is between 0 and 45°C with an optimal temperature of 25°C
[2, 19] for white and brown-rot fungi, but between -45 and 45°C with an optimal temperature
of 25°C for soft-rot fungi because soft-rot fungi can survive in colder and wetter ecological
environments than white and brown-rot fungi. ff; is a moisture function, i.e., ff; =1 - (sin(|1 -
Sa+ Sc,»|))0‘2 when S; # S,, ff; = 0.5 when S,; = S, where S is the optimal moisture for fungal
group i; S, is the actual moisture. Each coefficient is between 0.0 and 0.5 for each fungal group,
but Xff; = 1. The range of moisture content (fraction) is between 0.3 and 0.95 with an optimum
0.65 for brown-rot fungi, 0.3 and 1.0 with the optimum 0.75 for white-rot fungi, and 0.3 and
1.1 with the optimum 0.99 for soft-rot fungi based on the ranges reported by Harmon et al. [2]
and Thybring et al. [43].

CWD decomposes much faster in areas with termites. The CWD mass loss to attributable
to termite consumption was calculated as described in Eq (5):

MTermite = B x C (5)
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where MTermite is the daily CWD consumed by termites (mg day "); B is the population of ter-
mites on the CWD; C is the termite consumption coefficient (0.015-0.2 mg per termite per
day) [44, 45]. The value of C is species-based because of termite preferences. Termite foraging
increases as they start to colonize CWD [45], followed by small oscillations. The increase in
the population of termites was estimated as:

NT=Ax(G—-D) xf,, (6)

where NT is the net increase in number of termites; A is the maximum population (individu-
als) [46-49]; G is the birth rate [50, 51]; D is the death rate; f;,,, is the coefficient of temperature
(5-40° C) [52] and moisture (10-99%) [53, 54]. Accordingly, the termite population will reach
maximum when birth and death are equal, and decline when the mortality is higher than the
birth rate. We assumed that termites will leave when the water table level reaches the soil sur-
face (CWD decomposition in long-term inundation areas was not considered although ter-
mites can survive on trees in wetlands, such as mangroves), and that the birth rate was
constant in a specific environment [55, 56]. We also assumed that the death and/or leaving
rate increased with time in a specific colony location when the food or living conditions for
termites were limited. Accordingly, termites on CWD (B) was:

B=>) NT, (7)

where NT; is the net increase in termite population in time i, NT; € (-A, A). If NT; were
approximate to -A, all termites should have either died or moved, and B will be equal to 0 if
B <0, i.e., no termites.

Wood decomposing beetles were considered as a group. Although many beetles cannot
directly consume CWD, they can play a role in fragmentation, helping reduce CWD mass, and
then those fragments can be decomposed by fungi and bacteria. Beetles’ role in CWD decom-
position [39] was described by Eq (8):

MBeetle = B x C (8)

where MBeetle is the CWD mass loss due to beetles (mg day™); B is the total biomass of beetles
colonizing the CWD; C is the daily consumption coefficient of the beetles (mg day ™). The bio-
mass was estimated using Eq (9).

B=Sxf, xy 9)

where S is the coefficient of available CWD surface area; f;,,, is the coefficient of temperature
and moisture, the range of temperature is between 5 and 40°C with an optimal temperature of
25°C; y is a non-linear time function, y € [0, 1], reduced from 1 to 0 with an increase in time,
year.

Although bacteria can decompose some components of CWD [57, 58] and have been
reported to effect wood decomposition [2, 16, 23, 58-65], the role of bacteria in wood decom-
position is unclear. Bacteria can occur in various stages of CWD decomposition and their rich-
ness and diversity increase linearly with decreasing the wood density during the
decomposition [16], but changes in bacterial community richness and diversity were not
related to variations in the fungal community [16]. Overall, the contribution of bacteria to
CWD decomposition is thought to be small [60].

The CWD mass loss attributable to bacterial decomposition was described using Eq (10):

MBacteria = B x C (10)

where MBacteria is the CWD mass loss due to bacterial decomposition (mg day™); B is the
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total bacterial biomass (mg) on the CWD; and C is the bacterial respiration coefficient. The
bacterial biomass B was calculated as,

B=mxf, Xy (11)

where m is the coefficient of available C (DOC, dissolved organic C) and nitrogen (DON, dis-
solved organic nitrogen) for bacterial growth; f,,,, is the coefficient of temperature and mois-
ture; y is a nonlinear time function, 0 < y < 1, increased from 0 to 1 with an increase in time,
year. The coefficient m is also related to the competition between bacteria and other
decomposers.

Incorporation of wood carbon into the soil

Fragment decomposition. Fragmented CWD (see Fragmentation) falls onto the forest
floor where fine wood particles and their decomposition products (i.e., POC, particulate
organic C) may be incorporated into the surface mineral soil. Since these fragments are mainly
decomposed by bacteria and fungi, their decomposition is similar to fungi and bacteria as
mentioned above (see Eqs 3,4, 10 and 11).

Dissolved organic carbon. DOC generated from CWD is considered to be the main path-
way of wood C incorporation into soils [66-68]. DOC is leached into the soil where a portion
of the wood C is incorporated into soil C pools [69], and can be divided into two parts: C pro-
duced within the wood (CWDi), and C from the decomposition of log fragments (CWDI).
This distinction is made because of differences in temperature and moisture within the sub-
strates and the corresponding effects on the decomposition process for each.

The DOC produced from CWDi and CWDI decomposition was calculated, respectively,
using Eq (12):

DOC, = C, x M; X f, . (12)

where M; is the consumed mass of CWDi or CWDI by decomposer i; C; is the coefficient for
the decomposer i generating DOG; f,,,,; is the coefficient of temperature and moisture. Because
temperature and moisture influence DOC production [70], the f,,,; in Eq 12 for fragment
(CWDI) decomposition was also regulated by soil temperature and moisture rather than only
by the air temperature and moisture. The total DOC resulting from CWD decomposition is

TDOC = DOClog + Docfmg (13)

where Tpoc is the total DOC from CWD decomposition; DOCj,g and DOC,, were produced
by CWDi and CWD], respectively.

Leaching. Leaching is a physical process [71] that transports DOC from CWD into the
soil. However, only a portion of the leached C from wood decomposition is incorporated into
soil, as other portions of the DOC are oxidized in the soil or leached into subsurface water.
DOC leached into the soil from CWDi and CWDI decomposition was estimated as:

Lpoei = S X R; x DOC, Xfmi (14)

where Lpoc; is the amount of DOC leached into soils by water (g) at time #; S is the coefficient
of effective surface of the CWD;, S € (0, 1); DOC; is the available DOC at time i; f,,,; is a non-
linear leaching coefficient, changing from 1 to 0 with time, i.e., f,,,; € [0, 1], as part of the water
can be retained in CWD at the beginning of precipitation; R; is the effective leachate (ml) and
changes with time, i.e.,

R, =P, xf (15)
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where R; is the available water at time i (hour); P; is the precipitation received by standing
CWD or the throughfall received by downed CWD at time i (cm), P; € [0, 0.5]; f; is a non-lin-
ear coefficient, changing from 1 to 0 with time, i.e,, f; € [1,0];i =1, 2, .. ., H that are the hours
of leaching, and the H was computed by the following equation,

H=P+r (16)

where is H is the length of time (hours); P is the daily precipitation or throughfall (cm); r is the
precipitation rate (cm hr™'), the maximum ris 0.5 cm hr™.

The DOC leaching through the soil profile and lost to the water table was calculated by Eq
17,

Sipoc = DOC, x W, x I, (17)

where S;poc is the DOC loss from soil layer i to next layer (2 cm intervals) or aquifer when the
soil layer is approximate to the level of the water table; however, if water table is lower than 50
cm below the surface, DOC generated from CWD decomposition at soil layers > 50 cm in
depth was considered as a loss; DOC; is the concentration of DOC at the layer i; W; is the
moveable water at the layer; [; the leaching coefficient. The time step for leaching is hourly.

The DOC incorporated into soils is the difference between the amount produced and lea-
ched from logs and the amount of loss from soils by leaching (Eq 17). The subsequent fate of
the DOC retained in the mineral soil is not considered further in this model.

Sensitivity analysis

CWDDAT was parameterized to analyze the sensitivity of the CWD decomposition processes
to the ecological drivers used as model inputs: 1) CWD properties, including the size, species,
mass, and position (standing vs downed), and 2) ambient conditions, including climate, soil
properties, land cover (vegetation), and geographical location and geomorphic altitude. Cli-
mate data include daily minimum and maximum temperature, daily precipitation (rainfall
and snowfall), evapotranspiration, and daily PAR (Photosynthetically active radiation). Land
cover and soil characteristics from the Santee Experimental Forests in South Carolina in USA
(green square in Fig 1) were used as the basis for this analysis because it has well documented
measures of vegetation, soils, hydrology and climate over 80 years [72].

Climatic data obtained from the Daymet database [35] for eighty-nine points in North
America (Fig 1) were used to analyze model sensitivity to temperature, precipitation, snowfall,
latitude and altitude. The climatic datasets from Daymet cover a large spatial scale (14 to 65°
N latitude and 58 to 139° W longitude), a long time period (1980-2017), and altitude ranging
from 3 m to 2,824 m above mean sea level, mean annual temperature from -11.8 t0 26.5°C,
and mean annual precipitation from 181 to 6,143 mm.

Assumptions used for the sensitivity analysis included: (1) all sites were upland forests; (2)
the forests were mature; (3) soils for all sites were loam; (4) CWD species group was either
hardwood or softwood to assess the differences in CWD decomposition among the tree species
groups (Table 1); (5) CWD was either standing (snag) or lying on the soil surface (downed) to
determine the differences in decomposition between positions; and (6) CWD was a mixture of
hardwoods (50%) and softwoods (50%) to analyze the sensitivity of CWD decomposition to
climate because tree species are mixed in many forests. We assumed that the CWD was ini-
tially sound, or in decomposition class 1. Since the size of CWD has been defined as >2.5 cm
or >7.5 cm in diameter [2], we set >4.0 cm in diameter to classify woody residue as CWD,
and used six size classes in the sensitivity analysis: 4.0-7.5, 7.5-15.0, 15.0-22.5, 22.5-30.0,
30.0-37.5, and >37.5 cm.
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Table 1. Wood mass (kg) used to analyze the model sensitivity to climate*.

Position Species group Size 1 Size 2 Size 3 Size 4 Size 5 Size 6
Downed Soft 2,500 5,000 12,000 36,000 12,000 7,500
Hard 2,500 5,000 12,000 36,000 12,000 7,500
Standing Soft 2,500 5,000 12,000 36,000 12,000 7,500
Hard 2,500 5,000 12,000 36,000 12,000 7,500

*size 1: 4.5-7.49; size 2: 7.5-14.99, size 3: 15.0-22.49, size 4: 22.5-29.99, size 5: 30.0-37.49, and size 6: >37.0 cm in diameter.

https://doi.org/10.1371/journal.pone.0251893.t001

The effects of each of the decomposer groups and their combinations (synergies) were
assessed by excluding those not being considered to affect the decomposition processes. How-
ever, physical and chemical processes, such as fragmentation and leaching, were included
when assessing synergistic effects, because these processes exist irrespective of the decomposer
community. The climate data at Santee (green square in Fig 1) were used to analyze the sensi-
tivity of CWD decomposition to each of wood-decomposer type individually and in
combination.

CWD with different size classes and different positions (downed and standing) was used to
analyze the model sensitivity to these factors (Table 1). To analyze the sensitivity to climate,
the CWD was also mixed with different size classes from size 1 to size 6 at the ratios of 3.3, 6.7,
16.0, 48.0, 16.0 and 10.0% of the total mass, respectively, with a mean of wood diameter of 26
cm. Eight wood density classes were used to analyze the effect of wood density on decomposi-
tion, ranging from 0.3 g cm™ to 1.0 g cm ™ with an interval of 0.1 g cm ™. The simulation
decomposition period was 100 years, beginning from the year of tree mortality. This time span
was selected to give enough time for the wood decomposition process to be completed in a
cold climate, such as in boreal forests. The time step of this model was hourly for biological res-
piration and leaching, and daily for other processes.

