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Figure 1: Screenshots during the analysis of COVID-19 research articles about four different risk factors using an interactive DR
system powered by deep learning with BERT. (a) With semantic interactions, the analyst can provide visual feedback regarding
articles about different risk factors by directly manipulating the initial data projection. These interactions are then exploited to tune the
DR model. (b) The resulting projection is updated by the human-steered model. However, the nonlinear model lacks explanations
of the meaning of the clusters created. (c) Our proposed semantic explanation solution visualizes how the human-steered model

directly manipulated the projection and why.

ABSTRACT

Interactive dimensionality reduction helps analysts explore the high-
dimensional data based on their personal needs and domain-specific
problems. Recently, expressive nonlinear models are employed to
support these tasks. However, the interpretation of these human-
steered nonlinear models during human-in-the-loop analysis has not
been explored. To address this problem, we present a new visual
explanation design called semantic explanation. Semantic explana-
tion visualizes model behaviors in a manner that is similar to users’
direct projection manipulations. This design conforms to the spatial
analytic process and enables analysts better understand the updated
model in response to their interactions. We propose a pipeline to
empower interactive dimensionality reduction with semantic expla-
nation using counterfactuals. Based on the pipeline, we implement a
visual text analytics system with nonlinear dimensionality reduction
powered by deep learning via the BERT model. We demonstrate the
efficacy of semantic explanation with two case studies of academic
article exploration and intelligence analysis.

Index Terms: Interactive Dimensionality Reduction, Projection Ex-
planation, Counterfactual Explanation, Human-in-the-loop Analysis

1 INTRODUCTION

Interactive dimensionality reduction (DR) [27] is a commonly used
human-in-the-loop machine learning technique for exploratory anal-
ysis of high-dimensional data. Interactive DR systems enable users
to adjust DR parameters (such as feature weights) to incorporate
human knowledge and questions into the model during the spatial
analytic process [1]. Therefore, users can explore and analyze high-
dimensional data based on their own needs and domain-specific
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problems. However, parameter tuning usually needs particular math-
ematical knowledge, which is a daunting burden for analysts with
cognitively demanding tasks [21]. They must pause the analysis of
the data to determine how to adjust model parameters to formally
externalize their intents for the next exploration [14].

To solve this bottleneck, semantic interaction (SI) was pro-
posed [14]. In interactive DR systems with SI (Fig. 2), analysts
can naturally express their intents about the data by directly manipu-
lating the projection. The direct manipulation of visual metaphors
is consistent with the analyst’s spatial analytic process. With these
intuitive interactions, the analyst can remain within the cognitive
zone, thereby enhancing the analyst’s efficiency in performing ana-
Iytic tasks [19]. As shown in Fig. 1a, the analyst can move several
documents into four clusters to express their preferred data layout,
intuitively defining high-level concepts related to COVID-19 risk
factors [33]. Subsequently, the system is responsible for learning a
new DR model to infer the associated intent behind these interactions
and update the projection as visual feedback (Fig. 1b).

After performing interactions, analysts must understand the
changed behavior of the updated model in response to their inter-
actions. With a good understanding, the analysts can make better
decisions: (1) build trust, intuitively reasoning whether the pro-
jection change has sufficiently captured their intents, and (2) gain
knowledge, formally defining their high-level spatial layout concepts
in terms of lower-level input features [13]. In SI systems with lin-
ear DR [5, 6, 20, 28], analysts can quickly understand the model
behavior through case-based reasoning of the updated projection.
Recently, several researches have been done to employ advanced
and expressive nonlinear DR models in SI systems [3,24]. While
these nonlinear models offer new opportunities to power interactive
DR with more accurate inference, they also make the system chal-
lenging to understand. We argue that model explanation is the next

{ Data H Interactive DR HData ProjectionH Analyst }

Figure 2: Interactive DR with Sl in which analysts directly manipulate
the projection to externalize their intents. Adapted from [14,27].




bottleneck preventing analysts from focusing on their analysis with
high efficiency.

