
Adaptive Fingerprinting: Website Fingerprinting over Few
Encrypted Tra�ic

Chenggang Wang
University of Cincinnati
Cincinnati, OH, USA
wang2c9@mail.uc.edu

Jimmy Dani
University of Cincinnati
Cincinnati, OH, USA
danijy@mail.uc.edu

Xiang Li
University of Cincinnati
Cincinnati, OH, USA
li5xi@ucmail.uc.edu

Xiaodong Jia
University of Cincinnati
Cincinnati, OH, USA
jiaxg@ucmail.uc.edu

Boyang Wang
University of Cincinnati
Cincinnati, OH, USA
boyang.wang@uc.edu

ABSTRACT
Website� ngerprinting attacks can infer which website a user visits
over encrypted network tra�c. Recent studies can achieve high
accuracy (e.g., 98%) by leveraging deep neural networks. However,
current attacks rely on enormous encrypted tra�c data, which
are time-consuming to collect. Moreover, large-scale encrypted
tra�c data also need to be recollected frequently to adjust the
changes in the website content. In other words, the bootstrap time
for carrying out website� ngerprinting is not practical. In this
paper, we propose a new method, named Adaptive Fingerprinting,
which can derive high attack accuracy over few encrypted tra�c
by leveraging adversarial domain adaption. With our method, an
attacker only needs to collect few tra�c rather than large-scale
datasets, which makes website� ngerprinting more practical in
the real world. Our extensive experimental results over multiple
datasets show that our method can achieve 89% accuracy over few
encrypted tra�c in the closed-world setting and 99% precision and
99% recall in the open-world setting. Compared to a recent study
(named Triplet Fingerprinting), our method is much more e�cient
in pre-training time and is more scalable. Moreover, the attack
performance of our method can outperform Triplet Fingerprinting
in both the closed-world evaluation and open-world evaluation.

CCS CONCEPTS
• Security and privacy! Network security.

KEYWORDS
Encrypted tra�c, transfer learning, adversarial domain adaption

ACM Reference Format:
Chenggang Wang, Jimmy Dani, Xiang Li, Xiaodong Jia, and Boyang Wang.
2021. Adaptive Fingerprinting: Website Fingerprinting over Few Encrypted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447835

Tra�c. In Proceedings of the Eleventh ACM Conference on Data and Applica-
tion Security and Privacy (CODASPY ’21), April 26–28, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3422337.
3447835

1 INTRODUCTION
In website� ngerprinting [4, 5, 9, 13, 15, 23, 27, 29, 31, 35, 43], an
attacker eavesdrops encrypted tra�c and infers which website a
user visits in secure communication protocols, such as Tor. Website
�ngerprinting is often formulated as a supervised learning problem,
where an attacker collects a large-scale dataset and trains a classi�er
leveraging machine learning. Despite the substantial process, espe-
cially with deep neural networks, studies on website�ngerprinting
still face challenges. One of the primary challenges is that current
website� ngerprinting methods rely on collecting enormous traf-
�c data, which is extremely time-consuming [36]. In other words,
the bootstrap time for carrying out website� ngerprinting is not
practical in the real world.

For instance, it takes more than 30 days to collect a large-scale
dataset for analyzing� ngerprints of website tra�c [31, 35, 36].
Even data collection time can be signi�cantly reduced by running
multiple computers or virtual machines in parallel, obtained tra�c
data are easily outdated due to the content updates on websites.
For example, studies [31, 44] have shown that if test tra�c data
are collected more than 14 days later than training tra�c data, the
attack accuracy will drop signi�cantly. As a result, an attacker will
need to recollect data frequently. To make it even worse, if there is
any inconsistency in terms of data collection setting (e.g., versions
of software, operating systems, network protocols, etc.) between
an attacker and a target user, an attacker has to match the setting
and recollects extensive data accordingly.

In this paper, we propose a new method, referred to as Adaptive
Fingerprinting, which can performwebsite� ngerprinting and derive
high attack accuracy over only few encrypted tra�c. In other words,
our method does not need to collect large-scale tra�c data, which
reduces the bootstrap time for website� ngerprinting attacks and
makes the attacks practical in the real world. Our main idea is to
leverage transfer learning, more speci�cally, adversarial domain
adaption [10, 39], to transfer knowledge learned from an existing
large-scale dataset to the classi�cation over a dataset with few tra�c
(e.g., no more than 20 traces per monitored website). Following the
de�nitions in the literature of transfer learning, we denote this

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

149

existing large-scale dataset as a source dataset and this dataset with
few tra�c as a target dataset in this paper. The main contributions
of this paper can be summarized below:

• In Adaptive Fingerprinting (AF), we leverage adversarial
domain adaption, more speci�cally, a domain adversarial
network [10, 39], to learn a Feature Extractor over one or
multiple source datasets by formulating a minimax game
[12] between a Feature Extractor and a Domain Discrim-
inator. A Feature Extractor or a Domain Discriminator is,
in essence, a deep neural network. The learned Feature Ex-
tractor is extracted and attached with a traditional machine
learning classi�er (e.g., k-nearest neighbor) to carry out the
classi�cation over a target dataset.

• In our closed-world evaluation, our experimental results
over multiple datasets show that our method can achieve
high accuracy over a target dataset, which has no more than
20 traces per monitored website. For instance, our method
can achieve over 89% accuracy over 100 monitored websites.
In the open-world evaluation, our method can achieve 99%
precision and 99% recall.

• Compared to a previous method, named Triplet Fingerprint-
ing [36], which also performs website� ngerprinting over
few tra�c, our method is much more e�cient in pre-training
time (i.e., the time to train a feature extractor from a source
dataset) and is more scalable if there are more data avail-
able in a source dataset. Our method can outperform Triplet
Fingerprinting in the closed-world evaluation, except when
there is only 1 trace per monitored website in a target dataset.

Reproducibility. The source code and datasets of this study are
publicly available and can be found at [3].

2 BACKGROUND
System and Threat Model. In this paper, we consider a system
model including three parties, a user, an attacker and a web server.
A� gure of the model is illustrated in Fig. 1. This user connects to
the web server through Tor relays by using the Tor protocol. The
network tra�c between the user and a web server is encrypted.
We assume there is an attacker, who is able to eavesdrop encrypted
tra�c between a user and the� rst Tor relay. The goal of this attacker
is to infer which website this user visits by analyzing the size and
direction of encrypted packets. The system model we consider in
this paper is the same as previous studies in website�ngerprinting.

By following the assumptions in the existing studies [5, 27, 29,
31, 35], we assume that an attacker does not know the secret key to
decrypt packets. Moreover, we assume that this attacker is passive
and does not drop or inject packets. We assume that a user visits one
website each time. There are minimal background tra�c from other
applications or websites. A tra�c trace is a sequence of incoming
and outgoing network packets related to one website visit.

Binary Format of Tra�c Traces. As Tor implements� xed-
length packets, named cells [31], to transmit data in the Tor pro-
tocol, we use the binary format to represent each tra�c trace as
in previous studies. Speci�cally, given a tra�c trace, we only keep
the direction of each packet. We use +1 to represent an outgoing
packet (to a website) and -1 to indicate an incoming packet (from a
website). Each tra�c trace, in essence, is a vector of +1s and -1s. To

User

Attacker

Tor network
Web server

Encrypted
Traffic

Figure 1: The system and threat model. We assume that an
attacker can eavesdrop encrypted tra�c between a user and
the� rst Tor relay.

use these vectors as the inputs of neural networks, we also keep
the same length for all the vectors by trimming or padding 0s at
the end of each vector as in previous studies [31, 35].

Closed-World Setting and Open-World Setting.Website�n-
gerprinting can be evaluated in two settings, including the closed-
world setting and open-world setting. We examine both settings in
this paper. In a closed-world setting, we assume that a user only
visits a set of monitored websites and the attacker knows this set
of monitored websites. Given an unlabeled tra�c trace, an attacker
infers which speci�c website it belongs to. In an open-world set-
ting, we assume that a user can also visit unmonitored websites
in addition to the set of monitored websites. Given an unlabeled
tra�c trace, an attacker infers whether this trace is associated with
monitored websites or unmonitored websites.