Statistical analysis

Univariate and multivariate linear and non-linear regressions were used to analyze the sensi-
tivity of CWD decomposition to the main ecological drivers used as model inputs. Student’s t-
test was used to determine whether or not there were differences in CWD decomposition con-
stants obtained from different decomposition models suggested by some studies [26] and used
in this study (see the Eqs 20-24 below). To increase the reliability of results from model sensi-
tivity analysis, the level of statistical significance was set to o = 0.02 to determine whether the
rates of CWD decomposition were sensitive to one or multiple eco-environmental factors,
rather than o = 0.05; accordingly, the use of “significant” or “significantly” indicates P<0.02
hereafter.

The time span to CWD mass loss of 50% (half time, T’sy) and years to the mass loss of 95%
(Tys) were used to describe the differences in CWD decomposition among the ecological driv-
ers, and calculated, respectively, as

T,, = 0.69315 + k (18)

T, = 2.99573 + k (19)

where k is the decomposition constant (y™).
The decomposition constant k of CWD was calculated using different equations because
the CWD decomposition may not follow a perfectly exponential model [7, 26, 29, 73].
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Accordingly, four sets of CWD decomposition constants were calculated to find an optimal
decomposition constant. We first assumed that the CWD decomposition followed a single
exponential model as in Eq 20,

M, =M, x e " (20)

where M, is the mass remaining at time ¢ (years); M, is the initial mass. Accordingly, the
decomposition constant k; can be calculated for each site using following equation, i.e.,

k=S lin (M)~ In ()] = 1} 1)

where [n(M,) and In(M,) are natural logarithmic values of the initial CWD mass (M,) and the
remaining mass (M,) at time ¢ (years); t = 1, 2, 3, . . ., n that is the simulation time span, years.
The k; used for a specific site was averaged from all simulated years at the site.

Regressions are widely used to fit observations for empirical equations. Accordingly, we
employed regressions to obtain the constants of CWD decomposition using data from simula-
tions for the sensitivity analysis. The decomposition constants k, and k3 were obtained by fit-
ting the mass remaining from CWD decomposition simulations for each site using single
exponential functions; the k; was obtained from fitting with forcing the intercept of the expo-
nential function to M, (equal to the initial mass); but k, was without forcing the intercept such
that it may be smaller or greater than the initial CWD mass. Accordingly, the fitted single
exponential equations had the form

In (M)=f—k, x t (22)

where M, is the remaining mass (known); fis a regression coefficient, and exp(f) is equal to the
intercept of the fitted exponential function; ¢ is time (known, years); accordingly, linear regres-
sion can be used to obtain the coefficients fand k, when Y, = In(M,). If the intercept of the
exponential function is forced to the initial CWD mass, i.e., fin Eq 22 equals In(M,), thus,

In (M,)=In (M,) —k; x ¢ (23)

This equation (Eq 23) appears similar to Eq 21, but the constant kj; is not averaged from
annual decomposition, it is obtained using the linear regression, like the method to obtain k,
in Eq 22.

The constants of CWD decomposition were also calculated using a combination of power
and exponential functions (Eq 24) to assess CWD decomposition that did not follow a single
exponential function, i.e.,

In (M,)=1In (M) +k;xIn (t+1)—k, xt (24)

where M;, M, and ¢ are as same as in Eq 20; and k4 and k5 are coefficients determined by a mul-
tivariate regression. Because of the multiple ks, Ts, and Tys were estimated using iteration for
the decomposition model as Eq 24.

Results

Results from sensitivity analysis to model inputs, which were wood properties and ambient
conditions, including temperature, precipitation, snowfall, and geographic and geomorphic
information at eighty-nine sites, are presented below. Results for k values calculated using dif-
ferent equations and the corresponding half-life of CWD decomposition are in S1 Fig and S3
Table.
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Fig 3. Differences in CWD mass loss over time with the decomposition of downed deadwood (a) and standing
deadwood (b) under tropical (S84, 14.2° N) and cold-temperate (S49, 49° N) climatic conditions. SIM, based on
the result from the sensitivity analysis and E21 ~E24 from the mass remaining calculated using the coefficients from
the Eqs 21-24. Intercepts obtained from Eq 22 were not forced to the initial mass such that they can be smaller or

larger than 100% of the initial mass. -Trop, tropical; -Temp, temperate; the data points for each dataset were 100, i.e.,
n=100.

https://doi.org/10.1371/journal.pone.0251893.g003

Disparities among the decomposition constants obtained from different
decomposition models

There are differences in k values (S3 Table) obtained from different calculation equations (see
Eqs 20-24). The decomposition constants calculated using different equations showed small
differences in downed wood decomposition at specific sites (Fig 3a), but large differences were
found in standing CWD decomposition (Fig 3b). Because Eq 24 was developed to match the
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simulated CWD mass remaining, the calculated mass attenuation with time using the decom-
position constants from Eq 24 for both downed and standing CWD was approximate to the
CWD mass attenuation trend for sensitivity analysis.

The time to decompose 50% of the CWD (T35,) was calculated using different k-based mod-
els for assessing the sensitivity of CWD decomposition to climate and showed considerable
differences among the eighty-nine sites (S1 Fig). The smallest CWD decomposition constants
occurred at the site S30 (65.0°N and 105°W) where the T, values were the largest among the
eighty-nine sites. The largest decomposition constants (smallest T'5y) occurred at site S87
(15.8°N and 92.8°W; S1 Table and S1 Fig), regardless of which equation was used to obtain the
constant (S3 Table).

There were differences in Ts, among the equations of k-based calculations (Eqs 21-24)
(P>0.02), based on Student’s t-test (58.38 > |t| > 2.96, |t| > tcitical = 2-37). Accordingly, the
constants of CWD decomposition mentioned and used below would be mainly based on Eq
24 because this equation was developed based on data from this sensitivity analysis.

The Ts, among the eighty-nine sites varied widely, ranging from 4.4 to 67.3 years with a
mean of 12.6+9.8 (mean + SD) years for the downed CWD decomposition, using the constants
calculated from Eq 24 (coefficient k4 and ks), and ranging from 6.8 to 65.2 years with a mean
of 15.149.1 years for standing CWD using the same decomposition model. These metrics dem-
onstrate substantial differences in CWD decomposition among the sites because of the differ-
ent climatic conditions.

