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Figure 1: Screenshots during the analysis of COVID-19 research articles about four risk factors (depicted in different colors)
using our proposed model DeepSly, . .iune: (1) the initial layout of all articles projected from pretrained BERT representations
of the raw text data; (2) the analyst performs semantic interactions to provide visual feedback regarding articles about different
risk factors; these interactions are then exploited to tune the underlying DL model BERT; (3) the resulting projection updated

by the tuned BERT.
ABSTRACT

In this paper, we design novel interactive deep learning methods
to improve semantic interactions in visual analytics applications.
The ability of semantic interaction to infer analysts’ precise intents
during sensemaking is dependent on the quality of the underlying
data representation. We propose the DeepSlg,, .june framework that
integrates deep learning into the human-in-the-loop interactive
sensemaking pipeline, with two important properties. First, deep
learning extracts meaningful representations from raw data, which
improves semantic interaction inference. Second, semantic interac-
tions are exploited to fine-tune the deep learning representations,
which then further improves semantic interaction inference. This
feedback loop between human interaction and deep learning en-
ables efficient learning of user- and task-specific representations.
To evaluate the advantage of embedding the deep learning within
the semantic interaction loop, we compare DeepSIg, .iune 2gainst a
state-of-the-art but more basic use of deep learning as only a fea-
ture extractor pre-processed outside of the interactive loop. Results
of two complementary studies, a human-centered qualitative case
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study and an algorithm-centered simulation-based quantitative ex-
periment, show that DeepSIg .1, MOre accurately captures users’
complex mental models with fewer interactions.
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1 INTRODUCTION

Semantic interaction (SI) [19, 20] is an interaction methodology
that is commonly utilized to enhance visual analytics (VA) systems.
SI-enabled systems let the analyst directly manipulate interactive
projections of data [57]. The semantic meaning behind these projec-
tion interactions is the similarity relationships the analyst wishes to
find within the data during the sensemaking process [48]. As shown
in Fig. 1-2, the analyst drags 12 COVID-19 article points into four
clusters to provide the visual feedback of grouping articles based
on their perceived relevant risk factors. With these intuitive and
natural interactions, the analyst can remain within the cognitive
zone [24], thereby enhancing the analyst’s efficiency in performing
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analytic tasks [64]. In the system, an interactive dimensionality
reduction (DR) component [53, 64] plays a key role in capturing
the analyst’s intent behind these interactions by learning a new
projection layout (Fig. 1-3). To determine the analyst’s precise in-
tent, increasingly powerful interactive DR models [64] have been
proposed, from linear [28, 29, 36] to non-linear models [34, 39], and
from single-model to multi-model approaches [10, 17, 18, 65].

However, the ability of semantic interaction to infer analysts’
precise intents during sensemaking is dependent on the quality
of the underlying data representation. Deep learning (DL) [35] is
a state-of-the-art representation learning method [5], which can
automatically extract abstract and useful hierarchical representa-
tions from raw data [6]. This offers the new opportunity to power
SIin capturing the analyst’s intent. We denote the DL-enhanced SI
system as DeepSI. Previous researches have shown that even the
usage of the pretrained DL representations as fixed data features
have better performance than hand-crafted features in SI-enabled
VA systems [7, 8]. We denote this straightforward DeepSI design
with the basic use the pretrained DL as only a feature extractor in
SI pipeline as DeepSI.,, ij1a-

In this paper, we aim to further improve semantic interaction
inference by fine-tuning the model to obtain user- and task-specific
representations from the pretrained DL model. Central to this de-
sign goal are two research questions:

e How to exploit semantic interactions to accurately adapt the
pretrained representations to current analytic tasks?

o How to make efficient adaptations, so that a small number of
semantic interactions are enough for analysts to express their
intents?

To address these two questions, we propose a novel DeepSI frame-
work, DeepSIg, ctune> With the following two design goals. First, we
insert the interactive DL training into the bidirectional structure of
the semantic interaction pipeline, so that interactions trigger the DL
adaptation. Thereby, new user- and task-specific representations
are generated based on semantic interactions provided by analysts
during their sensemaking process. Second, we employ the fine-
tuning based DL adaption approach and the MDS-based interactive
DR model to minimize the number of parameters that require train-
ing in the underlying model. Therefore, DeepSlg  .tune €an tune
the DL model efficiently from the analyst’s interactions without
information loss. Specifically, we use the pretrained BERT [15], a
state-of-the-art DL model for NLP tasks, as the DL model represen-
tative inside DeepSIg, .rune for visual text analysis tasks.

To assess how well DeepSIg ..n addresses these questions by
integrating DL into the semantic interaction loop, we compare it
with the well-evaluated baseline model DeepSI,, i1, [7, 8], which
uses DL outside of the interactive loop, in two complementary ex-
periments: a human-centered qualitative case study about COVID-
19 academic articles; and an algorithm-centered simulation-based
quantitative analysis of three commonly used text corpora: Stand-
ford Sentiment Treebank (SST), Vispubdata, and 20 Newsgroups.
The results of both experiments show that DeepSIg, otune 10t only
captures the analyst’s precise intent more accurately, but also re-
quires fewer interactions from the analyst.

Specifically, we claim the following contributions:
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(1) The DeepSIg, ctune framework that integrates DL into the
human-in-the-loop iterative sensemaking pipeline to im-
prove semantic interaction inference.

(2) Two complementary studies, a user-centered qualitative case
study and an algorithm-centered simulation-based quan-
titative experiment, that measure the performance of our
method and reveal improvements.

2 RELATED WORKS

Four related components support our design: interactive DR models
used in semantic interaction; basic knowledge of the DL model
BERT; pretrained DL model adaptation approaches; and other work
about user-centered interactive DL.

Model >|
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arameters €| Spatialization
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= model prediction
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Figure 2: SI pipeline showing the communication between
the analyst and VA system, adapted from [20, 55]. The inter-
active DR component is responsible for capturing the ana-
lyst’s intent from the human modified projection (denoted
as human spatialization) and, consequently, updating the
projection in response (denoted as model spatialization).

> model updating
Analyst

(Interact) Updatable Component
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2.1 Interactive Dimensionality Reduction

While using the human-in-the-loop sensemaking SI pipeline (Fig. 2),
analysts gain insights from the model projection (spatialization)
and express their preferences by repositioning data points in the
projection. It is the interactive DR model’s responsibility to learn
new model parameters that capture the analyst’s intent behind the
modified projection and, in response, use the learned parameters to
update the projection. Therefore, increasingly powerful DR mod-
els have been adapted in a semi-supervised manner to improve SI
inference. VA frameworks V2PI [36] and BaVA [28] adapted linear
DR models, including principal component analysis (PCA) [66] and
weighted multidimensional scaling (WMDS) [54], to the bidirec-
tional SI pipeline. To support more complex tasks and interactions,
multiple models were chained together as a single interactive DR
model, which is called multi-model SI [10, 18, 65]. Recently, to adapt
more powerful but complex non-invertible DR algorithms, such
as t-SNE [38] and UMAP [40], Zexplorer [39] used the invertible
neural encoder [21] to emulate these models as the interactive DR
model in SI applications.

Similarly, DeepSIg orune 2lso aims to improve SI inference. How-
ever, DeepSlg, .rune highlights the importance of finding user- and
task-specific data representations instead of more powerful DR.
Therefore, we use the simple but commonly used WMDS as the
default DR [11, 16, 55, 56] and focus on extracting meaningful DL
representations.

2.2 BERT

BERT (Bidirectional Encoder Representations from Transformers)
[15] is a DL language representation model. BERT is first pretrained
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on raw text data to learn general language representations. The pre-
trained BERT then can be easily adapted to downstream NLP tasks
such as sentiment analysis and semantic textual similarity [12]. The
adapted BERT model is able to provide task-specific representa-
tions and shows state-of-the-art performance in these downstream
tasks. Technically, BERT is a Transformer encoder [61], contain-
ing a stack of transformer layers. The transformer layer learns
token-level representations. For input token sequences, the trans-
former layer learns a new vector for each token based on all other
tokens, using the self-attention mechanism [3]. Through the stack
of transfer layers, BERT can convert a sequence of tokens into
deep representations. In this paper, we use the pretrained BERT
model as the default DL model in the DeepSI pipeline to provide
text representations for visual text analytic tasks.

2.3 Pretrained Representation Adaptation

There are two main paradigms to adapt the pretrained DL repre-
sentation model to downstream tasks: feature extraction and fine-
tuning [47]. The feature extraction approach uses a task-specific
architecture to adapt the pretrained representations to downstream
tasks (e.g. ELMo [46]). In this approach, parameters inside the task-
specific architecture are trained on the downstream tasks. In con-
trast, instead of using a new architecture, the fine-tuning method
appends one additional output layer to the pretrained DL and tunes
the whole pretrained model with the downstream tasks. The fine-
tuning approach requires relatively less training data because it
introduces minimal task-specific parameters and does not need to
learn randomly initialized task-specific parameters from scratch.
Therefore, we use the fine-tuning approach in the DeepSIg .iune
framework to adapt the pre-trained DL model to visual analytic
tasks.

2.4 Human-centered Deep Learning

There are other human-centered DL techniques proposed to assist
users in complex data analytic tasks. