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Abstract

Coarse woody debris (CWD) is an important component in forests, hosting a variety of

organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed

a process-based model using literature, field observations, and expert knowledge to assess

woody debris decomposition in forests and the movement of wood C into the soil and atmo-

sphere. The sensitivity analysis was conducted against the primary ecological drivers (wood

properties and ambient conditions) used as model inputs. The analysis used eighty-nine cli-

mate datasets from North America, from tropical (14.2˚ N) to boreal (65.0˚ N) zones, with

large ranges in annual mean temperature (26.5˚C in tropical to -11.8˚C in boreal), annual

precipitation (6,143 to 181 mm), annual snowfall (0 to 612 kg m-2), and altitude (3 to 2,824 m

above mean see level). The sensitivity analysis showed that CWD decomposition was

strongly affected by climate, geographical location and altitude, which together regulate the

activity of both microbial and invertebrate wood-decomposers. CWD decomposition rate

increased with increments in temperature and precipitation, but decreased with increases in

latitude and altitude. CWD decomposition was also sensitive to wood size, density, position

(standing vs downed), and tree species. The sensitivity analysis showed that fungi are the

most important decomposers of woody debris, accounting for over 50% mass loss in nearly

all climatic zones in North America. The model includes invertebrate decomposers, focusing

mostly on termites, which can have an important role in CWD decomposition in tropical and

some subtropical regions. The role of termites in woody debris decomposition varied widely,

between 0 and 40%, from temperate areas to tropical regions. Woody debris decomposition

rates simulated for eighty-nine locations in North America were within the published range

of woody debris decomposition rates for regions in northern hemisphere from 1.6˚ N to 68.3˚

N and in Australia.
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Introduction

Coarse woody debris (CWD) is an important component of forest carbon (C) pools [1, 2], and

is structurally and functionally important for forest ecosystems [3, 4]. CWD provides habitats

for a large variety of organisms [2], influences the potential risk of wild fires [5, 6], and plays

important roles in C and nutrient cycling in forest ecosystems [7–12]. CWD is also important

for mitigating climate change due to its size and relatively slow decomposition (wood mass

loss to various decomposition processes, including biological consumption, fragmentation,

and chemical dissolution) [13, 14]. Accordingly, assessing decomposition of CWD in forests is

fundamental to understanding the importance of CWD in forest C cycling under changing cli-

mate and in response to forest management.

CWD decomposition can be divided into three processes: 1) chemical dissolution that

occurs when water/rain acts as a solvent dissolving soluble materials in the wood [2]; 2) physi-

cal processes that include leaching of soluble material, wood fragmentation from seasonal and

diurnal temperature differences, and external forces such as wind and water; and 3) biological-

decomposition from the combination of bacterial, fungal and invertebrate organisms that

dominate wood decomposition processes in nearly all ecosystems [2, 15–17].

Fungi have a key role in CWD decomposition in various eco-environments, with lignin

removed or altered by both white-rot and brown-rot fungi [18]. Soft-rot fungi can decompose

cellulose as brown-rot fungi do [2], however, they can tolerate high moisture, poor aeration,

and low temperature [19–23], making them important for wood decomposition in very wet or

extremely cold areas [24].

Decomposition of fine woody debris has been widely studied to assess its role in nutrient

cycling [13], but less is known regarding the impact of CWD decomposition on soil nutrient

pools due to its slow decomposition [25], which makes it difficult to assess CWD decomposi-

tion over a long time period under changing environmental conditions.

There are many factors that can influence CWD decomposition, including CWD proper-

ties, such as tree species, wood density, wood size, wood position (standing vs. down) [26], the

type and species of wood-decomposers, and various ambient conditions, especially tempera-

ture and precipitation. Consequently, wood decomposition is a complicated process and diffi-

cult to measure, and unsurprisingly, different empirical decomposition models have been

suggested for estimating wood mass loss under different eco-environmental conditions,

including exponential (either single or multiple) and more complex decomposition models [7,

26–29]. Although empirical decomposition models are easy to use, they are mainly limited by

the need to obtain reliable decomposition equations for specific study sites or from certain

regions. However, mechanistic models are developed from expert knowledge, long-term expe-

riences, and multiple field observations, which can give much better estimates of wood decom-

position across a wide range of forest and climate conditions.

There are several computer models used to estimate CWD decomposition. For example,

Yin [30] developed a computer model based on the methodology suggested by Agren and

Bosatta [31] to analyze C and nitrogen dynamics in forest soils. Yasso, a process-based soil C

model with a woody litter decomposition subroutine, was used to assess woody litter decom-

position, and the results were consistent with the litterbag data from Canada [32, 33]. On the

basis of these two computer models, Zell et al. [34] developed a computer model used to reana-

lyze woody debris decomposition using the same data as Yin [30]. Although these models are

not completely process-based, they do give better estimations of CWD decomposition than

simple empirical models.

Because CWD decomposition in a forest is controlled by complex ecological drivers that

interact with other C pools and environmental fluxes, it is necessary to use a mechanistic
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model that reflects inherent biogeochemical processes. Accordingly, we have developed a pro-

cess-based model CWDDAT (Coarse Woody Debris Decomposition Assessment Tool) to sim-

ulate CWD decomposition in forests by targeting CWD properties and ecological drivers, each

of which affect CWD decomposition processes and the transfer of wood C to the atmosphere

and soil by different biological communities.

In this paper we present the main equations used in the CWDDAT for modelling CWD

decomposition in forests and results from a sensitivity analysis using model inputs of the eco-

environmental conditions that impact CWD decomposition. Accordingly, the sensitivity anal-

ysis determined whether wood-decomposers are sensitive to changes in ecological drivers,

such as wood properties and ambient conditions, and whether the computer model is stable

over a range of climatic conditions. Eighty-nine North American climate datasets (Fig 1, S1

and S2 Tables) were obtained from the Daymet database [35] for locations ranging from 14˚ to

65˚ N latitude and 58˚ to 139˚ W longitude, and between 3 and 2,824 m above mean sea level.

The sensitivity analysis also included different tree species groups (softwood and hardwood),

size classes, wood density, and position of CWD (standing and downed).

Fig 1. Eighty-nine sites in North America used for model sensitivity analysis. This figure was produced with the

data from Natural Earth. Free vector and raster map data @ naturalearthdata.com; the green square is the location of

Santee Experimental Forest.

https://doi.org/10.1371/journal.pone.0251893.g001
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Modelling methods

Model framework

The CWDDAT model was developed from coarse woody debris decomposition studies in the

literature [2, 26, 36–38]. It is a process-based tool used to simulate CWD decomposition in for-

ests (Fig 2) with a consideration that CWD decomposition processes are influenced by wood

properties, decomposer community, and ambient conditions, including climate, soil proper-

ties, geographical location, altitude, and land cover. Biological, physical, and chemical pro-

cesses simulated in CWDDAT include: biological action of fungi, termites, and other

invertebrates with bacterial synergy; physical fragmentation and subsequent leaching; and

temperature-dependent chemical reactions with precipitation.