Sensitivity of CWD decomposition to climate

Results from sensitivity analyses showed that climate was the most important variable affecting
CWD decomposition. The trends in wood mass loss for downed CWD decomposition at five
sites with differing climatic zones (tropical, subtropical, temperate and boreal) are presented
in Fig 4a, and for standing CWD decomposition in Fig 4b. In both the rates of wood mass loss
in temperate and boreal zones were substantially smaller than the rates in tropical and subtrop-
ical zones (P<0.02), but the difference was statistically small or insignificant among some trop-
ical sites and/or subtropical locations (P>0.05). The differences among the climatic zones
were regulated by multiple factors, including temperature, rainfall, and snowfall.

Temperature. The CWD decomposition constants (k, and ks) increased non-linearly
with increases in temperature (n = 89, R*>0.76 for downed CWD; R*>0.66 for standing
CWD, P<0.001; Fig 5), i.e.,

k, = C x ™" (25)

where k, is the exponent of the exponential function in Eq 24, C and D are coefficients,

C =0.0575 and 0.0502 for downed and standing CWD, respectively, D = 0.0497 and 0.0402,
respectively; T is annual mean temperature (°C). Similar to k, values calculated using Eq 24, ks
values for both downed and standing CWD also increased exponentially with temperature
(n=89,R*=0.61 and 0.53 for downed and standing CWD, respectively, P<0.001),

k,=fx e’ (26)

where fand g are coefficients, f= 0.0616 and 0.0651 for downed and standing CWD, respec-
tively, g = 0.033 and 0.034, respectively. However, constant k4 of Eq 24 for standing CWD
decomposition (0.078+0.0412) was smaller than that for downed CWD (0.1067+0.0616), while
constant ks for standing CWD (0.0912+0.042) was similar to that for downed (0.082+0.041).
The k4 and ks for both positions of CWD varied little with temperature when annual mean air
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Fig 4. Decomposition of downed (a) and standing (b) CWD under different climatic zones. The latitudes for these
five sites are 14.2, 29.0, 43.0, 49.0 and 65.0°N, respectively.
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Fig 5. Impact of temperature on CWD decomposition. DK4 and DKS5 calculated on the basis of Eq 24 for downed deadwood; SK4 and SK5 for
standing deadwood.

https://doi.org/10.1371/journal.pone.0251893.9005

temperature was < -7°C or > 25°C, although the k, and ks values significantly increased expo-
nentially with temperature in general (Fig 5).

DOC from downed CWD decomposition leaching into soil increased exponentially as tem-
perature increased (R* = 0.71, n = 89, P<0.001), and the loss from soils due to leaching exhib-
ited an exponential response (Fig 6). The relationship between the net DOC incorporation
into soils from downed CWD decomposition and annual air temperature was

DOC,, = a x (27)

where DOC,,,, is the rate of total DOC from downed CWD decomposition incorporated into
soils to the initial mass of the downed CWD (g kg’l); T is annual mean temperature (°C); a
and b are constants, 0 < b < 1.0, and a is related to wood species and precipitation. Although
DOC production from standing CWD decomposition was not less than that from downed
CWD (Fig 7), the incorporation of DOC from standing CWD was a cubic polynomial increase
with temperature (P<0.02), i.e.,

DOC,,=a, xT°—a,x T +a, x T+C (28)

where a; and C are coefficients related to precipitation and wood species group of CWD;
DOC;,;; is the rate of DOC incorporated into soils to the initial mass of the standing CWD
(gkg™"). The incorporated DOC from standing CWD was lower than the DOC from downed
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CWD. Less DOC went to the soil from standing CWD because most of the DOC was decom-
posed or oxidized before leaching, and the C remaining in soils would then be gradually lost to
subsequent soil leaching or microbial activity in the soil.

POC (particulate organic C < 2mm in diameter) can be incorporated into soils by leaching,
but it can be gradually decomposed after it gets into soils. The total (accumulative) POC from
CWD decomposition within the simulation period decreased non-linearly with an increase in
temperature (Fig 8). POC from standing logs was more than that from downed CWD, which
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=
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Fig 7. DOC generated from downed CWD versus standing CWD (g C per kilogram CWD C).
https://doi.org/10.1371/journal.pone.0251893.g007
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was related to microsite variability, such as diurnal temperature differences, but these wood
fragments would be gradually decomposed.

Precipitation. The decomposition constants (k) of both standing and downed CWD
increased significantly with logarithmical increments in annual precipitation (Fig 9; n = 89;
R® = 0.56 and 0.64 for downed and standing CWD, respectively, P<0.001), following Eq 29,

k,; = C, x In(Pcp) + D, (29)

where C; and D; are coefficients corresponding to the ky; (i = 1 for downed CWD and i = 2 for
standing); Pcp is annual precipitation (mm). Similar to the effect of temperature on k4 values
of Eq 24, the exponent ks of the Eq 24 also increased significantly with a logarithmic increase
in precipitation for both downed and standing CWD decomposition (n = 89, R* = 0.58 and
0.59 for downed and standing CWD, respectively, P<0.001). This relationship between precip-
itation and the CWD decomposition constant indicated that CWD decomposition was highly
sensitive to precipitation, especially at values less than 2000 mm y ™' (Fig 9).

The correlation between precipitation and DOC incorporated into soils for both downed
and standing CWD (Fig 10) increased non-linearly (in power function) with precipitation
(P<0.001), indicating that precipitation is an important factor impacting DOC incorporation
into soils during CWD decomposition.

Snowfall. CWD decomposition was significantly correlated to annual snowfall (P<0.001).
The CWD decomposition decreased significantly with an increase in logarithmic annual
snowfall (Fig 11; n = 69, sites with no snow excluded). The sensitivity analysis indicated that
annual snowfall largely affected CWD decomposition when annual snowfall less than 200 kg
m’?, but the decomposition was less sensitive to annual snowfall over 200 kg m . The low sen-
sitivity to snowfall over 200 kg m™ was related to snow’s insulating effect.

