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ABSTRACT

Developing particle-in-cell (PIC) methods using finite element basis sets, and without auxiliary divergence cleaning methods, was a long-
standing problem until recently. It was shown that if consistent spatial basis functions are used, one can indeed create a methodology that
was charge conserving, albeit using a leapfrog time stepping method. While this is a significant advance, leapfrog schemes are only condition-
ally stable and time step sizes are closely tied to the underlying mesh. Ideally, to take full advantage of advances in finite element methods
(FEMs), one needs a charge conserving PIC methodology that is agnostic to the time stepping method. This is the principal contribution of
this paper. In what follows, we shall develop this methodology, prove that both charge and Gauss’ laws are discretely satisfied at every time
step, provide the necessary details to implement this methodology for both the wave equation FEM and Maxwell solver FEM, and finally
demonstrate its efficacy on a suite of test problems. The method will be demonstrated by single particle evolution, non-neutral beams with
space-charge, and adiabatic expansion of a neutral plasma, where the Debye length has been resolved, and real mass ratios are used.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0046842

I. INTRODUCTION

Simulation of space charge and plasmas is critical to a number of
areas in science and engineering. These range from applications of
pulsed power to particle accelerators to satellites and medicine.1–3 The
means to do so has largely relied on particle-in-cell (PIC) methods.
PIC has been around since the 1950s and is a popular method of
modeling plasma and space charge due to its simplicity and ease of
use.4 PIC enables a self-consistent solution to Maxwell’s equation and
equations of motion for charged species. Traditionally, PIC is based on
finite difference time domain (FDTD) to evolve fields.5 The use of reg-
ular cubical grids presents challenges, especially in modeling complex
geometry. Modeling curved features requires small cell sizes, and this
results in a stair-stepped approximation of the desired geometry as
well as small time steps in keeping with the Courant–Friedrichs–Lewy
condition. Using cut-cells has improved the geometry representation
by allowing boundaries to cut across cells.6 Complex and fine features,
as well as multi-scale objects, require the use of a prohibitively expen-
sive number of small cells for high fidelity simulations. As a result of
these challenges, there has been persistent investigation into the use of
more sophisticated field evolution techniques.7–10 A natural choice is

using a time domain finite-element method (TDFEM) due to (a)
unconditionally stable time stepping methods, (b) ability to model
complex geometries, and (c) well developed extensions to higher order
(both in representation of fields and geometry).11

While TDFEM can be thought of as a panacea for modeling com-
plex geometries, it is not so for crucial quantities that must be con-
served. These include Gauss’ law and charge conservation. Indeed,
developing a numerical scheme that implicitly conserved charge was
an unsolved problem until the developments published in Refs. 12 and
13. Prior to this development, one used divergence cleaning methods
to remove spurious charge accumulation.14 The key to realizing charge
conservation relied on (a) following the de-Rham sequence to repre-
sent physical quantities on a mesh, (b) write the equations to be
solved as a collection of first order ordinary differential equations,
and (c) interpret time integrals of currents as path integrals.15 A
more recent paper summarizes conditions that should be satisfied by
self-consistent charge conserving schemes16 and illustrates these
conditions for different PIC schemes. As alluded to before, the
TDFEM-PIC12,13 method relies on Maxwell solvers in that one solves
Maxwell’s first order equations, as opposed to the wave equation,

Phys. Plasmas 28, 092111 (2021); doi: 10.1063/5.0046842 28, 092111-1

Published under an exclusive license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

https://doi.org/10.1063/5.0046842
https://doi.org/10.1063/5.0046842
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0046842
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0046842&domain=pdf&date_stamp=2021-09-17
https://orcid.org/0000-0001-6189-0842
https://orcid.org/0000-0002-6442-2224
https://orcid.org/0000-0002-1732-2482
https://orcid.org/0000-0002-6130-6156
https://orcid.org/0000-0003-4712-8186
mailto:oconn220@msu.edu
https://doi.org/10.1063/5.0046842
https://scitation.org/journal/php


and exploits leapfrog time stepping. The structure of the solver is
such that one avoids a time growing null space corresponding to DC
modes. The path integral of the current is interpreted in the average
sense and is a consequence of the low order integrator.
Unfortunately, leapfrog time stepping is only conditionally stable. As
a result, there is a limit on the time step sizes that one can take, and
this closely tied to the underlying discretization. In classical TDFEM
field solvers, this has been overcome using Newmark-beta time
stepping, which is second order and unconditionally stable.
Unfortunately, implicit time stepping poses a number of challenges
to satisfaction of conservation laws that must be satisfied and is an
open problem.17 This paper provides the focuses on providing a
framework for resolving this bottleneck and creating consistency
between field solution and field sources from the particles.

Implicit time stepping field solvers permits taking significantly
larger time steps and un-constrained by the mesh; unconditional stabil-
ity is an added bonus. Unfortunately, as will be evident in the paper,
applying these directly to TDFEM-PIC violates both Gauss’ law and the
equation of continuity. In addition, in solving the field equations, one
needs to evolve the locations of particles over time via Newton’s laws. A
larger time step size implies that additional infrastructure needs to be in
place to accurately compute all aspects of particle trajectory (including
information necessary to map it back on the mesh). Resolution to these
challenges associated implicit time stepping with a TDFEM framework
will be the main contribution of this paper.

1. We will develop the method to ensure that both Gauss’ law and
equation of continuity is satisfied for implicit field solvers. The
methods rely on insight provided in Ref. 16. There are subtle
nuances between the work in Refs. 15, 18, and 19 and what is
presented here; specifically, for implicit transient field solvers, we
need to ensure that the right hand side is constructed such that it
is compatible with the Newmark–Beta (or any other) time step-
ping method used for the field solution.

2. We will show that the proposed method is agnostic to time step-
ping schemes used for the field solution.

3. We will develop methods to evolve particle parameters (path,
velocity along the path, and mapping path to the mesh).

4. Finally, we will present results validating these methods for both
the Maxwell and wave equation TDFEM solvers.

Our hope is to present the technique with sufficient lucidity such that
they can be retrofitted with existing codes.

The rest of this paper is organized as follows: In Sec. II, we pre-
sent an overall rubric of implicit TDFEM solvers (both Maxwell and
wave equation), and why direct application of implicit time stepping
fails to conserve quantities. Next, in Sec. III, we present details on how
these may be modified so as to conserve charge, satisfy Gauss’ law, and
be independent of time stepping approach. In addition, we present
details of the method used to evolve particle parameters. In Sec. IV, we
present a number of results that validate our claims. Finally, we con-
clude this paper in Sec. V outlining future directions of research.

II. PRELIMINARIES

Consider a domain X whose boundaries are denoted by @X. It is
assumed that the domain comprise charged species that exist in a
background medium defined by e0 and l0, the permittivity and per-
meability of free space, and the speed of light denoted using

c ¼ 1=
ffiffiffiffiffiffiffiffiffi
l0e0
p

; for simplicity of the exposition, we consider only one
species. It is also assumed that there exists an electromagnetic field,
both impressed and arising from motion of the charged species. Both
the fields and the charged species evolve in time. The distribution of
charge can be represented by a phase space distribution function
(PSDF) f ðt; r; vÞ that satisfies the Vlasov equation

@t f ðt; r; vÞ þ v � rf ðt; r; vÞ

þ q
m

Eðt; rÞ þ v � Bðt; rÞ½ � � rvf ðt; r; vÞ ¼ 0: (1)

While we do not solve this equation directly, our approach is conven-
tional in that we make a particle approximation for the PSDF in
Eq. (1).

A. Overview of method

Using this PSDF, we follow the conventional definition of the
charge and current density defined as qðt; rÞ ¼ q

Ð
Xf ðt; r; vÞdv and

Jðt; rÞ ¼ q
Ð
XvðtÞf ðt; r; vÞdv as moments of the PSDF. The fields,

Eðt; rÞ and Bðt; rÞ, in the Vlasov equation are solutions to Maxwell’s
curl equations with the sources (charge and currents) defined earlier

� @B t; rð Þ
@t

¼ $� E t; rð Þ; (2a)

@D t; rð Þ
@t

¼ $�H t; rð Þ � J t; rð Þ; (2b)

and boundary conditions. These can be either Dirichlet or impedance
boundary conditions on @XD or @XI , to bound the domain,

n̂ � Eðr; tÞ ¼ WDðr; tÞ on @XD; (3a)

n̂ � B r; tð Þ
l
� Yn̂ � n̂ � E r; tð Þ ¼ WI r; tð Þ on @XI ; (3b)

where Y is the admittance of free space. Instead of using Eq. (2), the
wave equation

r� 1
lr
r� E

� �
þ 1
c20
�r
@2E
@t2
¼ �l0

@J
@t
; (4)

can be used instead. The magnetic field can be obtained from Eq. (2a),
and the impedance boundary condition is defined using a time deriva-
tive on Eq. (3b) and using Eq. (2a). The fields should also satisfy
Gauss’ laws

$ �D t; rð Þ ¼ q t; rð Þ; (5)

$ � B t; rð Þ ¼ 0; (6)

though they are not explicitly solved.
As alluded to earlier, we use the moments of the PSDF to find the

fields and then evolve the system using Newton’s equations and
Lorentz force, Fðt; rÞ ¼ qðt; rÞðEðt; rÞ þ vðt; rÞ � Bðt; rÞÞ, for the
duration of the simulation. Thus far, our description has been in con-
tinuous world. To perform an actual simulation, we would need to
represent all the quantities involved in terms of functions defined on a
discretization of space and time. This is typically referred to as a parti-
cle in cell (PIC) approach and is the subject of our next discussion.

Our starting point is the representation of both X and @X in
terms of a finite set of tetrahedra or a mesh that contains Ns nodes, Ne
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edges, and Nf faces. On these tetrahedra, we define basis functions that
follow the de-Rham sequence, enabling us to represent fields, fluxes,
and sources. However, before proceeding too far ahead, note that we
are going to follow the usual PIC cycle: (a) map charges and currents
on the mesh, (b) solve for electric and magnetic fields on the mesh, (c)
move particles due to Lorentz force and find the current due to this
motion, and (d) find the fields due the updated sources. The cycle then
continues.

The starting point of the simulation is to define the charge and
currents due to PSDF. With no loss of generality, we follow the usual
procedure such that qðt; rÞ ¼ qa

PNp

p¼1 dðr� rpÞ and Jðt; rÞ
¼ qa

PNp

p¼1 vpðtÞdðr� rpÞ. This implies that PSDF is sampled withNp

shape functions, each being a delta function. Generalization to other
shape functions is possible16 and is agnostic to the crux of this paper.

The electric and magnetic fields are represented using Whitney
basis functions.8,11,12 Specifically, the electric fields using Whitney
edge basis functions Eðt; rÞ ¼

PNe
i¼1 eiðtÞW

ð1Þ
i ðrÞ. The magnetic flux

density is represented using the Whitney face basis function
Bðt; rÞ ¼

PNf

i¼1 biðtÞW
ð2Þ
i ðrÞ. Here, Ne is the number of edges and Nf

is the number of faces in the mesh. Two different approaches can be
used to solve Maxwell’s equations: (a) either solve them in the coupled
form or (b) solve the wave equation for the electric field and then
obtain the magnetic field. To set the stage for both these solvers, we
introduce the following Hodge matrix operators:

½?��i;j ¼ hW
1ð Þ
i rð Þ; e �W 1ð Þ

j rð Þi; (7)

?l�1½ �i;j ¼ hW
ð2Þ
i ðrÞ;l�1 �W

ð2Þ
j ðrÞi; (8)

the surface impedance matrix

?I½ �i;j ¼ hn̂i �Wð1Þi ðrÞ; l�1 � n̂j �Wð1Þj ðrÞi; (9)

and discrete curl operator

½$� �i;j ¼ hn̂i;$�W 1ð Þ
j rð Þi; (10)

where n̂i is the surface normal on boundary of the domain of support
for Wð1Þi ðrÞ and h�; �i is an inner product defined as
hgðrÞ; fðrÞi ¼

Ð
vgðrÞ � fðrÞdr. These matrices are used to build the

semidiscrete Maxwell system

CM
@tB tð Þ
@tE tð Þ

" #
þ KM

B tð Þ
E tð Þ

" #
¼ FM; (11)

where

��CM ¼
I½ � 0

0 ?�0½ �

" #
; (12)

��KM ¼
0 $�½ �

$�½ �T ?l�1½ � 0

" #
; (13)

and �FM ¼ ½0� �J TðtÞ�. The degree of freedom vectors �EðtÞ ¼ ½e1ðtÞ;
e2ðtÞ;…; eNeðtÞ�; �BðtÞ ¼ ½b1ðtÞ; b2ðtÞ;…; bNf ðtÞ�, and �J ðtÞ ¼ ½j1ðtÞ;
j2ðtÞ;…jNeðtÞ� with jiðtÞ ¼ hWð1Þi ðrÞ; Jðt; rÞi. The choice of measure-
ment of the current density arises from not only the natural construc-
tion of the finite element system but the important interplay with the

measurement of the charge density. The nodal basis set Wð0Þ
i ðrÞ mea-

sures qðt; rÞ such that �qðtÞ ¼ ½q1ðtÞ;q2ðtÞ;…;qNs
ðtÞ�, where

qiðtÞ ¼ hW
ð0Þ
i ðrÞ; qðt; rÞi. The discrete system in (11) is the finite ele-

ment representation of Maxwell equations and will subsequently be
called the Mixed Finite Element Method (MFEM). For the wave equa-
tion, the system becomes

½?�0 �|{z}
MW

@2t E tð Þ þ c½?I �|{z}
CW

@tE tð Þ þ c2½?S�|ffl{zffl}
K W

E ¼ �@tJ tð Þ; (14)

where ½?S� ¼ ½$��T ½?l�1 �½$��.