In this paper, we aim to address this issue by proposing a new
visual explanation design, called semantic explanation (SE). SE
visualizes model behaviors in a manner that is similar to users’
direct projection manipulations. As a complement (Fig. 1c), SE
explicitly shows how and why the updated DR model changed the
data projection in response to the analyst’s semantic interactions:
the updated model moves the intermixed data points from the center
to separated clusters because of the essential features. Similar to the
design of SI, SE conforms to the spatial analytic process (Fig. 3).
Specifically, as shown in Steps 3-4, analysts can naturally understand
the model behaovior and projection updates via visual explanations
about how data features support the projection change. SE leverages
the cognitive connection formed between analysts and spatial layouts
for model understanding, thereby accelerating the analytic process.

We propose a pipeline to empower interactive DR systems with
SE using counterfactuals [32]. This is because counterfactual expla-
nation elicits causal thinking between the change of input features
and the model prediction updates [32]. It is commonly used in
interpreting supervised models, explaining how small changes of
input feature values can cause the prediction changes of indivisual
instances [32]. Here we utlize a perturbation-based method [26] to
generate and select cuonterfactuals to explain the projection changes
made by interactive DR systems in an unspervised manner. We
apply our SE pipeline to a semantic interaction system for visual
text analytics powered by deep learning via the BERT model [12],
called DeepSE. We demonstrated the utility of DeepSE via two case
studies: academic paper exploration and intelligence analysis. Re-
sults demonstrate how SE enables understanding the model behavior
and formalizing concepts during the analytic process.

2 RELATED WORK

Three areas of related research support SE: semantic interaction,
nonlinear projection explanation, and counterfactual explanation.

Semantic interaction: Interactive DR systems with SI usually
adapt linear DR methods [5, 6,20, 28], because of the easy inter-
pretation property in supporting analysts’ process of incremental
formalism [14,29]. Analysts can naturally associate their exter-
nalized concepts with the change of projection, which is linearly
associated with updates of input feature importance. Recently, sev-
eral SI systems have employed expressive nonlinear dimensionality
reduction to improve the inference ability [3,24]. DeepSI [3] pro-
poses a general framework to power the interactive DR component
with interactive deep learning. However, exiting visual explanations
used in SI systems, such as the global feature importance through
slider bars [28] and the node-link diagram connected by shared enti-
ties [5], only work for linear models. SE can interpret any interactive
systems with either linear or nonlinear DR algorithms.

Nonlinear projection explanation: Several visual explantion
methods have been proposed to interpret the projection results of
nonlinear methods, that can be categorized as: model-specific [9,
30], model-agnostic [7, 16, 17]. These methods offer detailed and
valuable guidance in determining the meaning of the data projection.
Differently, SE focuses on the interpretation of the updated DR
models and the associated projection changes in interactive systems
for human-in-the-loop data analysis.

Counterfactual explanation: Counterfactual explanations de-
scribes the causal relationships between the change to data features
and the change to model results, for what-if analysis [32]. Recently,
counterfactual explanations have been widely applied to interpret
machine learning, particularly classification models [23,32]. A
variety of VA techniques have been developed for counterfactual ex-
planations, including ViCE [34], What-If Tool [11], and DECE [11].
In this paper, we implement and intergrate SE to interactive DR
systems through the usage of counterfactuals.
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Figure 3: Design rationale of SE.

3 SEMANTIC EXPLANATION
3.1

The cognitive connection between the analyst and the spatial lay-
out, through the visual proximity ~ similarity metaphor, makes SI
an effective interaction methodology for analysts to express their
intent, as it does not require analysts to formalize their analytic
reasoning [22]. Similarly, the design rationale behind SE is also
the connection between the analyst and the spatial layout for model
explanations. These explanations explicitly correlate the abstract
projection to input features (words) and help the analyst formally
define semantic concepts with high efficiency. Fig. 3 shows the
detailed description of the rationale.

With SI, the analyst performs spatial analytic interactions to ex-
ternalize their semantics of information about concepts in the projec-
tion [14] (Step 1). For example, the analyst moves two articles apart
because these articles have different semantic meanings: smoking
status vs. neurological disorder. Alternatively, they might create
a spatial cluster of several similar articles related to neurological
disorders as a COVID-19 risk factor (as shown in Fig. 1a). Using
cases (informal relationships) rather than formalized feature descrip-
tions, the analyst can express high-level semantics on the fly. It is
the system’s responsibility to infer the semantics behind interactions,
formalize the concept (Step 2), and update the model projection.

