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Precision adiabatic scanning calorimetry of a nematic – ferroelectric nematic 
phase transition
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ABSTRACT
In high-resolution adiabatic scanning calorimetry (ASC) experiments, data for the temperature 
dependence of the specific enthalpy, h(T), and of the specific heat capacity, cp(T), are simultaneously 
obtained, from which the order of the phase transition and critical behaviour can be evaluated. ASC 
was applied to study the nematic to ferroelectric nematic phase transition (N–NF) in the liquid crystal 
molecule 4-[(4-nitrophenoxy)carbonyl]phenyl 2,4-dimethoxybenzoate (RM734). The N–NF was found 
to be very weakly first order with a latent heat Δh = 0.115 ± 0.005 J/g. The pretransitional specific heat 
capacity behaviour is substantially larger in the high-temperature N phase than in the low-tempera
ture NF phase. In both phases the power-law analysis of cp(T) resulted in a critical exponent 
α = 0.50 ± 0.05 and amplitude ratio ANF/AN = 0.42 ± 0.03. The very small latent heat and the value 
of α indicate that the N–NF transition is close to a tricritical point. This is confirmed by a value of the 
order parameter exponent β ≈ 0.25, recently obtained from electric polarisation measurements. 
Invoking two-scale-factor universality, it follows from the low value of ANF/AN ratio that the size of the 
critical fluctuations is much larger in the NF phase than in the N phase.
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1. Introduction

The rod-shaped mesogenic molecule 4-[(4-nitrophenoxy) 
carbonyl]phenyl 2,4-dimethoxybenzoate (RM734) has 
recently been shown to exhibit a thermotropic phase tran
sition between a uniaxial dielectric nematic phase (N) and a 
lower temperature ferroelectric nematic phase, the NF 

phase, in the vicinity of T = 133°C [1]. The NF phase 
exhibits, in the absence of applied field, a permanent elec
tric polarisation density, manifested as a spontaneously 
broken symmetry in distinct domains of opposite polar 
orientation [2]. Polarisation reversal is mediated by field- 
induced domain wall movement, making this phase ferro
electric, a three–dimensional uniaxial nematic having a 

spontaneous, reorientable, polarisation density P(r), locally 
colinear with the nematic director field, n(r), giving the 
local average molecular long axis. This polarisation density 
increases monotonically upon cooling in the NF phase 
from a small value near the transition to saturate at a low- 
temperature value of ~6 µC/cm2, with no other significant 
birefringence or internal structural changes. This polarisa
tion is the largest ever measured for a fluid or glassy 
material and is close to the average value obtained by 
assuming perfect, polar alignment of molecular long axes. 
The ultimate polarised state at low temperature exhibits 
little response to large applied fields tending to increase P (i. 
e. E parallel to P).
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These conditions indicate that the ground state of the 
NF phase has, aside from fluctuations, uniform P and 
that it is a proper ferroelectric phase, where P is the 
principal order parameter. Under this condition, the N– 
NF transition can be viewed as Ising-like, with the N 
phase being a collection of molecules with long axes on 
average colinear with n but with disordered polar direc
tions (pi = 0) , and the NF phase also having long axes on 
average parallel to n, with polar order N(pi) = P. 
Atomistic molecular dynamic simulations of several 
hundreds of molecules reveal short-range interactions 
and correlations, including polar end-to-end associa
tion, that favour ferroelectric ordering. With these inter
actions this transition would be predicted to be second 
order with 3D critical exponents of the Ising universality 
class [3].

However, low-resolution differential scanning calori
metry (DSC) indicates that the transition is weakly first 
order, and the Mertelj group [4,5] has observed specta
cular paraelectric pretransitional effects upon cooling 
towards the transition in the N phase, including the 
softening of the splay elastic constant, Ks, and a diver
gence of the dielectric anisotropy Δε, that are distinctly 
mean-field like. The softening of Ks is due to the flexo
electric coupling between polarisation fluctuations and 
director splay as the transition is approached from 
above, observations which they have interpreted using 
a Landau–de Gennes model [4–6]. The free energy of 
Ref [5], f = ½ [τ(T)(1 + ξ(T)2q2)δPz(q) 2 + Ks qy

2δny(qy)2] 
+ γ qyδny(qy) δPz(qy), where ξ(T)2 = b/τ(T), τ(T) ∝ (T- 
Tc)/Tc, and q = qz + qy, includes OrnsteinZernicke 
polarisation fluctuations about q = 0, originating from 
short-range polar interactions, and the flexoelectric cou
pling of Pz to director splay. This model successfully 
describes a mean field-like behaviour of Ks(τ) and Δε(τ). 
This free energy is consistent with the NF phase having 
uniform P, with a weak tendency for splay that is sup
pressed by polarisation space charge effects.

An additional pretransitional effect not yet ade
quately characterised or described is the striking aniso
tropy of the pretransitional and coarsening correlations 
in the fluctuations of P through the transition, with the 
domains becoming increasingly extended along z, until 
they end up as polar regions separated by pure polarisa
tion reversal walls running largely parallel to z. [Ref. [2], 
Figs. S8,9)]. Given the significant anisotropies intro
duced into the NF phase by space charge effects, it is 
natural to consider that the polarisation charge energy 
UP associated with electric dipole–dipole interactions 
may also affect the phase transition and pretransitional 
fluctuations. The resulting interaction energy combines 
short-ranged ferroelectric and long-ranged dipole- 
dipole forces.

The short-range ordering effect of electrostatic inter
actions on the transition can be understood directly by 
considering a single dipolar RM734 molecule in the NF 

phase to be at the origin of a coordinate system sur
rounded by its neighbours. Referring to Figs. 7 and S10– 
13 of [2], neighbouring molecules are positionally cor
related, so, although the macroscopic electric field E = 0, 
correlations lead to local electric fields that stabilise 
polar ordering (the nearest neighbour Ising field). The 
RM734 molecule has parallel longitudinal dipoles at its 
two ends, which find themselves in inhomogeneous 
electric fields from their head-to-tail-associating neigh
bours, fields that stretch the molecule out along its polar 
axis, orientationally confining it in polar fashion.

The critical behaviour of such systems has been stu
died extensively in an effort to understand certain mag
netic materials that have short-range ferromagnetic 
exchange forces, but where the long-range dipolar inter
actions are also important [7,8]. In these systems, short- 
ranged interactions are included in a model 
Hamiltonian as nearest-neighbour Ising or 
Heisenberg-like, and the long-ranged dipolar interac
tions are calculated explicitly. Renormalisation group 
analysis shows that the long-range interactions make 
the magnetic correlations dipolar-anisotropic near the 
transition in the high-temperature phase [9,10], extend
ing them along z by strongly suppressing longitudinal 
charge density (@Pz=@z) fluctuations [7,8]. Specifically, 
starting with the free energy expression Equation (1) 
from Ref. [5] and adding the dipole–dipole interaction 
term UP from above, the structure factor for fluctuations 
in Pz becomes 

Pz qð ÞPz qð Þ�h i ¼ kBTχ qð Þ

where 
χ qð Þ ¼ ½τ Tð Þð1 þ � Tð Þ

2q2Þ þ ð2π=εÞ qz=qð Þ
2
�
�1. 

The dipole–dipole (third) term produces extended cor
relations that grow as ξ(τ) along x and y but as ξ(τ)2 

along z [8], suppressing χ(q) for finite qz as is observed 
qualitatively from the image sequences of the textures 
upon passing through the phase transition, and from 
their optical Fourier transforms [Ref. [2], Figs. S8,9)]. 
Because of this anisotropy, the correlation volume in 
this model grows in 3D as V ~ (τ)4 rather than the 
isotropic V ~ ξ(τ)3, reducing the upper marginal dimen
sionality of the transition to 3D, making the transition 
mean-field-like with logarithmic corrections, rather 
than fluctuation-dominated with 3D Ising universal
ity [11].

From the above overview of the present understand
ing and cited references, it is clear that theoretical mod
elling has led to the better insight in several aspects of 
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experimental results and observations of RM734. 
However, other aspects and possible theoretical propo
sitions require further experimental testing, as, for 
example, the order of the nematic to ferroelectric 
nematic (N–NF) transition and the nature of the pre
transitional critical behaviour. Although DSC measure
ments [1,2,12] have indicated a first-order character for 
the N–NF transition, some caution is required because 
of the inherent difficulty of DSC with the distinction 
between real latent heats and pretransitional fluctua
tion-induced enthalpy increases, as historically well 
documented, in particular for the nematic to smectic 
A transition [13–16]. In an effort to contribute to 
further understanding of the N–NF transition, we report 
high-resolution specific heat capacity and specific 
enthalpy results by high-resolution adiabatic scanning 
calorimetry (ASC).