The effect of snow on DOC incorporation into soils differed between downed and standing
CWD (Fig 12). The incorporation of DOC generated from downed CWD decomposition sig-
nificantly decreased with an increased in logarithmic snowfall (P<0.001), which was
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consistent with the trend in the decomposition rates, and there was no a substantial difference
for annual snowfall over 200 kg m™>. However, the incorporation of DOC released from stand-
ing CWD decomposition increased linearly with increasing annual snowfall, but the increment
was small, adding only about 2 mg of DOC for each additional kg m™ of snowfall (Fig 12).

The incorporation of POC into soils generated from both downed and standing CWD
increased linearly with increasing annual snowfall (1 = 69, R* = 0.69 and 0.66 for downed and
standing CWD), i.e.,

POC = a x Snow + b (30)
where a and b are coefficients, and the slope a was 7.6 and 15.7 mg C kg™ of snowfall for

downed and standing CWD, respectively; Snow is annual snowfall (kg m ™).

Impact of latitude on CWD decomposition

The sensitivity analysis showed that both of the constants k, and ks of Eq 24 for downed CWD
decomposition decreased with a logarithmic increase in latitude (n = 89, R? > 0.63, P<0.001).

Correspondingly, the relationship of CWD decomposition constants to latitude can be
described by Eq 31,

;= axIn (LAT) +¢ (31)

where k; is the constant, k, or ks, in Eq 24 for downed CWD decomposition; Lat is the latitude
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of a location (degrees, absolute value); and a and c are constants, a = -0.112 and -0.076 for k,
and ks, respectively. In contrast, both constants k, and ks of Eq 24 for standing CWD
decreased linearly with increasing latitude (P<0.001), i.e.,

ki=fxLat+g (32)

where k; is the constant, k4 or ks, in Eq 24; and fand g are coefficients, f=-0.002 and -0.0021
for k4 and ks, respectively. These metrics indicate that CWD decomposition was sensitive to
geographic latitude, but there was a difference in the sensitivity between downed and standing
CWD, with downed CWD logarithmically responding to the changes in latitude, and standing
CWD responding linearly.

DOC and POC incorporated into soils also responded to variation of geographic latitude.
The incorporation of DOC from downed CWD decomposition decreased exponentially
(P<0.001) with latitude increase (Fig 13). However, DOC from standing CWD had a cubic
polynomial relationship with latitude (Fig 13), reflecting a difference in DOC incorporation
into soils between DOC sources that were generated from downed or standing CWD.

POC from both downed and standing CWD decomposition responded exponentially to an
increase in latitude (n = 89, R? = 0.471 and 0.521 for the correlations of latitude to POC from
downed and standing CWD decomposition, respectively), the relationship can be described by

POC = a x e (33)

where a and b are coefficients, a is 0.266 and 0.44 g kg™ for downed and standing CWD,
respectively, and b is 0.0374 and 0.0402, respectively; Lat is number of degrees of the latitude
(absolute value).
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Effect of altitude on CWD decomposition

The results from the sensitivity analysis showed that CWD decomposition rate was correlated
to geomorphic altitude. Fig 14 indicated that the decomposition constant decreased signifi-
cantly (P<0.001) with an increase in logarithmic altitude (m), i.e.,

k, =axIn (ALT) + ¢ (34)

where a and ¢ are coefficients, the slope a was -0.017 and -0.012 for downed and standing
CWD, respectively. Similar to the k, in Eq 24, the exponent ks significantly decreased with alti-
tude (P<0.001), and the slope a was -0.010 and -0.013 for downed and standing CWD, respec-
tively. These metrics indicated that the CWD decomposition rate was correlated to
geomorphic altitude, however, DOC and POC generated from downed and standing CWD
decomposition was not correlated to geomorphic altitude (P>0.02).

Contributions of decomposer groups

Assumed isolation methods (see Sensitivity Analysis) were used to assess the roles played by
each wood-decomposer group and their synergisms in CWD decomposition. There were dif-
ferences in CWD decomposition performed by each of the main decomposers and their syner-
gies. Fig 15 presents the CWD mass attenuation with time based on the CWD decomposition
performed by different decomposers and their synergistic behaviors at a subtropical site
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calculated using Eq 24 for downed and standing
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(Santee Experimental Forest, site S01, green square in Fig 1). The rate of CWD mass loss from
the synergic effects of all decomposers combined (bacteria + beetles + fungi + termites) was
the highest. There were only four sets of important synergies of various decomposers under
the ecological conditions at Santee, and all of these four synergisms involved termites and
fungi, indicating that these two decomposers were the most important factors governing wood
decomposition at Santee, and other decomposers had a very small roles in CWD decomposi-
tion in this subtropical environment.

The rates of downed CWD mass loss to respiration of fungi and termites at Santee were
68.1 and 28.5% of the total biological respiration, respectively, only 3.4% of total respiration
was contributed by beetles with bacterial synergy. However, the rates of standing CWD mass
loss to the respiration of fungi and termites were 89.9 and 5.5% of the total, respectively, indi-
cating a small effect of termites on standing dead trees. These metrics indicated that fungi
played the most important role in CWD decomposition at Santee, although Santee is located
in the area with the highest risk of termites in USA [74].

The respiration of different decomposers varied largely among the 89 sites (S2 Fig). The
contribution of termites to the total biological respiration from decomposing downed CWD at
the eighty-nine sites varied from 0.0% in boreal sites, > 25% at some subtropical areas, to
39.9% in tropical sites. The CWD decomposition rates contributed by fungi varied from 55.4
to0 99.1% across the 89 sites, and the rates contributed by beetles with bacterial synergy were
between 0.8 and 10.4% among the 89 sites. However, the respiration from standing CWD
decomposition was different from downed CWD. Proportions of total biological respiration
from standing CWD decomposition were 0.0 to 8.8% for termites, 83.9 to 98.8% for fungi, and
1.2 to 10.3% for beetles with bacterial synergy across the 89 sites.