EvaluationMetrics.Both the closed-world evaluation and open-
world evaluation can be formulated as classi�cation problems,
where the closed-world evaluation carries out a multi-class classi�-
cation while the open-world evaluation performs a binary classi�ca-
tion. Accuracy is used as ametric tomeasure the attack performance
in the closed-world evaluation. Precision, recall, and precision-recall
curves are utilized in the open-world evaluation.

For the open-world evaluation, we apply the standard model
used in previous studies [35, 36]. Speci�cally, all the tra�c traces
of unmonitored websites are considered as a single class, which
is added to the classi�er obtained in the closed-world evaluation
as an additional class. This classi�er is re-trained with traces from
monitored websites and unmonitored websites. During the test,
given an unlabeled tra�c trace, if the highest con�dence of this
classi�er belongs to one of the monitored websites and this con�-
dence is greater than a threshold, this trace is considered as a trace
associated with monitored websites. Otherwise, it is considered
as a trace related to unmonitored websites. The threshold can be
tuned in experiments to obtain a higher precision or higher recall.

Our Goals in This Study. Our study formulates website�nger-
printing as a transfer learning problem. Speci�cally, we assume a
large-scale dataset, referred to as a source dataset, is available but
it was collected with di�erent settings (e.g., di�erent versions in
software, hardware, and network protocols) in the past. In addition,
another dataset, referred to as a target dataset, is collected based on
the latest setting of a target user. However, this target dataset only
has few labeled tra�c (to be more speci�cally, less than 20 traces
per website in this paper).

We have two speci�c goals in this study. First, we would like to
perform website� ngerprinting over few tra�c of a target dataset
with high accuracy by taking advantage of the large amount of
tra�c from a source dataset. Second, we aim to render e�cient

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

150

La
ye

r 1

Freeze Re-tune

· · ·

· · ·Input Output

OutputInput

Pre-Training with Source Data

Training with Target Data

La
ye

r n
-1

La
ye

r n

La
ye

r 1

La
ye

r n
-1

La
ye

r n
Figure 2: Transfer learning with�ne-tuning

running time when performing transfer learning in website�n-
gerprinting. The overarching goal of our study is to minimize the
bootstrap time, including data collection time and classi�er training
time, and make website� ngerprinting more practical.

3 TRANSFER LEARNING OVER ENCRYPTED
TRAFFIC

3.1 Transfer Learning
Supervised learning is data-hungry and does not performwell when
a dataset consists of few labeled data. Transfer learning [28, 49] is
able to overcome this limitation. Speci�cally, given a source dataset
and a target dataset, where the source dataset has a large amount
of labeled samples and the target dataset has few labeled samples,
transfer learning� rst learns the knowledge from the source data,
and then transfer the knowledge to perform the classi�cation task
over the target data. The knowledge often indicates tuned hyperpa-
rameters of a neural network or learned feature spaces. Transfer
learning performs well when the source classi�cation task is similar
to the target classi�cation task. For example, the learned knowledge
of recognizing cars can be transferred to identify trucks.

A transfer learning method, in general, consists of three steps,
including pre-training, training, and testing. In pre-training, the
knowledge of a source dataset is learned. In the training step, the
learned knowledge is transferred by leveraging the training data
of the target dataset. In the testing step, a classi�er reports results
over the test data of the target dataset.

3.2 Fine-Tuning
Fine-tuning [47] is one of the simplest methods in transfer learning.
In the pre-training step, this method trains a neural network over a
source dataset. In the training step, this method freezes most of the
layers in the neural network obtained from the pre-training step
and tunes hyperparameters of the last few layers using training data
from the target dataset. Finally, with the re-tuned neural network,
this method derives the results with test data of the target dataset.
The process of� ne-tuning is described in Fig. 2.

Fine-tuning often performs well when the source domain and
target domain are very similar. This is because the shallow layers
obtained from the pre-training step can extract general features
that are likely shared by both the source domain and target domain
[47]. Re-tuning the hyperparameters only in the last 1 or 2 layers
with data from the target dataset can adjust the neural network

Block 1 Block 2 Block 3 Block 4

Conv
Layer

Conv
Layer

Pooling
Layer Dropout

Same inside each block

Input FC
Layer Output

Figure 3: The structure of the DF model. FC layer stands for
Fully-Connected layer.

to be more accurate for the target domain. Besides, the number of
hyperparameters that need to be re-tuned is much smaller than
re-training the entire neural network, which is more convenient
for limited data from the target dataset.

Fine-Tuning over Encrypted Tra�c. A previous study [36]
reported the performance of� ne-tuning over encrypted tra�c in
the context of website� ngerprinting. This study� rst trained a
neural network, named DF (Deep Fingerprinting) model [35], by
using a source dataset. Next, it� ne-tuned the DF model with a
target dataset. The DF model is one of the most e�ective models for
classifying encrypted tra�c with supervised learning. The structure
of the DF model is highlighted in Fig. 3.

3.3 Triplet Networks
The triplet network [30, 32], inspired by the Siamese network [21,
38], contains three parallel identical sub-networks sharing the same
weights and hyperparameters. An input of a triplet network is
denoted as a triplet, which consists of an anchor sample�, a positive
sample % and a negative sample # . Each sub-network takes only
one type of samples as inputs. For instance, all the anchor samples
A are the inputs to one sub-network and this sub-network does
not include any positive samples or negative samples in its inputs.
Each triplet is selected from the source dataset, either randomly or
with some mining strategy [36].

The details of transfer learning using a triplet network is de-
scribed in Figure 4. In the pre-training phase, a triplet network is
trained to learn an embedding of source data. The goal is to train
the sub-networks such that the distance between anchor samples
and positive samples is smaller than the distance between anchor
samples and negative samples in an embedded space. The triplet
loss is leveraged to measure the training loss of the triplet network
[30, 32]. Speci�cally, given a triple (�, %,#), the lost function is
de�ned as

L(�, %,#) = max(| |5 (�) � 5 (%) | |2 � | |5 (�) � 5 (#) | |2 + U, 0) (1)

where 5 (·) is the embedding, U is a margin between positive and
negative samples. Besides L2 distance presented in the equation
above, cosine distance can also be utilized [30, 32].

In the training phase, the sub-network from the triplet network is
extracted and utilized as a feature extractor. One classi�er, referred
to as target classi�er, is attached to this feature extractor. The
parameters of this target classi�er are trained using the target
training data. All the hyperparameters and weights in the sub-
network remain the same. Last, the results are reported over the
target test data with the sub-network and the trained classi�er.

Triplet Fingerprinting. Triplet Fingerprinting (TF) [36] ex-
amines website� ngerprinting by leveraging triplet networks. In

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

151

Sub NetworkA

Sub Network

Sub NetworkP

N

Triplets

Em
be

dd
ed

 S
pa

ce

Sub Network Target
ClassifierInput Output

Freeze Train

Pre-Training with Source Data

Training with Target Data

shared weights

shared weights

Figure 4: Transfer learning with a triplet network.

Triplet Fingerprinting, anchor samples and positive samples are
selected from the same classes while negative samples are chosen
from di�erent classes compared to anchor samples. The authors
leveraged the DFmodel [35] as the sub-network in a triplet network.
A k-nearest neighbor (k-NN) classi�er is used as the target classi�er
during the training over the target dataset.

4 ADAPTIVE FINGERPRINTING
We� rst present the main idea of adversarial domain adaption. Next,
we discuss how we address the speci�c challenges of adversarial
domain adaption in the context of website�ngerprinting.

4.1 Adversarial Domain Adaption
Domain adaption [40] is one of the transfer learning approaches.
Domain adaption addresses the domain shift problem (i.e., the dis-
crepancy between a source dataset and a target dataset) [37] by
mapping both source data and target data into a domain-invariant
feature space. Traditional domain adaption methods [24, 40] often
minimize the discrepancy by measuring the distance with Maxi-
mum Mean Discrepancy.