With SE, the system explicitly formalizes and contextualizes the
associated analytical (causal) reasoning in updating the projection
(Step 3). Specifically, the system explicates how essential features
drive the underlying model to update all observations in a way similar
to the analyst’s spatial analytic interaction. In the model projection
in Fig. 3, for example, all the data points are moved into two separate
clusters by the underlying model. Furthermore, all the movements
made by the model are interpreted with the essential features that
contribute most to these movements. These visual explanations can
be correlated with the analytical reasoning behind the analysts’ inter-
actions. The explanations neurological, neurologic, and psychiatric
support the analyst’s internal decision to search for neurological dis-
order. The explanations smoking, tobacco, and smoker support the
analyst’s internal choice of smoking status. Therefore, the analyst
gains a deeper, more formalized understanding of the meaning of
the clusters they have created (Step 4).

Design Rationale

3.2

Counterfactual explanation elicits causal thinking regarding the
change of input features and the prediction updates for individ-
ual data instances [32]. The use of counterfactuals can generate
explanations that meet the design requirements described in the pre-
vious subsection. We propose a new pipeline to power interactive
DR systems with SE using counterfactuals. As shown in Fig. 4, the
pipeline consists of two components: the counterfactual engine and
the counterfactual projection.

Interactive DR with SE Using Counterfactuals
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Figure 4: Interactive DR pipeline with SE.

3.2.1

The counterfactual engine interprets nonlinear DR models by cre-
ating representative counterfactual explanations for all individual
observations. As shown in Fig. 4, it has two subprocesses: generate
counterfactuals and filter counterfactuals. First, the engine generates
a group of counterfactual candidates, x’, by making small changes
to the features compared to the input instance x. For simplicity,
we only change one independent feature dimension at a time when
generating counterfactuals. For a given instance with M features, M
counterfactuals will be generated. Then, the high-dimensional data
instances and their counterfactual candidates are projected into the
low-dimensional space (x — y,x’ — y’). This is a perturbation-based
method [26] which has been commonly used in existing counterfac-
tual visualization systems [11,18,34].

Next, the engine filters out all the representative counterfactual
candidates based on an objective function. Existing counterfactual
methods are often used in interpreting supervised models [31,32],
in which class labels are used to define objectives. However, the
explicit ground truth is not available in interactive DR systems. For
simplicity of exposition, we propose a new optimization function
consisting of two objectives: proximity and validity. The proximity
objective seeks to create a set of counterfactual examples, X, from
the original instance, x, with small feature perturbations by minimiz-
ing the distance between x and x’. The validity objective seeks to
select important counterfactual examples, x’, that contribute most to
the changes in the projection space, precisely the distance between
y and y'. Taken together, we seek counterfactuals where small data
changes cause significant representation changes. By default, the
counterfactual projection displays the top one counterfactual for each
instance, and the detailed explanation view displays the top 5 for one
selected instance. An open area of research is how to design valid
counterfactual constraints to extract representative counterfactuals
based on human interactions during the analytic process.

Counterfactual Engine: Generate Explanations

3.2.2 Counterfactual Projection: Contextualize Explanations

The counterfactual projection is a novel visualization to contextu-
alize counterfactual explanations into the data projection layout.
Inspired by the flow-based scatterplot [8] and Praxis [7], we propose
a counterfactual projection. As shown in Fig. 3 (model projection),
we integrate counterfactuals for all data points into the traditional
scatterplot with proline-like visual metaphors [7] to highlight both
local and global patterns of explanations for the DR model and
projection changes. As in the original scatterplot, data points are
rendered as solid blue dots and positioned based on their similar-
ities. In addition to data points, counterfactual examples are also
visualized as dots but in a smaller size and with a light gray color so
that the analysts can easily distinguish between data instances and
explanations. The dotted red line between the data instances and the
counterfactual examples shows the projection changes induced by
the input feature changes.

In addition, the counterfactual projection provides a series of
interactions to explore explanations and avoid visual clutter. Extra
detailed views can also be employed to help analysts interpret the
feature influence within the data points under investigation, as in
StarSPIRE [5]. We describe the detailed visualization and interaction
design for the visual text analytics system in the following section.