B. Unconditionally stable time marching

The mixed finite element system in Eq. (2) is discretized in time
using Newmark–Beta, an unconditionally stable time stepping
method. This method has been extensively used in wave equation11

and examined for the mixed finite element method in Ref. 20, allowing
for much larger time step sizes than the traditional leapfrog method.
In this method, �EðtÞ and �BðtÞ are represented in time in terms of sec-
ond order Lagrange polynomials such that for t 2 ½tn�1; tnþ1�,

�BðtÞ
�EðtÞ

� �
¼
X2
k¼0

Nn;kðtÞ
�Bðtnþk�1Þ
�Eðtnþk�1Þ

� �
; (15a)

Ln;k tð Þ ¼
Y2
j ¼ 0
j 6¼ k

t � tnþ1�j
tnþ1�k � tnþ1�j

; (15b)

Nn;kðtÞ ¼
Ln;kðtÞ t 2 tn�1; tnþ1½ �;
0 otherwise:

�
(15c)

The governing set of differential equations in Eq. (11) is then
tested by

T tð Þ ¼

tn � t
Dt

t 2 tn�1; tn½ �;
t � tn
Dt

t 2 tn; tnþ1½ �;

0 otherwise:

8>>>><
>>>>:

(16)

This choice of basis and testing functions creates a non-dissipative,
unconditionally stable time marching scheme, which can be written as a
recurrence formula provided in Ref. 21, corresponding to parameters
c ¼ 0:5 and b ¼ 0:25. When applied to Eq. (11), this becomes

0:5CM þ 0:25DtK M

� �
X

nþ1 � 0:5DtK MX
n

þ 0:5CM þ :025DtK M

� �
X

n�1 þ 0:25DtF
nþ1
M

þ 0:5DtF
n
M þ 0:25DtF

n�1
M ¼ 0; (17)

where �Xm ¼ ½�BTðtmÞ; �ETðtmÞ� and �Fm
M ¼ ½0;��J TðtmÞ� for m

2 ½n� 1; nþ 1� and tm ¼ mDt . Likewise, Eq. (14) becomes

MW þ 0:5DtCW þ 0:25D2
t K W

� �
E
nþ1 þ �2MW � 0:5D2

t K W

� �
E
n

� MW þ 0:5DtCW þ :025D2
t K W

� �
E
n�1

þ 0:25D2
t F

nþ1
W þ 0:5D2

t F
n
W þ 0:25D2

t F
n�1
W ¼ 0: (18)
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Both Eqs. (17) and (18) are outcomes of discretization of
Maxwell’s equations (or the corresponding wave equation) with either
the current (or its derivative) on the right hand side. As written in the
discrete form, it will not preserve the necessary link between Ampère’s
and Gauss’ law necessary for charge conservation. This is immediately
apparent after applying a discrete divergence operator to semidiscrete
Ampère’s law. Applying the discrete divergence operator on the
Ampère’s law portion of Eq. (17), and using the identity that
½$��½$��T ¼ 0, yields

0:5 $�½ � ?�0½ ��E
nþ1 � 0:5 $�½ � ?�0½ ��E

n�1

¼ �0:25Dt $�½ ��J nþ1 � 0:5Dt $�½ ��J n � 0:25Dt $�½ ��J n�1: (19)

When the same divergence operator is applied to discrete wave Eq.
(19), one gets

$�½ � ?�0½ ��E
nþ1 � 2 $�½ � ?�0½ ��E

n þ $�½ � ?�0½ ��E
n�1

�0:25Dt $�½ ��J nþ1 � 0:5Dt $�½ ��J n � 0:25Dt $�½ ��J n�1: (20)

Note, Gauss’ law is satisfied provided �qn ¼ ½$��½?�0 ��E
n for any time

step n. It is evident that both Eqs. (19) and (20) are incompatible with
Gauss’ laws. Instead, a different treatment of the right hand side, the
particle current density, is needed in order to create a charge conserv-
ing scheme.

III. MODIFIED TDFEM-PIC
A. Integrator agnostic charge conserving scheme

It is apparent that, as written, charge conservation fails for both
Maxwell solver and the wave equation. The reasons are twofold: (a)
the order of time derivatives on the current (on the right hand side)
and those on the electric field are off by one; (b) this requires the dis-
crete time integrator to remember initial conditions. The latter holds
the key to solving the puzzle. Newmark time stepping schemes are, in
effect, stable time integrators. The crux of our approach is to correctly
evaluate the time integral of the current. As elucidated in Ref. 16, the
time integral of the current is obtainable and indeed a part of the PIC
scheme. Specifically, starting with the definition of the PSDF,

qðt; rÞ ¼ �$ �
ðt
0
Jðs; rÞds: (21)

As shown in Ref. 16, this equation can be rewritten as

qðt; rÞ ¼ �$ �
ðrðtÞ
rð0Þ

Jð~rÞd~r: (22)

Following the details in Ref. 16, it is immediately apparent that
for any particle p, the path integral at tn isðtn

0
dsvp sð Þd r� rp sð Þ

	 

¼
ðrp tnð Þ

rp 0ð Þ
d~rd r� ~rð Þ: (23)

Note, for each charge, its trajectory is determined by the solution
to Newton’s equations. The integration along a particle path can be
computed to a high degree of accuracy. To develop a charge conserv-
ing methodology, we define

G t; rð Þ ¼
ðt
0
J s; rð Þds: (24)

As is evident from Eq. (23), this integral can be converted into a
path integral. The evaluation of this path integral is effected numeri-
cally as described in Sec. III B. We should note that the order of the
numerical scheme is such that it is greater than the order of time deriv-
atives on Gðt; rÞ. It follows that instead of using �J in Eq. (11) [and,
therefore, in Eq. (20)], one can instead use @tGðtÞ, where �GðtÞ
¼ ½g1ðtÞ; g2ðtÞ;…; gNeðtÞ� with giðtÞ ¼ hWð1Þi ðrÞ;Gðt; rÞi. Discrete
implementation with a Maxwell equation solver results in the diver-
gence of Ampère’s law to be

0:5½$��½?�0 ��E
nþ1 � 0:5 $�½ �½?�0 ��E

n�1 ¼ þ:5 $�½ ��Gnþ1 � 0:5 $�½ ��Gn�1
:

(25)

Examining (26) term by term reveals that both sides of the equation
are identical given that ½$���Gn ¼ ��qn. In a similar manner, one can
use @2t �G instead of @t�J in Eq. (15) to yield

�qnþ1 � 2�qn þ �qn�1 ¼ � $�½ ��Gnþ1 � 2 $�½ ��Gn þ $�½ ��Gn�1
: (26)

Here, we have taken the liberty of substituting, �qn ¼ ½r��½?�0 ��E
n. At

this point, we note that the proposed approach is agnostic to the time
stepping scheme (or integrator) used to solve Maxwell’s equations;
both the equation of continuity and Gauss’ laws are satisfied by design.

There is a subtle but key difference between the work in this
paper and the others15,18,19 in the origin of �Gn. In general, these arise
from posing the Maxwell’s equations in terms of set of first order
equations and then using an appropriate temporal integrator. It can be
shown via Eq. (23) that the time integral of the current transforms to a
path integral. However, it is well known that this approach leads to
conditionally stable field solution, with time step sizes determined by
the smallest eigenvalue of the FEM system. To ensure compatibility
(so as to be charge conserving) with unconditionally stable field solvers
(be it Maxwell or the wave equation), we have to take this notion a few
steps further. Knowing that the solution to the system is in effect an
integrator, we introduce an auxiliary variable �Gn that is evaluated via a
path integral and then use as many time derivatives as necessary so as
to be compatible with field solvers. This subtle but not so trivial insight
creates a method that is applicable for both Maxwell and wave-
equation FEM solvers. Note, if we use a leapfrog time stepping
method, the equation resulting from Villasenor–Buneman (and its
others)15,18,19,22 and this paper will result in the same right hand side.

A word of caution is in order before we proceed. While the
method developed is exact, it should be noted that to obtain �Enþ1, one
needs to solve either (17) or (18) with the appropriate substitutions for
�Gnþ1 instead of �J nþ1. Obviously, the solution to these sets of equations
is subject to errors that arise due to vagaries of a linear algebraic solu-
tion (tolerances, excitation of null-spaces, etc.). Consequently, as will
be seen in Sec. IV, our errors are small but not identically zero. Next,
we discuss a higher order particle pusher to solve the equations of
motion consistently.