Effect of wood density

As expected, wood density influenced CWD decomposition (Column DS in Table 2). The
rates of both downed and standing CWD decomposition significantly decreased with an
increase in wood density (Fig 16). However, there was a difference in the sensitivity to wood
density between downed and standing CWD. The decrement in the rates of downed CWD
decomposition with wood density increase was less than that for standing CWD, indicated
that standing CWD decomposition was slightly more sensitive to changes in wood density
than downed CWD (Fig 16).

Wood size affect

Constant k, from Eq 24 for CWD decomposition decreased with an increase in wood size,
regardless of CWD position (standing or downed) or whether wood was softwood or hard-
wood (Column Size in Table 2; Fig 17a). The trend in the k, decreased generally with increas-
ing wood size, following power functions for downed and standing CWD (Fig 17a). Constant
ks from Eq 24 for CWD decomposition were slightly different from the k, from the same equa-
tion. Fig 17b showed that the ks for downed CWD also decreased exponentially with an
increase in wood size, but the decrease in the ks for standing CWD with wood size increase
was a power function.

Discussion
Differences in decomposition models

There were some differences in the calculated decomposition constants of CWD using differ-
ent equations (i.e., Eqs 21-24). Since one of those equations (Eq 24) contains two constants (k4
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Table 2. CWD decomposition constants calculated using different equations to assess model sensitivity to wood density and size*.

Factors DS Downed CWD Standing CWD
ky k, ks ky ky k, ks ky
Wood Density (g cm™) 0.3 0.1967 0.202 0.202 0.2324 0.1709 0.199 0.189 0.1882
0.4 0.1938 0.201 0.200 0.2286 0.1592 0.195 0.181 0.1626
0.5 0.1915 0.200 0.198 0.2233 0.1529 0.191 0.175 0.1467
0.6 0.1892 0.199 0.196 0.2181 0.1478 0.189 0.171 0.1365
0.7 0.1871 0.198 0.195 0.2159 0.1431 0.187 0.168 0.1266
0.8 0.1849 0.198 0.194 0.211 0.1384 0.184 0.164 0.1198
0.9 0.1826 0.197 0.192 0.2062 0.1332 0.182 0.160 0.1101
1.0 0.1800 0.196 0.191 0.2023 0.1278 0.179 0.156 0.1021
Size Softwood Hardwood
Downed CWD (size) 1 0.3180 0.281 0.308 0.3955 0.3578 0.270 0.325 0.4861
2 0.2636 0.275 0.273 0.3140 0.2777 0.279 0.283 0.3521
3 0.2219 0.243 0.235 0.2596 0.2358 0.255 0.248 0.2919
4 0.1962 0.214 0.208 0.2255 0.2097 0.228 0.221 0.2606
5 0.1792 0.196 0.190 0.2086 0.1917 0.209 0.203 0.2319
6 0.1669 0.183 0.177 0.1889 0.1790 0.195 0.189 0.2137
Standing CWD (size) 1 0.3042 0.286 0.305 0.3685 0.3393 0.277 0.322 0.4363
2 0.2374 0.278 0.263 0.2501 0.2441 0.286 0.272 0.2951
3 0.1908 0.238 0.218 0.1736 0.1956 0.252 0.228 0.2114
4 0.1657 0.209 0.191 0.1484 0.1694 0.221 0.199 0.1720
5 0.1478 0.189 0.171 0.1256 0.1505 0.200 0.179 0.1502
6 0.1357 0.175 0.158 0.1122 0.1382 0.186 0.165 0.1379

* DS, density, g cm’>; Size, wood size that is cm in diameter; the sizes of the classes 1 to 6 are 4.5-7.49, 7.5-14.99, 15.0-22.49, 22.5-29.99, 30.0-37.49, >37.5 cm in

diameter, respectively. Results from simulation under the subtropical climatic conditions at Santee, South Carolina, USA.

https://doi.org/10.1371/journal.pone.0251893.t002
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Fig 16. CWD decomposition versus wood density. Decomposition constants calculated using Eq 24; DK, downed
CWD; SK, standing CWD. Results from simulation under the subtropical climatic conditions at Santee, South
Carolina, USA.
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and ks), T'so was used to compare the differences among the equations. The mean T’ based on
the decomposition constants from Eqs 21-24 for downed CWD in the eighty-nine sites were
11.7£10.9, 10.5£9.0, 10.8+9.8 and 12.619.8, respectively, and the means for standing CWD
were 13.4£10.4, 11.248.8, 12.0£9.3 and 15.129.1, respectively. Although these means of Ts
based on different equations were seemingly similar, absolute ¢ values from paired sample t-
test were between 3.0 and 19.7 for T, based on the decomposition constants from Eqs 21-24
for downed CWD, and between 11.3 and 58.4 for standing CWD decomposition; thus, these ¢
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values were larger than the critical ¢, = 2.6, indicating that the calculated Ts, were different
among decomposition models.

Tso based on the k from Eq 21 for both downed and standing CWD decomposition was sig-
nificantly correlated to the Ts, based on Eq 24 (n = 89, R?>0.99, P<0.001; Fig 18). However,
the intercept (3.47) for standing CWD decomposition was about 23% of the mean Tsq (15.1),
and the slope was only 0.869. The mean T, based on Eq 21 was about 6.9% smaller than that
based on Eq 24 for downed CWD decomposition, about 16.9% smaller than that for assessing
standing CWD decomposition. The absolute error between two equations (Eqs 21 and 24) was
9.5 and 13.3% for the Ts, of downed and standing CWD decomposition, respectively. Simi-
larly, the mean errors between Ts, based on Eq 24 and those based on Eqs 22 and 23 were 16.7
and 14.3% for downed CWD, respectively, and 26.0 and 20.8% for standing CWD, respec-
tively. These metrics indicate that there are some differences among the decomposition models
used to assess CWD decomposition rate, perhaps single exponential functions might function
poorly for assessing CWD decomposition, especially for assessing standing CWD.

Climatic factors

The sensitivity analysis for the model inputs showed that CWD decomposition was sensitive
to temperature, precipitation and snowfall. The CWD decomposition rates increased non-line-
arly with temperature, with the rates increasing only slightly when annual mean temperature
was over 22°C and not increasing with mean temperature when temperature was over 25°C.
Wood-decomposers can only increase their activity with an increase in temperature when
temperature is lower than their optimal survival temperature, and may decrease when
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temperature is over the optimal temperature. For example, the optimal temperature for fungi
is 20 to 30°C for most fungi and lower than 20°C for some fungi [75, 76].