Adversarial Domain Adaption [10, 39] leverages a domain adver-
sarial network to learn a domain-invariant feature space. It leverages
the idea of generative adversarial learning [12] and outperforms
the traditional ones relying on Maximum Mean Discrepancy. As-
sume there is a source dataset and a target dataset, the structure
of a domain adversarial network consists of a Feature Extractor
� , a Domain Discriminator ⇡ , and a Source Classi�er ⇠ as shown
in Fig. 5. The Feature Extractor, Domain Discriminator, or Source
Classi�er, in essence, is a neural network. The parameters of the
Feature Extractor, Domain Discriminator and Source Classi�er can
be represented as \� , \⇡ , and \⇠ respectively.

Note that existing adversarial domain adaption methods often
assume that the source dataset and target dataset have the same
label space (i.e., the source dataset and target dataset share the
same set of class labels). In addition, existing methods also assume
that the target dataset consists of a large amount of unlabeled data
rather than few labeled data.We will address the scenarios where
the target dataset has a di�erent label space and consists of few
labeled data in our method presented in the next subsection.

During the training of a domain adversarial network, the Feature
Extractor takes source data and target data as inputs and aims
to output domain-invariant features, which are di�cult for the

Feature
Extractor

Source
Classifier

Domain
Discriminator

Source Data

Target Data

LC

LD

@LC
@✓C

@LC
@✓F

��@LD
@✓F

�@LD
@✓D

GRL

Back-
propagation

Back-
propagation

Features

Domain label

Class label

Loss

Loss

Figure 5: The structure of a domain adversarial network [10].
GRL stands for Gradient Reversal Layer.

Domain Discriminator to distinguish. The Domain Discriminator,
on the other hand, aims to distinguish whether an output of the
Feature Extractor is produced by data from the source dataset or
data from the target dataset. The Source Classi�er aims to minimize
its loss on predicting the correct class label of source data with the
outputs produced by the Feature Extractor.

In other words, given the loss function L of the entire domain
adversarial network, the Feature Extractor and Source Classi�er
aim to minimize the loss Lwhile the Domain Discriminator aims to
maximize the loss L. The training objective of the entire network
is to achieve the following:⇣

\̂� , \̂⇠
⌘
= argmin

\� ,\⇠
L(\� , \̂⇡ , \⇠)

\̂⇡ = argmax
\⇡

L(\̂� , \⇡ , \̂⇠)
(2)

where \̂� , \̂⇡ , \̂⇠ are the optimal values of \� , \⇡ , and \⇠ respec-
tively. The loss function L can be computed as

L(\� , \⇡ , \⇠) = L⇠ (\� , \⇠) � _L⇡ (\� , \⇡) (3)

whereL⇠ is the loss function of the Source Classi�er,L⇡ is the loss
function of the Domain Discriminator, and _ is a pre-de�ned trade-
o� parameter shaping features during learning [10]. The parameters
of the entire network are updated through back-propagation, where
the updates are operated as below:

\� = \� � U (mL⇠

m\�
� _

mL⇡

m\�
)

\⇠ = \⇠ � U
mL⇠

m\⇠

\⇡ = \⇡ + U
�_mL⇡

m\⇡

(4)

where U is the learning rate, and Gradient Reversal Layer (GRL)
assigns negative signs (i.e., the ones before parameter _) to the
derivative of L⇡ with respect to \� and \⇡ . Gradient Reversal
Layer is introduced in order to evaluate the gradients of \� and \⇡
in each back-propagation epoch [10].

After the training of a domain adversarial network, the Feature
Extractor � and the Classi�er ⇠ can be extracted out and directly
used to perform classi�cations over target data.

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

152

4.2 Our Proposed Method
As we mentioned in the last subsection, existing adversarial domain
adaptions assume the source dataset and the target dataset share
the same label space. Unfortunately, these assumptions do not hold
over encrypted tra�c in the context of website�ngerprinting.

Challenges. Speci�cally, given two encrypted tra�c datasets,
the selection of the websites can be very di�erent. For instance, one
dataset can choose websites according to Alexa top websites [31, 35]
while others can choose sensitive websites that are blocked by cer-
tain countries [43]. In addition, even the set of selected websites
is exactly the same between a source dataset and a target dataset,
the two datasets are often collected several months or years apart,
where the tra�c pattern of the same website can change dramati-
cally due to the content changes on a website [31].

A Straightforward Solution. Given the target data are labeled
in our study rather than unlabeled, adding an additional neural-
network-based Target Classi�er within an domain adversarial net-
work described in Fig. 5 could be a potential way to mitigate the
problem. This Target Classi�er would be parallel to the Source Clas-
si�er. However, as the target dataset only has few labeled data , it
may not be su�cient to derive a well-trained neural-network-based
Target Classi�er within a domain adversarial network.

Our Proposed Method. To address the challenges over en-
crypted tra�c data, we propose a new method named Adaptive
Fingerprinting (AF). The main idea is to leverage a domain adver-
sarial network to learn domain-invariant features only. Then, our
method extracts the feature extractor and attaches a traditional ma-
chine learning classi�er, which is much easier to train with limited
labeled data in the target dataset. Our method still consists of three
phases, including pre-training, training, and testing. Depending
whether there are multiple source datasets available, our method
can be represented in the two following versions. We denote the
two versions as AF-SingleSource and AF-MultiSource respectively.

Details of AF-SingleSource. AF-SingleSource (as illustrated
in Fig. 6) is suitable for the cases where there is 1 source dataset
(with a large amount of labeled data) and 1 target dataset (with
few labeled data). The target dataset is divided into target training
data and target test data. Speci�cally, in the pre-training phase, our
method trains a domain adversarial network by taking the source
dataset and target training data as inputs. Although these target
training data are labeled, our method treats them as unlabeled in the
pre-training phase. The domain adversarial network still consists
of Feature Extractor, Domain Discriminator, and Source Classi�er.

Next, in the training phase, our method extracts the trained
Feature Extractor out and attaches a traditional machine learning
classi�er, which is utilized as a target classi�er. Our method trains
the parameters of this target classi�er with target training data by
freezing the Feature Extractor (except its last layer). Finally, in the
testing phase, our method obtains results over target test data with
this Feature Extractor and the target classi�er.

Details of AF-MultiSource. If the source data and the target
data in AF-SingleSource are signi�cantly unbalanced, it will likely
a�ect the training of the Domain Discriminator, which essentially
a�ect the training of Feature Extractor and fail to derive domain-
invariant features. To mitigate this limitation, our method can take
multiple source datasets in the pre-training phase instead of using

Feature
Extractor

Source
Classifier

Domain
Discriminator

Source Data

Target
Training Data

Feature
Extractor

Target
ClassifierInput Output

Freeze Train

Pre-Training with Source (& Target Training) Data

Training with Target Data
Features

Features

Figure 6: The process of our method AF-SingleSource.

Feature
Extractor

Source1
Classifier

Domain
Discriminator

Source1 Data

Source2 Data

Feature
Extractor

Target
ClassifierInput Output

Freeze Train

Pre-Training with Multiple Source Datasets

Training with Target Data
Features

Features

Source2
Classifier

Figure 7: The process of our method AF-MultiSource.

target data as a part of the inputs to a domain adversarial network.
The tradeo� is that we need to leverage multiple source datasets
rather than one source dataset.

AF-MultiSource (as shown in Fig. 7) is suitable for the cases
where there are multiple source datasets (each with a large amount
of labeled data) and 1 target dataset (with few labeled data). The
target data is still divided into target training data and target test
data. In the pre-training phase, our method trains a domain adver-
sarial network by taking multiple source datasets as inputs. The
domain adversarial network consists of Feature Extractor, Domain
Discriminator, and multiple Classi�ers, where each source dataset
is assigned one classi�er. The training and testing phase remains
the same as in AF-SingleSource.

Structures of Neural Networks in Our Method. For the Fea-
ture Extractor in our domain adversarial network, we leverage the
DF model [35] presented in Fig. 3. For the Domain Discriminator
in our domain adversarial network, it consists of 2 convolutional
layers, 2 pooling layers and 1 fully-connected layer (with softmax
as the activation function). For the Classi�er in our domain adver-
sarial network, we use 1 convolutional layer, 1 pooling layer and
1 fully-connected layer (with softmax as the activation function).
The structures of the Discriminator and Classi�er can be found in
Fig. 8 and Fig. 9. If there are multiple source datasets, each source
classi�er will use the same structure as the Classi�er illustrated in
Fig. 9. For the target classi�er, we use a k-nearest neighbor classi�er.