Fig 2. Framework for modelling coarse woody debris decomposition simulation performance. If CWD exists based on

“Condition-Assessment”, the model implements CWD decomposition, otherwise, the model will stop. When fragmentation and/or

leaching occur, the model will assess carbon from CWD decomposition in soil dynamics, including decomposition, leaching and

loss. The solid arrows are used to show the model performance directions: “N” means that the conditions are not satisfied for the

model continuing to run; otherwise, the model will continue to run. If there is CWD and all conditions are good for one decomposer

or all decomposers, the corresponding decay functions are called. The soil functions will be called whether or not there are fragments

from CWD, to assess daily changes in soil moisture, temperature, soil organic carbon, and biological activity in soils.

https://doi.org/10.1371/journal.pone.0251893.g002
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CWD decomposition

Fragmentation. Fragmentation is an important component of CWD decomposition

because it reduces the original log into smaller pieces, which increases wood surface area [2]. It

is a physical process, whereby external forces, including gravity, shrink-swell due to diurnal

temperature changes, water scouring, freeze-thaw, and animal foraging, breaks the wood into

smaller pieces. Accordingly, fragmentation was estimated as

FGM ¼
X

fi � md ð1Þ

where FGM is the mass of fragments, kg; fi is the coefficient of the factor i; md is the available

mass for possible fragmentation at time d (day), which can change with time and ecological

conditions. For example, the loss of bark and branches from a log due to gravity can be esti-

mated. The md at time d (day) was calculated

md ¼ Md � ðTd þ RdÞ � y ð2Þ

where Md is the largest value of available mass (kg) that is possibly lost at time d; md is the

actual available loss to gravity at time d; Td and Rd are the coefficients of the temperature dif-

ference and ice, respectively, and (Td + Rd) � 1; y is a non-linear time function, y 2 (0, 1).

Those fragments that separate from CWD are kept on the forest floor and subsequently (see

Biological Process below).

Biological processes. Four principal biological agents were used to describe the decompo-

sition processes: fungi, termites, beetles [39], and bacteria [2]. Fungi are the principal agents

for decomposing CWD [24, 34, 40, 41], and their role in CWD decomposition was assessed by

Eq (3):

MFungi ¼
Xn

1
Bi � Ci ð3Þ

where MFungi is CWD mass loss due to the decomposition by fungal group i (mg day-1); Bi is

the fungal biomass for group i; Ci is the fungal respiration coefficient, 0.0807 [42]. The fungal

biomass was calculated by Eq (4):

Bi ¼ Mi � Pi � fti � ffi ð4Þ

where Mi is daily available C for fungal group i (kg day-1); Pi is fungal growth potential coeffi-

cient for group i [42], P � [0, 1]; ffi is the moisture coefficient of fungal group i; fti is the coeffi-

cient for temperature. The ranges of temperature and moisture among the fungal groups are

different. The temperature range is between 0 and 45˚C with an optimal temperature of 25˚C

[2, 19] for white and brown-rot fungi, but between -45 and 45˚C with an optimal temperature

of 25˚C for soft-rot fungi because soft-rot fungi can survive in colder and wetter ecological

environments than white and brown-rot fungi. ffi is a moisture function, i.e., ffi = 1 − (sin(|1 −
Sa � Sci|))0.2 when Sci 6¼ Sa, ffi = 0.5 when Sci = Sa, where Sci is the optimal moisture for fungal

group i; Sa is the actual moisture. Each coefficient is between 0.0 and 0.5 for each fungal group,

but ∑ffi = 1. The range of moisture content (fraction) is between 0.3 and 0.95 with an optimum

0.65 for brown-rot fungi, 0.3 and 1.0 with the optimum 0.75 for white-rot fungi, and 0.3 and

1.1 with the optimum 0.99 for soft-rot fungi based on the ranges reported by Harmon et al. [2]

and Thybring et al. [43].

CWD decomposes much faster in areas with termites. The CWD mass loss to attributable

to termite consumption was calculated as described in Eq (5):

MTermite ¼ B � C ð5Þ
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where MTermite is the daily CWD consumed by termites (mg day-1); B is the population of ter-

mites on the CWD; C is the termite consumption coefficient (0.015–0.2 mg per termite per

day) [44, 45]. The value of C is species-based because of termite preferences. Termite foraging

increases as they start to colonize CWD [45], followed by small oscillations. The increase in

the population of termites was estimated as:

NT ¼ A � ðG � DÞ � ftm ð6Þ

where NT is the net increase in number of termites; A is the maximum population (individu-

als) [46–49]; G is the birth rate [50, 51]; D is the death rate; ftm is the coefficient of temperature

(5–40˚ C) [52] and moisture (10–99%) [53, 54]. Accordingly, the termite population will reach

maximum when birth and death are equal, and decline when the mortality is higher than the

birth rate. We assumed that termites will leave when the water table level reaches the soil sur-

face (CWD decomposition in long-term inundation areas was not considered although ter-

mites can survive on trees in wetlands, such as mangroves), and that the birth rate was

constant in a specific environment [55, 56]. We also assumed that the death and/or leaving

rate increased with time in a specific colony location when the food or living conditions for

termites were limited. Accordingly, termites on CWD (B) was:

B ¼
X

NTi ð7Þ

where NTi is the net increase in termite population in time i, NTi 2 (-A, A). If NTi were

approximate to -A, all termites should have either died or moved, and B will be equal to 0 if

B � 0, i.e., no termites.

Wood decomposing beetles were considered as a group. Although many beetles cannot

directly consume CWD, they can play a role in fragmentation, helping reduce CWD mass, and

then those fragments can be decomposed by fungi and bacteria. Beetles’ role in CWD decom-

position [39] was described by Eq (8):

MBeetle ¼ B � C ð8Þ

where MBeetle is the CWD mass loss due to beetles (mg day-1); B is the total biomass of beetles

colonizing the CWD; C is the daily consumption coefficient of the beetles (mg day-1). The bio-

mass was estimated using Eq (9).

B ¼ S � ftm � y ð9Þ

where S is the coefficient of available CWD surface area; ftm is the coefficient of temperature

and moisture, the range of temperature is between 5 and 40˚C with an optimal temperature of

25˚C; y is a non-linear time function, y 2 [0, 1], reduced from 1 to 0 with an increase in time,

year.

Although bacteria can decompose some components of CWD [57, 58] and have been

reported to effect wood decomposition [2, 16, 23, 58–65], the role of bacteria in wood decom-

position is unclear. Bacteria can occur in various stages of CWD decomposition and their rich-

ness and diversity increase linearly with decreasing the wood density during the

decomposition [16], but changes in bacterial community richness and diversity were not

related to variations in the fungal community [16]. Overall, the contribution of bacteria to

CWD decomposition is thought to be small [60].

The CWD mass loss attributable to bacterial decomposition was described using Eq (10):

MBacteria ¼ B � C ð10Þ

where MBacteria is the CWD mass loss due to bacterial decomposition (mg day-1); B is the
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total bacterial biomass (mg) on the CWD; and C is the bacterial respiration coefficient. The

bacterial biomass B was calculated as,

B ¼ m � ftm � y ð11Þ

where m is the coefficient of available C (DOC, dissolved organic C) and nitrogen (DON, dis-

solved organic nitrogen) for bacterial growth; ftm is the coefficient of temperature and mois-

ture; y is a nonlinear time function, 0 � y � 1, increased from 0 to 1 with an increase in time,

year. The coefficient m is also related to the competition between bacteria and other

decomposers.

Incorporation of wood carbon into the soil

Fragment decomposition. Fragmented CWD (see Fragmentation) falls onto the forest

floor where fine wood particles and their decomposition products (i.e., POC, particulate

organic C) may be incorporated into the surface mineral soil. Since these fragments are mainly

decomposed by bacteria and fungi, their decomposition is similar to fungi and bacteria as

mentioned above (see Eqs 3, 4, 10 and 11).

Dissolved organic carbon. DOC generated from CWD is considered to be the main path-

way of wood C incorporation into soils [66–68]. DOC is leached into the soil where a portion

of the wood C is incorporated into soil C pools [69], and can be divided into two parts: C pro-

duced within the wood (CWDi), and C from the decomposition of log fragments (CWDl).

This distinction is made because of differences in temperature and moisture within the sub-

strates and the corresponding effects on the decomposition process for each.