2. Experimental

2.1. Adiabatic scanning calorimetry

2.1.1. Adiabatic scanning calorimetry: operational 
principle
ASC was developed to obtain simultaneously and con
tinuously the temperature evolution of the heat capacity 
Cp and the enthalpy H of a sample under investigation 
[15–20]. The basic concept of ASC is in applying a 
constant heating or cooling power to a sample holder 
containing the sample. In an ASC the sample holder is 
placed inside a surrounding adiabatic shield. In a heat
ing run the heat exchange between shield and sample 
holder is cancelled by keeping the temperature differ
ence zero at all times. In a cooling run the heat exchange 
is controlled and monitored. During a run the sample 
temperature T(t) is recorded as a function of time t. 
Together with the applied power P this directly results 
in the enthalpy curve 

H Tð Þ � H T0ð Þ ¼ ò
t Tð Þ

t0
Pdt ¼ P t Tð Þ � t0 T0ð Þ½ �; (1) 

where H(T0) is the enthalpy of the system at tem
perature T0 at the starting time t0 of the run. The heat 
capacity Cp(T) is easily calculated via the ratio of the 
know constant power P and the changing temperature 
rate _T ¼ dT=dt, 

Cp ¼
P
_T

: (2) 

The specific values of the heat capacity cp and of the 
enthalpy h are obtained by using the sample mass and 
the calibrated background values of the empty calori
meter and of the used sample cell. It should be noted 
that keeping P constant in Equation (2) is completely 

opposite to the operation of a DSC where one imposes a 
constant rate _T on a sample and on a reference and 
measures the difference in heat flux, ΔP tð Þ, between the 
sample and the reference.

2.1.2. Peltier-element-based adiabatic scanning 
calorimeter (pASC)
An essential requirement for a high-resolution adiabatic 
scanning calorimeter operating in the heating mode is 
the equality (mK or better) of the temperatures of the 
adiabatic shield and of the sample (holder) in weak 
thermal contact with this surrounding adiabatic shield. 
For cooling mode operations, a constant preset tem
perature difference between the sample and the shield 
has to be maintained within the same temperature sta
bility limits. The ‘classical’ ASC implementations used 
elaborate construction and calibration procedures to 
achieve these conditions [15–20]. All this made these 
ASC instruments complicated. In the present type of 
ASC, used for the results presented here, these problems 
are completely eliminated by inserting a very sensitive 
(of the order of 10 mV K−1) semiconductor-materials- 
based Peltier element (PE) as temperature difference 
detector between the sample and the shield. The µK 
sensitivity of the PE for temperature differences allows, 
in combination with a proper servo-system, to maintain 
almost perfect equality of the sample and shield tem
peratures in the heating mode. For the cooling mode, a 
preset temperature difference between sample and 
shield can be kept constant with equal resolution. 
Details on the construction of the pASC implementa
tion of the ASC concept can be found elsewhere [21– 
25]. With the pASC used for the present investigation, 
the uncertainty on the absolute values of specific heat 
capacity and enthalpy is about 2%, while the resolution 
in these quantities and in the measured temperatures is 
much higher.

2.2. Material and sample preparation

Calorimetric measurements by pASC are reported for 
the calamitic compound 4-[(4-nitrophenoxy)carbonyl] 
phenyl 2,4-dimethoxybenzoate (RM734) around the 
nematic to ferroelectric nematic phase transition [1,2]. 
The compound was synthesised at the Soft Materials 
Research Center of the University of Colorado [Ref. 
[2], Figure S1]. The compound was used as received at 
the Laboratory for Soft Matter and Biophysics at KU 
Leuven. An amount of 60.1 mg of sample was trans
ferred in a stainless steel sample holder (Mettler Toledo 
120 µl medium pressure DSC crucibles) and hermeti
cally sealed.