When annual snowfall was over 200 kg m 2, the CWD decomposition rate decreased little
with decreasing temperature, and the rate might even slightly increase with snowfall increment
due to greater thermal insulation from a deeper snowpack. The exponential increase in CWD
decomposition rates with temperature from this model was consistent with the findings of
Herrmann and Bauhus [77].

CWD decomposition was highly responsive to changes in precipitation, but there was a dif-
ference between downed and standing CWD. This difference can be related to wood moisture
content in non-flooding environments. Standing CWD moisture content is mainly controlled
by air humidity, while moisture in downed CWD can be partially regulated by soil moisture in
the days without rain. Accordingly, the mean moisture of downed CWD can be higher than
that of standing CWD, causing downed CWD to decompose faster, as a moister environment
is more suitable for fungal growth, especially for soft-rot fungi. However, a water saturated
environment is not suitable for most fungi.

Spatiotemporal differences in CWD decomposition

The results of the sensitivity analysis of the CWD decomposition rate from the eighty-nine
sites showed that there were substantial spatial differences, with rates ranging from low in the
boreal zone to high in tropical areas. However, the latitudinal trends in decomposition rate
were different between downed and standing CWD. The decomposition rate decreased with
logarithmic increases in latitude for downed CWD and decreased linearly with latitude for
standing CWD. This is due to multiple factors that impact CWD decomposition at any given
latitude, including temperature, precipitation and altitude. The correlation of decomposition
constants to key eco-environmental conditions for both downed and standing CWD can be
described as

k=a +a,xT+a, xP—a, x LAT —a; x ALT + a; x Snow (35)

where a; — ag are coefficients; T, P, LAT, ALT and Snow are annual mean temperature (°C),
precipitation (mm), latitude (°), altitude (m) and snowfall (kg m3), respectively (F = 89.8 and
38.1 for the k4 from Eq 24 for downed and standing CWD, respectively; and F = 73.2 and 49.0
for the ks from Eq 24, respectively; n = 89, P<0.001). Eq 35 shows that the value of the CWD
decomposition constant can increase with increments of both temperature and precipitation,
and decreases with increments of latitude and altitude, which is consistent with the results
reported by Zhang et al. [78]. However, Eq 35 gives a different correlation between the decom-
position constant k and snowfall, in which k can increase with snowfall increase, in contrast to
the regression equation in Fig 11 for which k decreased with an increase in logarithmic snow-
fall. Multiple factors can cause different relationships between CWD decomposition constant
k and snowfall. The regression in Fig 11 used the data only from the 69 sites that received
snow, while Eq 35 used all 89 sites. Fig 11 results also indicated that the decomposition con-
stant k did not decrease with snowfall increase when annual snowfall was over 200 kg m> and
instead the k might slightly increase with snowfall increase when snowfall was more than 300
kg m™.

There also was a temporal effect on CWD decomposition. Annual downed CWD decompo-
sition rates from Eq 20 for five sites in different climate zones (Fig 19) show that the CWD
decomposition rates are not constant because time is needed for decomposers to colonize. The
different intercepts in the figure indicate that there are substantial differences in the coloniza-
tion of decomposers at these locations, the larger the intercept, the faster the wood
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colonization by wood-decomposers. The largest intercepts occurred at tropical and subtropical
locations, because fungi colonize faster in these warm locations than cold sites, and termites
often are present in warm locations.

Impacts of wood properties and positions

The decomposition rate of both downed and standing CWD was sensitive to wood density
(Table 2), with decomposition rate decreasing linearly (R*>0.989, n = 8, P<0.001) or via a
power function (R*>0.98, P<0.001) as density increased (Fig 16). Mackensen et al. [26] and
Noh et al. [67] reported that wood moisture content had a negative linear correlation with
wood density, which may be consistent with our results.

The decrease in the decomposition rate of downed CWD with an increase in wood density
was less than that for standing CWD, which was related to the differences in wood moisture
content and fungal activity between standing and downed CWD [43, 79]. The moisture of
downed CWD is impacted by not only air humidity but also soil moisture. However, soil mois-
ture has little influence on the moisture content of standing CWD.

The decomposition rates of both downed and standing CWD decreased non-linearly with
the wood size increase (P<0.001), in agreement with Herrmann et al. [80]. However, our anal-
ysis showed a difference in the CWD decomposition rate between wood types, with hardwood
decomposing faster than softwood, indicating that these decomposition rates are a function of
wood biochemistry and the fungal and invertebrate wood-decomposers that colonize these dif-
ferent CWD species groups.

The decreasing trend in CWD decomposition with an increase in wood size should be
related to changes in wood moisture content with time, because the time needed for water
absorption by CWD and the time needed for evaporative water loss from the CWD are related
to wood size. This decreasing trend in CWD decomposition should be also related to the ratio

PLOS ONE | https://doi.org/10.1371/journal.pone.0251893  June 4, 2021 27/35


https://doi.org/10.1371/journal.pone.0251893.g019
https://doi.org/10.1371/journal.pone.0251893

PLOS ONE

CWDDAT model development & sensitivity analysis

of the available CWD surface to the wood mass, as the larger the ratio, the greater the probabil-
ity of colonization by wood-decomposers.

Contributions of different decomposers

There were significant differences in the contribution of wood-decomposer groups to CWD
decomposition (S2 Fig), which were associated with geographical location and geomorphic
features. Fungi are the main contributor to CWD decomposition everywhere, contributing
over 50% of the total biological respiration. Termites occur only in warmer locations: tropical,
subtropical and some warm temperate areas (purple bars in S2 Fig), and account for <40% of
the total biological respiration based on our sensitivity analysis. The contribution of beetles
with bacterial synergy to CWD decomposition is small (<10% of the total biological consump-
tion; S2 Fig).

The fraction of termite respiration was inversely proportional to fungal respiration fraction,
as termites quickly consumed the CWD reducing the mass of CWD available for fungal
decomposition. The low fraction of termite respiration from standing CWD decomposition
was due to minimal termite attack of standing CWD before they fall down.