The DOC produced from CWDi and CWDl decomposition was calculated, respectively,

using Eq (12):

DOCi ¼ Ci � Mi � ftmi ð12Þ

where Mi is the consumed mass of CWDi or CWDl by decomposer i; Ci is the coefficient for

the decomposer i generating DOC; ftmi is the coefficient of temperature and moisture. Because

temperature and moisture influence DOC production [70], the ftmi in Eq 12 for fragment

(CWDl) decomposition was also regulated by soil temperature and moisture rather than only

by the air temperature and moisture. The total DOC resulting from CWD decomposition is

TDOC ¼ DOClog þ DOCfrag ð13Þ

where TDOC is the total DOC from CWD decomposition; DOClog and DOCfrag were produced

by CWDi and CWDl, respectively.

Leaching. Leaching is a physical process [71] that transports DOC from CWD into the

soil. However, only a portion of the leached C from wood decomposition is incorporated into

soil, as other portions of the DOC are oxidized in the soil or leached into subsurface water.

DOC leached into the soil from CWDi and CWDl decomposition was estimated as:

LDOCi ¼ S � Ri � DOCi � fmi ð14Þ

where LDOCi is the amount of DOC leached into soils by water (g) at time i; S is the coefficient

of effective surface of the CWDi, S 2 (0, 1); DOCi is the available DOC at time i; fmi is a non-

linear leaching coefficient, changing from 1 to 0 with time, i.e., fmi 2 [0, 1], as part of the water

can be retained in CWD at the beginning of precipitation; Ri is the effective leachate (ml) and

changes with time, i.e.,

Ri ¼ Pi � fi ð15Þ
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where Ri is the available water at time i (hour); Pi is the precipitation received by standing

CWD or the throughfall received by downed CWD at time i (cm), Pi 2 [0, 0.5]; fi is a non-lin-

ear coefficient, changing from 1 to 0 with time, i.e., fi 2 [1, 0]; i = 1, 2, . . ., H that are the hours

of leaching, and the H was computed by the following equation,

H ¼ P � r ð16Þ

where is H is the length of time (hours); P is the daily precipitation or throughfall (cm); r is the

precipitation rate (cm hr-1), the maximum r is 0.5 cm hr-1.

The DOC leaching through the soil profile and lost to the water table was calculated by Eq

17,

SiDOC ¼ DOCi � Wi � li ð17Þ

where SiDOC is the DOC loss from soil layer i to next layer (2 cm intervals) or aquifer when the

soil layer is approximate to the level of the water table; however, if water table is lower than 50

cm below the surface, DOC generated from CWD decomposition at soil layers � 50 cm in

depth was considered as a loss; DOCi is the concentration of DOC at the layer i; Wi is the

moveable water at the layer; li the leaching coefficient. The time step for leaching is hourly.

The DOC incorporated into soils is the difference between the amount produced and lea-

ched from logs and the amount of loss from soils by leaching (Eq 17). The subsequent fate of

the DOC retained in the mineral soil is not considered further in this model.

Sensitivity analysis

CWDDAT was parameterized to analyze the sensitivity of the CWD decomposition processes

to the ecological drivers used as model inputs: 1) CWD properties, including the size, species,

mass, and position (standing vs downed), and 2) ambient conditions, including climate, soil

properties, land cover (vegetation), and geographical location and geomorphic altitude. Cli-

mate data include daily minimum and maximum temperature, daily precipitation (rainfall

and snowfall), evapotranspiration, and daily PAR (Photosynthetically active radiation). Land

cover and soil characteristics from the Santee Experimental Forests in South Carolina in USA

(green square in Fig 1) were used as the basis for this analysis because it has well documented

measures of vegetation, soils, hydrology and climate over 80 years [72].

Climatic data obtained from the Daymet database [35] for eighty-nine points in North

America (Fig 1) were used to analyze model sensitivity to temperature, precipitation, snowfall,

latitude and altitude. The climatic datasets from Daymet cover a large spatial scale (14˚ to 65˚

N latitude and 58 to 139˚ W longitude), a long time period (1980–2017), and altitude ranging

from 3 m to 2,824 m above mean sea level, mean annual temperature from -11.8 to 26.5˚C,

and mean annual precipitation from 181 to 6,143 mm.

Assumptions used for the sensitivity analysis included: (1) all sites were upland forests; (2)

the forests were mature; (3) soils for all sites were loam; (4) CWD species group was either

hardwood or softwood to assess the differences in CWD decomposition among the tree species

groups (Table 1); (5) CWD was either standing (snag) or lying on the soil surface (downed) to

determine the differences in decomposition between positions; and (6) CWD was a mixture of

hardwoods (50%) and softwoods (50%) to analyze the sensitivity of CWD decomposition to

climate because tree species are mixed in many forests. We assumed that the CWD was ini-

tially sound, or in decomposition class 1. Since the size of CWD has been defined as >2.5 cm

or �7.5 cm in diameter [2], we set >4.0 cm in diameter to classify woody residue as CWD,

and used six size classes in the sensitivity analysis: 4.0–7.5, 7.5–15.0, 15.0–22.5, 22.5–30.0,

30.0–37.5, and >37.5 cm.

PLOS ONE CWDDAT model development & sensitivity analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0251893 June 4, 2021 8 / 35

https://doi.org/10.1371/journal.pone.0251893


The effects of each of the decomposer groups and their combinations (synergies) were

assessed by excluding those not being considered to affect the decomposition processes. How-

ever, physical and chemical processes, such as fragmentation and leaching, were included

when assessing synergistic effects, because these processes exist irrespective of the decomposer

community. The climate data at Santee (green square in Fig 1) were used to analyze the sensi-

tivity of CWD decomposition to each of wood-decomposer type individually and in

combination.

CWD with different size classes and different positions (downed and standing) was used to

analyze the model sensitivity to these factors (Table 1). To analyze the sensitivity to climate,

the CWD was also mixed with different size classes from size 1 to size 6 at the ratios of 3.3, 6.7,

16.0, 48.0, 16.0 and 10.0% of the total mass, respectively, with a mean of wood diameter of 26

cm. Eight wood density classes were used to analyze the effect of wood density on decomposi-

tion, ranging from 0.3 g cm-3 to 1.0 g cm-3 with an interval of 0.1 g cm-3. The simulation

decomposition period was 100 years, beginning from the year of tree mortality. This time span

was selected to give enough time for the wood decomposition process to be completed in a

cold climate, such as in boreal forests. The time step of this model was hourly for biological res-

piration and leaching, and daily for other processes.

Statistical analysis

Univariate and multivariate linear and non-linear regressions were used to analyze the sensi-

tivity of CWD decomposition to the main ecological drivers used as model inputs. Student’s t-

test was used to determine whether or not there were differences in CWD decomposition con-

stants obtained from different decomposition models suggested by some studies [26] and used

in this study (see the Eqs 20–24 below). To increase the reliability of results from model sensi-

tivity analysis, the level of statistical significance was set to α = 0.02 to determine whether the

rates of CWD decomposition were sensitive to one or multiple eco-environmental factors,

rather than α = 0.05; accordingly, the use of “significant” or “significantly” indicates P�0.02

hereafter.

The time span to CWD mass loss of 50% (half time, T50) and years to the mass loss of 95%

(T95) were used to describe the differences in CWD decomposition among the ecological driv-

ers, and calculated, respectively, as

T50 ¼ 0:69315 � k ð18Þ

T95 ¼ 2:99573 � k ð19Þ

where k is the decomposition constant (y-1).

The decomposition constant k of CWD was calculated using different equations because

the CWD decomposition may not follow a perfectly exponential model [7, 26, 29, 73].

Table 1. Wood mass (kg) used to analyze the model sensitivity to climate�.

