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Abstract—Website fingerprinting can infer which website a
user visits in Tor networks by eavesdropping and analyzing
encrypted traffic patterns. Recent attacks built upon deep neural
networks can achieve more than 98% accuracy. To mitigate the
privacy leakage under website fingerprinting, effective defenses,
such as Walkie-Talkie, have been proposed, where the attack
accuracy can be mitigated to 50% at most. In this paper, we
propose a cross-trace website fingerprinting, which leverages
the semantic correlation of the content of webpages across
traffic traces to improve attack accuracy when existing defenses
are enabled. Our experimental results on real-world datasets
demonstrate that our proposed cross-trace website fingerprinting
can completely defeat Walkie-Talkie, in which an attacker can
still achieve more than 70% accuracy over defended data.

Index Terms—Encrypted Traffic Analysis, Machine Learning,
Privacy

I. INTRODUCTION

Website fingerprinting [1]-[3] can infer which website a
user visits by analyzing encrypted traffic patterns without
decryption. It can be formulated as a supervised learning prob-
lem in machine learning. Recent studies [4]-[10] leveraging
deep learning can achieve very high accuracy (e.g., 98%).
To mitigate the privacy leakage under website fingerprinting
attacks, many defenses [11]-[18] have been proposed. For
instance, with Walkie-Talkie [14], which matches the traffic
pattern of a sensitive website with the traffic pattern of a
decoy website, an attacker’s attack accuracy is reduced to 50%
in theory, i.e., cannot distinguish a sensitive website from a
decoy website based on encrypted traffic.

However, the existing studies in website fingerprinting only
focus on attacking single traffic traces, where the prediction of
a website is determined based on the traffic pattern of one trace
independently. The correlation across multiple traces of a user
has not been well investigated. The correlation across multiple
traffic traces can be found easily in the real world. For instance,
a user often visits multiple consecutive web pages, where the
content of these web pages are semantically correlated to a
specific topic (e.g., “covid testing”). This correlation can be
utilized in an attack to identify decoy webpages as the decoy
webpages generated by existing defenses (e.g., Walkie-Talkie)
do not include the corresponding correlation.

In this paper, we propose a cross-trace website fingerprint-
ing attack, which leverages the potential semantic correlation
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across traffic traces to compromise existing defenses. More
specifically, our attack first leverages the existing attacks to
output confidences/scores of top-m webpages of each single
defended trace. Next, we add a semantic similarity evaluation
component, which adjusts the confidences of top-m webpages
based on the potential semantic correlations across multiple
traffic traces. Any semantic similarity evaluation method, such
as TF-IDF [19] or Word Mover’s Distance [20], can be
integrated into this attack. As a result, the true label of a traffic
trace can still be learned even if a traffic trace is protected by
existing defenses. Our main findings are summarized below:

e« We collect a real-world dataset (100 web pages with
250 traces per webpage) from Tor to examine the per-
formance of cross-trace website fingerprinting. Unlike
previous studies, which select webpages based on Alexa
top websites, we choose the webpages based on popular
keywords searched in Google to capture/simulate the
semantic correlations across multiple traffic traces.

e Our experimental results show that our cross-trace
website fingerprinting can completely defeat Walkie-
Talkie. Specifically, single-trace website fingerprinting
can achieve 71.0% accuracy (with no defense) and only
50.4% accuracy (with Walkie-Talkie). With our cross-
trace website fingerprinting, the attack accuracy regains
to 72.5% (with Walkie-Talkie). In other words, Walkie-
Talkie does not offer any protection under our cross-trace
website fingerprinting.

o We examine four well-known semantic similarity evalua-
tion methods, including TF-IDF [19], BERT [21], GloVe
[22], and Word Mover’s Distance [20] respectively, in our
experiments. Our experimental results suggest that three
of them, including TF-IDF, GloVe, and Word Mover’s
Distance, can defeat Walkie-Talkie in cross-trace website
fingerprinting, where TF-IDF is the most effective one
among the three.

o Our experimental results also show that the latest attacks
[15], [16] based on adversarial examples, although cur-
rently cannot be completely implemented/integrated with
Tor in the real-world as Walkie-Talkie, are robust under
our cross-trace website fingerprinting attack.