B. Particle pusher

Using an implicit time stepping scheme has advantages as well as
challenges. The principal advantage is an unconditionally stable time
step size independent scheme as opposed to a conditionally stable
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scheme like leapfrog whose stability depends on the time step size. The
downside of using large time steps is that one must capture the nuan-
ces of both the path and velocity of the particle. Thus, solving the
equations of motion using a Boris push23 with its linear representation
of the particle position and velocity can introduce large errors into the
system. Our goal is to develop a higher order scheme.

As is well known, the particle positions and velocities are updated
by solving Newton’s equations via the Lorentz force, giving us the fol-
lowing set of coupled first order ODEs for each particle:

@tvp t; rpð Þ ¼ ap t; rpð Þ ¼
qa

ma
E t; rpð Þ þ vp t; rpð Þ � B t; rpð Þ
	 


; (27)

@trpðt; rpÞ ¼ vpðt; rpÞ: (28)

These form a pair of first order ODEs in time, and there are a number
of methods that can be applied. Our choice is to use a higher order
Adams–Bashforth scheme. An exemplar recursion relation for v and r
for a fourth order Adams–Bashforth method is as follows:

vnþ1p ¼ vnp þ
Dt

24
55anp � 59an�1p þ 37an�2p � 9an�3p

� �
; (29)

rnþ1p ¼ rnp þ
Dt

24
55vnp � 59vn�1p þ 37vn�2p � 9vn�3p

� �
; (30)

where Dt is the time step size. Given that the Newmark scheme is sec-
ond order, we choose the Adams-Bashforth scheme to be at least two
orders higher so as to accommodate a second time derivative in on
�Gn. The path used for interpolating the position is a fourth order
Lagrange polynomial k¼ 4þ 1, which is defined as

rp tð Þ ¼
Xk
j¼0

rn�jp ‘j tð Þ; (31a)

‘ðtÞ ¼
Y

0 � m � k
m 6¼ j

t � tnþ1�m
tnþ1�j � tnþ1�m

; (31b)

where rpðtÞ is the position at time t and rnp is the location of particle p
at the t ¼ nDt .

C. Particle path and current mapping

The final step is mapping the path to the underlying tessellation.
In order to do so, we note that the integrator used to solve the equation
of motion implicitly assumes a Lagrange polynomial interpolant. As a
result, the order of the method used maps to order of the interpolant.
This information needs to be used to find out where the particle enters
and leaves the cell.

Once the particle locations at each time step are known from the
particle push, the path through the unstructured mesh needs to be
found. This includes finding the locations of where a particle enters a
cell and where it leaves and is detailed in Algorithm 1. Since we are
using a higher order representation of a particle path, finding these
entry and exit points of the cell with the tetrahedron becomes a non-
linear problem and is detail in Algorithm 2. Assume that we are given
the normal to surface n̂, and vertices of the triangle rv;1; rv;2; rv;3. The
intersection between the trajectory rpðtÞ and the plane can be obtained
by solving

n̂ � rp tð Þ � rv;1
	 


� rv;2 � rv;1ð Þ
h i

¼ 0: (32)

ALGORITHM 1. Particle path finding algorithm.

1: Push particle finding rp;f
2: if rp;f is in same cell as rp;s then
3: ifAll quadrature points between are in same cell then
4: Integrate using a quadrature rule along path.
5: Return and go onto next particle
6: end if
7: end if
8: Find exit point rp;i of path in cell
9: Integrate from rp;s to rp;i
10: whilePath not complete do
11: Find next cell that path travels through
12: if rf is in same cell as rp;i then
13: ifAll quadrature points are in same cell then
14: Integrate using a quadrature rule along path.
15: Path is complete
16: Return and go onto next particle.
17: else
18: Find exit point of path in cell.
19: Integrate from rp;is to rp;if .
20: end if
21: end if
22: endwhile

ALGORITHM 2. Non-linear bi-section method.

1: ts¼ 0,tf¼ 1, th ¼ 0:5
2: ifAny quadrature points are outside of the cell. then
3: tf¼ tq
4: end if
5: while jts � tf j < tol do
6: if th is in same cell as ts then
7: ts¼ th
8: else
9: tf¼ th
10: end if
11: th ¼ 0:5ðts þ tf Þ
12: endwhile

Note the path rpðtÞ can be parameterized using Eq. (31). Using
this parameterization, one can use a non-linear iteration (such as
Newton–Raphson) to solve (32). For convenience, we take a simpler
approach by implementing a bi-section method that moves along the
path checking whether candidate points are inside or outside of the
cell. For test cases presented in this paper, this method converges
rather robustly. Every step takes around 47 steps to converge below a
tolerance of 1� 10�15 (0:547 ¼ 7:1� 10�15). Once the method con-
verges, we then compute the integral along each path segment in each
cell using a set of quadrature points. It should be noted that since
each path segment is represented by a polynomial, the integral along
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each path can be computed exactly using a high enough quadrature
rule. To illustrate this, consider Fig. 1 containing an example particle
starting position rp;s, and finishing position rp;f with the intersection
point being rp;i. The quadrature points would lie along the path
between the rp;s and rp;i and then another set of quadrature points
between rp;i and rp;f .