Position Species group Size 1 Size 2 Size 3 Size 4 Size 5 Size 6

Downed Soft 2,500 5,000 12,000 36,000 12,000 7,500

Hard 2,500 5,000 12,000 36,000 12,000 7,500

Standing Soft 2,500 5,000 12,000 36,000 12,000 7,500

Hard 2,500 5,000 12,000 36,000 12,000 7,500

�size 1: 4.5–7.49; size 2: 7.5–14.99, size 3: 15.0–22.49, size 4: 22.5–29.99, size 5: 30.0–37.49, and size 6: �37.0 cm in diameter.

https://doi.org/10.1371/journal.pone.0251893.t001
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Accordingly, four sets of CWD decomposition constants were calculated to find an optimal

decomposition constant. We first assumed that the CWD decomposition followed a single

exponential model as in Eq 20,

Mt ¼ M0 � e�k1�t ð20Þ

where Mt is the mass remaining at time t (years); M0 is the initial mass. Accordingly, the

decomposition constant k1 can be calculated for each site using following equation, i.e.,

k1 ¼
1

n

Xn

1
f ln M0ð Þ � ln ðMtÞ½ � � tg ð21Þ

where ln(M0) and ln(Mt) are natural logarithmic values of the initial CWD mass (M0) and the

remaining mass (Mt) at time t (years); t = 1, 2, 3, . . ., n that is the simulation time span, years.

The k1 used for a specific site was averaged from all simulated years at the site.

Regressions are widely used to fit observations for empirical equations. Accordingly, we

employed regressions to obtain the constants of CWD decomposition using data from simula-

tions for the sensitivity analysis. The decomposition constants k2 and k3 were obtained by fit-

ting the mass remaining from CWD decomposition simulations for each site using single

exponential functions; the k3 was obtained from fitting with forcing the intercept of the expo-

nential function to M0 (equal to the initial mass); but k2 was without forcing the intercept such

that it may be smaller or greater than the initial CWD mass. Accordingly, the fitted single

exponential equations had the form

ln Mtð Þ¼ f � k2 � t ð22Þ

where Mt is the remaining mass (known); f is a regression coefficient, and exp(f) is equal to the

intercept of the fitted exponential function; t is time (known, years); accordingly, linear regres-

sion can be used to obtain the coefficients f and k2 when Yt = ln(Mt). If the intercept of the

exponential function is forced to the initial CWD mass, i.e., f in Eq 22 equals ln(M0), thus,

ln ðMtÞ ¼ ln M0ð Þ � k3 � t ð23Þ

This equation (Eq 23) appears similar to Eq 21, but the constant k3 is not averaged from

annual decomposition, it is obtained using the linear regression, like the method to obtain k2

in Eq 22.

The constants of CWD decomposition were also calculated using a combination of power

and exponential functions (Eq 24) to assess CWD decomposition that did not follow a single

exponential function, i.e.,

ln Mtð Þ ¼ ln M0ð Þ þ k5 � ln ðt þ 1Þ � k4 � t ð24Þ

where Mt, M0 and t are as same as in Eq 20; and k4 and k5 are coefficients determined by a mul-

tivariate regression. Because of the multiple ks, T50 and T95 were estimated using iteration for

the decomposition model as Eq 24.

Results

Results from sensitivity analysis to model inputs, which were wood properties and ambient

conditions, including temperature, precipitation, snowfall, and geographic and geomorphic

information at eighty-nine sites, are presented below. Results for k values calculated using dif-

ferent equations and the corresponding half-life of CWD decomposition are in S1 Fig and S3

Table.
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Disparities among the decomposition constants obtained from different

decomposition models

There are differences in k values (S3 Table) obtained from different calculation equations (see

Eqs 20–24). The decomposition constants calculated using different equations showed small

differences in downed wood decomposition at specific sites (Fig 3a), but large differences were

found in standing CWD decomposition (Fig 3b). Because Eq 24 was developed to match the

Fig 3. Differences in CWD mass loss over time with the decomposition of downed deadwood (a) and standing

deadwood (b) under tropical (S84, 14.2˚ N) and cold-temperate (S49, 49˚ N) climatic conditions. SIM, based on

the result from the sensitivity analysis and E21 –E24 from the mass remaining calculated using the coefficients from

the Eqs 21–24. Intercepts obtained from Eq 22 were not forced to the initial mass such that they can be smaller or

larger than 100% of the initial mass. -Trop, tropical; -Temp, temperate; the data points for each dataset were 100, i.e.,

n = 100.

https://doi.org/10.1371/journal.pone.0251893.g003
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simulated CWD mass remaining, the calculated mass attenuation with time using the decom-

position constants from Eq 24 for both downed and standing CWD was approximate to the

CWD mass attenuation trend for sensitivity analysis.

The time to decompose 50% of the CWD (T50) was calculated using different k-based mod-

els for assessing the sensitivity of CWD decomposition to climate and showed considerable

differences among the eighty-nine sites (S1 Fig). The smallest CWD decomposition constants

occurred at the site S30 (65.0˚N and 105˚W) where the T50 values were the largest among the

eighty-nine sites. The largest decomposition constants (smallest T50) occurred at site S87

(15.8˚N and 92.8˚W; S1 Table and S1 Fig), regardless of which equation was used to obtain the

constant (S3 Table).

There were differences in T50 among the equations of k-based calculations (Eqs 21–24)

(P>0.02), based on Student’s t-test (58.38 > |t| � 2.96, |t| > tcritical = 2.37). Accordingly, the

constants of CWD decomposition mentioned and used below would be mainly based on Eq

24 because this equation was developed based on data from this sensitivity analysis.

The T50 among the eighty-nine sites varied widely, ranging from 4.4 to 67.3 years with a

mean of 12.6±9.8 (mean ± SD) years for the downed CWD decomposition, using the constants

calculated from Eq 24 (coefficient k4 and k5), and ranging from 6.8 to 65.2 years with a mean

of 15.1±9.1 years for standing CWD using the same decomposition model. These metrics dem-

onstrate substantial differences in CWD decomposition among the sites because of the differ-

ent climatic conditions.

Sensitivity of CWD decomposition to climate

Results from sensitivity analyses showed that climate was the most important variable affecting

CWD decomposition. The trends in wood mass loss for downed CWD decomposition at five

sites with differing climatic zones (tropical, subtropical, temperate and boreal) are presented

in Fig 4a, and for standing CWD decomposition in Fig 4b. In both the rates of wood mass loss

in temperate and boreal zones were substantially smaller than the rates in tropical and subtrop-

ical zones (P<0.02), but the difference was statistically small or insignificant among some trop-

ical sites and/or subtropical locations (P>0.05). The differences among the climatic zones

were regulated by multiple factors, including temperature, rainfall, and snowfall.

Temperature. The CWD decomposition constants (k4 and k5) increased non-linearly

with increases in temperature (n = 89, R2>0.76 for downed CWD; R2>0.66 for standing

CWD, P<0.001; Fig 5), i.e.,

k4 ¼ C � eD�T ð25Þ

where k4 is the exponent of the exponential function in Eq 24, C and D are coefficients,

C = 0.0575 and 0.0502 for downed and standing CWD, respectively, D = 0.0497 and 0.0402,

respectively; T is annual mean temperature (˚C). Similar to k4 values calculated using Eq 24, k5

values for both downed and standing CWD also increased exponentially with temperature

(n = 89, R2 = 0.61 and 0.53 for downed and standing CWD, respectively, P<0.001),

k5 ¼ f � eg�T ð26Þ

where f and g are coefficients, f = 0.0616 and 0.0651 for downed and standing CWD, respec-

tively, g = 0.033 and 0.034, respectively. However, constant k4 of Eq 24 for standing CWD

decomposition (0.078±0.0412) was smaller than that for downed CWD (0.1067±0.0616), while

constant k5 for standing CWD (0.0912±0.042) was similar to that for downed (0.082±0.041).

The k4 and k5 for both positions of CWD varied little with temperature when annual mean air
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Fig 4. Decomposition of downed (a) and standing (b) CWD under different climatic zones. The latitudes for these

five sites are 14.2, 29.0, 43.0, 49.0 and 65.0˚N, respectively.

https://doi.org/10.1371/journal.pone.0251893.g004
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temperature was < -7˚C or > 25˚C, although the k4 and k5 values significantly increased expo-

nentially with temperature in general (Fig 5).