Comparison to results from the literature

We compiled published results from CWD decomposition studies, covering a wide geographic
range (S4 and S5 Tables) [25, 26, 34, 81-109], spanning Asia, Europe, Oceania, North America
and South America. Latitudes range from tropical Malaysia (1.4° N) [81] and Brazil (1.4° N)
[82] to boreal Canada (56° N) [83], Russia (59° N) [84] and Sweden (68.3° N) [85] in the
northern hemisphere, and from Australia [26] to New Zealand [86] and Brazil (2.5° S) [25] in
the southern hemisphere. Most of these results are obtained from field studies, with additional
information from data analysis using observations conducted by Zell et al. [34] and Herault

et al. [87]. Because some decomposition rates were presented as decomposition constants and
others were as T5, and Ty, or Tys, we converted those decomposition constants to Ts, using Eq
18, and the global values of Ts, were presented in S4 Table.

The range in woody debris decomposition rates varied greatly, with T’y ranging from 0.6
years (k = 1.155 y'l) at a tropical plot (5°18'N, 52°55°'W) in French Guiana [87] to 138.6 years
(k =0.005y") at a boreal site in the Leningrad region of Russia [88]. This range encompasses
the results from our sensitivity analysis, which showed Ts, ranging from 4.4 years at a tropical
location (15.8° N) to 67.3 years at a boreal site (65° N).

Our model results are within the global range of data found in the literature, because there
are numerous factors influencing woody debris decomposition, including wood density and
size, fresh CWD or snags, standing or fallen position, and dry or wet environmental condi-
tions. Wood size is an important factor because wood debris with a small diameter decom-
poses faster than larger debris [88]. The average wood size for our sensitivity analysis was 26
cm in diameter. The mean wood density used for this sensitivity analysis from over eighty-
nine sites was 0.55 g cm™, which is within wood densities used to assess woody debris decom-
position in the literature.

Additionally, we did not have climate data for the tropical locations near the equator so we
did not simulate woody debris decomposition at locations of latitude <14.2°, and we did not
consider a simulation for CWD decomposition in wetlands. However, our range of the woody
debris decomposition rates was generally approximate to the global range (T’so: 2.1-88.9 years;
k: 0.3289-0.0078 y'') reported by Zell et al. [34].
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Conclusions

Above-ground dead wood is a major carbon stock in forests. The process-based model
CWDDAT has been developed to provide a tool to assess coarse wood decomposition and the
associated linkages to the forest carbon cycle. Accordingly, the model provides a basis for sim-
ulating wood decomposition and the associated fluxes and fate of the wood carbon. While
many aspects of wood decomposition are well documented in the literature, providing a sound
basis for the design of this model, other aspects of the C cycle associated with wood decompo-
sition have barely been studied. For example, there are very few reports about translocation of
wood C into the forest floor and mineral soil, and the modes of wood-C movement into and
through soil layers. Accordingly, CWDAT provides a useful framework for considering aspects
of the forest C cycle that hasn’t been feasible in other soil biogeochemical models. The develop-
ment of CWDDAT has been predicated primarily on literature from the sub-tropical to sub-
boreal zone in North America. Accordingly, further work may be required to better reflect the
decomposer communities in tropical and boreal regions.

The model is designed to consider inherent site conditions, wood material, and the biologi-
cal activity of decomposer communities over time. Sensitivity analysis showed that CWD
decomposition was influenced by temperature, precipitation, snowfall, geographical location
and geomorphic altitude, decomposer community composition, and wood properties, includ-
ing density and size. The CWD decomposition rate increased substantially with an increase in
temperature and precipitation, and decreased with an increment in latitude and altitude.
Downed CWD decomposed faster than standing CWD. A deep snowpack can generate an
insulating effect that decreases the effect of low temperatures on CWD decomposition.

The model effectively simulates the large-scale climatic (e.g., temperature and precipitation)
effects on decomposer activity and the associated impacts on wood decomposition. An impor-
tant feature of this model is the inclusion of termites as a major vector affecting wood decom-
position. The simulated interaction between microbial communities and arthropods is
temporally sensitive, reflecting differences in site conditions, wood properties and stage of
decomposition.

Supporting information

S1 Table. Coordinates of eighty-nine sites used to obtain climate data for analyzing model
sensitivity*. *: Lat, latitude; Lon, longitude; all sites are located in North America; the climatic
data were downloaded from Daymet database (Thornton et Al., 2016). Annual mean tempera-
ture, annual precipitation and elevation at each location are in S2 Table.

(DOCX)

S2 Table. Altitude and climate at the sites used for model sensitivity analysis*. * Ele, eleva-
tion; meanT, mean air temperature.
(DOCX)

§3 Table. CWD decomposition constants calculated using different decomposition models
for eighty-nine sites. Values for k; calculated using Eqs 20 and 21 for downed and standing
CWD, respectively; k», fitted without forcing the intercept; k; values fitted using forcing the
intercept to 100% of the initial mass; and k, and k5 values were based on Eq 24, respectively.
(DOCX)

S4 Table. Published global decomposition constants for CWD*. *:D, diameter range, cm;
other information, including location and climate conditions are in S5 Table.
(DOCX)
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S5 Table. Locations and climate for the published global decomposition constants of
CWD*. *: DM, decay model; SE, single exponent; NS, Northern and Southern Germany; LR,
Leningrad Region; ML, multiple locations. The order of lines is the same as that in S4 Table.
(DOCX)

S1 Fig. Time to fifty percent mass loss (Tso) of CWD decay calculated using different
methods. DK1 -DK3 (left) are calculated for downed deadwood decay using k;, k, and k;
from Eqs 21-23, respectively. DK4 (left) is calculated for the downed deadwood using k4 and
ks from the Eq 24. SK1 -SK4 (right) are for standing deadwood calculated using equations as
described above for downed deadwood.

(TIF)

S2 Fig. Respiratory contributions of different decomposers to deadwood decay at different
sites. The figure on the left for downed deadwood and that on the right is for standing dead-
wood.

(TIF)
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