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

153

Conv
Layer

Pooling
Layer Dropout Conv

Layer

Pooling
LayerDropoutOutput

Input

FC
Softmax

Figure 8: The Domain Discriminator used in our method.

Conv
Layer

Pooling
Layer Dropout FC

Softmax OutputInput

Figure 9: The Source Classi�er used in our method.

5 PERFORMANCE EVALUATION
5.1 Datasets
In this study, we collected one new dataset (named AF dataset)
and also leveraged three datasets from previous studies to examine
the performance of our method. Each dataset includes Tor tra�c
traces from monitored websites (for closed-world evaluation) and
unmonitored websites (for open-world evaluation). These datasets
were collected with di�erent settings and times. In addition, how
the monitored websites and unmonitored websites were selected is
also di�erent among some of them.

Wang dataset [42]. This dataset was collected in 2013 by using
Tor Browser 3.5. The monitored websites were selected from a list
of sensitive sites blocked in three countries (China, the UK, and
Saudi Arabia). The unmonitored websites were selected from Alexa
top websites1. The 2 subsets of this dataset are summarized below:

• Wang100: It includes a set of 100 monitored websites. Each
website has 90 traces.

• Wang9000: It includes a set of 9,000 non-monitored websites.
Each website has 1 trace.

AWF dataset [31]. This dataset was collected in 2016 by utiliz-
ing Tor Browser 6.5. The monitored websites were chosen from
Alexa top websites. The unmonitored websites were also selected
from Alexa top websites (excluding the ones selected in monitored
websites). The subsets we utilize in this paper are described below:

• AWF100: It includes a set of 100 monitored websites. Each
website has 2,500 traces.

• AWF775: It includes a set of 775 monitored websites. Each
website has 2,500 traces.

• AWF9000: It includes a set of 9,000 unmonitored websites.
Each website has 1 trace.

DF dataset [35]. This dataset was collected in 2016 using Tor
Browser 6.X. The monitored websites were selected from Alexa top
websites. The unmonitored websites were chosen from Alexa top
websites (excluding the ones in monitored websites).

• DF95: It includes a set of 95 monitored websites with 1,000
traces per website.

• DF9000: It includes a set of 9,000 unmonitored websites with
1 trace per website.

AF dataset (This paper). We collected this dataset from July
to September in 2020 using Tor Browser 9.0. We utilized 5 virtual
machines on campus, where each virtual machine has an identical

1https://www.alexa.com/topsites

con�guration (Ubuntu 18.04 and 4 GB RAM). We used an open-
source tool, named tor-browser-crawler [2], to collect encrypted
Tor tra�c. This tool was also used in previous studies [18] for Tor
tra�c collection.

The monitored websites were chosen from top 130 of Alexa web-
sites. 300 traces per website were initially collected. As some of the
websites block Tor tra�c and their corresponding tra�c contains a
very small number of packets, we considered those traces invalid
and removed them. After cleaning, we obtained 100 monitored web-
sites with 250 traces per website. The unmonitored websites were
selected from Alexa websites (top 130 to top 10300 websites). We
collected 1 trace for each unmonitored website. After cleaning, we
obtained 9,000 valid traces. The two subsets are summarized below:

• AF100: It includes a set of 100 monitored websites with 250
traces per website.

• AF9000: It includes a set of 9,000 unmonitored websites with
1 trace per website.

5.2 Experiment Settings
We implement neural networks and machine learning algorithms
in Python. For neural networks, we use Keras as the front end
and Tensor�ow as the back end. We run all the experiments on a
Linux machine with Ubuntu 18.04, 2.8 GHz CPU, 64 GB RAM, and
a NIVIDA Titan RTX GPU. We perform 10-fold cross validations.

We leverage the DF model in pre-training for the three methods,
including� ne-tuning, Triple Fingerprinting, and our method. We
leverage the source code of the DF model and its tuned hyperparam-
eters reported in [35] in our experiments. We train the DF model
with 30 epochs in pre-training each time.

Implementation of Fine-Tuning. We pre-train the DF model
with a source dataset and then tune the hyperparameters of the last
layer of the DF model in the training step.

Implementation of Triplet Fingerprinting.We leverage the
source code published by the authors of Triplet Fingerprinting [36]
to implement it in our experiments. All the settings for Triplet Fin-
gerprinting are the same as the ones described in [36]. Speci�cally,
we use the DF model as the sub-network in a triplet network. We
use cosine distance as the distance metric to calculate the triplet
loss. In addition, we use Semi-Hard-Negative mining strategy to
select triplets from a source dataset. For the k-nearest neighbor
classi�er in Triplet Fingerprinting, we choose : = # , where# is the
number of traces per class in target training data. We also use the
Mean Embedded Vector of # samples to train k-nearest neighbor
in the closed-world evaluation. Using the Mean Embedded Vector
rather than # samples can lead to a higher accuracy as mentioned
in [36]. More details can be found in [36].

Implementation of Our Method. As mentioned, we use the
DF model as the Feature Extractor. The structures of Domain Dis-
criminator and Classi�er are described in Fig. 8 and Fig. 9. We
tuned hyperparameters of Domain Discriminator and Source Clas-
si�er based on AWF100 (as the source dataset) and Wang100 (as
the target dataset). Then we keep the same hyperparameters of
Domain Discriminator and Source Classi�er for all the experiments
we have. Some of the key hyperparameters we tuned can be found
in Appendix. For our k-nearest neighbor classi�er, we also choose
: = # , where # is the number of traces per class target training

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

154

Table 1: Attack accuracy (%) of TF (Source: AWF775, Target: Wang100; " = 25,) = 70). The results are in the form of mean ±
standard deviation.

Method # = 1 # = 5 # = 10 # = 15 # = 20
TF (obtained in this paper) 71.3 ± 2.0 84.2 ± 0.5 86.1 ± 0.4 86.7 ± 0.5 87.0 ± 0.5
TF (reported in CCS19 [36]) 73.1 ± 1.8 84.5 ± 0.4 86.2 ± 0.4 86.6 ± 0.3 87.0 ± 0.3

Table 2: Attack accuracy (%) of Fine-tuning, TF and Ours (" = 25,) = 70).

Source Target Method # = 1 # = 5 # = 10 # = 15 # = 20

AWF100 Wang100
Fine-tuning 46.1 ± 2.68 68.2 ± 0.67 76.5 ± 1.39 80.4 ± 1.51 82.0 ± 1.22

TF 55.5 ± 1.76 72.7 ± 0.78 75.8 ± 0.45 76.4 ± 0.56 77.3 ± 0.37
Ours (AF-SingleSource) 30.4 ± 3.46 64.0 ± 2.03 82.1 ± 1.86 87.7 ± 1.30 89.3 ± 1.30

AWF100 DF95
Fine-tuning 37.7 ± 2.46 57.7 ± 1.53 67.8 ± 1.34 73.0 ± 6.81 79.6 ± 1.33

TF 38.3 ± 2.11 55.4 ± 1.11 59.9 ± 1.07 61.4 ± 0.76 62.6 ± 0.60
Ours (AF-SingleSource) 28.0 ± 1.71 53.7 ± 3.05 73.4 ± 1.72 80.3 ± 1.27 82.4 ± 0.91

AWF100 AF100
Fine-tuning 26.3 ± 2.23 33.7 ± 1.79 46.4 ± 0.95 52.0 ± 2.85 50.7 ± 1.51

TF 30.0 ± 1.18 37.9 ± 0.78 39.3 ± 0.65 40.4 ± 0.52 40.5 ± 0.56
Ours (AF-SingleSource) 31.0 ± 2.88 49.0 ± 2.65 60.7 ± 1.06 65.5 ± 1.77 67.9 ± 1.29

data. We also use the Mean Embedded Vector of # samples to train
k-nearest neighbor in the closed-world evaluation to have a fair
comparison with Triplet Fingerprinting.

5.3 Closed-World Evaluation
ExperimentA.1: ReproducingResults of Triplet Fingerprint-
ing. We reproduce the results of Triplet Fingerprinting [36] in the
closed-world evaluation. We use the same datasets and same pa-
rameters as the ones in Triplet Fingerprinting. We choose 1 source
dataset and 1 target dataset as follows:

• Source: AWF775; Target: Wang100

We use" to denote the number of traces per class used in pre-
training, # as the number of traces per class in target training
data and) as the number of traces per class in target test data. By
following the same approach in [36], we randomly select" = 25
traces per class from the source dataset in pre-training. For the
target dataset, we take 90 traces in each class, where these 90 traces
are divided into 2 chunks. The 20 traces in the� rst chunk can be
used for training and the 70 traces in the second chunk are used
for testing. A number of # traces out of the 20 traces in the�rst
chunk are used to train the k-nearest neighbor classi�er, where
= {1, 5, 10, 15, 20}. Unless speci�ed, we choose the same values
for " , # and) in other experiments. As shown in Table 1, we
obtained almost the same results as the ones reported in [36].

Experiment A.2: Comparison among Fine-tuning, Triplet
Fingerprinting and Our Method.We compare the attack perfor-
mance of three methods, including� ne-tuning, Triplet Fingerprint-
ing, and Adaptive Fingerprinting. We evaluate the case where 1
source dataset and 1 target dataset are selected. To be more con-
sistent with our later experiments, which investigate impacts of
several parameters/aspects, we select the source dataset and target
data with the same or a similar number of classes.

Speci�cally, we choose AWF100 (rather than AWF775 in Exper-
iment A.1) as the source dataset and we pick Wang100, DF95, or
AF100 as the target dataset respectively as below:

• Source: AWF100; Target: Wang100
• Source: AWF100; Target: DF95
• Source: AWF100; Target: Our100

A�ack Accuracy. As shown in Table 2, Triplet Fingerprinting
is the most e�ective method when the number of training samples
from the target dataset is 1. However, when # � 10, our method
AF-SingleSource achieves the highest accuracy. This observation is
consistent even when we select a di�erent target dataset. In some
cases (e.g., source is AWF100 and target is AF100), our method can
also outperform the other two methods when # = 5.

When # is extremely small (e.g., 1 or 5), our method does not
have su�cient target traces involved to pre-train a good Domain
Discriminator. On the other hand, the other two methods do not
need target data in pre-training. This di�erence is likely the reason
that our method is often less e�ective when # = {1, 5}. When
AF100 is the target, the performance of all the three methods are less
e�ective compared to other target datasets. This is likely because
AF100, which is collected more recently with a much di�erent
version of Tor Browser, is less similar to the source AWF100 among
the three target datasets that we examined.

Note that our results of� ne-tuning are higher than the ones
reported in [36]. As we use the same source code, the DF model,
and parameters as in [36], we believe the potential reason is that
we use AWF100 rather than AWF775 as the source data, where the
number of classes in a source target is the same or similar as the
number of classes in a target dataset. This likely bene�ts�ne-tuning
for obtaining higher accuracy.

Feature Visualization. We also visualize the feature spaces
obtained from the three methods by using t-SNE (t-Distributed
Stochastic Neighbor Embedding) [25], which is amethod visualizing
high-dimensional data into a 2-dimensional space. Speci�cally, we
extract the last layer of the DF model trained in each of these 3
methods, where AWF100 serves as the source and Wang100 serves
as the target. As we can observe in Fig. 10, all the three methods
obtain a feature space that can distinguish data better from di�erent
classes compared to the space of target data.

Pre-Training Time. We also compare the pre-training time
among the three methods. As shown in Table 3, Fine-tuning is
the most e�cient in pre-training time. Triplet Fingerprinting re-
quires much longer time than the other two as mining triplets is a
key but time-consuming step in its pre-training. The pre-training
time of� ne-tuning and Triplet Fingerprinting do not depend on

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

155

(a) Target Data (b) Fine-tuning (c) Triplet Fingerprinting (d) Adaptive Fingerprinting (Ours)

Figure 10: The visualization of feature spaces using t-SNE (Source: AWF100; Target: Wang100;" = 25 and # = 20).

Table 3: Pre-training Time (seconds) of Fine-tuning, TF and Ours (" = 25,) = 70).

Source Target Method # = 1 # = 5 # = 10 # = 15 # = 20

AWF100 Wang100
Fine-tuning 27

TF 772
Ours (AF-SingleSource) 177 180 183 183 182

Table 4: The impact of di�erent source datasets on attack accuracy (%), where" = 25 and) = 70.

Source Target Method # = 1 # = 5 # = 10 # = 15 # = 20

AWF100 Wang100
Fine-tuning 46.1 68.2 76.5 80.4 82.0

TF 55.5 72.7 75.8 76.4 77.3
Ours (AF-SingleSource) 30.4 64.0 82.1 87.7 89.3

DF95 Wang100
Fine-tuning 45.8 66.9 78.3 82.3 83.6

TF 55.2 72.3 75.3 75.9 76.4
Ours (AF-SingleSource) 32.5 71.1 83.4 87.6 88.7

AF100 Wang100
Fine-tuning 46.5 69.0 79.9 84.0 84.4

TF 41.3 57.4 61.3 62.8 63.5
Ours (AF-SingleSource) 28.3 70.9 83.5 87.3 88.8

the selection of the target data or the number of traces # per class
in the target training data. Our method, AF-SingleSource, has a
slightly di�erent pre-training time given a di�erent # as the target
training data are involved in the inputs of a domain adversarial
network. When we change the target dataset to DF95 or AF100, we
have the same pre-training time for� ne-tuning and TF and almost
the same pre-training time for our method AF-SingleSource. We
skip further details due to space limitation.

Experiment A.3: Impact of Di�erent Source Datasets. We
evaluate the impact on the attack accuracy of the three methods
if an attacker uses a di�erent source dataset given the same target
dataset. Speci�cally, we still examine the cases of 1 source dataset
and 1 target dataset with the following

• Source: AWF100; Target Wang100
• Source: DF95; Target: Wang100
• Source: AF100; Target: Wang100

As shown in Table 4, with di�erent source datasets, our method
AF-SingleSource is always the most e�ective one among the three
methods when # � 10. In addition, when # = 5, our method can
also outperform other methods in some cases (e.g., when the source
dataset is AF100). Triplet Fingerprinting is always more e�ective
than our method when # = 1. Both� ne-tuning and our method
achieves a similar attack accuracy regardless which source dataset
is utilized. On the other hand, we notice that the attack accuracy of

Triplet Fingerprinting varies signi�cantly when a di�erent source
dataset is selected given the same target dataset.

Experiment A.4: Comparisons between AF-SingleSource
andAF-MultiSource.We compare the two versions of our method
AF-SingleSource and AF-MultiSource. In other words, we investi-
gate the impact of the number of source datasets on attack accuracy.
Speci�cally, for AF-SingleSource, it takes one source dataset and
target training data in the pre-training. For AF-MultiSource, it takes
multiple source datasets in the pre-training. The training and test-
ing steps are the same between the two versions. The numbers of
traces per class in source data, target training data and target test
data (i.e.," = 25, # = {1, 5, 10, 15, 20} and) = 70) remain the same
as the ones in the previous experiments.

As shown in Table 5, given the target dataset is Wang100, when
AF-MultiSource takes multiple source datasets, such as 2 source
datasets or 3 source datasets, but no target dataset in the pre-
training phase, it can achieve a greater accuracy thanAF-SingleSource,
especially when# is small, such as 1 and 5. This is expected as when
is much smaller than" , the inputs in a domain adversarial net-
work used in AF-SingleSource are unbalanced between the source
and target. As a result, AF-SingleSource is not able to learn a better
domain-invariant feature space. On the other hand, AF-MultiSource
does not rely on target data to obtain a domain-invariant feature
space in the pre-training.

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

156

Table 5: The impact of the number of source datasets in our method on attack accuracy (%), where" = 25 and) = 70.