DOC from downed CWD decomposition leaching into soil increased exponentially as tem-

perature increased (R2 = 0.71, n = 89, P<0.001), and the loss from soils due to leaching exhib-

ited an exponential response (Fig 6). The relationship between the net DOC incorporation

into soils from downed CWD decomposition and annual air temperature was

DOCind ¼ a � eb�T ð27Þ

where DOCind is the rate of total DOC from downed CWD decomposition incorporated into

soils to the initial mass of the downed CWD (g kg-1); T is annual mean temperature (˚C); a
and b are constants, 0 � b < 1.0, and a is related to wood species and precipitation. Although

DOC production from standing CWD decomposition was not less than that from downed

CWD (Fig 7), the incorporation of DOC from standing CWD was a cubic polynomial increase

with temperature (P<0.02), i.e.,

DOCins ¼ a1 � T3 � a2 � T2 þ a3 � T þ C ð28Þ

where ai and C are coefficients related to precipitation and wood species group of CWD;

DOCins is the rate of DOC incorporated into soils to the initial mass of the standing CWD

(g kg-1). The incorporated DOC from standing CWD was lower than the DOC from downed

Fig 5. Impact of temperature on CWD decomposition. DK4 and DK5 calculated on the basis of Eq 24 for downed deadwood; SK4 and SK5 for

standing deadwood.

https://doi.org/10.1371/journal.pone.0251893.g005
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CWD. Less DOC went to the soil from standing CWD because most of the DOC was decom-

posed or oxidized before leaching, and the C remaining in soils would then be gradually lost to

subsequent soil leaching or microbial activity in the soil.

POC (particulate organic C � 2mm in diameter) can be incorporated into soils by leaching,

but it can be gradually decomposed after it gets into soils. The total (accumulative) POC from

CWD decomposition within the simulation period decreased non-linearly with an increase in

temperature (Fig 8). POC from standing logs was more than that from downed CWD, which

Fig 6. Impact of temperature on dissolved organic carbon (g C mass per kg CWD) leaching during downed CWD

decomposition. From-log-to-soil indicates total DOC leached from downed CWD. Loss-from-soil indicates the portion of DOC

from log that was lost to outflow or groundwater due to soil leaching.

https://doi.org/10.1371/journal.pone.0251893.g006

Fig 7. DOC generated from downed CWD versus standing CWD (g C per kilogram CWD C).

https://doi.org/10.1371/journal.pone.0251893.g007
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was related to microsite variability, such as diurnal temperature differences, but these wood

fragments would be gradually decomposed.

Precipitation. The decomposition constants (k) of both standing and downed CWD

increased significantly with logarithmical increments in annual precipitation (Fig 9; n = 89;

R2 = 0.56 and 0.64 for downed and standing CWD, respectively, P<0.001), following Eq 29,

k4i ¼ Ci � ln Pcpð Þ þ Di ð29Þ

where Ci and Di are coefficients corresponding to the k4i (i = 1 for downed CWD and i = 2 for

standing); Pcp is annual precipitation (mm). Similar to the effect of temperature on k4 values

of Eq 24, the exponent k5 of the Eq 24 also increased significantly with a logarithmic increase

in precipitation for both downed and standing CWD decomposition (n = 89, R2 = 0.58 and

0.59 for downed and standing CWD, respectively, P<0.001). This relationship between precip-

itation and the CWD decomposition constant indicated that CWD decomposition was highly

sensitive to precipitation, especially at values less than 2000 mm y-1 (Fig 9).

The correlation between precipitation and DOC incorporated into soils for both downed

and standing CWD (Fig 10) increased non-linearly (in power function) with precipitation

(P<0.001), indicating that precipitation is an important factor impacting DOC incorporation

into soils during CWD decomposition.

Snowfall. CWD decomposition was significantly correlated to annual snowfall (P<0.001).

The CWD decomposition decreased significantly with an increase in logarithmic annual

snowfall (Fig 11; n = 69, sites with no snow excluded). The sensitivity analysis indicated that

annual snowfall largely affected CWD decomposition when annual snowfall less than 200 kg

m-2, but the decomposition was less sensitive to annual snowfall over 200 kg m-2. The low sen-

sitivity to snowfall over 200 kg m-2 was related to snow’s insulating effect.

The effect of snow on DOC incorporation into soils differed between downed and standing

CWD (Fig 12). The incorporation of DOC generated from downed CWD decomposition sig-

nificantly decreased with an increased in logarithmic snowfall (P<0.001), which was

Fig 8. Impact of temperature on POC (particulate organic carbon, g C mass per kg CWD) incorporated into soils.

https://doi.org/10.1371/journal.pone.0251893.g008
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consistent with the trend in the decomposition rates, and there was no a substantial difference

for annual snowfall over 200 kg m-2. However, the incorporation of DOC released from stand-

ing CWD decomposition increased linearly with increasing annual snowfall, but the increment

was small, adding only about 2 mg of DOC for each additional kg m-2 of snowfall (Fig 12).

The incorporation of POC into soils generated from both downed and standing CWD

increased linearly with increasing annual snowfall (n = 69, R2 = 0.69 and 0.66 for downed and

standing CWD), i.e.,

POC ¼ a � Snow þ b ð30Þ

where a and b are coefficients, and the slope a was 7.6 and 15.7 mg C kg-1 of snowfall for

downed and standing CWD, respectively; Snow is annual snowfall (kg m-2).

Impact of latitude on CWD decomposition

The sensitivity analysis showed that both of the constants k4 and k5 of Eq 24 for downed CWD

decomposition decreased with a logarithmic increase in latitude (n = 89, R2 > 0.63, P<0.001).

Correspondingly, the relationship of CWD decomposition constants to latitude can be

described by Eq 31,

kj ¼ a � ln LATð Þ þ c ð31Þ

where kj is the constant, k4 or k5, in Eq 24 for downed CWD decomposition; Lat is the latitude

Fig 9. Sensitivity of CWD decomposition to mean annual precipitation (mm). DK4 and DK5 calculated on the basis of Eq 24 for

downed CWD; SK4 and SK5 for standing CWD.

https://doi.org/10.1371/journal.pone.0251893.g009
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of a location (degrees, absolute value); and a and c are constants, a = -0.112 and -0.076 for k4

and k5, respectively. In contrast, both constants k4 and k5 of Eq 24 for standing CWD

decreased linearly with increasing latitude (P<0.001), i.e.,

kj ¼ f � Lat þ g ð32Þ

where kj is the constant, k4 or k5, in Eq 24; and f and g are coefficients, f = -0.002 and -0.0021

for k4 and k5, respectively. These metrics indicate that CWD decomposition was sensitive to

geographic latitude, but there was a difference in the sensitivity between downed and standing

CWD, with downed CWD logarithmically responding to the changes in latitude, and standing

CWD responding linearly.

DOC and POC incorporated into soils also responded to variation of geographic latitude.

The incorporation of DOC from downed CWD decomposition decreased exponentially

(P<0.001) with latitude increase (Fig 13). However, DOC from standing CWD had a cubic

polynomial relationship with latitude (Fig 13), reflecting a difference in DOC incorporation

into soils between DOC sources that were generated from downed or standing CWD.

POC from both downed and standing CWD decomposition responded exponentially to an

increase in latitude (n = 89, R2 = 0.471 and 0.521 for the correlations of latitude to POC from

downed and standing CWD decomposition, respectively), the relationship can be described by

POC ¼ a � eb�Lat ð33Þ

where a and b are coefficients, a is 0.266 and 0.44 g kg-1 for downed and standing CWD,

respectively, and b is 0.0374 and 0.0402, respectively; Lat is number of degrees of the latitude

(absolute value).

Fig 10. Impact of precipitation (mm) on DOC incorporated into soils (g C mass per kilogram CWD) for downed (down) and standing

(stand) CWD decomposition.

https://doi.org/10.1371/journal.pone.0251893.g010
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Effect of altitude on CWD decomposition

The results from the sensitivity analysis showed that CWD decomposition rate was correlated

to geomorphic altitude. Fig 14 indicated that the decomposition constant decreased signifi-

cantly (P<0.001) with an increase in logarithmic altitude (m), i.e.,

k4 ¼ a � ln ALTð Þ þ c ð34Þ

where a and c are coefficients, the slope a was -0.017 and -0.012 for downed and standing

CWD, respectively. Similar to the k4 in Eq 24, the exponent k5 significantly decreased with alti-

tude (P<0.001), and the slope a was -0.010 and -0.013 for downed and standing CWD, respec-

tively. These metrics indicated that the CWD decomposition rate was correlated to

geomorphic altitude, however, DOC and POC generated from downed and standing CWD

decomposition was not correlated to geomorphic altitude (P>0.02).

Contributions of decomposer groups

Assumed isolation methods (see Sensitivity Analysis) were used to assess the roles played by

each wood-decomposer group and their synergisms in CWD decomposition. There were dif-

ferences in CWD decomposition performed by each of the main decomposers and their syner-

gies. Fig 15 presents the CWD mass attenuation with time based on the CWD decomposition

performed by different decomposers and their synergistic behaviors at a subtropical site

Fig 11. Effect of snow on CWD decomposition (n = 69, sites with no snow excluded). DK4, DK5, SK4 and SK5, calculated using Eq 24 for

downed and standing CWD, respectively.

https://doi.org/10.1371/journal.pone.0251893.g011
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Fig 12. Impact of snow on DOC incorporation into soils (g C mass per kilogram CWD) for snowfall >0.

https://doi.org/10.1371/journal.pone.0251893.g012

Fig 13. Impact of latitude on DOC incorporated into soils (g C mass per kilogram CWD).

https://doi.org/10.1371/journal.pone.0251893.g013
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Fig 14. Effect of altitude on CWD decomposition. DK4, DK5, SK4 and SK5 calculated using Eq 24 for downed and standing

CWD, respectively.

https://doi.org/10.1371/journal.pone.0251893.g014

Fig 15. Roles in downed CWD decomposition played by different decomposers and various synergies of different decomposers under the

subtropical climatic conditions at Santee, South Carolina, USA. Decomposers: BA, bacteria; BT, beetles; FG, fungi; TM, termites; ALL, BA+BT

+FG+TM.

https://doi.org/10.1371/journal.pone.0251893.g015
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(Santee Experimental Forest, site S01, green square in Fig 1). The rate of CWD mass loss from

the synergic effects of all decomposers combined (bacteria + beetles + fungi + termites) was

the highest. There were only four sets of important synergies of various decomposers under

the ecological conditions at Santee, and all of these four synergisms involved termites and

fungi, indicating that these two decomposers were the most important factors governing wood

decomposition at Santee, and other decomposers had a very small roles in CWD decomposi-

tion in this subtropical environment.

The rates of downed CWD mass loss to respiration of fungi and termites at Santee were

68.1 and 28.5% of the total biological respiration, respectively, only 3.4% of total respiration

was contributed by beetles with bacterial synergy. However, the rates of standing CWD mass

loss to the respiration of fungi and termites were 89.9 and 5.5% of the total, respectively, indi-

cating a small effect of termites on standing dead trees. These metrics indicated that fungi

played the most important role in CWD decomposition at Santee, although Santee is located

in the area with the highest risk of termites in USA [74].

The respiration of different decomposers varied largely among the 89 sites (S2 Fig). The

contribution of termites to the total biological respiration from decomposing downed CWD at

the eighty-nine sites varied from 0.0% in boreal sites, > 25% at some subtropical areas, to

39.9% in tropical sites. The CWD decomposition rates contributed by fungi varied from 55.4

to 99.1% across the 89 sites, and the rates contributed by beetles with bacterial synergy were

between 0.8 and 10.4% among the 89 sites. However, the respiration from standing CWD

decomposition was different from downed CWD. Proportions of total biological respiration

from standing CWD decomposition were 0.0 to 8.8% for termites, 83.9 to 98.8% for fungi, and

1.2 to 10.3% for beetles with bacterial synergy across the 89 sites.

Effect of wood density

As expected, wood density influenced CWD decomposition (Column DS in Table 2). The

rates of both downed and standing CWD decomposition significantly decreased with an

increase in wood density (Fig 16). However, there was a difference in the sensitivity to wood

density between downed and standing CWD. The decrement in the rates of downed CWD

decomposition with wood density increase was less than that for standing CWD, indicated

that standing CWD decomposition was slightly more sensitive to changes in wood density

than downed CWD (Fig 16).

Wood size affect

Constant k4 from Eq 24 for CWD decomposition decreased with an increase in wood size,

regardless of CWD position (standing or downed) or whether wood was softwood or hard-

wood (Column Size in Table 2; Fig 17a). The trend in the k4 decreased generally with increas-

ing wood size, following power functions for downed and standing CWD (Fig 17a). Constant

k5 from Eq 24 for CWD decomposition were slightly different from the k4 from the same equa-

tion. Fig 17b showed that the k5 for downed CWD also decreased exponentially with an

increase in wood size, but the decrease in the k5 for standing CWD with wood size increase

was a power function.

Discussion

Differences in decomposition models

There were some differences in the calculated decomposition constants of CWD using differ-

ent equations (i.e., Eqs 21–24). Since one of those equations (Eq 24) contains two constants (k4
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Table 2. CWD decomposition constants calculated using different equations to assess model sensitivity to wood density and size�.

Factors DS Downed CWD Standing CWD

k1 k2 k3 k4 k1 k2 k3 k4

Wood Density (g cm-3) 0.3 0.1967 0.202 0.202 0.2324 0.1709 0.199 0.189 0.1882

0.4 0.1938 0.201 0.200 0.2286 0.1592 0.195 0.181 0.1626

0.5 0.1915 0.200 0.198 0.2233 0.1529 0.191 0.175 0.1467

0.6 0.1892 0.199 0.196 0.2181 0.1478 0.189 0.171 0.1365

0.7 0.1871 0.198 0.195 0.2159 0.1431 0.187 0.168 0.1266

0.8 0.1849 0.198 0.194 0.211 0.1384 0.184 0.164 0.1198

0.9 0.1826 0.197 0.192 0.2062 0.1332 0.182 0.160 0.1101

1.0 0.1800 0.196 0.191 0.2023 0.1278 0.179 0.156 0.1021

Size Softwood Hardwood

Downed CWD (size) 1 0.3180 0.281 0.308 0.3955 0.3578 0.270 0.325 0.4861

2 0.2636 0.275 0.273 0.3140 0.2777 0.279 0.283 0.3521

3 0.2219 0.243 0.235 0.2596 0.2358 0.255 0.248 0.2919

4 0.1962 0.214 0.208 0.2255 0.2097 0.228 0.221 0.2606

5 0.1792 0.196 0.190 0.2086 0.1917 0.209 0.203 0.2319

6 0.1669 0.183 0.177 0.1889 0.1790 0.195 0.189 0.2137

Standing CWD (size) 1 0.3042 0.286 0.305 0.3685 0.3393 0.277 0.322 0.4363

2 0.2374 0.278 0.263 0.2501 0.2441 0.286 0.272 0.2951

3 0.1908 0.238 0.218 0.1736 0.1956 0.252 0.228 0.2114

4 0.1657 0.209 0.191 0.1484 0.1694 0.221 0.199 0.1720

5 0.1478 0.189 0.171 0.1256 0.1505 0.200 0.179 0.1502

6 0.1357 0.175 0.158 0.1122 0.1382 0.186 0.165 0.1379

� DS, density, g cm-3; Size, wood size that is cm in diameter; the sizes of the classes 1 to 6 are 4.5–7.49, 7.5–14.99, 15.0–22.49, 22.5–29.99, 30.0–37.49, >37.5 cm in

diameter, respectively. Results from simulation under the subtropical climatic conditions at Santee, South Carolina, USA.