Reproducibility. The source code and datasets of this study
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Fig. 1. The system and threat model.

are made publicly available [23] for others to reproduce our
results.

II. BACKGROUND

System and Threat Model. As illustrated in Fig. 1, we
consider a system model including a user, an attacker, and a
web server. This user visits the webserver through Tor net-
works. The network traffic between the user and a web server
is encrypted. We assume there is an attacker eavesdropping
on encrypted traffic between a user and the first Tor relay.
This attacker aims to infer which website this user visits by
analyzing encrypted traffic patterns. As in previous studies [2],
[5]-[8], we assume that an attacker cannot decrypt packets. In
addition, we assume that a user visits one website each time.

A traffic trace contains information of a sequence of in-
coming and outgoing network packets associated with one
website visit. Given a traffic trace, we only keep the direction
of each packet. We use +1 to represent an outgoing packet
(to a website) and -1 to indicate an incoming packet (from
a website). Each traffic trace is a vector of +1s and -1s. We
also keep the same length for all the vectors by trimming or
padding Os at the end of each vector to feed them as inputs
for deep neural networks.

Closed-World Setting. Website fingerprinting can be evalu-
ated in two settings, including the closed-world setting and the
open-world setting. We focus on a closed-world setting only
in this paper. We defer the discussions on the challenges of
examining the open-world setting in the cross-trace scenario in
Sec. VI. In a closed-world setting, we assume that a user only
visits a set of monitored websites and the attacker knows this
set of monitored websites. Given an unlabeled traffic trace,
an attacker infers which specific website it belongs to. As
a result, the closed-world evaluation is formulated as multi-
class classification. Accuracy is used as a metric to measure
the attack performance in the closed-world evaluation.

III. CROSS-TRACE WEBSITE FINGERPRINTING
A. Main Ildea

In this paper, we propose a cross-trace website fingerprint-
ing attack, which can defeat existing defenses (especially the
ones pairing a decoy webpage with a sensitive webpage)
against single-trace website fingerprinting. The main idea
of our proposed cross-trace website fingerprinting is to first
output top-m predictions of each single (defended) trace with
a classifier and then integrate semantic similarity evaluation

275

Uy (0.5) Semantic Similarity Uy (1‘0)
Evaluation
T1 | Trained u2(0'5) - - ug (0.0)
— | Classifier |~ dl 2 —_—
diy dz,g
Trained do 1
o —
T, |Classifier . . —>
: 01(0.5) (1.0)
v2(0.5) | dy; + min{dy,, | v2(0.0)
dio,da1,dao}

Fig. 2. The semantic similarity of two websites is denoted as d; ; =
distance(u;,v;). If websites w1 and v1 have the minimal distance, where
dy,1 <+ min{di1,d1,2,d2,1,d2,2}, our cross-trace fingerprinting infers
website w1 as the label of traffice trace T} and website vy as the label of
traffic trace T5.

as an additional component. By calculating the semantic simi-
larity of the content/text of these top-m predictions/webpages
over different single traces, this additional component adjusts
the confidences of the top-m predictions and jointly infers the
true class for each trace.

The intuition behind our idea is that a user often visits mul-
tiple webpages consecutively, where the content/text of these
webpages are semantically correlated. However, on the other
hand, their decoy webpages generated by existing defenses
are not semantically correlated. For example, a user can visit
two consecutive web pages that are related to a topic (e.g.,
“U.S. presidential election”) while the decoy (espn.com) of
the first webpage and the decoy (ieee.com) of the second
webpage are completely unrelated.

B. Details of Proposed Cross-Trace Website Fingerprinting

A high-level description is illustrated in Fig. 2. For ease of
presentation, we assume 2 traces are evaluated jointly each
time and top-m (m = 2) predictions of every single trace are
examined with the semantic similarity evaluation component.
We assume a state-of-the-art defense, named Walkie-Talkie
[14], has been applied, where an attacker cannot achieve more
than 50% accuracy (in theory) over every single trace.

As shown in Fig. 2, given two defended traffic traces
Ty, T5, our proposed cross-trace website fingerprinting works
as follows.

o Step I: it outputs top-2 predictions of each trace (web-
sites uy,us for Ty and websites vy, wvs for T5). Due to
the existing defense, the classifier’s confidence on each
website in the top-2 predictions is at most 0.5.

o Step 2: it evaluates the semantic similarity between web-
site u; and website v;, where 7 € {1,2} and j € {1,2},
and finds the pair of (u,,v;) with the minimal distance
in text similarity. (i.e., argmin, ;{d; ;}).

e Step 3: it adjusts the confidences of top-2 predictions
of each trace based on the pair and outputs the top-1
prediction of each trace.

Note that the above process can be easily expanded to support
the cases where the number of single traces is greater than
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2 and the value of m (i.e., the number of top candidates) is
greater than 2.

C. Semantic Similarity Evaluation Methods

In this study, we examine multiple existing semantic simi-
larity evaluation methods, including TF-IDF (Term Frequency-
Inverse Document Frequency) [19], BERT (Bidirectional
Encoder Representations from Transformers) [21], GLoVE
(Global Vectors for Word Representation) [22], and Word
Mover’s Distance (WMD) [20]. We select these four methods
as they often perform well on evaluating the similarity of
(long) text. We briefly explain each method below. Note that
other semantic similarity evaluation methods can also be used
in our cross-trace website fingerprinting as well as long as
they can effectively computing semantic similarity over text.

TF-IDF. TF-IDF [19] is a common technique in infor-
mation retrieval to measure the similarity of two documents.
Each word is quantified and the weight of each word in a
document is calculated. The weight is an indicator of a word’s
significance in a document. Term Frequency (TF) and Inverse
Document Frequency (IDF) are the two essential elements of
TF-IDF. The number of times a word appears in a document
is measured by TF, and the importance of a word is measured
by IDF. Given a document, TF-IDF transforms it into a vector.
The distance/similarity of two documents can be computed via
the cosine similarity of two corresponding vectors.

BERT. BERT [21] is a language model that is built upon
bidirectional transformers and encoders. It can be fine-tuned
for different purposes and contexts. In our study, a pre-
trained BERT model is utilized to convert a text/document
into a vector. The distance/similarity of two documents can
be computed via the cosine similarity over their vectors. The
model generates word embedding dynamically based on the
context in which a specific word was used, rather than a
predetermined representation of the word, resulting in a more
accurate feature representation of the word.

GLoVe. Glove [22] is an effective algorithm for producing
word embedding that uses statistical knowledge rather than
context windows. Specifically, GLoVe collects global statistics
of the words in a corpus in addition to local statistics.
A co-occurrence matrix is used to determine the semantic
association between words. For instance, the entry at i-th row
and j-th column in the matrix decides how many times word
i occurs with word j. A probability p(i|j) is computed, which
indicates the probability of occurrence of word in i-th row
with the word in j-th column in the corpus. In this paper, a
pre-trained GloVe model provided by [22] was leveraged to
generate the embedding of the words. After obtaining vectors,
cosine similarity is calculated to measure the distance of two
vectors.

Word Mover’s Distance (WMD). Given two documents,
WMD [20] first obtains the embedded vector of each word in
each document using word embeddings (e.g., word2vec). Next,
WMD computes the distance between the two documents,
which is the minimum distance that embedded vectors of one
document need to travel to the embedded vectors of the other
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document using classic Earth Mover’s distance transportation
problem.

IV. PERFORMANCE EVALUATION
A. Data Collection Setting

In this study, we collect encrypted traffic in Tor to evaluate
the performance of our proposed attack. Specifically, we
leverage five virtual machines (with identical configuration) on
campus to collect encrypted Tor traffic. Each virtual machine
runs Ubuntu 18.04 with a 2.7GHz CPU and 4GB RAM. We
use tcpdump to capture traffic and we utilize a tool, named
tor-browser—crawler [24] to automatically visit each
webpage over Tor browser (version 9.0.5). This tool was used
in several previous studies [5] to collect Tor traffic. For each
traffic trace, we collect the traffic for 60 seconds. A screenshot
of a webpage was also captured along with a traffic trace. The
screenshot was utilized later to verify whether a corresponding
traffic trace is invalid due to reasons such as to request timeout,
CAPTCHA verification, and browser crash. Invalid traces were
removed.

Different from previous studies, in which only need to
collect encrypted traffic, we also need to collect the text
of each webpage to examine the semantic correlation across
different webpages. Specifically, given a URL of a webpage,
we leverage a Python package named Beautiful-Soup
to automatically parse text from HTML and XML tags. These
HTML tags are filtered out and only the text of a webpage
was saved to a text file locally. We also manually verified
the parsed text of each webpage. If the text was not parsed
properly compared to the content of a webpage, we revisited
the webpage and obtained the text manually.

B. Datasets

With the data collection setting described above, we col-
lected two datasets of encrypted Tor traffic and we denote
them as Alexa-100, and Keyword-100. An overview of the
scales of the datasets is described in Table I.

TABLE 1
AN OVERVIEW OF THE DATASETS.

No. of Webpages
100
100

No. of Traces per webpage
250
250

Alexa-100
Keyword-100

Alexa-100. This dataset includes encrypted traffic traces
of 100 websites, where each website (or class) has 250
traces. The 100 websites were selected from Alexa top-130
websites. Most of the previous research leveraged Alexa top
websites to select websites/classes in the evaluation of website
fingerprinting. The reason that we select 100 websites from
top-130 websites is because some websites from the top-130
websites do not offer good quality of traffic data (e.g., some
websites block Tor traffic).

Keyword-100. Different from previous studies, we inves-
tigate the semantic correlation of two websites/webpages of
two consecutive encrypted traffic traces. However, selecting
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Fig. 3. The architecture of the DF model proposed in [5] (FC: fully-connect)

websites randomly from Alexa top websites does not result in
semantic correlation among websites/classes. In other words,
the way of selecting websites in previous studies is not suitable
for our study in this paper. Therefore, we collect a Keyword-
100 dataset to better simulate the semantic correlation across
websites that could happen to real-world users.

In the Keyword-100 dataset, we select websites/classes
related to popular keywords, which can help us simulate
the case where a real-world user visits multiple different
but content-correlated websites due to a keyword search. For
example, in practice, when a user is interested in a specific
subject/topic (e.g., “covid-19” or “presidential election”), it is
very common that a user will first search the keyword by using
a search engine online and then visit multiple websites from
the search results to learn more detailed information about the
subject/topic.

Specifically, we selected top-20 keywords in 2019 from
Google Trends, which offers top keywords that people search
using Google — the most popular search engine. Given each
keyword from the top-20 keywords, we searched it with
Google and then randomly selected five web pages from the
top-50 search results provided by Google. This simulates the
case that a real-world user visits web pages based on Google’s
search results but may not necessarily follow the order of
these search results offered by Google. Overall, we obtained
a list of 100 webpages (i.e., 5 webpage per keyword and 20
keywords) and we used these 100 webpages as the 100 classes
in Keyword-100 dataset. For each webpage/class in Keyword-
100, we collected 250 encrypted traffic traces in Tor. Traffic
traces from the websites associated with the same keyword
were randomly paired/grouped in our experiments to simulate
the semantic correlation of two encrypted traffic traces. The
list of 20 keywords that we used can be found in Appendix.

C. Experiment Setting

All the experiments were conducted on a Linux machine
with Ubuntu 18.04, 2.8GHz CPU, 32GB RAM, and an
NVIDIA Titan RTX GPU. Given a dataset, we use 80% for
training, 10% for validation, and 10% for testing.

WF Classifier. We implemented a Convolutional Neural
Network as a classifier to infer the label of each traffic trace.
The architecture of this CNN is the DF model proposed in [5].
We choose the DF model as the classifier as it is currently
one of the most effective models in website fingerprinting.
The architecture of this DF model is highlighted in Fig. 3. It
consists of two types of blocks, namely, Block 1 and Block 2.
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Block 1 is repeated four times. It consists of two convolutional
layers and a pooling layer. Batch normalization is applied
before the activation function at each convolutional layer.
ReLU or ELU is selected as the activation function. Block
2 is repeated two times. It consists of a fully connected layer.
Batch normalization is applied before the activation function at
each fully connected layer. ReLU is selected as the activation
function. We implemented the DF model with Tensorflow 2.0
and leveraged Microsoft NNI (Neural Network Intelligence)
[25] to tune the hyperparameters.

Semantic Similarity Evaluation. We investigated four
semantic similarity evaluation methods, including (1) TF-IDF
with cosine similarity, (2) BERT embeddings with cosine
similarity, (3) Word Movers Distance (WMD), and (4) GLoVe
embeddings with cosine similarity.

We implemented each method in Python. The im-
plementation of BERT embeddings [21] was based on
sentence-transformers library and the implementation
of WMD is based on gensim library. The GLoVe embeddings
were generated using a pre-trained model available online
[22]. The Cosine similarity between the two vectors gener-
ated using TF-IDF, BERT, and GLoVe was computed using
scikit-learn library.

D. Closed-World Evaluation

Experiment A.1: Attack results on non-defended data
over single traces. We first examine the attack results of
website fingerprinting over single traces on non-defended data
to demonstrate the results of website fingerprinting without
defense. The attack accuracy was examined with the DF model
as a classifier. The DF model was trained based on traces
from each dataset, and the accuracy in this experiment was
measured based on single traces as in previous studies without
considering semantic correlation across traces. We examine the
results over Alexa-100 and Keyword-100. In addition, we also
validate the results over the DF-95 dataset from [5] to ensure
we implement the DF model correctly.

TABLE 11
ACCURACY ON NON-DEFENDED DATASETS (SINGLE TRACES).

Training | Validation | Testing

Alexa-100 92.0% 86.1% 85.4%
Keyword-100 74.4% 71.3% 71.0%
DF-95 [5] 99.5% 97.7% 97.9%

As we can observe from Table II, the attack over the Alexa-
100 dataset and DF-95 dataset achieve high accuracy with
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85.4% and 97.9% in testing. These results are consistent with
previous studies in website fingerprinting over single traces.
This indicates that the CNN is implemented and tuned properly
for website fingerprinting.

The attack accuracy over Keyword-100 achieves 71.0% in
testing, which is not as high as the one from Alexa-100.
We believe this is likely because some of the web pages
in Keyword-100 are from the same websites, which derived
similar traffic patterns. For instance, when we searched two
different keywords, it is common to see that webpages from
youtube.comor wikipedia.com are included in the top
search results for both keywords.

Experiment A.2: Attack results on defended data over
single traces. In this experiment, we investigated the attack
accuracy of website fingerprinting on defended data over
single traces. Specifically, one of the state-of-the-art defenses,
Walkie-Talkie [14] was investigated. We implemented Walkie-
Talkie by leveraging the source code released by the authors
[14].

In Walkie-Talkie, the browser communicates in half-duplex
mode instead of a full-duplex mode of communication. Fur-
ther, burst molding is performed for two different web pages
such that both the traffic pattern of the two web pages
looks identical. As a result, Walkie-Talkie can reduce the
attack accuracy in the closed-world setting to 50% in theory.
The actual experimental results are normally close to 50%
according to the results in previous studies. We generated the
defended data for Alexa-100 and Keyword-100 using Walkie-
Talkie and examined the attack accuracy over defended data
using the DF model.

Results shown in Table III indicate that we implemented
Walkie-Talkie properly. For example, the attack accuracy over
defended data produced by Walkie-Talkie is 56% and 50.3%
in testing for Alexa-100 and Keyword-100. These results are
close to the theoretical result (i.e., 50% accuracy) offered by
Walkie-Talkie.

TABLE III
ACCURACY ON DEFENDED DATASETS (SINGLE TRACES).

Training | Validation | Testing
Alexa-100 66.1% 56.6% 56.0%
Keyword-100 54.2% 47.5% 50.3%

Experiment A.3: Attack results on defended data (gen-
erated by Walkie-Talkie) with cross-trace website fin-
gerprinting. In this experiment, we demonstrated how our
proposed cross-trace website fingerprinting can defeat Walkie-
Talkie when there are semantic correlations across encrypted
traffic traces. We evaluated the attack performance over the
defended data of Keyword-100, where the defended data are
generated with Walkie-Talkie. The DF model is still trained
with training traces over single traces. During the test, the
semantic similarity evaluation across candidate websites can
adjust the score/confidence of labels, which improves the
accuracy of test traces in the cross-trace scenario as explained
in Sec. III.
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For the test traces in Keyword-100, we randomly pair two
traces as follows to simulate the case where a user visits two
consecutive web pages with semantic correlation. Specifically,
given a test trace f1, we randomly select another test trace fo,
where f; and f, are associated with two different webpages
but the two webpages are search results of the same keyword.
We obtained an ordered pair (fi, f2) indicating trace f;
happens right before trace fo on a user side. Each test trace
is used only in one pair. We evaluate the performance of
cross-trace website fingerprinting multiple times and randomly
generate the pairs for each time.

As shown in Table IV, our proposed cross-trace website
fingerprinting can defeat Walkie-Talkie. For example, when
using TF-IDF, GLoVe, or WMD to measure the semantic
correlation of candidate webpages inferred by the DF model,
our method can achieve attack accuracy that is much higher
than 50% over defended data generated by Walkie-Talkie.
Particularly, when we use TF-IDF, our method can even
achieve the same level of accuracy as the one over non-
defended data, which indicates Walkie-Talkie fails to provide
any privacy protection in the cross-trace evaluation.

In addition, we observe that different text similarity meth-
ods lead to different improvements in attack accuracy. For
example, TF-IDF is the most effective one while BERT is not
able to improve the attack accuracy over defended data. This
is likely because BERT is not able to accurately measure the
semantic correlation of different web pages in our evaluation.

Experiment A.4: The impact of the number of top
predictions on single traces. In this experiment, we increase
parameter m, the number of top predictions on single traces,
and examine how it will affect the performance of cross-
trace website fingerprinting. Specifically, rather than obtain
the top-2 labels for each trace in the last experiment, we
obtain top-3 or top-4 labels for each trace, and then compute
the corresponding semantic correlation over these candidates
across two traces in each pair formed from the last experiment.
We focus on the results with TF-IDF and GLoVe.

As we can see from Table V, the attack accuracy of cross-
trace website fingerprinting decreases when we increase the
value of m. This is expected, when more candidate webpages
are selected for each trace, webpages with similar content
will likely be selected for a single trace, which leads to
multiple similar semantic distances with candidate webpages
of the other trace in the same ordered pair. These similar
semantic distances make it difficult to distinguish the true
labels/webpages of the two traces in the pair.

Experiment A.5: The impact of the number of
semantically-correlated traces. We examine the impact of the
number of semantically correlated traces in cross-trace website
fingerprinting. Specifically, in previous examples, we assume
that a user visits « 2 semantically-correlated webpages,
which result in a = 2 consecutive traffic traces.

In this experiment, we further consider the cases with aw =
{2,3,4}, i.e., a user visits three, four, or five semantically
correlated webpages consecutively. We evaluate with defended
Keyword-100 dataset. The defended data are still generated by
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TABLE IV
ACCURACY ON DEFENDED DATASETS (WALKIE-TALKIE [14]) USING OUR PROPOSED CROSS-TRACE WEBSITE FINGERPRINTING

No Defense With Defense
; Without Our Method [ TF-IDF + Cosine | GLoVe + Cosine | WMD [ BERT + Cosine
Keyword-100 | 71.0% 50.4% | 725% | 595% [ 630% | 515%
TABLE V defended data without our method is only 11.3%, which is

THE IMPACT OF THE NUMBER OF TOP CANDIDATES ON SINGLE TRACES
WITH KEYWORD-100 DATASET

TF-IDF + Cosine | GLoVe + Cosine
m=2 72.50% 59.53%
m =3 62.75% 46.92%
m=4 53.76% 38.34%

Walkie-Talkie. We fix the number of top candidates per single
trace as m = 2 in this experiment.

We use a similar approach as the case of « 2 in
Experiment A.3 to select traces. For example, given a = 3,
we randomly choose traces f1, f2, and f3 from test traces and
form a 3-trace sequence (f1, f2, f3), where the three traces
belong to three different web pages but the three webpages
are from the search results of the same keyword. Each trace
is included in one 3-trace sequence. We assume that a user
visits the three webpages sequentially and the three traces were
captured by the attacker sequentially. We repeat the similar
process for av = 4.

TABLE VI
THE IMPACT OF THE NUMBER OF SEMANTICALLY-CORRELATED TRACES
WITH THE KEYWORD-100 DATASET FOR m = 2.

TF-IDF + Cosine | GLoVe + Cosine
a=2 72.5% 59.5%
a=3 73.2% 61.0%
a=4 73.8% 61.3%

As we can observe from Table. VI, if a user visits more web-
pages that are correlated, then the attack accuracy can increase
slightly. This indicates that cross-trace website fingerprinting
can reveal more privacy when it monitors and evaluates more
consecutive traces together from a user.

Experiment A.6: Attack results on defended data (gener-
ated by Adversarial Examples) with cross-trace website fin-
gerprinting. In this experiment, we evaluate the performance
of cross-trace website fingerprinting over defended data gen-
erated by the recent defenses [15], [16] based on adversarial
examples. The main idea of those defenses is to modify the
traffic pattern with minor changes such that it can force a
known deep neural network (i.e., a WF classifier) to predict
an incorrect class. Specifically, we leverage Mockingbird [15],
which is one of these recent defenses, to generate defended
data of the Keyword-100 dataset. We use TF-IDF and GLoVe
as two semantic similarity evaluation methods and pair the test
traces using the same way we did in Experiment A.3.

As shown in Table. VII, our proposed cross-trace website
fingerprinting is not effective over the defended data generated
by Mockingbird. This is because the attack accuracy over the
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very low and the true label is not even included in the top-
m candidates (m 2 in this experiment). As a result, the
additional semantic similarity evaluation across those top-m
candidates does not help to further identify the true label of a
single trace. From the results we have in this experiment, we
can conclude that, in general, the defenses (e.g., Mockingbird)
based on adversarial examples are more robust than the
defenses (e.g., Walkie-Talkie) based on super-sequences under
cross-trace website fingerprinting.

On the other hand, we would like to point out that Walkie-
Talkie can be implemented in practice while whether the
defenses based on adversarial examples can be implemented
to defend website fingerprinting in the real world remains
unclear. More specifically, the current defenses based on
adversarial examples need to assume the entire traffic trace
is known in advance, which is a very strong assumption and
difficult to overcome in practice (i.e., sending the current
defended packet needs to the know the information of a future
packet, which has not happened yet). Moreover, these defenses
also assume that a defender knows the specific parameters and
architectures of a deep neural network used by an attacker
in website fingerprinting. This is another extremely strong
assumption, as a real-world attack can always adapt and
freely switch to different parameters and architectures. In other
words, our proposed cross-trace website fingerprinting remains
a real threat to the current practical defenses.

V. RELATED WORK
A. Website Fingerprinting Attacks

Website fingerprinting can be formulated as a supervised
learning problem in machine learning. Initial studies [1]-
[3] manually extract features from raw encrypted network
traffic and leverage traditional machine learning algorithms to
infer which website a user visits. Many recent studies [4]—[8]
have shown that deep learning can achieve higher accuracy
in website fingerprinting. In addition, with deep learning, an
attack can automatically extract features. For instance, Sirinam
et al [5] proposed Deep Fingerprinting, which is built upon
Convolutional Neural Networks and achieves 98% accuracy
in the closed-world setting.

