Session 3: Privacy

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Adaptive Fingerprinting: Website Fingerprinting over Few
Encrypted Traffic

Chenggang Wang
University of Cincinnati
Cincinnati, OH, USA
wang2c9@mail.uc.edu

Xiaodong Jia
University of Cincinnati
Cincinnati, OH, USA
jlaxg@ucmail.uc.edu

ABSTRACT

Websitefi ngerprinting attacks can infer which website a user visits
over encrypted network traffic. Recent studies can achieve high
accuracy (e.g., 98%) by leveraging deep neural networks. However,
current attacks rely on enormous encrypted traffic data, which
are time-consuming to collect. Moreover, large-scale encrypted
traffic data also need to be recollected frequently to adjust the
changes in the website content. In other words, the bootstrap time
for carrying out websitefi ngerprinting is not practical. In this
paper, we propose a new method, named Adaptive Fingerprinting,
which can derive high attack accuracy over few encrypted traffic
by leveraging adversarial domain adaption. With our method, an
attacker only needs to collect few traffic rather than large-scale
datasets, which makes websitefi ngerprinting more practical in
the real world. Our extensive experimental results over multiple
datasets show that our method can achieve 89% accuracy over few
encrypted traffic in the closed-world setting and 99% precision and
99% recall in the open-world setting. Compared to a recent study
(named Triplet Fingerprinting), our method is much more efficient
in pre-training time and is more scalable. Moreover, the attack
performance of our method can outperform Triplet Fingerprinting
in both the closed-world evaluation and open-world evaluation.

CCS CONCEPTS

« Security and privacy — Network security.

KEYWORDS
Encrypted traffic, transfer learning, adversarial domain adaption
ACM Reference Format:

Chenggang Wang, Jimmy Dani, Xiang Li, Xiaodong Jia, and Boyang Wang.
2021. Adaptive Fingerprinting: Website Fingerprinting over Few Encrypted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY 21, April 26-28, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8143-7/21/04...$15.00
https://doi.org/10.1145/3422337.3447835

Jimmy Dani
University of Cincinnati
Cincinnati, OH, USA
danijy@mail.uc.edu

149

Xiang Li
University of Cincinnati
Cincinnati, OH, USA
li5xi@ucmail.uc.edu

Boyang Wang
University of Cincinnati
Cincinnati, OH, USA
boyang.wang@uc.edu

Traffic. In Proceedings of the Eleventh ACM Conference on Data and Applica-
tion Security and Privacy (CODASPY ’21), April 26-28, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3422337.
3447835

1 INTRODUCTION

In websitefi ngerprinting [4, 5, 9, 13, 15, 23, 27, 29, 31, 35, 43], an
attacker eavesdrops encrypted traffic and infers which website a
user visits in secure communication protocols, such as Tor. Website
fingerprinting is often formulated as a supervised learning problem,
where an attacker collects a large-scale dataset and trains a classifier
leveraging machine learning. Despite the substantial process, espe-
cially with deep neural networks, studies on websitefingerprinting

still face challenges. One of the primary challenges is that current
websitefi ngerprinting methods rely on collecting enormous traf-
fic data, which is extremely time-consuming [36]. In other words,
the bootstrap time for carrying out websitefi ngerprinting is not
practical in the real world.

For instance, it takes more than 30 days to collect a large-scale
dataset for analyzingfi ngerprints of website traffic [31, 35, 36].
Even data collection time can be significantly reduced by running
multiple computers or virtual machines in parallel, obtained traffic
data are easily outdated due to the content updates on websites.
For example, studies [31, 44] have shown that if test traffic data
are collected more than 14 days later than training traffic data, the
attack accuracy will drop significantly. As a result, an attacker will
need to recollect data frequently. To make it even worse, if there is
any inconsistency in terms of data collection setting (e.g., versions
of software, operating systems, network protocols, etc.) between
an attacker and a target user, an attacker has to match the setting
and recollects extensive data accordingly.

In this paper, we propose a new method, referred to as Adaptive
Fingerprinting, which can perform websitefi ngerprinting and derive
high attack accuracy over only few encrypted traffic. In other words,
our method does not need to collect large-scale traffic data, which
reduces the bootstrap time for websitefi ngerprinting attacks and
makes the attacks practical in the real world. Our main idea is to
leverage transfer learning, more specifically, adversarial domain
adaption [10, 39], to transfer knowledge learned from an existing
large-scale dataset to the classification over a dataset with few traffic
(e.g., no more than 20 traces per monitored website). Following the
definitions in the literature of transfer learning, we denote this

Session 3: Privacy

existing large-scale dataset as a source dataset and this dataset with
few traffic as a target dataset in this paper. The main contributions
of this paper can be summarized below:

e In Adaptive Fingerprinting (AF), we leverage adversarial
domain adaption, more specifically, a domain adversarial
network [10, 39], to learn a Feature Extractor over one or
multiple source datasets by formulating a minimax game
[12] between a Feature Extractor and a Domain Discrim-
inator. A Feature Extractor or a Domain Discriminator is,
in essence, a deep neural network. The learned Feature Ex-
tractor is extracted and attached with a traditional machine
learning classifier (e.g., k-nearest neighbor) to carry out the
classification over a target dataset.

e In our closed-world evaluation, our experimental results
over multiple datasets show that our method can achieve
high accuracy over a target dataset, which has no more than
20 traces per monitored website. For instance, our method
can achieve over 89% accuracy over 100 monitored websites.
In the open-world evaluation, our method can achieve 99%
precision and 99% recall.

e Compared to a previous method, named Triplet Fingerprint-
ing [36], which also performs websitefi ngerprinting over
few traffic, our method is much more efficient in pre-training
time (i.e., the time to train a feature extractor from a source
dataset) and is more scalable if there are more data avail-
able in a source dataset. Our method can outperform Triplet
Fingerprinting in the closed-world evaluation, except when
there is only 1 trace per monitored website in a target dataset.

Reproducibility. The source code and datasets of this study are
publicly available and can be found at [3].

2 BACKGROUND

System and Threat Model. In this paper, we consider a system
model including three parties, a user, an attacker and a web server.
Afi gure of the model is illustrated in Fig. 1. This user connects to
the web server through Tor relays by using the Tor protocol. The
network traffic between the user and a web server is encrypted.
We assume there is an attacker, who is able to eavesdrop encrypted
traffic between a user and thefi rst Tor relay. The goal of this attacker
is to infer which website this user visits by analyzing the size and
direction of encrypted packets. The system model we consider in
this paper is the same as previous studies in websitefingerprinting.
By following the assumptions in the existing studies [5, 27, 29,
31, 35], we assume that an attacker does not know the secret key to
decrypt packets. Moreover, we assume that this attacker is passive
and does not drop or inject packets. We assume that a user visits one
website each time. There are minimal background traffic from other
applications or websites. A traffic trace is a sequence of incoming
and outgoing network packets related to one website visit.
Binary Format of Traffic Traces. As Tor implementsfi xed-
length packets, named cells [31], to transmit data in the Tor pro-
tocol, we use the binary format to represent each traffic trace as
in previous studies. Specifically, given a traffic trace, we only keep
the direction of each packet. We use +1 to represent an outgoing
packet (to a website) and -1 to indicate an incoming packet (from a
website). Each traffic trace, in essence, is a vector of +1s and -1s. To

150

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Encrypted
Traffic

k(6

—B

-— >
U
ser Web server
& Tor network

Attacker
Figure 1: The system and threat model. We assume that an
attacker can eavesdrop encrypted traffic between a user and
thefi rst Tor relay.

use these vectors as the inputs of neural networks, we also keep
the same length for all the vectors by trimming or padding 0s at
the end of each vector as in previous studies [31, 35].

Closed-World Setting and Open-World Setting. Websitefin-
gerprinting can be evaluated in two settings, including the closed-
world setting and open-world setting. We examine both settings in
this paper. In a closed-world setting, we assume that a user only
visits a set of monitored websites and the attacker knows this set
of monitored websites. Given an unlabeled traffic trace, an attacker
infers which specific website it belongs to. In an open-world set-
ting, we assume that a user can also visit unmonitored websites
in addition to the set of monitored websites. Given an unlabeled
traffic trace, an attacker infers whether this trace is associated with
monitored websites or unmonitored websites.

Evaluation Metrics. Both the closed-world evaluation and open-
world evaluation can be formulated as classification problems,
where the closed-world evaluation carries out a multi-class classifi-
cation while the open-world evaluation performs a binary classifica-
tion. Accuracy is used as a metric to measure the attack performance
in the closed-world evaluation. Precision, recall, and precision-recall
curves are utilized in the open-world evaluation.

For the open-world evaluation, we apply the standard model
used in previous studies [35, 36]. Specifically, all the traffic traces
of unmonitored websites are considered as a single class, which
is added to the classifier obtained in the closed-world evaluation
as an additional class. This classifier is re-trained with traces from
monitored websites and unmonitored websites. During the test,
given an unlabeled traffic trace, if the highest confidence of this
classifier belongs to one of the monitored websites and this confi-
dence is greater than a threshold, this trace is considered as a trace
associated with monitored websites. Otherwise, it is considered
as a trace related to unmonitored websites. The threshold can be
tuned in experiments to obtain a higher precision or higher recall.

Our Goals in This Study. Our study formulates websitefinger-
printing as a transfer learning problem. Specifically, we assume a
large-scale dataset, referred to as a source dataset, is available but
it was collected with different settings (e.g., different versions in
software, hardware, and network protocols) in the past. In addition,
another dataset, referred to as a target dataset, is collected based on
the latest setting of a target user. However, this target dataset only
has few labeled traffic (to be more specifically, less than 20 traces
per website in this paper).

We have two specific goals in this study. First, we would like to
perform websitefi ngerprinting over few traffic of a target dataset
with high accuracy by taking advantage of the large amount of
traffic from a source dataset. Second, we aim to render efficient

Session 3: Privacy

Pre-Training with Source Data

‘ Output

$
J

| Layer n-1 |
4

| Layer n |

Training with Target Data

Input wmp| 2w - - - m=

Layer 1

]
m) g =) Output
—

| Layer n-1 |

1 } t
Freeze Re-tune

Figure 2: Transfer learning withfine-tuning

running time when performing transfer learning in websitefin-
gerprinting. The overarching goal of our study is to minimize the
bootstrap time, including data collection time and classifier training
time, and make websitefi ngerprinting more practical.

3 TRANSFER LEARNING OVER ENCRYPTED
TRAFFIC

3.1 Transfer Learning

Supervised learning is data-hungry and does not perform well when
a dataset consists of few labeled data. Transfer learning [28, 49] is
able to overcome this limitation. Specifically, given a source dataset
and a target dataset, where the source dataset has a large amount
of labeled samples and the target dataset has few labeled samples,
transfer learningfi rst learns the knowledge from the source data,
and then transfer the knowledge to perform the classification task
over the target data. The knowledge often indicates tuned hyperpa-
rameters of a neural network or learned feature spaces. Transfer
learning performs well when the source classification task is similar
to the target classification task. For example, the learned knowledge
of recognizing cars can be transferred to identify trucks.

A transfer learning method, in general, consists of three steps,
including pre-training, training, and testing. In pre-training, the
knowledge of a source dataset is learned. In the training step, the
learned knowledge is transferred by leveraging the training data
of the target dataset. In the testing step, a classifier reports results
over the test data of the target dataset.

3.2 Fine-Tuning

Fine-tuning [47] is one of the simplest methods in transfer learning.
In the pre-training step, this method trains a neural network over a
source dataset. In the training step, this method freezes most of the
layers in the neural network obtained from the pre-training step
and tunes hyperparameters of the last few layers using training data
from the target dataset. Finally, with the re-tuned neural network,
this method derives the results with test data of the target dataset.
The process offi ne-tuning is described in Fig. 2.

Fine-tuning often performs well when the source domain and
target domain are very similar. This is because the shallow layers
obtained from the pre-training step can extract general features
that are likely shared by both the source domain and target domain
[47]. Re-tuning the hyperparameters only in the last 1 or 2 layers
with data from the target dataset can adjust the neural network

151

CODASPY 21, April 26-28, 2021, Virtual Event, USA

| Same inside each block

Conv Conv

| -

- - Pooling -
| Layer Layer Layer Dropout
|
~ ~ —_—— ’I

~ —_— -
- -
~ - —_— -
Input EEp | Block 1 |ﬂ Block 2 |ﬂ Block 3 |ﬂ Block 4 | =) Lzycér =) Output

Figure 3: The structure of the DF model. FC layer stands for
Fully-Connected layer.

to be more accurate for the target domain. Besides, the number of
hyperparameters that need to be re-tuned is much smaller than
re-training the entire neural network, which is more convenient
for limited data from the target dataset.

Fine-Tuning over Encrypted Traffic. A previous study [36]
reported the performance offi ne-tuning over encrypted traffic in
the context of websitefi ngerprinting. This studyfi rst trained a
neural network, named DF (Deep Fingerprinting) model [35], by
using a source dataset. Next, itfi ne-tuned the DF model with a
target dataset. The DF model is one of the most effective models for
classifying encrypted traffic with supervised learning. The structure
of the DF model is highlighted in Fig. 3.

3.3 Triplet Networks

The triplet network [30, 32], inspired by the Siamese network [21,
38], contains three parallel identical sub-networks sharing the same
weights and hyperparameters. An input of a triplet network is
denoted as a triplet, which consists of an anchor sample A, a positive
sample P and a negative sample N. Each sub-network takes only
one type of samples as inputs. For instance, all the anchor samples
A are the inputs to one sub-network and this sub-network does
not include any positive samples or negative samples in its inputs.
Each triplet is selected from the source dataset, either randomly or
with some mining strategy [36].

The details of transfer learning using a triplet network is de-
scribed in Figure 4. In the pre-training phase, a triplet network is
trained to learn an embedding of source data. The goal is to train
the sub-networks such that the distance between anchor samples
and positive samples is smaller than the distance between anchor
samples and negative samples in an embedded space. The triplet
loss is leveraged to measure the training loss of the triplet network
[30, 32]. Specifically, given a triple (A, P,N), the lost function is
defined as

L(APN) = max(||f(A) = FP)I = lIf (A) = FN)II* +,0) (1)

where f(-) is the embedding, « is a margin between positive and
negative samples. Besides L2 distance presented in the equation
above, cosine distance can also be utilized [30, 32].

In the training phase, the sub-network from the triplet network is
extracted and utilized as a feature extractor. One classifier, referred
to as target classifier, is attached to this feature extractor. The
parameters of this target classifier are trained using the target
training data. All the hyperparameters and weights in the sub-
network remain the same. Last, the results are reported over the
target test data with the sub-network and the trained classifier.

Triplet Fingerprinting. Triplet Fingerprinting (TF) [36] ex-
amines websitefi ngerprinting by leveraging triplet networks. In

Session 3: Privacy

Pre-Training with Source Data

A =) | Sub Network | =)

]:[shared weights
Triplets P -| Sub Network |-
]:[shared weights

Sub Network | =)

Embedded Space

Training with Target Data
Input ~| Sub Network |~ Cil;asrsgif'lter B Output

Freeze Train
Figure 4: Transfer learning with a triplet network.

Triplet Fingerprinting, anchor samples and positive samples are
selected from the same classes while negative samples are chosen
from different classes compared to anchor samples. The authors
leveraged the DF model [35] as the sub-network in a triplet network.
A k-nearest neighbor (k-NN) classifier is used as the target classifier
during the training over the target dataset.

4 ADAPTIVE FINGERPRINTING

Wefi rst present the main idea of adversarial domain adaption. Next,
we discuss how we address the specific challenges of adversarial
domain adaption in the context of websitefingerprinting.

4.1 Adversarial Domain Adaption

Domain adaption [40] is one of the transfer learning approaches.
Domain adaption addresses the domain shift problem (i.e., the dis-
crepancy between a source dataset and a target dataset) [37] by
mapping both source data and target data into a domain-invariant
feature space. Traditional domain adaption methods [24, 40] often
minimize the discrepancy by measuring the distance with Maxi-
mum Mean Discrepancy.

Adversarial Domain Adaption [10, 39] leverages a domain adver-
sarial network to learn a domain-invariant feature space. It leverages
the idea of generative adversarial learning [12] and outperforms
the traditional ones relying on Maximum Mean Discrepancy. As-
sume there is a source dataset and a target dataset, the structure
of a domain adversarial network consists of a Feature Extractor
F, a Domain Discriminator D, and a Source Classifier C as shown
in Fig. 5. The Feature Extractor, Domain Discriminator, or Source
Classifier, in essence, is a neural network. The parameters of the
Feature Extractor, Domain Discriminator and Source Classifier can
be represented as 0f, Op, and O respectively.

Note that existing adversarial domain adaption methods often
assume that the source dataset and target dataset have the same
label space (i.e., the source dataset and target dataset share the
same set of class labels). In addition, existing methods also assume
that the target dataset consists of a large amount of unlabeled data
rather than few labeled data. We will address the scenarios where
the target dataset has a different label space and consists of few
labeled data in our method presented in the next subsection.

During the training of a domain adversarial network, the Feature
Extractor takes source data and target data as inputs and aims
to output domain-invariant features, which are difficult for the

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Back-
N (7 Lo e
,_ 060 F 890 |
I Loss Lo
* Features

Source
’ Classifier - Class label

Feature -
’ Extractor |:|
Target Data ‘ Domain

f Discriminator
|
|

Source Data ‘

=) Domain label

|
O
D Back-

propagation

Figure 5: The structure of a domain adversarial network [10].
GRL stands for Gradient Reversal Layer.

Domain Discriminator to distinguish. The Domain Discriminator,
on the other hand, aims to distinguish whether an output of the
Feature Extractor is produced by data from the source dataset or
data from the target dataset. The Source Classifier aims to minimize
its loss on predicting the correct class label of source data with the
outputs produced by the Feature Extractor.

In other words, given the loss function £ of the entire domain
adversarial network, the Feature Extractor and Source Classifier
aim to minimize the loss £ while the Domain Discriminator aims to
maximize the loss £. The training objective of the entire network
is to achieve the following:

(éF, éc) = argmin L(0F, éD, Oc)
Or,0c
R R R)
0p = argmax L(0F, Op, 0¢c)
Op

where 9}: éD, éc are the optimal values of 0F, 0p, and ¢ respec-
tively. The loss function £ can be computed as

L(0F. 0p, 0c) = Lc(0F, 0c) = ALp(0F, Op) ©)

where L is the loss function of the Source Classifier, L is the loss
function of the Domain Discriminator, and A is a pre-defined trade-
off parameter shaping features during learning [10]. The parameters
of the entire network are updated through back-propagation, where
the updates are operated as below:

oL Lp
Op =0 —a(— - A—=
F F a(aep d0F
aLc
O0c =0c—a— 4
c=bc-agy” (4)
—AdLp
QD—9D+0(89D

where « is the learning rate, and Gradient Reversal Layer (GRL)
assigns negative signs (i.e., the ones before parameter 1) to the
derivative of Lp with respect to Or and 0p. Gradient Reversal
Layer is introduced in order to evaluate the gradients of 0 and 6p
in each back-propagation epoch [10].

After the training of a domain adversarial network, the Feature
Extractor F and the Classifier C can be extracted out and directly
used to perform classifications over target data.

Session 3: Privacy

4.2 Our Proposed Method

As we mentioned in the last subsection, existing adversarial domain
adaptions assume the source dataset and the target dataset share
the same label space. Unfortunately, these assumptions do not hold
over encrypted traffic in the context of websitefingerprinting.

Challenges. Specifically, given two encrypted traffic datasets,
the selection of the websites can be very different. For instance, one
dataset can choose websites according to Alexa top websites [31, 35]
while others can choose sensitive websites that are blocked by cer-
tain countries [43]. In addition, even the set of selected websites
is exactly the same between a source dataset and a target dataset,
the two datasets are often collected several months or years apart,
where the traffic pattern of the same website can change dramati-
cally due to the content changes on a website [31].

A Straightforward Solution. Given the target data are labeled
in our study rather than unlabeled, adding an additional neural-
network-based Target Classifier within an domain adversarial net-
work described in Fig. 5 could be a potential way to mitigate the
problem. This Target Classifier would be parallel to the Source Clas-
sifier. However, as the target dataset only has few labeled data , it
may not be sufficient to derive a well-trained neural-network-based
Target Classifier within a domain adversarial network.

Our Proposed Method. To address the challenges over en-
crypted traffic data, we propose a new method named Adaptive
Fingerprinting (AF). The main idea is to leverage a domain adver-
sarial network to learn domain-invariant features only. Then, our
method extracts the feature extractor and attaches a traditional ma-
chine learning classifier, which is much easier to train with limited
labeled data in the target dataset. Our method still consists of three
phases, including pre-training, training, and testing. Depending
whether there are multiple source datasets available, our method
can be represented in the two following versions. We denote the
two versions as AF-SingleSource and AF-MultiSource respectively.

Details of AF-SingleSource. AF-SingleSource (as illustrated
in Fig. 6) is suitable for the cases where there is 1 source dataset
(with a large amount of labeled data) and 1 target dataset (with
few labeled data). The target dataset is divided into target training
data and target test data. Specifically, in the pre-training phase, our
method trains a domain adversarial network by taking the source
dataset and target training data as inputs. Although these target
training data are labeled, our method treats them as unlabeled in the
pre-training phase. The domain adversarial network still consists
of Feature Extractor, Domain Discriminator, and Source Classifier.

Next, in the training phase, our method extracts the trained
Feature Extractor out and attaches a traditional machine learning
classifier, which is utilized as a target classifier. Our method trains
the parameters of this target classifier with target training data by
freezing the Feature Extractor (except its last layer). Finally, in the
testing phase, our method obtains results over target test data with
this Feature Extractor and the target classifier.

Details of AF-MultiSource. If the source data and the target
data in AF-SingleSource are significantly unbalanced, it will likely
affect the training of the Domain Discriminator, which essentially
affect the training of Feature Extractor and fail to derive domain-
invariant features. To mitigate this limitation, our method can take
multiple source datasets in the pre-training phase instead of using

153

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Pre-Training with Source (& Target Training) Data

Source Data Features Source
‘ Feature - Classifier
Target Extractor \ :
Training Data _Domain
Discriminator

Training with Target Data
Features

' Feature ' - Target -
Tnput Extractor |:| Classifier Output
I Freeze I Train I

Figure 6: The process of our method AF-SingleSource.

Pre-Training with Multiple Source Datasets

=)
ey

Sourcel
Classifier

Sourcel Data
‘ Feature
Extractor

Source2
Classifier

Source2 Data’

Domain
Discriminator

Training with Target Data

Features
' Feature ' - Target -
Input Extractor |:| Classifier Output
I Freeze I Train I

Figure 7: The process of our method AF-MultiSource.

target data as a part of the inputs to a domain adversarial network.
The tradeoff is that we need to leverage multiple source datasets
rather than one source dataset.

AF-MultiSource (as shown in Fig. 7) is suitable for the cases
where there are multiple source datasets (each with a large amount
of labeled data) and 1 target dataset (with few labeled data). The
target data is still divided into target training data and target test
data. In the pre-training phase, our method trains a domain adver-
sarial network by taking multiple source datasets as inputs. The
domain adversarial network consists of Feature Extractor, Domain
Discriminator, and multiple Classifiers, where each source dataset
is assigned one classifier. The training and testing phase remains
the same as in AF-SingleSource.

Structures of Neural Networks in Our Method. For the Fea-
ture Extractor in our domain adversarial network, we leverage the
DF model [35] presented in Fig. 3. For the Domain Discriminator
in our domain adversarial network, it consists of 2 convolutional
layers, 2 pooling layers and 1 fully-connected layer (with softmax
as the activation function). For the Classifier in our domain adver-
sarial network, we use 1 convolutional layer, 1 pooling layer and
1 fully-connected layer (with softmax as the activation function).
The structures of the Discriminator and Classifier can be found in
Fig. 8 and Fig. 9. If there are multiple source datasets, each source
classifier will use the same structure as the Classifier illustrated in
Fig. 9. For the target classifier, we use a k-nearest neighbor classifier.

Session 3: Privacy

Conv Pooling Conv

Input EE) Layer =) Layer =) | Dropout |) Layer
FC Pooling

Output == Softmax - Dropout |z Layer

Figure 8: The Domain Discriminator used in our method.

FC
Softmax

Pooling
Layer

Conv
Layer

Input » » » » » Output

Figure 9: The Source Classifier used in our method.

5 PERFORMANCE EVALUATION
5.1 Datasets

In this study, we collected one new dataset (named AF dataset)
and also leveraged three datasets from previous studies to examine
the performance of our method. Each dataset includes Tor traffic
traces from monitored websites (for closed-world evaluation) and
unmonitored websites (for open-world evaluation). These datasets
were collected with different settings and times. In addition, how
the monitored websites and unmonitored websites were selected is
also different among some of them.

Wang dataset [42]. This dataset was collected in 2013 by using
Tor Browser 3.5. The monitored websites were selected from a list
of sensitive sites blocked in three countries (China, the UK, and
Saudi Arabia). The unmonitored websites were selected from Alexa
top websites!. The 2 subsets of this dataset are summarized below:

Dropout

e Wang100: It includes a set of 100 monitored websites. Each
website has 90 traces.

e Wang9000: It includes a set of 9,000 non-monitored websites.
Each website has 1 trace.

AWF dataset [31]. This dataset was collected in 2016 by utiliz-
ing Tor Browser 6.5. The monitored websites were chosen from
Alexa top websites. The unmonitored websites were also selected
from Alexa top websites (excluding the ones selected in monitored
websites). The subsets we utilize in this paper are described below:

e AWF100: It includes a set of 100 monitored websites. Each
website has 2,500 traces.

e AWF775: It includes a set of 775 monitored websites. Each
website has 2,500 traces.

o AWTF9000: It includes a set of 9,000 unmonitored websites.
Each website has 1 trace.

DF dataset [35]. This dataset was collected in 2016 using Tor
Browser 6.X. The monitored websites were selected from Alexa top
websites. The unmonitored websites were chosen from Alexa top
websites (excluding the ones in monitored websites).

e DF95: It includes a set of 95 monitored websites with 1,000
traces per website.

e DF9000: It includes a set of 9,000 unmonitored websites with
1 trace per website.

AF dataset (This paper). We collected this dataset from July
to September in 2020 using Tor Browser 9.0. We utilized 5 virtual
machines on campus, where each virtual machine has an identical

Uhttps://www.alexa.com/topsites

154

CODASPY 21, April 26-28, 2021, Virtual Event, USA

configuration (Ubuntu 18.04 and 4 GB RAM). We used an open-
source tool, named tor-browser-crawler [2], to collect encrypted
Tor traffic. This tool was also used in previous studies [18] for Tor
traffic collection.

The monitored websites were chosen from top 130 of Alexa web-
sites. 300 traces per website were initially collected. As some of the
websites block Tor traffic and their corresponding traffic contains a
very small number of packets, we considered those traces invalid
and removed them. After cleaning, we obtained 100 monitored web-
sites with 250 traces per website. The unmonitored websites were
selected from Alexa websites (top 130 to top 10300 websites). We
collected 1 trace for each unmonitored website. After cleaning, we
obtained 9,000 valid traces. The two subsets are summarized below:

e AF100: It includes a set of 100 monitored websites with 250
traces per website.

o AF9000: It includes a set of 9,000 unmonitored websites with
1 trace per website.

5.2 Experiment Settings

We implement neural networks and machine learning algorithms
in Python. For neural networks, we use Keras as the front end
and Tensorflow as the back end. We run all the experiments on a
Linux machine with Ubuntu 18.04, 2.8 GHz CPU, 64 GB RAM, and
a NIVIDA Titan RTX GPU. We perform 10-fold cross validations.

We leverage the DF model in pre-training for the three methods,
includingfi ne-tuning, Triple Fingerprinting, and our method. We
leverage the source code of the DF model and its tuned hyperparam-
eters reported in [35] in our experiments. We train the DF model
with 30 epochs in pre-training each time.

Implementation of Fine-Tuning. We pre-train the DF model
with a source dataset and then tune the hyperparameters of the last
layer of the DF model in the training step.

Implementation of Triplet Fingerprinting. We leverage the
source code published by the authors of Triplet Fingerprinting [36]
to implement it in our experiments. All the settings for Triplet Fin-
gerprinting are the same as the ones described in [36]. Specifically,
we use the DF model as the sub-network in a triplet network. We
use cosine distance as the distance metric to calculate the triplet
loss. In addition, we use Semi-Hard-Negative mining strategy to
select triplets from a source dataset. For the k-nearest neighbor
classifier in Triplet Fingerprinting, we choose k = N, where N is the
number of traces per class in target training data. We also use the
Mean Embedded Vector of N samples to train k-nearest neighbor
in the closed-world evaluation. Using the Mean Embedded Vector
rather than N samples can lead to a higher accuracy as mentioned

n [36]. More details can be found in [36].

Implementation of Our Method. As mentioned, we use the
DF model as the Feature Extractor. The structures of Domain Dis-
criminator and Classifier are described in Fig. 8 and Fig. 9. We
tuned hyperparameters of Domain Discriminator and Source Clas-
sifier based on AWF100 (as the source dataset) and Wang100 (as
the target dataset). Then we keep the same hyperparameters of
Domain Discriminator and Source Classifier for all the experiments
we have. Some of the key hyperparameters we tuned can be found
in Appendix. For our k-nearest neighbor classifier, we also choose
k = N, where N is the number of traces per class target training

Session 3: Privacy

Table 1: Attack accuracy (%) of TF (Source: AWF775, Target: Wang100; M = 25,T = 70). The results are in the form of mean =+

standard deviation.

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Method N=1 N=5 N =10 N=15 N =20
TF (obtained in this paper) 713+2.0 | 842+05 | 86104 | 86705 | 87.0+0.5
TF (reported in CCS19 [36]) | 73.1+ 1.8 | 84.5+04 | 86.2+ 0.4 | 86.6+ 0.3 | 87.0+ 0.3
Table 2: Attack accuracy (%) of Fine-tuning, TF and Ours (M = 25,T = 70).
Source Target Method N=1 N=5 N =10 N=15 N =20
Fine-tuning 46.1 + 2.68 68.2 + 0.67 76.5 + 1.39 80.4 + 1.51 82.0 + 1.22
AWTF100 | Wang100 TF 555+ 176 | 72.7 £0.78 | 75.8 +0.45 76.4 + 0.56 77.3 £ 0.37
Ours (AF-SingleSource) | 30.4 + 3.46 64.0 +2.03 | 82.1+1.86 | 87.7+1.30 | 89.3 +1.30
Fine-tuning 37.7+246 | 57.7 £1.53 | 67.8 +1.34 73.0 + 6.81 79.6 + 1.33
AWF100 DF95 TF 38.3+2.11 | 554 +1.11 59.9 £ 1.07 61.4 = 0.76 62.6 = 0.60
Ours (AF-SingleSource) | 28.0 +1.71 53.7+3.05 | 73.4+1.72 | 80.3 +1.27 | 82.4+0.91
Fine-tuning 26.3 +2.23 33.7+ 1.79 46.4 £ 0.95 52.0 + 2.85 50.7 + 1.51
AWF100 AF100 TF 30.0 £ 1.18 37.9 +£0.78 39.3 £ 0.65 40.4 = 0.52 40.5 + 0.56
Ours (AF-SingleSource) | 31.0 + 2.88 | 49.0 £ 2.65 | 60.7 + 1.06 | 65.5 + 1.77 | 67.9 + 1.29

data. We also use the Mean Embedded Vector of N samples to train
k-nearest neighbor in the closed-world evaluation to have a fair
comparison with Triplet Fingerprinting.

5.3 Closed-World Evaluation

Experiment A.1: Reproducing Results of Triplet Fingerprint-
ing. We reproduce the results of Triplet Fingerprinting [36] in the
closed-world evaluation. We use the same datasets and same pa-
rameters as the ones in Triplet Fingerprinting. We choose 1 source
dataset and 1 target dataset as follows:

e Source: AWF775; Target: Wang100

We use M to denote the number of traces per class used in pre-
training, N as the number of traces per class in target training
data and T as the number of traces per class in target test data. By
following the same approach in [36], we randomly select M = 25
traces per class from the source dataset in pre-training. For the
target dataset, we take 90 traces in each class, where these 90 traces
are divided into 2 chunks. The 20 traces in thefi rst chunk can be
used for training and the 70 traces in the second chunk are used
for testing. A number of N traces out of the 20 traces in thefirst
chunk are used to train the k-nearest neighbor classifier, where
N ={1,5,10, 15, 20}. Unless specified, we choose the same values
for M, N and T in other experiments. As shown in Table 1, we
obtained almost the same results as the ones reported in [36].

Experiment A.2: Comparison among Fine-tuning, Triplet
Fingerprinting and Our Method. We compare the attack perfor-
mance of three methods, includingfi ne-tuning, Triplet Fingerprint-
ing, and Adaptive Fingerprinting. We evaluate the case where 1
source dataset and 1 target dataset are selected. To be more con-
sistent with our later experiments, which investigate impacts of
several parameters/aspects, we select the source dataset and target
data with the same or a similar number of classes.

Specifically, we choose AWF100 (rather than AWF775 in Exper-
iment A.1) as the source dataset and we pick Wang100, DF95, or
AF100 as the target dataset respectively as below:

e Source: AWF100; Target: Wang100
e Source: AWF100; Target: DF95
e Source: AWF100; Target: Our100

155

Attack Accuracy. As shown in Table 2, Triplet Fingerprinting
is the most effective method when the number of training samples
from the target dataset is 1. However, when N > 10, our method
AF-SingleSource achieves the highest accuracy. This observation is
consistent even when we select a different target dataset. In some
cases (e.g., source is AWF100 and target is AF100), our method can
also outperform the other two methods when N = 5.

When N is extremely small (e.g., 1 or 5), our method does not
have sufficient target traces involved to pre-train a good Domain
Discriminator. On the other hand, the other two methods do not
need target data in pre-training. This difference is likely the reason
that our method is often less effective when N = {1,5}. When
AF100 is the target, the performance of all the three methods are less
effective compared to other target datasets. This is likely because
AF100, which is collected more recently with a much different
version of Tor Browser, is less similar to the source AWF100 among
the three target datasets that we examined.

Note that our results offi ne-tuning are higher than the ones
reported in [36]. As we use the same source code, the DF model,
and parameters as in [36], we believe the potential reason is that
we use AWF100 rather than AWF775 as the source data, where the
number of classes in a source target is the same or similar as the
number of classes in a target dataset. This likely benefitsfine-tuning
for obtaining higher accuracy.

Feature Visualization. We also visualize the feature spaces
obtained from the three methods by using t-SNE (t-Distributed
Stochastic Neighbor Embedding) [25], which is a method visualizing
high-dimensional data into a 2-dimensional space. Specifically, we
extract the last layer of the DF model trained in each of these 3
methods, where AWF100 serves as the source and Wang100 serves
as the target. As we can observe in Fig. 10, all the three methods
obtain a feature space that can distinguish data better from different
classes compared to the space of target data.

Pre-Training Time. We also compare the pre-training time
among the three methods. As shown in Table 3, Fine-tuning is
the most efficient in pre-training time. Triplet Fingerprinting re-
quires much longer time than the other two as mining triplets is a
key but time-consuming step in its pre-training. The pre-training
time offi ne-tuning and Triplet Fingerprinting do not depend on

Session 3: Privacy

« Y
. . LI I
ﬁ '- P .
Y . A T
A . e P e mta e
5 2% 11 -
o o 8

(a) Target Data (b) Fine-tuning

CODASPY 21, April 26-28, 2021, Virtual Event, USA

“" - ' 3 ¢
v J e
-*fn&u?‘.&. et
s/ e cet el Lt
L :‘ h e » \tt\#:.{m
'6 . & .‘l-' .. ® L ',I‘—.’n-“\
> “;.“4“ b .niol‘\ :
,n‘.p:b ey
Yool Y . »
] Lt

(c) Triplet Fingerprinting (d) Adaptive Fingerprinting (Ours)

Figure 10: The visualization of feature spaces using t-SNE (Source: AWF100; Target: Wang100; M = 25 and N = 20).

Table 3: Pre-training Time (seconds) of Fine-tuning, TF and Ours (M = 25, T = 70).

Source Target Method N=1 [N=5 [N =10 [N=15 [N =20
Fine-tuning 27
AWF100 | Wang100 TF 772
Ours (AF-SingleSource) | 177 [180 [183 [183 [182

Table 4: The impact of different source datasets

on attack accuracy (%), where M = 25 and T = 70.

Source Target Method N=1|N=5|N=10 | N=15 | N=20
Fine-tuning 46.1 68.2 76.5 80.4 82.0
AWF100 | Wang100 TF 55.5 72.7 75.8 76.4 77.3
Ours (AF-SingleSource) | 30.4 64.0 82.1 87.7 89.3
Fine-tuning 45.8 66.9 78.3 82.3 83.6
DF95 Wang100 TF 55.2 72.3 75.3 75.9 76.4
Ours (AF-SingleSource) 32,5 71.1 83.4 87.6 88.7
Fine-tuning 46.5 69.0 79.9 84.0 84.4
AF100 Wang100 TF 41.3 57.4 61.3 62.8 63.5
Ours (AF-SingleSource) 28.3 70.9 83.5 87.3 88.8

the selection of the target data or the number of traces N per class
in the target training data. Our method, AF-SingleSource, has a
slightly different pre-training time given a different N as the target
training data are involved in the inputs of a domain adversarial
network. When we change the target dataset to DF95 or AF100, we
have the same pre-training time forfi ne-tuning and TF and almost
the same pre-training time for our method AF-SingleSource. We
skip further details due to space limitation.

Experiment A.3: Impact of Different Source Datasets. We
evaluate the impact on the attack accuracy of the three methods
if an attacker uses a different source dataset given the same target
dataset. Specifically, we still examine the cases of 1 source dataset
and 1 target dataset with the following

e Source: AWF100; Target Wang100
e Source: DF95; Target: Wang100
e Source: AF100; Target: Wang100

As shown in Table 4, with different source datasets, our method
AF-SingleSource is always the most effective one among the three
methods when N > 10. In addition, when N = 5, our method can
also outperform other methods in some cases (e.g., when the source
dataset is AF100). Triplet Fingerprinting is always more effective
than our method when N = 1. Bothfi ne-tuning and our method
achieves a similar attack accuracy regardless which source dataset
is utilized. On the other hand, we notice that the attack accuracy of

156

Triplet Fingerprinting varies significantly when a different source
dataset is selected given the same target dataset.

Experiment A.4: Comparisons between AF-SingleSource
and AF-MultiSource. We compare the two versions of our method
AF-SingleSource and AF-MultiSource. In other words, we investi-
gate the impact of the number of source datasets on attack accuracy.
Specifically, for AF-SingleSource, it takes one source dataset and
target training data in the pre-training. For AF-MultiSource, it takes
multiple source datasets in the pre-training. The training and test-
ing steps are the same between the two versions. The numbers of
traces per class in source data, target training data and target test
data (i.e., M = 25, N = {1,5,10, 15,20} and T = 70) remain the same
as the ones in the previous experiments.

As shown in Table 5, given the target dataset is Wang100, when
AF-MultiSource takes multiple source datasets, such as 2 source
datasets or 3 source datasets, but no target dataset in the pre-
training phase, it can achieve a greater accuracy than AF-SingleSource,
especially when N is small, such as 1 and 5. This is expected as when
N is much smaller than M, the inputs in a domain adversarial net-
work used in AF-SingleSource are unbalanced between the source
and target. As a result, AF-SingleSource is not able to learn a better
domain-invariant feature space. On the other hand, AF-MultiSource
does not rely on target data to obtain a domain-invariant feature
space in the pre-training.

Session 3: Privacy

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Table 5: The impact of the number of source datasets in our method on attack accuracy (%), where M = 25 and T = 70.

Method Pre-Training Setting Source Target N=1| N=5| N=10 | N=15 | N=20
AF-SingleSource 1 Source 1 Target AWF100 Wang100 30.4 64.0 82.1 87.7 89.3
AF-MultiSource 2 Source 0 Target {AWF100, DF95} Wang100 | 37.6 72.4 84.4 86.8 89.8
AF-MultiSource 3 Source 0 Target {AWF100, DF95, AF100} | Wang100 | 33.8 72.2 85.8 88.5 88.1

Table 6: The impact of the number of traces per class in a source dataset (Source: AWF100; Target: Wang100), where N = 20

and T = 70.
Metric Method M=25 M =50 M =100 M =200 M =400
Fine-tuning 82.0 + 1.22 84.0 £ 0.93 85.7 £ 0.58 87.5 £ 0.69 87.8 £ 0.99
Accuracy (%) TF 77.3 £ 0.37 79.5 £ 0.33 78.7 £ 0.25 78.3 £ 0.55 78.5 £+ 0.44
Ours (AF-SingleSource) | 89.1+0.77 | 88.4 +0.40 | 89.0 +0.78 | 88.8 +0.90 | 88.9 + 0.49
Fine-tuning 27 45 70 136 249
Pre-Training Time (second) TF 772 2,913 11,761 38,163 233,999
Ours (AF-SingleSource) 182 182 183 188 189

Table 7: Attack accuracy (%) of Fine-tuning, TF and Ours (Source

in the closed-world setting,.

: DF95-Defended, Target: Wang100-Defended, M = 25, T = 70)

Method N=1 N=5 N =10 N=15 N =20
Fine-tuning 19.1+ 1.6 339+13 473 £ 1.6 53.6 +£1.4 56.8 £ 1.9
TF (based on results reported in CCS19 [36]) | 155+ 1.7 | 39.8+0.5 | 472+ 11 | 50.1+04 | 51.7+0.5
Ours (AF-SingleSource) 9.13+1.0 | 373+1.8 | 569+2.4 | 657+ 12 | 70.2+0.9

Experiment A.5: Impact of the Number of Traces per Class
in a Source dataset. We examine if the number of traces per class
in a source dataset increases, what impacts it may have on website
fingerprinting. We still compare the three methods, includingfine-
tuning, Triplet Fingerprinting, and our method. We take 1 dataset
as source and 1 dataset as the target.

e Source: AWF100; Target: Wang100

where we choose the number of traces per class in a source dataset
as M = {25,50,100,200,400}. For the target dataset, we choose
N =20and T =70.

As shown in Table 6, bothfi ne-tuning and our method outper-
form Triplet Fingerprinting when the number of traces per class M
is greater than or equal to 25. This is consistent with our observa-
tions in previous experiments. In addition, both our method and
Triplet Fingerprinting remain at the same level of attack accuracy
when the value of M increases. The accuracy offi ne-tuning slightly
increases with an increase on M. When M = 400, the accuracy of
fine-tuning gets very close to the accuracy of our method but it
requires longer pre-training time.

Moreover, we notice that bothfi ne-tuning and our method are
very efficient in pre-training time while Triplet Fingerprinting re-
quires significant amounts of pre-training time as the value of M
increases. For instance, when M = 400, Triplet Fingerprinting re-
quires more than 64 hours in pre-training while our method only
takes 3 minutes. This is because when M increases, Triplet Finger-
printing needs to evaluate a much greater number of triplets in
pre-training, which is time-consuming. In other words, our method
is more scalable than Triplet Fingerprinting when there are more
data from a source dataset.

Experiment A.6: Impact of Defenses Against Website Fin-
gerprinting. In this experiment, we investigate if traffic traces are
protected by existing defenses, what impact it may have. Specifi-
cally, we choose WTF-PAD [20] as the defense method to obfuscate
traffic traces. We take 1 dataset as source and 1 dataset as the target.

157

As generating defended data with WTF-PAD needs timestamps of
packets, which are not available in some of the datasets we use. We
choose the source and target as below

e Source: DF95 (Defended with WTF-PAD); Target: Wang100
(Defended with WTF-PAD)

We choose M = 25, N = {1,5,10, 15,20}, and T = 70. We use the
default parameters and the source code of WTF-PAD from [1] to
generate defended data.

As shown in Table 7, we have similar observations as previous
experiments, where our method performs better than the other two
when N > 10. On the other hand, the accuracy of all the three
methods over defended data decreases compared to the results over
non-defended data in Table 5.

5.4 Open-World Evaluation

Experiment B.1: Reproducing Results of Triplet Fingerprint-
ing in the Open-World Setting. In this experiment, we reproduce
the results of Triplet Fingerprinting in the open-world evaluation.
We follow the same datasets as the ones in [36]. Specifically, we
choose the source and the target as follows:

e Source: AWF775; Target: {Wang100, AWF9000}

where Wang100 is used as data for monitored websites of the target
dataset and AWF9000 is used as data for unmonitored websites of
the target dataset. Each unmonitored website only has 1 trace. Only
monitored websites of a source dataset are utilized in pre-training.
For the source dataset, we still choose M = 25 traces per website
in pre-training. For the monitored websites in the target dataset,
N = {5,10, 15,20} traces per monitored website are examined in
training and T = 70 traces per monitored website are used in
testing. However, how many traces of unmonitored websites used
in training and testing were not specifically described in [36]. To
reproduce the results, we explore the following two scenarios:

Session 3: Privacy

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Table 8: Precision and Recall of TF (Source AWF775, Target: {Wang100, AWF9000}; M = 25) in the open-world setting.

Tuned for Precision

Method N=5 N =10 N=15 N =20
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
TF (Scenario 1, obtained in this paper) 0.633 0.901 0.644 0.876 0.690 0.871 0.682 0.871
TF (Scenario 2, obtained in this paper) 0.954 0.870 0.961 0.872 0.969 0.852 0.970 0.855
TF (results reported in [36]) 0.973 0.831 0.953 0.879 0.944 0.903 0.933 0.907

Tuned for Recall

et s Now T W=k T _New
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
TF (Scenario 1, obtained in this paper) 0.457 0.999 0.453 0.999 0.455 0.999 0.457 0.999
TF (Scenario 2, obtained in this paper) 0.921 0.966 0.936 0.970 0.943 0.970 0.945 0.972
TF (results reported in [36]) 0.950 0.950 0.922 0.971 0.908 0.983 0.905 0.978

Table 9: Precision and recall of Fine-tuning, TF, and Ours (M = 25, N = 10, T = 70, N’ = 1000, T’ = 7000).

Tuned for Precision | Tuned for Recall

Source Target Method Precision Recall Precision | Recall
Fine-tuning 0.999 0.871 0.999 0.937

AWF100 {WanglOO, Wang9000} TF 0.937 0.862 0.921 0.943
Ours (AF-SingleSource) 0.998 0.729 0.996 0.997

Fine-tuning 0.990 0.596 0.981 0.680

AWF100 {DF95, DF9000} TF 0.864 0.570 0.834 0.652
Ours (AF-SingleSource) 0.997 0.562 0.993 0.995

Fine-tuning 0.986 0.215 0.975 0.259

AWF100 {AF100, AF9000} TF 0.816 0.469 0.780 0.613
Ours (AF-SingleSource) 0.998 0.461 0.996 0.994

e Scenario 1: Same Number (N’ = N). We divide all the
9,000 traces in AWF9000 into 2 chunks, where thefi rst chunk
includes 20 traces and the second chunk includes 8,980 traces.
Then, we choose N’ = {5, 10, 15, 20} traces randomly from
thefi rst chunk in training and T’ = 8, 980 traces in testing.

e Scenario 2: Same Ratio (N/T = N’/T’). We divide all the
9,000 traces in AWF9000 into 2 chunks, where thefi rst chunk
includes 2,000 traces and the second chunk includes 7,000
traces. Then, we choose N’ = {500, 1000, 1500, 2000} traces
randomly from thefi rst chunk in training and T” = 7,000
traces in testing.

As illustrated in Table 8, the results from the second scenario are
more similar to the results reported in [36]. Therefore, we use
the second scenario to select training and test data in our later
experiments in the open-world evaluation. In fact, when using the
second scenario, the data from monitored websites and the data
from unmonitored websites are more balanced. It is likely why
the second scenario derives better results. Note that when we re-
train the k-nearest neighbor classifier for Triplet Fingerprinting (as
well as our method examined later) in the open-world setting, we
directly use traces rather than the Mean Embedded Vector of them.
This is because that using Mean Embedded Vectors derives a much
lower performance in our open-world evaluation.

When we tune the confidence threshold for precision or recall,
we use the threshold range [0, 0.4] in this paper. We also explore
thresholds that are greater than 0.4 in our experiments. However, it
can easily end up with either an extremely high precision with a low
recall or a low precision with an extremely high recall. Note that
even with the second scenario, the results we obtained in Table 8
are not exactly the same as the ones reported in [36]. This is likely
because thefi rst chunk of traces from unmonitored websites was

158

randomly selected and the thresholds tuned for precision and recall
might be different in [36].

Scenario 1 does not derive promising results as Scenario 2. This
is because data from unmonitored websites consist of 1 sample
per website, which introduces high variance over samples across
9,000 unmonitored websites. Taking N = {5, 10, 15, 20} samples in
training while using T = 8,980 samples in testing in Scenario 1
would be challenging to derive both high precision and high recall.
The high variance over samples across unmonitored websites could
also be the reason that training k-nearest neighbor classifier with
Mean Embedded Vectors leads to a lower performance.

Experiment B.2: Comparison among Fine-tuning, Triplet
Fingerprinting and Our method. In this experiment, we com-
pare the attack performance of the three methods in the open-world
evaluation. We evaluate the case where 1 source dataset and 1 target
dataset are selected. To be consistent with our experiments in the
closed-world setting, we select the the datasets as follows:

e Source: AWF100; Target: {Wang100, Wang9000}
e Source: AWF100; Target: {DF95, DF9000}
e Source: AWF100; Target: {AF100, AF9000}

where Wang100, DF95 and AF100 serve as monitored websites
respectively and Wang9000, DF9000 and AF9000 serve as unmoni-
tored websites respectively. We use the same parameters as the ones
in the last experiment. We summarize our results in Table 9 and also
in Fig. 11, where we choose M = 25, N = 10, T = 70, N’ = 1,000
and T’ = 7, 000. As we can observe from the precision-recall curves
in Fig. 11, in general, our method derives a better results in the
open-world setting compared to the other two methods.

Session 3: Privacy

CODASPY 21, April 26-28, 2021, Virtual Event, USA

1.00f=

1.00f, . Eua=
c 098] T T 1 0.95 |
g . | -B- AF-SingleSource g .
5 0.96 TF v} !
o | | —O- Fine-tuning [0.90 t
a ! ! f f a !
0.94 i

| | 5 | 0.85 % -
0.92 R S N - U |

0.7 0.8 0.9 1.0 0.6
Recall

(a) Source: AWF100; Target: {Wang100, Wang9000}

,,,,,,,,,,, B ﬂ]ﬂ
""""""""""""""""""""""""""""""" s ! | |
= | \-B AF-SingleSource
8 0.90 — 1 TF I
,, o 1 | -O- Fine-tuning
= i 8 0.85 ' |
-E AF-SingleSource
- TF
-©- Fine-tuning 0.80
0.8 1.0
Recall

(b) Source: AWF100; Target: {DF95, DF9000}

(c) Source: AWF100; Target: {AF100, AF9000}

Figure 11: Precision-recall curve of the three methods in the open-world evaluation (M = 25, N = 10, T = 70, N’ = 1000, T’ = 7000).

6 RELATED WORKS

Most of the studies formulate websitefi ngerprinting as a super-
vised learning problem and address it with machine learning. For
instance, studies such as k-NN [43], CUMUL [29] and k-FP [13],
manually select features and utilize traditional machine learning
algorithms. Recent studies [4, 5, 27, 31, 35] leveraged deep neural
networks to automatically extract features and can obtain higher
accuracy than the ones that rely on traditional machine learning
algorithms. For example, Sirinam et al [35] proposed Deep Finger-
printing, which is built upon Convolutional Neural Networks and
achieves 98% accuracy in the closed-world setting over 95 websites
with 1,000 traces per site. However, to achieve a higher accuracy,
an attack often needs to collect large-scale traffic dataset, which
is time-consuming. Sirinam et. al. [36]fi rst proposed to use trans-
fer learning to perform websitefi ngerprinting over few encrypted
traffic to address the need of recollecting large-scale datasets.
Besides the challenges of relying on large-scale training data,
other challenges in websitefi ngerprinting have also been examined.
For instance, studies in [8, 46] addressed websitefi ngerprinting in
the multi-tab scenario, where a user could open multiple websites
at the same time and the traffic of these websites are overlapped.
Juarez et. al. [19] discussed the base rate fallacy in the open-world
evaluation. Li et. al. [22] suggested that leveraging entropy can
measure the privacy leakage more accurately rather than using
accuracy. Wang [41] proposed to use r-precision to measure the
performance of websitefi ngerprinting in the open-world evaluation.
Shusterman et. al. [34] leveraged cache pattern of a user’s computer
rather network traffic to infer which website a user visits.
Defenses [6,7,9, 11, 14, 17, 20, 26, 45] against websitefingerprint-
ing have also been studied. The primary approach is to obfuscate
traffic pattern such that the traces of different websites are similar,
which is more difficult to distinguish for an attacker. Wang et al.
[45] proposed a defense, named Walkie-Talkie, which combines
traffic traces of two different websites into a super sequence. Gong
and Wang [11] proposed two defenses, FRONT and GLUE. FRONT
introduces higher perturbations to early packets in a traffic to hide
more important features against websitefi ngerprinting. GLUE adds
dummy traffic between two traffic traces such that it is more difficult
for an attacker to identify the beginning of each traffic trace. Two
studies [17, 26] also leverage adversarial examples of encrypted
traffic to mitigate the attack accuracy against deep-learning-based

159

attacks. Cadena et. al. proposed TrafficSilver [6], which modifies
traffic pattern by splitting traffic into multiple Tor relays.

7 DISCUSSIONS AND FUTURE WORK

Data Augmentation. Data Augmentation [16, 33], which can cre-
ate new samples for labeled data, is often used with transfer learning
to boost performance in classifications. We did not examine data
augmentation in our study. This is because existing data augmenta-
tion methods, which work well for images, cannot be directly used
for encrypted traffic.

For instance,fl ipping (from left to right) or rotating (with a
certain angle) an image can output a new image. However, a traffic
trace cannot be rotated as there are no angles. Flipping the packets
from the very end to the beginning of a traffic trace does not derive
a valid traffic trace that can happen in the real world. We will leave
whether it is feasible to perform data augmentation over encrypted
traffic (or network traffic in general) for future work.

Other Machine Learning Models. Some other models, such as
deep forest [48], need minimal efforts on tuning hyper-parameters
and can also achieve promising results with small-scale training
data in the image domain. Whether it can derive promising results
in the context of websitefi ngerprinting remains unknown and we
will leave it for future work.

8 CONCLUSION

We propose Adaptive Fingerprinting, which can perform website
fingerprinting over few encrypted traffic. Our experimental results
show that our method can derive high accuracy over a new but
small-scale dataset by transferring knowledge learned from a pre-
vious large-scale dataset. Our method can outperform previous
methods over few encrypted traffic (except when only 1 trace is
available to each monitored website). Moreover, our method is more
efficient in terms of pre-training time compared to previous studies.
Our results suggest that, by leveraging transfer learning, the boot-
strap time of websitefl ngerprinting can be reduced and website
fingerprinting can be more practical in the real world.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers and
our shepherd, Dr. Phani Vadrevu, for their insightful comments
and suggestions. The authors also would like to thank Dr. Marc

Session 3: Privacy

Juarez and Vera Rimmer for explaining details regrading Tor traffic
collection, thank Dr. Matthew Wright for providing help when
reproducing the results of Triplet Fingerprinting, and thank Ohio
Cyber Range at UC for providing multiple virtual machines to
facilitate Tor traffic collection. The authors were partially supported
by National Science Foundation (CNS-1947913) and UC Office of
the Vice President for Research - Pilot Program.

REFERENCES

(1]
(2]
(3]

(4]

—
—

=
&

=
&

ey
=t

[15]

[16]

[17]

[18

[19

[20]

[21]

[22

[23

[24]

[26]

[27

[28

2016. WTF-PAD. https://github.com/wtfpad/wtfpad

2018. tor-browser-crawler. https://github.com/onionpop/tor-browser-crawler
2021. AdaptiveFingerprinting. https://github.com/SmartHomePrivacyProject/
AdaptiveFingerprinting

K. Abe and S. Goto. 2016. Fingerprinting Attack on Tor Anonymity Using Deep
Learning. In Proc. of Aisa Pacific Advanced Network (APAN).

S.Bhat, D. Lu, A. Kwon, and S. Devadas. 2019. Var-CNN: A Data-Efficient Website
Fingerprinting Attack Based on Deep Learning. In Proc. of PETS’19.

W. D. Cadena, A. Mitseva, J. Hiller, J. Penekamp, S. Reuter, J. Filter, T. Engel, K.
Webhrle, and A. Panchenko. 2020. TrafficSliver: Finghting Website Fingerprinting
Attacks with Traffic Splitting. In Proc. of ACM CCS’20.

X. Cai, R. Nithyanand, and R. Johnson. 2014. CS-BuFLO: A Congrestion Sensitive
Website Fingerprinting Defense. In Proc. of 13th ACM Workshop on Privacy in
Electronic Society.

W. Cui, T. Chen, C. Fields, J. Chen, A. Sierra, and E. Chan-Tin. 2019. Revisting
Assumtions for Website Fingerprinting Attacks. In Proc. of ACM ASIACCS’19.
Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In Proc. of IEEE S&P’12.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, and V. Lempitsky. 2016. Domain-Adversarial Tranining of Neural
Networks. Journal of Machine Learning Research (2016).

Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In Proc. of USENIX Security’20.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Proc. of the
International Conference on Nerual Information Processing Systems (NIPS 2014).
J. Hayes and G. Danezis. 2016. K-Fingerprinting: A Robust Scalable Website
Fingerprinting Technique. In Proc. of USENIX Security’16.

S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran. 2020. Protecting
against Website Fingerprinting with Multihoming. In Proc. of PETS 20.
Dominik Hermann, Rolf Wendolsky, and Hannes Federrath. 2009. Website Fin-
gertinging: Attacking Popular Privacy Enhancing Tehnologies with the Multi-
nomial Naive-Bayes Classifier. In Proc. of ACM Workshop on Cloud Computing
Security.

D. Ho, E. Liang, L. Stoica, P. Abbeel, and X. Chen. 2019. Population Based Aug-
mentation: Efficient Learning of Augmentation Policy Schedules. In Proc. of
ICML’19.

M. Imani, M. S. Rahman, N. Mathews, and M. Wright. 2019. Mockingbird: De-
fending Against Deep-Learning-Based Website Fingerprinting Attacks with Ad-
versarial Traces. (2019). https://arxiv.org/pdf/1902.06626.pdf.

R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz. 2018. Inside Job: Applying
Traffic Analysis to Measure Tor from Within. In Proc. of NDSS’18.

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. 2014. A Criticial Evaluation
of Website Fingerprinting Attacks. In Proc. of ACM CCS’14.

M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. 2016. Toward an Efficient
Website Fingerprinting Defense. In Proc. of ESORICS’16.

G. Koch, R. Zemel, and R. Salakhutdinov. 2015. Siamese Neural Networks for
One-shot Image Recognition. In Proc. of the 32th International Conference on
Machine Learning (ICML’15).

Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information
Leakage in Website Fingerprinting Attacks and Defenses. In Proc. of ACM CCS’18.
Marc Liberatore and Brian Neil Levine. 2006. Inferring the Source of Encrypted
HTTP Connections. In Proc. of ACM CCS’06.

M. Long and J. Wang. 2015. Learning transferable features with deep adaptation
networks. In Proc. of ICML’15.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579-2605.

M. Nasr, A. Bahramali, and A. Houmansadr. 2020. Blind Adversarial Network
Perturbations. (2020). https://arxiv.org/pdf/2002.06495.pdf.

Se Eun Oh, S. Sunkam, and N. Hopper. 2019. p-FP: Extraction, Classification, and
Predication of Website Fingerprints. In Proc. of PETS’19.

S.J. Pan and Q. Yang. 2009. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering (2009).

160

[29

(30]
(31]

[32

(33]

[35

[36]

[37

[38]

w
20,

[40

[41

[42]

[43

[44

[46]

[47]

[48

[49

A

CODASPY 21, April 26-28, 2021, Virtual Event, USA

A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Penekamp, K. Wehrle, and T.
Engel. 2016. Website Fingerprinting at Internet Scale. In Proc. of NDSS’16.

O. M. Parki, A. Vedaldi, and A. Zisserman. 2015. Deep Face Recognition. In British
Machine Vision Association.

V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen. 2018. Auto-
mated Website Fingerprinting through Deep Learning. In Proc. of NDSS’18.

F. Schroff, D. Kalenichenko, and J. Philbin. 2015. FaceNet: A Unified Embedding
for Face Recognition and Clustering. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

C. Shorten and T. M. Khoshgoftaar. 2019. A Survey on Image Data Augmentation
for Deep Learning. Journal of Big Data 6, 60 (2019).

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom.
2019. Robust Website Fingerprinting Through the Cache Occupancy Channel. In
Proc. of USENIX Security’19.

P. Sirinam, M. Imani, M. Juarez, and M. Wright. 2018. Deep Fingerprinting:
Understanding Website Fingerprinting Defenses with Deep Learning. In Proc. of
ACM CCS’18.

Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew Wright.
2019. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting
with N-shot Learning. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 1131-1148.

B. Sun, J. Feng, and K. Saenko. 2016. Return of Frustratingly Easy Domain
Adaption. In Proc. of AAAI Conference on Artificial Intelligence.

Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf. 2014. Deepface: Closing the
gap to human-level performance in face verification. In Proc. of IEEE CVPR’14.
E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. 2017. Adversarial Discriminative
Domain Adaptation. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. (2014).
https://arxiv.org/pdf/1412.3474.pdf.

Tao Wang. 2020. High Precision Open-World Website Fingerprinting. In Proc. of
IEEE S&P’20.

Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
2014. Effective attacks and provable defenses for websitefi ngerprinting. In
23rd {USENIX} Security Symposium ({USENIX} Security 14). 143-157.

Tao Wang, Xiang Cui, Rishab Nithyannand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks on Provable Denfenses for Website Fingerprinting. In Proc. of
23rd USENIX Security Symposium.

T. Wang and I. Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. In Proc. of PETS’16.

T. Wang and I. Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In Proc. of USENIX Security’17.

Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang. 2018. A Multi-Tab Website
Fingerprinting Attack. In Proc. of ACSAC’18.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transfer-
able are features in deep neural networks?. In Advances in neural information
processing systems. 3320-3328.

Zhi-Hua Zhou and Ji Feng. 2017. Deep Forest: Towards an Alternative to Deep
Neural Networks. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence. 3553-3559.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.
Proc. IEEE (2020).

APPENDIX

Tuned Hyperparameters. The tuned hyperparameters of Domain
Discriminator and Source Classifier in our method (AF-SingleSource)
are described in Table 10. We run grid search and select the ones
that derive the highest accuracy in the closed-world evaluation. In
our experiments, we set tradeoffparameter A (in Eq. 4) as 1 and the
value of learning rate « (in Eq. 4) as 1 x 107,

Table 10: Tuned Hyperparameters in AF-SingleSource.

Parameters Search Space Tuned
Classifier Layer Type Convolution, Fully-connected | Convolution
Classifier Depth {2,3,4} 2
Discriminator Layer Type | Convolution, Fully-connected | Convolution
Discriminator Depth {2,3,4} 3
Embedded Vector Size {64,128, 256,512} 512