Method Pre-Training Setting Source Target # = 1 # = 5 # = 10 # = 15 # = 20
AF-SingleSource 1 Source 1 Target AWF100 Wang100 30.4 64.0 82.1 87.7 89.3
AF-MultiSource 2 Source 0 Target {AWF100, DF95} Wang100 37.6 72.4 84.4 86.8 89.8
AF-MultiSource 3 Source 0 Target {AWF100, DF95, AF100} Wang100 33.8 72.2 85.8 88.5 88.1

Table 6: The impact of the number of traces per class in a source dataset (Source: AWF100; Target: Wang100), where # = 20
and) = 70.

Metric Method " = 25 " = 50 " = 100 " = 200 " = 400

Accuracy (%)
Fine-tuning 82.0 ± 1.22 84.0 ± 0.93 85.7 ± 0.58 87.5 ± 0.69 87.8 ± 0.99

TF 77.3 ± 0.37 79.5 ± 0.33 78.7 ± 0.25 78.3 ± 0.55 78.5 ± 0.44
Ours (AF-SingleSource) 89.1 ± 0.77 88.4 ± 0.40 89.0 ± 0.78 88.8 ± 0.90 88.9 ± 0.49

Pre-Training Time (second)
Fine-tuning 27 45 70 136 249

TF 772 2,913 11,761 38,163 233,999
Ours (AF-SingleSource) 182 182 183 188 189

Table 7: Attack accuracy (%) of Fine-tuning, TF and Ours (Source: DF95-Defended, Target: Wang100-Defended, " = 25,) = 70)
in the closed-world setting.

Method # = 1 # = 5 # = 10 # = 15 # = 20
Fine-tuning 19.1 ± 1.6 33.9 ± 1.3 47.3 ± 1.6 53.6 ± 1.4 56.8 ± 1.9

TF (based on results reported in CCS19 [36]) 15.5 ± 1.7 39.8 ± 0.5 47.2 ± 1.1 50.1 ± 0.4 51.7 ± 0.5
Ours (AF-SingleSource) 9.13 ± 1.0 37.3 ± 1.8 56.9 ± 2.4 65.7 ± 1.2 70.2 ± 0.9

ExperimentA.5: Impact of theNumber of Traces perClass
in a Source dataset.We examine if the number of traces per class
in a source dataset increases, what impacts it may have on website
�ngerprinting. We still compare the three methods, including�ne-
tuning, Triplet Fingerprinting, and our method. We take 1 dataset
as source and 1 dataset as the target.

• Source: AWF100; Target: Wang100

where we choose the number of traces per class in a source dataset
as " = {25, 50, 100, 200, 400}. For the target dataset, we choose
= 20 and) = 70.

As shown in Table 6, both� ne-tuning and our method outper-
form Triplet Fingerprinting when the number of traces per class"
is greater than or equal to 25. This is consistent with our observa-
tions in previous experiments. In addition, both our method and
Triplet Fingerprinting remain at the same level of attack accuracy
when the value of" increases. The accuracy of� ne-tuning slightly
increases with an increase on" . When" = 400, the accuracy of
�ne-tuning gets very close to the accuracy of our method but it
requires longer pre-training time.

Moreover, we notice that both� ne-tuning and our method are
very e�cient in pre-training time while Triplet Fingerprinting re-
quires signi�cant amounts of pre-training time as the value of"
increases. For instance, when " = 400, Triplet Fingerprinting re-
quires more than 64 hours in pre-training while our method only
takes 3 minutes. This is because when" increases, Triplet Finger-
printing needs to evaluate a much greater number of triplets in
pre-training, which is time-consuming. In other words, our method
is more scalable than Triplet Fingerprinting when there are more
data from a source dataset.

Experiment A.6: Impact of Defenses Against Website Fin-
gerprinting. In this experiment, we investigate if tra�c traces are
protected by existing defenses, what impact it may have. Speci�-
cally, we choose WTF-PAD [20] as the defense method to obfuscate
tra�c traces. We take 1 dataset as source and 1 dataset as the target.

As generating defended data with WTF-PAD needs timestamps of
packets, which are not available in some of the datasets we use. We
choose the source and target as below

• Source: DF95 (Defended with WTF-PAD); Target: Wang100
(Defended with WTF-PAD)

We choose " = 25, # = {1, 5, 10, 15, 20}, and) = 70. We use the
default parameters and the source code of WTF-PAD from [1] to
generate defended data.

As shown in Table 7, we have similar observations as previous
experiments, where our method performs better than the other two
when # � 10. On the other hand, the accuracy of all the three
methods over defended data decreases compared to the results over
non-defended data in Table 5.

5.4 Open-World Evaluation
Experiment B.1: ReproducingResults of Triplet Fingerprint-
ing in the Open-World Setting. In this experiment, we reproduce
the results of Triplet Fingerprinting in the open-world evaluation.
We follow the same datasets as the ones in [36]. Speci�cally, we
choose the source and the target as follows:

• Source: AWF775; Target: {Wang100, AWF9000}

where Wang100 is used as data for monitored websites of the target
dataset and AWF9000 is used as data for unmonitored websites of
the target dataset. Each unmonitored website only has 1 trace. Only
monitored websites of a source dataset are utilized in pre-training.

For the source dataset, we still choose" = 25 traces per website
in pre-training. For the monitored websites in the target dataset,
= {5, 10, 15, 20} traces per monitored website are examined in
training and) = 70 traces per monitored website are used in
testing. However, how many traces of unmonitored websites used
in training and testing were not speci�cally described in [36]. To
reproduce the results, we explore the following two scenarios:

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

157

Table 8: Precision and Recall of TF (Source AWF775, Target: {Wang100, AWF9000};" = 25) in the open-world setting.

Tuned for Precision

Method # = 5 # = 10 # = 15 # = 20
Precision Recall Precision Recall Precision Recall Precision Recall

TF (Scenario 1, obtained in this paper) 0.633 0.901 0.644 0.876 0.690 0.871 0.682 0.871
TF (Scenario 2, obtained in this paper) 0.954 0.870 0.961 0.872 0.969 0.852 0.970 0.855

TF (results reported in [36]) 0.973 0.831 0.953 0.879 0.944 0.903 0.933 0.907
Tuned for Recall

Method # = 5 # = 10 # = 15 # = 20
Precision Recall Precision Recall Precision Recall Precision Recall

TF (Scenario 1, obtained in this paper) 0.457 0.999 0.453 0.999 0.455 0.999 0.457 0.999
TF (Scenario 2, obtained in this paper) 0.921 0.966 0.936 0.970 0.943 0.970 0.945 0.972

TF (results reported in [36]) 0.950 0.950 0.922 0.971 0.908 0.983 0.905 0.978

Table 9: Precision and recall of Fine-tuning, TF, and Ours (" = 25, # = 10,) = 70, # 0 = 1000,) 0 = 7000).

Tuned for Precision Tuned for Recall
Source Target Method Precision Recall Precision Recall

AWF100 {Wang100, Wang9000}
Fine-tuning 0.999 0.871 0.999 0.937

TF 0.937 0.862 0.921 0.943
Ours (AF-SingleSource) 0.998 0.729 0.996 0.997

AWF100 {DF95, DF9000}
Fine-tuning 0.990 0.596 0.981 0.680

TF 0.864 0.570 0.834 0.652
Ours (AF-SingleSource) 0.997 0.562 0.993 0.995

AWF100 {AF100, AF9000}
Fine-tuning 0.986 0.215 0.975 0.259

TF 0.816 0.469 0.780 0.613
Ours (AF-SingleSource) 0.998 0.461 0.996 0.994

• Scenario 1: Same Number (# 0 = #). We divide all the
9,000 traces in AWF9000 into 2 chunks, where the� rst chunk
includes 20 traces and the second chunk includes 8,980 traces.
Then, we choose # 0 = {5, 10, 15, 20} traces randomly from
the� rst chunk in training and) 0 = 8, 980 traces in testing.

• Scenario 2: Same Ratio (# /) = # 0/) 0). We divide all the
9,000 traces in AWF9000 into 2 chunks, where the� rst chunk
includes 2,000 traces and the second chunk includes 7,000
traces. Then, we choose # 0 = {500, 1000, 1500, 2000} traces
randomly from the� rst chunk in training and) 0 = 7, 000
traces in testing.