These two components enable model explanations with the ben-
eficial properties described in the previous subsection. It is worth
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noting that the counterfactual examples do not represent where the
data instances were before the interaction and re-projection. Instead,
the counterfactual explanation shows the projected position of coun-
terfactual instances with the perturbations of these essential features
from the original data instances in the current, updated model.

(A) Counterfactual Projection (B) Control Panel

(C) Document View

(D) Explanation View

Figure 5: The visual interface of DeepSE, and Case Study 1.

4 DEEPSE SYSTEM FOR VISUAL TEXT ANALYTICS

Following the proposed pipeline described in Sec. 3.2, we build
an interactive DR system with SE for visual text analytics, called
DeepSE. The interactive DR component of the system is powered
by deep learning with the BERT model, as is explained in more
detail in DeepSI [3]. It is worth noting that DeepSI learns from user
interactions, while DeepSE adds the counterfactual engine and the
counterfactual projection to provide visual explanations of what was
learned from the user interactions.

The counterfactual projection is the main view and entry point
for analysts. This view is designed based on the model projection
in Fig. 3 to provide visualizations for both predicted data points
and their relevant, representative counterfactuals. The text label
overlying the counterfactual line shows the keyword removed from
the original instance to create the counterfactual example at the other
end of the line. Analysts can intuitively understand that removing the
keyword from the data instances leads to the instance moving to the
counterfactual position. In reverse, these counterfactual lines allow
analysts to obtain a sense of the data flow from the counterfactual ex-
amples to the instances because of the keyword. Therefore, analysts
gain an overall comprehension of how the projection is influenced
by important words in the documents (Fig. 5). The visualization also
provides relevant interactions for analysts to explore explanations
in detail as needed, such as selecting a data point and highlighting
relevant counterfactuals.

The control panel allows the analyst to change the display of the
counterfactual projection. When a document in the projection is
selected, the document view displays the full content of the selected
document in the form of a text heatmap visualization. The word
importance is calculated based on the internal attention maps of the
BERT model [12]. The explanation view enables analysts to inspect
the full explanations for the selected document.

4.1 Case Study 1: Academic Articles on COVID-19

This case study shows how SE assists a medical researcher in
reasoning whether the model has sufficiently captured her intent
of four different risk factors from the COVID-19 Open Research
Dataset (CORD-19) [33]. Fig. 1 shows the process of communica-
tion between the analyst and the DeepSE system. Fig. 1-a shows
the projection initialized by the default DR model, in which all the
articles are spatially intermixed. The analyst then performs SI to
provide visual feedback on 12 articles about different risk factors



of interest to her (cancer, chronic kidney disease, neurological dis-
orders, and smoking status) to reflect the perceived connections
between articles. Fig. 1-b shows the model projection updated by
the underlying model to capture these new risk factor concepts. The
overall projection shows four clear clusters, but does not show how
consistent the new clusters are to user expectations. Without SE, the
analyst must check all the articles to ensure they are appropriately
grouped to learn about related topics. Therefore, the analyst turns
on the Display Explanation to show explanations and understand the
model projection with the help of SE.

As shown in Fig. 1-c and Fig. 5, the counterfactual projection
shows all the data points and their relevant counterfactual explana-
tions. Almost all the counterfactual points are towards the center
of the scatterplot, compared with the data points. The global trends
of the counterfactual lines show the data flow from the center to
the margins. There are essential words that contribute most to the
forming of these four clusters. This indicates the updated model
has pushed all the instances away from the center because of some
essential words related to COVID-19 risk factors to form these four,
clear clusters. For example, counterfactual explanations show that
the cluster smoking status is formed by documents with the keyword
smoking or smoker. The underlying model updated documents from
the center of the projection to the left because of these keywords.

Based on SE, the analyst concludes that the model-constructed
clusters are indeed consistent with her intent as expressed via her SI.
She learns that there are numerous additional documents to support
her hypothesis about these four key risk factors, which guides her
continued investigation. She also finds an outlier document about
the virus on the right side that does not focus on these factors.
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Figure 6: Explanations of two clusters formed in Case Study 2.

4.2 Case Study 2: Intelligence Reports

This case study shows how explanations evolve during iterative in-
teraction. In the analytic process, analysts progressively refine the
spatial structure of the projection to gain new insights over time.
This is often the situation in early stages of the analytic process
before clear concept definitions emerge. For example, documents
that belong to one cluster may be relocated to another cluster for a
different meaning in a later phase of the analytic process [15]. To
demonstrate the versatility of SE in different stages of the analytic
process, we applied DeepSE to an intelligence analysis training
dataset containing 42 fictional intelligence reports regarding a coor-
dinated terrorist plot and international transportation of explosives.

At the beginning of the study, the analyst looks for reports
mentioning explosive to find potentially suspicious and interest-
ing facts [1]. Fig. 6a shows the updated counterfactual projection
after the analyst groups several reports related to this concept. More
reports gather close to the grouped reports and form a cluster. Key-
words that have similar meanings to explosive (such as missiles,
mines, bombs, and radioactive), have a dominant effect on forming
this cluster. This is consistent with the intended semantics from the
analyst, and helps to broaden their understanding of the plot to other
types of explosives and other useful documents.
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After learning additional information and developing a more pre-
cise understanding, the analyst narrows the focus to reports related to
a specific location near New York City because of a potential attack
plot. As shown in Fig. 6b, six reports gather together in the updated
projection to capture this concept. To check the semantics of the clus-
ter in detail, the intelligence analyst uses SE. The location keywords
(bergen, york and queens) are the main reason in forming the cluster.
For example, document “fbi22” was originally clustered based on
explosives, but is now clustered based on nyc location. The model
has captured the analyst’s process of incremental formalism [29],
forming an updated schema focused on attack location.

5 DISCUSSION AND CONCLUSION

Generality and Applicability: Our prototype DeepSE currently
interprets nonlinear DR models powered with deep learning for text
data. As a model-agnostic explanation method, SE can be gener-
alized to different DR models and applied to other data types. For
example, SE can be integrated into SI systems with Weighted MDS,
such as Andromeda for numerical data analysis [28] or DeepVA for
visual concept analysis [4].

Performance: The most significant issue with the counterfactual
explanation method is the time complexity. The time complexity of
the counterfactual engine depends on data size N and feature dimen-
sion M. It needs to generate and sort M counterfactual explanations
for all N instances (totally N x« M counterfactuals). In DeepSE, we
use a heuristic method based on BERT’s internal attention-maps to
reduce M to a small constant amount by selecting the top m words
(m < M) with high attention scores. The total number of counter-
factuals is limited to N xm. This reduces the counterfactual engine
response to near real time (0.83s for 61 articles in Case Study 1).

Contextual Explanation: It is worth noting that SE can be used
independently to explain DR models using counterfactuals. In DR
systems without SI, SE can still assist users in understanding the
structure of data projection. However, the design motivation of SE
is to provide a contextual explanation of interactively updated DR
models, which is similar to SI. During human-in-the-loop analysis,
the visual explanation of models should be contextual to the human-
Al conversation and consistent with user interactions [25]. We hope
SE will encourage more future designs of the contextual property of
visual explanation for interactive machine learning systems.

Future Work: There are some limitations in our current design
of the SE pipeline. More advanced counterfactual methods could be
explored to provide more accurate explanations, such as hierarchical
explanations [10] and complex constraints [31]. In addition, we do
not take projection distortion introduced by counterfactual instances
into consideration. Out-of-sample extension methods [2] could
be applied to the system to alleviate this problem by projecting
counterfactual instances into the pre-computed data projection [7].

Conclusion: We proposed SE to generate and contextualize ex-
planations for visual analytics systems with nonlinear DR. SE is
designed as an output analogy to semantic interaction input. The SE
pipeline contains two main components: the counterfactual engine
and the counterfactual projection. These key elements forge natural
connections between cognitive projections and computational pro-
jections, thereby yielding contextual explanations. We implemented
DeepSE, a visual text analysis system with nonlinear DR powered
by deep learning. We demonstrated the utility of DeepSE via two
case studies. With SE, analysts can better understand the updated
DR model while maintaining focus on the analytic task.
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