Before we discuss results obtained using the above approach, a
few points are in order to evaluate �Gn, (a) the integral over the path be
evaluated using quadrature rules to very high precision as the order of
the path is known; (b) when the path passes through multiple cells, the
integration is broken up into pieces over each cell; (c) one can save on
computational cost of by updating the integral.

D. Computational complexity

Next, we briefly discuss the asymptotic computational cost of the
above algorithm. Assume for discussion purposes that there are Np

particles, Ns spatial degrees of freedom, and Nt time steps. Further,
assume that given a right hand side, solution takes Nit iterations to
reach a given threshold. It follows that for each time step, the solution
to Maxwell’s equations takes OðNsNitÞ time, whereas the creation of
the right hand side via the solution to Newton’s takes OðNpÞ as the
number searches to find associated tetrahedra is Oð1Þ. Typically, the
cost of the Maxwell solve dwarfs the cost of finding the path. Note,
unfortunately, the cost of the Maxwell solve cannot be as good as
FDTD, but FEM does have advantages alluded to earlier and it may be
possible to leverage domain decomposition approaches to achieve bet-
ter run time costs. In general, while the computational cost require to
find the non-linear path presented in Sec. IIIC might be higher than a
linear path, the fewer time steps required for the field solver out
weights the cost of the particle mapper.

IV. RESULTS

In this section, we present a number of results demonstrating the
efficacy of the proposed scheme with respect to conservation laws as
well as accuracy of key steps that are integral to the process.

A. Higher order particle motion

One of the key advantages in using implicit time stepping is the
possibility of using much larger time step sizes. Unfortunately, this

also implies that one needs higher order methods to capture both the
path and velocity. In this section, we demonstrate convergence of our
algorithm for particle motion using various orders of an
Adams–Bashforth integrator and compare these to standard non-
relativistic Boris push. It should be noted that the Adams–Bashforth
integrator, for the purposes of this paper, is run within its stable limits.

To do so, we set up a classic cyclotron24 motion test where a sin-
gle particle was given an initial velocity in a constant magnetic field
resulting in circular motion. The parameters are shown in Table I with
a particle’s initial velocity v0 with a background magnetic fields B with
a given mass m and charge q. The particle will move in a circle due to
the Lorentz force. The relative error in both position and velocity for
various time step sizes with multiple order of Adams–Bashforth and
Boris is shown in Figs. 2 and 3, respectively. The average error is calcu-
lated by taking the norm of the distance errors of each point r and
dividing by the normal of the analytic positions ra (see Ref. 24 for
details),

error ¼ jjr� rajj2
jjrajj2

: (33)

The slopes for each of the Adams–Bashforth methods match its order.
Boris, on the other hand, has a second order velocity update with a
first order positional update. This test essentially validates the pusher
as well as helps to correlate error (or approximately so) in particle
motion with time step size. Note that Fig. 2 shows that a higher order

FIG. 1. Particle path for a single particles with start and location and intersection
point.

TABLE I. Cyclotron motion.

Parameter Value

B 6:822 756� 10�5ẑ T
Q �1:602 176 46� 10�19 C
m 9:109 383 70� 10�31 kg
v0 3� 106ŷ m/s
r0 ½0:75; 0:5; 0:0� m

FIG. 2. Mean relative error in position for Adams–Bashforth orders 1–5 compared
with the Boris push, shown in black.
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time stepping method can take much larger time steps with smaller
error than a lower order methods.

B. Expanding particle beam

Next, we consider an expanding beam test.24 An expanding parti-
cle beam is injected into a cylindrical cavity with an initial velocity of
magnitude v0. As the beam travels down the tube, the electrons repel
each other causing the beam to expand. This expansion rate can be
compared with other codes to validate the solution. The detail of the
mesh and beam parameters used is shown in Table II.