https://doi.org/10.1371/journal.pone.0251893.t002

Fig 16. CWD decomposition versus wood density. Decomposition constants calculated using Eq 24; DK, downed

CWD; SK, standing CWD. Results from simulation under the subtropical climatic conditions at Santee, South

Carolina, USA.

https://doi.org/10.1371/journal.pone.0251893.g016
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and k5), T50 was used to compare the differences among the equations. The mean T50 based on

the decomposition constants from Eqs 21–24 for downed CWD in the eighty-nine sites were

11.7±10.9, 10.5±9.0, 10.8±9.8 and 12.6±9.8, respectively, and the means for standing CWD

were 13.4±10.4, 11.2±8.8, 12.0±9.3 and 15.1±9.1, respectively. Although these means of T50

based on different equations were seemingly similar, absolute t values from paired sample t-

test were between 3.0 and 19.7 for T50 based on the decomposition constants from Eqs 21–24

for downed CWD, and between 11.3 and 58.4 for standing CWD decomposition; thus, these t

Fig 17. Impact of wood size on the CWD decay. DH, downed hardwood; DS, downed softwood; SH, standing

hardwood; SS, standing softwood. Values for k4 (a) and k5 (b) were calculated using Eq 24. Results from simulation

under the subtropical climatic conditions at Santee, South Carolina, USA.

https://doi.org/10.1371/journal.pone.0251893.g017
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values were larger than the critical tc = 2.6, indicating that the calculated T50 were different

among decomposition models.

T50 based on the k from Eq 21 for both downed and standing CWD decomposition was sig-

nificantly correlated to the T50 based on Eq 24 (n = 89, R2>0.99, P<0.001; Fig 18). However,

the intercept (3.47) for standing CWD decomposition was about 23% of the mean T50 (15.1),

and the slope was only 0.869. The mean T50 based on Eq 21 was about 6.9% smaller than that

based on Eq 24 for downed CWD decomposition, about 16.9% smaller than that for assessing

standing CWD decomposition. The absolute error between two equations (Eqs 21 and 24) was

9.5 and 13.3% for the T50 of downed and standing CWD decomposition, respectively. Simi-

larly, the mean errors between T50 based on Eq 24 and those based on Eqs 22 and 23 were 16.7

and 14.3% for downed CWD, respectively, and 26.0 and 20.8% for standing CWD, respec-

tively. These metrics indicate that there are some differences among the decomposition models

used to assess CWD decomposition rate, perhaps single exponential functions might function

poorly for assessing CWD decomposition, especially for assessing standing CWD.

Climatic factors

The sensitivity analysis for the model inputs showed that CWD decomposition was sensitive

to temperature, precipitation and snowfall. The CWD decomposition rates increased non-line-

arly with temperature, with the rates increasing only slightly when annual mean temperature

was over 22˚C and not increasing with mean temperature when temperature was over 25˚C.

Wood-decomposers can only increase their activity with an increase in temperature when

temperature is lower than their optimal survival temperature, and may decrease when

Fig 18. Comparison of T50 (years to fifty percent mass loss) calculated using decomposition constants from Eqs 21 and 24;

green dashed line, 1:1.

https://doi.org/10.1371/journal.pone.0251893.g018
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temperature is over the optimal temperature. For example, the optimal temperature for fungi

is 20 to 30˚C for most fungi and lower than 20˚C for some fungi [75, 76].

When annual snowfall was over 200 kg m-2, the CWD decomposition rate decreased little

with decreasing temperature, and the rate might even slightly increase with snowfall increment

due to greater thermal insulation from a deeper snowpack. The exponential increase in CWD

decomposition rates with temperature from this model was consistent with the findings of

Herrmann and Bauhus [77].

CWD decomposition was highly responsive to changes in precipitation, but there was a dif-

ference between downed and standing CWD. This difference can be related to wood moisture

content in non-flooding environments. Standing CWD moisture content is mainly controlled

by air humidity, while moisture in downed CWD can be partially regulated by soil moisture in

the days without rain. Accordingly, the mean moisture of downed CWD can be higher than

that of standing CWD, causing downed CWD to decompose faster, as a moister environment

is more suitable for fungal growth, especially for soft-rot fungi. However, a water saturated

environment is not suitable for most fungi.

Spatiotemporal differences in CWD decomposition

The results of the sensitivity analysis of the CWD decomposition rate from the eighty-nine

sites showed that there were substantial spatial differences, with rates ranging from low in the

boreal zone to high in tropical areas. However, the latitudinal trends in decomposition rate

were different between downed and standing CWD. The decomposition rate decreased with

logarithmic increases in latitude for downed CWD and decreased linearly with latitude for

standing CWD. This is due to multiple factors that impact CWD decomposition at any given

latitude, including temperature, precipitation and altitude. The correlation of decomposition

constants to key eco-environmental conditions for both downed and standing CWD can be

described as

k ¼ a1 þ a2 � T þ a3 � P � a4 � LAT � a5 � ALT þ a6 � Snow ð35Þ

where a1 − a6 are coefficients; T, P, LAT, ALT and Snow are annual mean temperature (˚C),

precipitation (mm), latitude (˚), altitude (m) and snowfall (kg m-2), respectively (F = 89.8 and

38.1 for the k4 from Eq 24 for downed and standing CWD, respectively; and F = 73.2 and 49.0

for the k5 from Eq 24, respectively; n = 89, P<0.001). Eq 35 shows that the value of the CWD

decomposition constant can increase with increments of both temperature and precipitation,

and decreases with increments of latitude and altitude, which is consistent with the results

reported by Zhang et al. [78]. However, Eq 35 gives a different correlation between the decom-

position constant k and snowfall, in which k can increase with snowfall increase, in contrast to

the regression equation in Fig 11 for which k decreased with an increase in logarithmic snow-

fall. Multiple factors can cause different relationships between CWD decomposition constant

k and snowfall. The regression in Fig 11 used the data only from the 69 sites that received

snow, while Eq 35 used all 89 sites. Fig 11 results also indicated that the decomposition con-

stant k did not decrease with snowfall increase when annual snowfall was over 200 kg m-2, and

instead the k might slightly increase with snowfall increase when snowfall was more than 300

kg m-2.

There also was a temporal effect on CWD decomposition. Annual downed CWD decompo-

sition rates from Eq 20 for five sites in different climate zones (Fig 19) show that the CWD

decomposition rates are not constant because time is needed for decomposers to colonize. The

different intercepts in the figure indicate that there are substantial differences in the coloniza-

tion of decomposers at these locations, the larger the intercept, the faster the wood
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colonization by wood-decomposers. The largest intercepts occurred at tropical and subtropical

locations, because fungi colonize faster in these warm locations than cold sites, and termites

often are present in warm locations.

Impacts of wood properties and positions

The decomposition rate of both downed and standing CWD was sensitive to wood density

(Table 2), with decomposition rate decreasing linearly (R2>0.989, n = 8, P<0.001) or via a

power function (R2>0.98, P<0.001) as density increased (Fig 16). Mackensen et al. [26] and

Noh et al. [67] reported that wood moisture content had a negative linear correlation with

wood density, which may be consistent with our results.

The decrease in the decomposition rate of downed CWD with an increase in wood density

was less than that for standing CWD, which was related to the differences in wood moisture

content and fungal activity between standing and downed CWD [43, 79]. The moisture of

downed CWD is impacted by not only air humidity but also soil moisture. However, soil mois-

ture has little influence on the moisture content of standing CWD.