LIQUID CRYSTALS 3



3. Measurements

After the sample cell was mounted in the calorimeter, the 
calorimeter was heated to 110°C where a heating run at an 
average heating rate of 0.048 K/min was started through the 
melting transition to 146°C. From that temperature a cool
ing run at an average cooling rate of 0.025 K/min was 
carried out. Subsequently, a heating run at an average rate 
of 0.041 K/min was done through the N–NF transition 
(around 133°C), followed by a cooling run through this 
transition. Several other heating and cooling runs at differ
ent (lower) heating or cooling settings were done for con
sistency tests. At all times the sample remained in the 
subcooled phase and no rate dependence was observed 
and results were fully consistent. After this set of measure
ments the sample cell was taken out of the calorimeter and 
heated up to 200°C well into the isotropic phase, cooled to 
room temperature and placed back in the pASC. Part of the 
initial set of runs was repeated. No changes in the results 
were seen. Although results were obtained for the melting 
transition, here we will only consider the results for the 
nematic-to-ferroelectric nematic transition.

4. Results

In Figure 1(a) an overview of the specific heat capacity cp(T) 
is given for the temperature range between 116°C and 137° 
C from a heating run. The sharpness of the peak and the 
clear slope discontinuity on the low-temperature side sug
gests a first-order transition (see further). There is, how
ever, in particular in the high-temperature phase, nonlinear 
pretransitional specific heat capacity variation. In a cooling 
run similar results were measured but with a small shift to a 
lower peak temperature value (see further). In Figure 1(b) a 
blow-up of cp(T) from a cooling run is given for a 1 K 
temperature range. In Figure 2 the temperature depen
dence of the specific enthalpy is given over the 130–133°C 
temperature range. At the transition temperature there is in 
the almost linear temperature dependence a very small 
upward increase, indicating a very small transition energy.

In order to have a better view on the transition one can 
subtract a linear temperature-dependent background 
from the data displayed in Figure2. This corresponds to 
subtraction of a constant specific heat capacity value from 
the data in Figure 1. Indeed, in a sample with a constant 

Figure 1. (Colour online). (a) Temperature dependence of the specific heat capacity across the transition from the ferroelectric nematic 
NF phase to the nematic N phase of RM734 from a heating run. (b) Detail of the temperature dependence of the specific heat capacity 
in a temperature range of 1 K over the transition from the ferroelectric nematic NF phase to the nematic N phase of RM734 from a 
cooling run.
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heat capacity the enthalpy increases linearly. This is done 
in an intermediate step in the inset of Figure 2 where now 
the enthalpy increase is much better visible. This proce
dure has been extended in Figure 3 to a very narrow 
temperature range of 500 mK covering the transition. 
From these heating run data (see Figure 3) it is possible 
to identify a small two-phase region (with linear enthalpy 
dependence) between 131.635°C and 131.669°C, and thus 
with a width of 34 mK. The latent heat associated with the 
(very) weakly first-order transition is 0.115 ± 0.005 J/g.

In Figure 3 a comparison is also made between the 
heating run results and results of a cooling run over the 
same temperature range. The data are very similar, but 
shifted down for the cooling run by 27 mK. This small 
undercooling is consistent with the (weakly) first-order 
character of the transition. The latent heat value of 
0.115 J/g is substantially lower than the transition heats 
obtained by DSC, 0.47 J/g in refs [1.12] and 1.04 J/g in ref. 
[2]. This is not a surprise because DSC cannot make a 
distinction between true latent heats and pretransitional 

Figure 2. (Colour online). Temperature dependence of the specific enthalpy across the transition from the ferreoelectric nematic NF 

phase to the nematic N phase in RM734. Inset: temperature dependence of the specific enthalpy after subtraction (for display reasons) 
of a linear temperature-dependent background, 1:5 T � Trefð Þ (J/g), with Tref an arbitrary reference temperature.

Figure 3. (Colour online). Temperature dependence of the specific enthalpy near the ferroelectric nematic NF to nematic N transition 
of RM734 over a 500 mK temperature range. The red dots (to the right) for a heating run correspond with the data of Figure 2. The 
blue dots (to the left) are from a cooling run over the same temperature range. For display reasons a linear temperature dependent 
background has been subtracted in both cases.
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(fluctuations induced) enthalpy (heat capacity) changes 
[14–16] because, in DSC, the total enthalpy change is 
deduced from integration of a heat flux peak (often scan
ning rate broadened) between (chosen) onset and endset 
temperatures. This is in particular a problem when true 
latent heats are comparable or smaller than pretransi
tional effects. The problem is smaller in DSC for large 
latent heats, as, for example, for melting transitions.

5. Data analysis

5.1. Background specific heat capacity

From Figure 1 it can be observed that in the low-tempera
ture range there is an almost linear temperature depen
dence of the specific heat capacity and only near the 
transition a relatively small enhancement is observed. On 
the high-temperature side pretransitional variation is sub
stantially larger. It also seems that there, in the N phase, the 
regular background behaviour drops down to a value 
smaller than in the NF phase. This is better seen in Figure 
4(a) where a linear background (from a fit of the cp 

between 117 and 125°C) has been subtracted from cp. A 
clearly lower background is present in the N phase. This is 
further illustrated in Figure 4(b), where the data of Figure 4 
(a) are displayed as a function of the absolute temperature 
difference │T – Ttr│ from the transition temperature Ttr. 
From this figure it is obvious that the background cp value 
in the N phase is lower than in the NF phase, the difference 
being 0.27 J/(gK). From Figure 4(a, b) it is also clear that 
the pretransitional specific heat capacity increase in the N 
phase is substantially larger than in the NF phase.

5.2. Specific heat capacity anomaly

Second-order (continuous) phase transitions are char
acterised by fluctuations, which, for a properly defined 
order parameter, diverge in size to infinity. This size 
divergence can be described by a power law, with a 
characteristic critical exponent depending on the uni
versality class of the phase transition [26]. The limiting 
behaviour of the specific heat capacity at a second-order 
phase transition can also be described by means of a 
power law of the form 

cp ¼ A τj j
�α

þ B; (3) 

with τ ¼ T � Tcð Þ=Tc. The parameter A is the critical 
amplitude, α is the critical exponent, Tc is the critical 
temperature (T and Tc in kelvin) and B is the back
ground term. The different coefficients in Equation (3) 
must be derived from (non-linear) least-squares fitting 
of experimental data. However, the fact that ASC scans 

result directly in enthalpy h Tð Þ data (see Equation (1)) 
allows substantial simplification. One can define the 
following quantity 

C ¼
h � hc

T � Tc
; (4) 

which corresponds to the slope of the chord connect
ing h Tð Þ at T, with hc at Tc. It can easily be shown that C 
has a power-law behaviour of the form [15,18,20] 

C ¼
A

1 � α
τj j

�α
þ B: (5) 

Both cp and C have the same critical exponent, and 
either Equation (3) or (5) can be used in fitting data to 
arrive at important values for the critical exponent α and 
amplitude A. However, by considering the difference 
(C � cp), above or below Tc, the (unimportant) back
ground term B drops out, resulting in 

C � cp ¼
αA

1 � α
τj j

�a
: (6) 

Taking the logarithm on both sides of Equation (6) 
gives 

log C � cp
� �

¼ log
αA

1 � α

� �

� αlog τj j: (7) 

As a result, one obtains (sufficiently close to the 
critical point) a straight line with a negative slope imme
diately giving the critical exponent α.

This procedure is strictly only applicable to second- 
order transitions, but for weakly first-order transitions it 
can be used for separate analysis of the data below and 
above the transition by allowing Tc and hc in Equation 
(4) to be adjustable parameters in fitting that can be 
different for data below and above the transition. This is 
analogous to the upper stability limit of the nematic 
phase and the lower stability limit of the isotropic 
phase for the weakly first-order nematic–isotropic tran
sition [18,27]. We have applied this approach to the 
present phase transition data of and h (see Figures 1 
and 2), excluding the data in the two-phase region.

In Figure 5, data for the two quantities C and cp are 
given for this N–NF transition. The corresponding loga
rithmic plot (see Equation (7)) is given in Figure 6. It can 
be concluded that, within experimental resolution, a 
negative slope of −0.50 ± 0.05 is consistent with the 
data. Thus, according to Equation (7) this results in a 
critical exponent α = 0.50 ± 0.05. In Figure 6, it can also be 
seen that (C � cp) above the transition (in the normal) N 
phase is much larger than in the NF phase below the 
transition. From Equation (6) it immediately follows 
that the critical amplitude in the ferroelectric nematic 
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phase, AFN, must be substantially smaller than the critical 
amplitude in the nematic phase, AN. A rough estimate 
gives for the ratio AN/AFN = 2.4 ± 0.2.

6. Discussion

As described in the introduction, depending on the 
molecular interactions considered, different possibilities 
arise for the N–NF phase transitional behaviour of the 
liquid crystal RM734. Considering the molecular inter
actions and correlations (including end-to-end associa
tion) at short range predicts the transition to be a 
second-order one belonging to the 3D Ising universality 
class [3]. However, the experimental observed pretran
sitional softening of the splay elastic constant and the 
divergence of the dielectric anisotropy showed mean- 

field-like behaviour that could be interpreted using a 
Landau–de Gennes model [4–6]. Also the DSC indica
tions of a first-order character of the transition can 
possibly be accounted for by the same Landau–de 
Gennes model by adding higher-order terms. From the 
analogy with certain magnetic materials, where, in addi
tion to short-range ferromagnetic exchange forces, also 
long-range dipolar interactions are important [7,8], a 
3D upper marginal dimensionality of the transition is 
obtained, making the transition mean-field-like with 
logarithmic corrections [11].

Since in high-resolution ASC experiments direct 
experimental data for the temperature dependence of 
the specific enthalpy, h(T), and of the specific heat 
capacity, cp(T), are obtained, the order of the phase 
transition as well as the fluctuations-induced critical 

Figure 4. (Colour online). (a) Temperature dependence of the specific heat capacity over the ferroelectric nematic NF to nematic N 
transition of RM734 after subtraction of a linear background obtained from a linear fit of the data between 117 and 125°C. (b) The 
specific heat capacity as a function │T – Ttr│ (with Ttr the transition temperature) for the NF (upper blue data) and N (lower red data) 
phase after subtraction of a linear background obtained from a linear fit of the data between 117°C and 125°C.
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behaviour can be evaluated. From the direct h(T) dis
cussed in Section 4 and displayed in Figure 3, it is clear 
that the N–NF transition in RM734 is, although very 
weakly, first order. The obtained value for the latent heat 
Δh = 0.115 ± 0.005 J/g is a factor 5–10 smaller than the 
DSC values [1,2,12], which most likely contain also 
pretransitional fluctuations-induced contributions.

The critical behaviour of several physical parameters 
near phase transitions is described by power laws with 
critical exponents and by amplitude ratios depending on 
the spatial dimension (D) and the type and universality 
class of the transition. Several models, for example, 
those with vector order parameters of dimension n = 1 
(Ising model), n = 2 (XY model) and n = 3 (Heisenberg 

model), have resulted in high-quality numerical predic
tions for many critical exponents. The most relevant 
critical exponents are α for the specific heat capacity, β 
for the order parameter, γ for the susceptibility and ν for 
the correlation length. For the D = 3 case relevant sets of 
exponents are Ising (n = 1) α = 0.110, β = 0.325, 
γ = 1.241, ν = 0.63; tricritical α = 0.5, β = 0.25, γ = 1, 
ν = 0.5; mean field α = 0, β = 0.5, γ = 1, ν = 0.5 [28–30]. 
From these values it should be clear that in particular 
differences for α, and to a lesser extent also for β, are 
quite large.

The ASC data for the temperature dependence of the 
specific heat capacity cp(T) near the transition allows one to 
derive information on the critical exponent α and the 

Figure 5. (Colour online). Adiabatic scanning calorimetry results above and below the NF–N transition of RM734. The lower (blue) 
curve are the specific heat capacity cp values and the upper (red) curve are the quantity C values defined in Equation (4).

Figure 6. (Colour online) Adiabatic scanning calorimetry results for the NF–N transition of RM734. Double logarithmic plot of the 
difference (C � cp) expressed in J/(gK) as a function of the reduced temperature difference τ. The lower blue points are for T < Tc and 
the upper red ones for T > Tc. The slopes (−0.536 and −0.467) of the linear trend lines are consistent with a critical exponent α = 0.50 ± 
0.05.
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critical amplitude ratio ANF/AN These cp(T) data are dis
played in Figure 1 and analysed in detail in Section 5. 
However, before discussing the results of the analysis for 
these parameters, some unusual features of the cp(T) data 
have to be considered. From the analysis in Section 5.1 it 
was concluded that in the N phase the regular cp(T) back
ground drops down to a value smaller than in the NF 

phase. This is illustrated in Figure 4(a, b). The difference 
is estimated to be 0.27 J/(gK). In Figure 4(a, b) it can also be 
observed that the specific heat capacity increase in the N 
phase is substantially larger than in the NF phase. Thus, in 
the high-temperature nematic phase the pretansitional 
(fluctuations-induced) effects are much larger than in the 
ferroelectric nematic phase. Larger pretransitional effects 
in the high-temperature phase than in the low-temperature 
(more ordered) phase are not very common, but not 
unique. For example, Garland and Co-workers [31] 
observed a large inverted-Landau behaviour in the high- 
temperature Sm ~C phase at a SmC-Sm ~C transition, where 
apparently polarisation order plays a role.

In Section 5.2 it was demonstrated how the ASC cp(T) 
and h(T) data can be combined in a unique way to arrive 
at information about the critical exponent α and the 
critical amplitude ratio ANF/AN by eliminating the other
wise difficult to evaluate background contributions. This 
procedure leads to the new quantity (C–cp) displayed 
versus the reduced temperature difference |τ| (of 
Equation 3) in a double logarithmic plot which leads to 
α = 0.50 ± 0.05 and ANF/AN = 0.42 ± 0.03. The value of α 
is consistent with the value for a (nearby) tricritical point, 
located at the crossover from first order to second order 
along a phase transition line that could be established by 
an external driving field (e.g. electric, magnetic, pressure, 
mole fraction in mixtures, etc.). The tricritical character 
of the N–NF transition in RM734 has very recently been 
confirmed by measurements of the temperature depen
dence of the order parameter (electric polarisation) in the 
NF phase, growing with decreasing temperature as a 
power law P ∝ (Tc – T)β, with a critical exponent 
β ≈ 0.25 which is, indeed, the tricritical value [32].

Although the critical amplitude ratio, here for the 
specific heat r = A−/A+ ≡ AFN/AN, is quite an important 
result for many phase transitions, this is less the case for 
the tricritical case since it is known that tricritical ratios 
determined over accessible |τ| ranges are not universal. 
For an exactly solvable spherical model (n = ∞) they are 
nonuniversal but functions of a single variable z = (a/R0)3, 
where a is the lattice spacing and R0 the range of interac
tions [33,34]. Applying the relation r = (1 – z2)1/2/z 
(assuming logarithmic corrections can be ignored for 
finite n [35]) obtained by Fisher and Sarbach [33,34], 
results for our value of AFN/AN = 0.42 in z = 0.92. The 

amplitude ratio r = ∞ for the Landau tricritical point is 
recovered for z = 0. For r = 1 a value of z = 0.707 is 
obtained. This theory was used to explain the tricritical 
ratios behaviour for 3He–4He mixtures (z = 0.12) and for 
the metamagnet dysprosium aluminium garnet (z 
= 0.21). Applying this approach to liquid crystal 
nematic–smectic-A tricritical points in binary mixtures 
by Stine and Garland [36] resulted in z = 0.71 for polar 
compounds and in z = 0.53 for non-polar ones. From a 
similar analysis of heat capacity data near a smectic-A– 
smectic-C tricritical point in a racemic liquid crystal 
mixture, Ema et al. [37] yielded a value z = 0.11. If this 
approach holds also in the case of the N–NF transition in 
RM934, the quite large value of z = 0.92 indicates that the 
transition is quite far from the Landau theory limit.

In addition to the presently available experimental 
values α ≈ 0.50 and β ≈ 0.25, indicating tricritical beha
viour, further experimental results on the temperature 
dependence of the correlation length (with critical expo
nent ν) in the two phases (e.g. from x-ray scattering) 
would be very important. In the framework of two- 
scale-factor universality [38], the quite small value 
ANF/AN = 0.42 indicates that the size of the critical 
fluctuations in the NF phase should be substantially 
larger than in the N phase. Indeed, in two-scale univers
ality it is stated that the specific heat amplitudes ANF and 
AN are inversely proportional to the third power of the 
corresponding amplitudes ξ0 in the power laws for the 
correlation lengths of the critical fluctuations.
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