As illustrated in Table 8, the results from the second scenario are
more similar to the results reported in [36]. Therefore, we use
the second scenario to select training and test data in our later
experiments in the open-world evaluation. In fact, when using the
second scenario, the data from monitored websites and the data
from unmonitored websites are more balanced. It is likely why
the second scenario derives better results. Note that when we re-
train the k-nearest neighbor classi�er for Triplet Fingerprinting (as
well as our method examined later) in the open-world setting, we
directly use traces rather than the Mean Embedded Vector of them.
This is because that using Mean Embedded Vectors derives a much
lower performance in our open-world evaluation.

When we tune the con�dence threshold for precision or recall,
we use the threshold range [0, 0.4] in this paper. We also explore
thresholds that are greater than 0.4 in our experiments. However, it
can easily end up with either an extremely high precision with a low
recall or a low precision with an extremely high recall. Note that
even with the second scenario, the results we obtained in Table 8
are not exactly the same as the ones reported in [36]. This is likely
because the� rst chunk of traces from unmonitored websites was

randomly selected and the thresholds tuned for precision and recall
might be di�erent in [36].

Scenario 1 does not derive promising results as Scenario 2. This
is because data from unmonitored websites consist of 1 sample
per website, which introduces high variance over samples across
9,000 unmonitored websites. Taking # = {5, 10, 15, 20} samples in
training while using) = 8, 980 samples in testing in Scenario 1
would be challenging to derive both high precision and high recall.
The high variance over samples across unmonitored websites could
also be the reason that training k-nearest neighbor classi�er with
Mean Embedded Vectors leads to a lower performance.

Experiment B.2: Comparison among Fine-tuning, Triplet
Fingerprinting and Our method. In this experiment, we com-
pare the attack performance of the three methods in the open-world
evaluation. We evaluate the case where 1 source dataset and 1 target
dataset are selected. To be consistent with our experiments in the
closed-world setting, we select the the datasets as follows:

• Source: AWF100; Target: {Wang100, Wang9000}
• Source: AWF100; Target: {DF95, DF9000}
• Source: AWF100; Target: {AF100, AF9000}

where Wang100, DF95 and AF100 serve as monitored websites
respectively and Wang9000, DF9000 and AF9000 serve as unmoni-
tored websites respectively. We use the same parameters as the ones
in the last experiment. We summarize our results in Table 9 and also
in Fig. 11, where we choose " = 25, # = 10,) = 70, # 0 = 1, 000
and) 0 = 7, 000. As we can observe from the precision-recall curves
in Fig. 11, in general, our method derives a better results in the
open-world setting compared to the other two methods.

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

158

(a) Source: AWF100; Target: {Wang100, Wang9000} (b) Source: AWF100; Target: {DF95, DF9000} (c) Source: AWF100; Target: {AF100, AF9000}

Figure 11: Precision-recall curve of the threemethods in the open-world evaluation (" = 25,# = 10,) = 70,# 0 = 1000,) 0 = 7000).

6 RELATEDWORKS
Most of the studies formulate website� ngerprinting as a super-
vised learning problem and address it with machine learning. For
instance, studies such as k-NN [43], CUMUL [29] and k-FP [13],
manually select features and utilize traditional machine learning
algorithms. Recent studies [4, 5, 27, 31, 35] leveraged deep neural
networks to automatically extract features and can obtain higher
accuracy than the ones that rely on traditional machine learning
algorithms. For example, Sirinam et al [35] proposed Deep Finger-
printing, which is built upon Convolutional Neural Networks and
achieves 98% accuracy in the closed-world setting over 95 websites
with 1,000 traces per site. However, to achieve a higher accuracy,
an attack often needs to collect large-scale tra�c dataset, which
is time-consuming. Sirinam et. al. [36]� rst proposed to use trans-
fer learning to perform website� ngerprinting over few encrypted
tra�c to address the need of recollecting large-scale datasets.

Besides the challenges of relying on large-scale training data,
other challenges in website� ngerprinting have also been examined.
For instance, studies in [8, 46] addressed website� ngerprinting in
the multi-tab scenario, where a user could open multiple websites
at the same time and the tra�c of these websites are overlapped.
Juarez et. al. [19] discussed the base rate fallacy in the open-world
evaluation. Li et. al. [22] suggested that leveraging entropy can
measure the privacy leakage more accurately rather than using
accuracy. Wang [41] proposed to use r-precision to measure the
performance of website� ngerprinting in the open-world evaluation.
Shusterman et. al. [34] leveraged cache pattern of a user’s computer
rather network tra�c to infer which website a user visits.

Defenses [6, 7, 9, 11, 14, 17, 20, 26, 45] against website�ngerprint-
ing have also been studied. The primary approach is to obfuscate
tra�c pattern such that the traces of di�erent websites are similar,
which is more di�cult to distinguish for an attacker. Wang et al.
[45] proposed a defense, named Walkie-Talkie, which combines
tra�c traces of two di�erent websites into a super sequence. Gong
and Wang [11] proposed two defenses, FRONT and GLUE. FRONT
introduces higher perturbations to early packets in a tra�c to hide
more important features against website� ngerprinting. GLUE adds
dummy tra�c between two tra�c traces such that it is more di�cult
for an attacker to identify the beginning of each tra�c trace. Two
studies [17, 26] also leverage adversarial examples of encrypted
tra�c to mitigate the attack accuracy against deep-learning-based

attacks. Cadena et. al. proposed Tra�cSilver [6], which modi�es
tra�c pattern by splitting tra�c into multiple Tor relays.

7 DISCUSSIONS AND FUTUREWORK
Data Augmentation. Data Augmentation [16, 33], which can cre-
ate new samples for labeled data, is often usedwith transfer learning
to boost performance in classi�cations. We did not examine data
augmentation in our study. This is because existing data augmenta-
tion methods, which work well for images, cannot be directly used
for encrypted tra�c.

For instance,� ipping (from left to right) or rotating (with a
certain angle) an image can output a new image. However, a tra�c
trace cannot be rotated as there are no angles. Flipping the packets
from the very end to the beginning of a tra�c trace does not derive
a valid tra�c trace that can happen in the real world. We will leave
whether it is feasible to perform data augmentation over encrypted
tra�c (or network tra�c in general) for future work.

OtherMachine LearningModels. Some other models, such as
deep forest [48], need minimal e�orts on tuning hyper-parameters
and can also achieve promising results with small-scale training
data in the image domain. Whether it can derive promising results
in the context of website� ngerprinting remains unknown and we
will leave it for future work.

8 CONCLUSION
We propose Adaptive Fingerprinting, which can perform website
�ngerprinting over few encrypted tra�c. Our experimental results
show that our method can derive high accuracy over a new but
small-scale dataset by transferring knowledge learned from a pre-
vious large-scale dataset. Our method can outperform previous
methods over few encrypted tra�c (except when only 1 trace is
available to each monitored website). Moreover, our method is more
e�cient in terms of pre-training time compared to previous studies.
Our results suggest that, by leveraging transfer learning, the boot-
strap time of website� ngerprinting can be reduced and website
�ngerprinting can be more practical in the real world.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers and
our shepherd, Dr. Phani Vadrevu, for their insightful comments
and suggestions. The authors also would like to thank Dr. Marc

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

159

Juarez and Vera Rimmer for explaining details regrading Tor tra�c
collection, thank Dr. Matthew Wright for providing help when
reproducing the results of Triplet Fingerprinting, and thank Ohio
Cyber Range at UC for providing multiple virtual machines to
facilitate Tor tra�c collection. The authors were partially supported
by National Science Foundation (CNS-1947913) and UC O�ce of
the Vice President for Research - Pilot Program.

REFERENCES
[1] 2016. WTF-PAD. https://github.com/wtfpad/wtfpad
[2] 2018. tor-browser-crawler. https://github.com/onionpop/tor-browser-crawler
[3] 2021. AdaptiveFingerprinting. https://github.com/SmartHomePrivacyProject/

AdaptiveFingerprinting
[4] K. Abe and S. Goto. 2016. Fingerprinting Attack on Tor Anonymity Using Deep

Learning. In Proc. of Aisa Paci�c Advanced Network (APAN).
[5] S. Bhat, D. Lu, A. Kwon, and S. Devadas. 2019. Var-CNN: A Data-E�cient Website

Fingerprinting Attack Based on Deep Learning. In Proc. of PETS’19.
[6] W. D. Cadena, A. Mitseva, J. Hiller, J. Penekamp, S. Reuter, J. Filter, T. Engel, K.

Wehrle, and A. Panchenko. 2020. Tra�cSliver: Finghting Website Fingerprinting
Attacks with Tra�c Splitting. In Proc. of ACM CCS’20.

[7] X. Cai, R. Nithyanand, and R. Johnson. 2014. CS-BuFLO: A Congrestion Sensitive
Website Fingerprinting Defense. In Proc. of 13th ACM Workshop on Privacy in
Electronic Society.

[8] W. Cui, T. Chen, C. Fields, J. Chen, A. Sierra, and E. Chan-Tin. 2019. Revisting
Assumtions for Website Fingerprinting Attacks. In Proc. of ACM ASIACCS’19.

[9] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why E�cient Tra�c Analysis Countermeasures Fail.
In Proc. of IEEE S&P’12.

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, and V. Lempitsky. 2016. Domain-Adversarial Tranining of Neural
Networks. Journal of Machine Learning Research (2016).

[11] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In Proc. of USENIX Security’20.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Proc. of the
International Conference on Nerual Information Processing Systems (NIPS 2014).

[13] J. Hayes and G. Danezis. 2016. K-Fingerprinting: A Robust Scalable Website
Fingerprinting Technique. In Proc. of USENIX Security’16.

[14] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran. 2020. Protecting
against Website Fingerprinting with Multihoming. In Proc. of PETS’20.

[15] Dominik Hermann, Rolf Wendolsky, and Hannes Federrath. 2009. Website Fin-
gertinging: Attacking Popular Privacy Enhancing Tehnologies with the Multi-
nomial Naive-Bayes Classi�er. In Proc. of ACM Workshop on Cloud Computing
Security.

[16] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen. 2019. Population Based Aug-
mentation: E�cient Learning of Augmentation Policy Schedules. In Proc. of
ICML’19.

[17] M. Imani, M. S. Rahman, N. Mathews, and M. Wright. 2019. Mockingbird: De-
fending Against Deep-Learning-Based Website Fingerprinting Attacks with Ad-
versarial Traces. (2019). https://arxiv.org/pdf/1902.06626.pdf.

[18] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz. 2018. Inside Job: Applying
Tra�c Analysis to Measure Tor from Within. In Proc. of NDSS’18.

[19] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. 2014. ACriticial Evaluation
of Website Fingerprinting Attacks. In Proc. of ACM CCS’14.

[20] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. 2016. Toward an E�cient
Website Fingerprinting Defense. In Proc. of ESORICS’16.

[21] G. Koch, R. Zemel, and R. Salakhutdinov. 2015. Siamese Neural Networks for
One-shot Image Recognition. In Proc. of the 32th International Conference on
Machine Learning (ICML’15).

[22] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information
Leakage inWebsite Fingerprinting Attacks and Defenses. In Proc. of ACM CCS’18.

[23] Marc Liberatore and Brian Neil Levine. 2006. Inferring the Source of Encrypted
HTTP Connections. In Proc. of ACM CCS’06.

[24] M. Long and J. Wang. 2015. Learning transferable features with deep adaptation
networks. In Proc. of ICML’15.

[25] Laurens van der Maaten and Geo�rey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[26] M. Nasr, A. Bahramali, and A. Houmansadr. 2020. Blind Adversarial Network
Perturbations. (2020). https://arxiv.org/pdf/2002.06495.pdf.

[27] Se Eun Oh, S. Sunkam, and N. Hopper. 2019. p-FP: Extraction, Classi�cation, and
Predication of Website Fingerprints. In Proc. of PETS’19.

[28] S. J. Pan and Q. Yang. 2009. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering (2009).

[29] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Penekamp, K. Wehrle, and T.
Engel. 2016. Website Fingerprinting at Internet Scale. In Proc. of NDSS’16.

[30] O. M. Parki, A. Vedaldi, and A. Zisserman. 2015. Deep Face Recognition. In British
Machine Vision Association.

[31] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen. 2018. Auto-
mated Website Fingerprinting through Deep Learning. In Proc. of NDSS’18.

[32] F. Schro�, D. Kalenichenko, and J. Philbin. 2015. FaceNet: A Uni�ed Embedding
for Face Recognition and Clustering. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[33] C. Shorten and T. M. Khoshgoftaar. 2019. A Survey on Image Data Augmentation
for Deep Learning. Journal of Big Data 6, 60 (2019).

[34] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom.
2019. Robust Website Fingerprinting Through the Cache Occupancy Channel. In
Proc. of USENIX Security’19.

[35] P. Sirinam, M. Imani, M. Juarez, and M. Wright. 2018. Deep Fingerprinting:
Understanding Website Fingerprinting Defenses with Deep Learning. In Proc. of
ACM CCS’18.

[36] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and MatthewWright.
2019. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting
with N-shot Learning. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 1131–1148.

[37] B. Sun, J. Feng, and K. Saenko. 2016. Return of Frustratingly Easy Domain
Adaption. In Proc. of AAAI Conference on Arti�cial Intelligence.

[38] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf. 2014. Deepface: Closing the
gap to human-level performance in face veri�cation. In Proc. of IEEE CVPR’14.

[39] E. Tzeng, J. Ho�man, K. Saenko, and T. Darrell. 2017. Adversarial Discriminative
Domain Adaptation. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[40] E. Tzeng, J. Ho�man, N. Zhang, K. Saenko, and T. Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. (2014).
https://arxiv.org/pdf/1412.3474.pdf.

[41] Tao Wang. 2020. High Precision Open-World Website Fingerprinting. In Proc. of
IEEE S&P’20.

[42] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
2014. E�ective attacks and provable defenses for website� ngerprinting. In
23rd {USENIX} Security Symposium ({USENIX} Security 14). 143–157.

[43] Tao Wang, Xiang Cui, Rishab Nithyannand, Rob Johnson, and Ian Goldberg. 2014.
E�ective Attacks on Provable Denfenses for Website Fingerprinting. In Proc. of
23rd USENIX Security Symposium.

[44] T. Wang and I. Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. In Proc. of PETS’16.

[45] T. Wang and I. Goldberg. 2017. Walkie-Talkie: An E�cient Defense Against
Passive Website Fingerprinting Attacks. In Proc. of USENIX Security’17.

[46] Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang. 2018. A Multi-Tab Website
Fingerprinting Attack. In Proc. of ACSAC’18.

[47] Jason Yosinski, Je� Clune, Yoshua Bengio, and Hod Lipson. 2014. How transfer-
able are features in deep neural networks?. In Advances in neural information
processing systems. 3320–3328.

[48] Zhi-Hua Zhou and Ji Feng. 2017. Deep Forest: Towards an Alternative to Deep
Neural Networks. In Proceedings of the 26th International Joint Conference on
Arti�cial Intelligence. 3553–3559.

[49] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.
Proc. IEEE (2020).

A APPENDIX
TunedHyperparameters.The tuned hyperparameters of Domain
Discriminator and Source Classi�er in ourmethod (AF-SingleSource)
are described in Table 10. We run grid search and select the ones
that derive the highest accuracy in the closed-world evaluation. In
our experiments, we set tradeo�parameter _ (in Eq. 4) as 1 and the
value of learning rate U (in Eq. 4) as 1 ⇥ 10�5.

Table 10: Tuned Hyperparameters in AF-SingleSource.
Parameters Search Space Tuned

Classi�er Layer Type Convolution, Fully-connected Convolution
Classi�er Depth {2, 3, 4} 2

Discriminator Layer Type Convolution, Fully-connected Convolution
Discriminator Depth {2, 3, 4} 3
Embedded Vector Size {64, 128, 256, 512} 512

Session 3: Privacy CODASPY '21, April 26–28, 2021, Virtual Event, USA

160