A couple of recent studies [9], [10] leverage transfer learn-
ing to overcome the discrepancy between training data and
test data, where training data and test data are collected
with different network setups. The two studies also show
that transfer learning can significantly reduce the amount of
data needed for carrying out website fingerprinting. Studies
in [26], [27] addressed website fingerprinting in the multi-tab
scenario, where a user could open multiple websites at the
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TABLE VII
ACCURACY ON DEFENDED DATASETS (MOCKINGBIRD [15]) USING OUR PROPOSED CROSS-TRACE WEBSITE FINGERPRINTING

No Defense With Defense
Without Our Method [ TF-IDF + Cosine [ GLoVe + Cosine
Keyword-100 71.0% 11.3% ‘ 11.1% ‘ 10.3%

same time. Juarez et. al. [28] investigated the base rate fallacy
in the open-world evaluation of website fingerprinting. Wang
[29] proposed to use precision to measure the performance
in the open-world evaluation. Wang et. al. [30] examined
voice command fingerprinting over encrypted traffic of smart
speakers using deep learning to infer which voice command a
user says to a smart speaker with high accuracy.

B. Defenses against Website Fingerprinting

Many defenses [11]-[18] have been proposed to protect user
privacy against website fingerprinting. The general approach
of the existing defenses is to somehow modify the pattern of
encrypted traffic such that it is more difficult for an attacker
to distinguish the traffic pattern of one website from others.
Wang et al. [14] proposed a defense, named Walkie-Talkie,
which combines traffic traces of two different websites into a
super sequence. Gong and Wang [18] proposed two defenses,
FRONT, and GLUE. FRONT introduces more random dummy
packets to the front part of a traffic trace to hide more critical
features against website fingerprinting. GLUE, on the other
hand, inserts dummy packets between two traces, making it
impossible for an adversary to determine the two traffic traces
apart. Two recent studies [15], [16] produce adversarial exam-
ples of encrypted traffic to mitigate the attack accuracy against
deep-learning-based attacks. Studies in [31], [32] investigated
effective defenses against deep-learning-based stream finger-
printing over encrypted traffic in streaming services (e.g.,
YouTube).

VI. DISCUSSIONS AND LIMITATIONS

In this study, we focus on a closed-world setting but do not
carry out evaluations in an open-world setting. The reason is
that it is difficult to integrate semantic similarity evaluation
in the current open-world evaluation. More specifically, to
perform semantic similarity, we need to assume that the
content/text of a webpage is known. This is reasonable for
an attacker to obtain in the closed-world setting as an attacker
can easily retrieve the text by visiting each webpage. However,
in the open-world setting, a user can visit some webpages that
an attacker does not know. Without knowing which webpages
(more specifically, the content of those webpages), it is infea-
sible to measure semantic similarity. It would be interesting to
see how to perform cross-trace website fingerprinting in the
open-world setting. We leave it as future work.

VII. CONCLUSION

We propose a cross-trace website fingerprinting by mea-
suring the semantic correlations among multiple traffic traces.
Our results over large-scale real-world datasets show that our
proposed attack can completely defeat current defenses based
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on super-sequences. On the other hand, our results suggest that
the latest defenses based on adversarial examples are robust
against our cross-trace website fingerprinting.
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APPENDIX

Keywords. The list of keywords used in Keyword-100
Dataset can be found in Table VIII.

TABLE VIII
KEYWORDS USED IN KEYWORD-100 DATASET

21 Savage Copa America
James Charles Nipsey Hussle
Baby Shark Disney Plus

Noom Diet

Felicity Huffman
Notre Dame Cathedral
Game of Thrones

Jordyn Woods
Bryce Harper
Keanu Reeves
Cameron Boyce

Lori Loughlin R Kelly

Camp Style Government Shutdown

Luke Perry Rami Malek
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