Both the wave equation and mixed finite element trajectories are
compared in Fig. 4 and show good agreement with XOOPIC5 (an
extensively used and well validated quasi-2D FDTD code). We sample
the electric field halfway down the tube 16mm from the center of the
tube. The radial field values are plotted over time shown in Fig. 5 for

simulations with different time steps. We compare four runs with time
steps of aDt where a is scale factor andDt ¼ 0:333 ps is the largest sta-
ble step size in a leapfrog time marching method for the given mesh.
Note that 2 ns corresponds to 1 transit of the tube. It is evident from
this figure that the proposed method provides stable results; indeed, as
is evident from this figure, the data at 7.5Dt, 15Dt , and 30Dt are almost
identical to each other, where as the one at 1485Dt is slightly different.
This points to significant gains that can be made with Newmark time
stepping (provided that the method is charge conserving).

This leads to the next argument. Shown in Fig. 6 are data from two
different methods for the same setup run using with backward differ-
ence at Dt, MFEM with Newmark at 7Dt and the wave equation (WE)
at 7Dt . As evident, all three methods conserve charge to almost machine

FIG. 3. Mean relative error in velocity for Adams–Bashforth orders 1–5 compared
with the Boris push, shown in black.

TABLE II. Expanding particle beam parameters.

Parameter Value

Cavity radius 20mm
Cavity length 100mm

Boundary conditions Perfect electrical conductor
v0 5� 107 m/s

v0=c 0.166 78
Beam radius rb 8.00mm

Number particles per time step 10
Species Electrons

Turn on time 2 ns
Beam current 0.25A

Macro-particle size 52 012.58
Min. edge length 1.529mm
Max. edge length 6.872mm

Dt ns

FIG. 4. Expanding particle beam macro-particles in the z vs r plan. Particle loca-
tions from both mixed finite element methods and wave equation versions are com-
pared with XOOPIC beam profile.

FIG. 5. Electric field values are the radial component halfway down the tube 16mm
from the center of the tube. Multiple simulation with different time steps is
performed.
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precision. It should be noted that both MFEM and WE have a null
space. In the case of the former, it is fields that behave like r/ðrÞ, and
the latter, as tr/ðrÞ. However, as is evident from these results, our
mapping on to these null spaces is small and behaves as expected.

To further illustrate the robustness of the method to time step
sizes, in Fig. 7, we compare the satisfaction of Gauss’ law for all four
time steps used in Fig. 5. As is evident from here, charge is again con-
served almost to machine precision (around 10�18 for all with slight
difference evolution of trajectory).

C. Adiabatic expanding plasma

Finally, for a third validation case, we simulate an adiabatic
expansion of a plasma ball with radial Gaussian distribution in the

radial direction. This case has an analytic solutions25 and allows for
good comparison and validation. We change some of the parameters
from the original numerical experiments24 such that the Debye length
can be fully resolved (Table III). This example is described in more
detail in Ref. 24. We simulate both the examples MFEM and WE. For
both the examples, we get excellent agreement in the expansion rate
with both the wave equation, Fig. 8, and the mixed formulation, Fig. 9,
when compared with analytic densities.

V. SUMMARY

In this paper, we have presented a solution to a problem that has
been long-standing–charge conserving FEM-PIC methods for implicit
time stepping using a Newmark–Beta time stepping methods for both
Maxwell and Wave equation based finite element solvers without the
need to adopt divergence cleaning. In other words, rubrics have been
developed such that conservation laws are implicitly obeyed. Indeed,
the method presented is agnostic to any time stepping scheme used
for field solution. We have demonstrated the efficacy of this approach
for a set of test problems, using different time step sizes and different
time stepping schemes, as well as both MFEM and WE solvers. The

FIG. 6. Discrete Gauss’s law error per particle for Newmark–Beta mixed finite ele-
ment (NM-MFEM), Newmark–Beta wave equation (WE), backward difference
mixed finite elements (BD-MFEM) using the charge conservation technique pro-
vided here.

FIG. 7. Discrete Gauss’s law error per particle various time steps using the mixed
finite element methods using Newmark time stepping. FIG. 8. Wave equation adiabatic expanding plasma.

TABLE III. Adiabatic expanding plasmas.

Parameter Value

Mesh radius 6mm
Boundary conditions First order ABC

Tion 1K
Telectron 100K

Number particles 8000
Species Electrons and Srþ

Macro-particle size 52 012.58
Min. edge length 1.529mm
Max. edge length 6.872mm
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results reliably attest our claims. The above approach opens multiple
doors that will further the state of art of FEM-PIC; these include
higher order schemes in both space and time, quasi-Helmholtz
decomposition to get a better handle on null-spaces, and domain
decomposition to effect rapid solution by parallelizing the scheme.
Papers on these will be presented soon in other forums.
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