The decomposition rates of both downed and standing CWD decreased non-linearly with

the wood size increase (P<0.001), in agreement with Herrmann et al. [80]. However, our anal-

ysis showed a difference in the CWD decomposition rate between wood types, with hardwood

decomposing faster than softwood, indicating that these decomposition rates are a function of

wood biochemistry and the fungal and invertebrate wood-decomposers that colonize these dif-

ferent CWD species groups.

The decreasing trend in CWD decomposition with an increase in wood size should be

related to changes in wood moisture content with time, because the time needed for water

absorption by CWD and the time needed for evaporative water loss from the CWD are related

to wood size. This decreasing trend in CWD decomposition should be also related to the ratio

Fig 19. Annual downed CWD decomposition rates at five sites in different climatic zones calculated using Eq 21; temp,

temperate.

https://doi.org/10.1371/journal.pone.0251893.g019
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of the available CWD surface to the wood mass, as the larger the ratio, the greater the probabil-

ity of colonization by wood-decomposers.

Contributions of different decomposers

There were significant differences in the contribution of wood-decomposer groups to CWD

decomposition (S2 Fig), which were associated with geographical location and geomorphic

features. Fungi are the main contributor to CWD decomposition everywhere, contributing

over 50% of the total biological respiration. Termites occur only in warmer locations: tropical,

subtropical and some warm temperate areas (purple bars in S2 Fig), and account for <40% of

the total biological respiration based on our sensitivity analysis. The contribution of beetles

with bacterial synergy to CWD decomposition is small (<10% of the total biological consump-

tion; S2 Fig).

The fraction of termite respiration was inversely proportional to fungal respiration fraction,

as termites quickly consumed the CWD reducing the mass of CWD available for fungal

decomposition. The low fraction of termite respiration from standing CWD decomposition

was due to minimal termite attack of standing CWD before they fall down.

Comparison to results from the literature

We compiled published results from CWD decomposition studies, covering a wide geographic

range (S4 and S5 Tables) [25, 26, 34, 81–109], spanning Asia, Europe, Oceania, North America

and South America. Latitudes range from tropical Malaysia (1.4˚ N) [81] and Brazil (1.4˚ N)

[82] to boreal Canada (56˚ N) [83], Russia (59˚ N) [84] and Sweden (68.3˚ N) [85] in the

northern hemisphere, and from Australia [26] to New Zealand [86] and Brazil (2.5˚ S) [25] in

the southern hemisphere. Most of these results are obtained from field studies, with additional

information from data analysis using observations conducted by Zell et al. [34] and Herault

et al. [87]. Because some decomposition rates were presented as decomposition constants and

others were as T50 and T90 or T95, we converted those decomposition constants to T50 using Eq

18, and the global values of T50 were presented in S4 Table.

The range in woody debris decomposition rates varied greatly, with T50 ranging from 0.6

years (k = 1.155 y-1) at a tropical plot (5˚18’N, 52˚55’W) in French Guiana [87] to 138.6 years

(k = 0.005 y-1) at a boreal site in the Leningrad region of Russia [88]. This range encompasses

the results from our sensitivity analysis, which showed T50 ranging from 4.4 years at a tropical

location (15.8˚ N) to 67.3 years at a boreal site (65˚ N).

Our model results are within the global range of data found in the literature, because there

are numerous factors influencing woody debris decomposition, including wood density and

size, fresh CWD or snags, standing or fallen position, and dry or wet environmental condi-

tions. Wood size is an important factor because wood debris with a small diameter decom-

poses faster than larger debris [88]. The average wood size for our sensitivity analysis was 26

cm in diameter. The mean wood density used for this sensitivity analysis from over eighty-

nine sites was 0.55 g cm-3, which is within wood densities used to assess woody debris decom-

position in the literature.

Additionally, we did not have climate data for the tropical locations near the equator so we

did not simulate woody debris decomposition at locations of latitude <14.2˚, and we did not

consider a simulation for CWD decomposition in wetlands. However, our range of the woody

debris decomposition rates was generally approximate to the global range (T50: 2.1–88.9 years;

k: 0.3289–0.0078 y-1) reported by Zell et al. [34].
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Conclusions

Above-ground dead wood is a major carbon stock in forests. The process-based model

CWDDAT has been developed to provide a tool to assess coarse wood decomposition and the

associated linkages to the forest carbon cycle. Accordingly, the model provides a basis for sim-

ulating wood decomposition and the associated fluxes and fate of the wood carbon. While

many aspects of wood decomposition are well documented in the literature, providing a sound

basis for the design of this model, other aspects of the C cycle associated with wood decompo-

sition have barely been studied. For example, there are very few reports about translocation of

wood C into the forest floor and mineral soil, and the modes of wood-C movement into and

through soil layers. Accordingly, CWDAT provides a useful framework for considering aspects

of the forest C cycle that hasn’t been feasible in other soil biogeochemical models. The develop-

ment of CWDDAT has been predicated primarily on literature from the sub-tropical to sub-

boreal zone in North America. Accordingly, further work may be required to better reflect the

decomposer communities in tropical and boreal regions.

The model is designed to consider inherent site conditions, wood material, and the biologi-

cal activity of decomposer communities over time. Sensitivity analysis showed that CWD

decomposition was influenced by temperature, precipitation, snowfall, geographical location

and geomorphic altitude, decomposer community composition, and wood properties, includ-

ing density and size. The CWD decomposition rate increased substantially with an increase in

temperature and precipitation, and decreased with an increment in latitude and altitude.

Downed CWD decomposed faster than standing CWD. A deep snowpack can generate an

insulating effect that decreases the effect of low temperatures on CWD decomposition.

The model effectively simulates the large-scale climatic (e.g., temperature and precipitation)

effects on decomposer activity and the associated impacts on wood decomposition. An impor-

tant feature of this model is the inclusion of termites as a major vector affecting wood decom-

position. The simulated interaction between microbial communities and arthropods is

temporally sensitive, reflecting differences in site conditions, wood properties and stage of

decomposition.

Supporting information

S1 Table. Coordinates of eighty-nine sites used to obtain climate data for analyzing model

sensitivity�. �: Lat, latitude; Lon, longitude; all sites are located in North America; the climatic

data were downloaded from Daymet database (Thornton et Al., 2016). Annual mean tempera-

ture, annual precipitation and elevation at each location are in S2 Table.

(DOCX)

S2 Table. Altitude and climate at the sites used for model sensitivity analysis�. � Ele, eleva-

tion; meanT, mean air temperature.

(DOCX)

S3 Table. CWD decomposition constants calculated using different decomposition models

for eighty-nine sites. Values for k1 calculated using Eqs 20 and 21 for downed and standing

CWD, respectively; k2, fitted without forcing the intercept; k3 values fitted using forcing the

intercept to 100% of the initial mass; and k4 and k5 values were based on Eq 24, respectively.

(DOCX)

S4 Table. Published global decomposition constants for CWD�. �:D, diameter range, cm;

other information, including location and climate conditions are in S5 Table.

(DOCX)
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S5 Table. Locations and climate for the published global decomposition constants of

CWD�. �: DM, decay model; SE, single exponent; NS, Northern and Southern Germany; LR,

Leningrad Region; ML, multiple locations. The order of lines is the same as that in S4 Table.

(DOCX)

S1 Fig. Time to fifty percent mass loss (T50) of CWD decay calculated using different

methods. DK1 –DK3 (left) are calculated for downed deadwood decay using k1, k2 and k3

from Eqs 21–23, respectively. DK4 (left) is calculated for the downed deadwood using k4 and

k5 from the Eq 24. SK1 –SK4 (right) are for standing deadwood calculated using equations as

described above for downed deadwood.

(TIF)

S2 Fig. Respiratory contributions of different decomposers to deadwood decay at different

sites. The figure on the left for downed deadwood and that on the right is for standing dead-

wood.

(TIF)
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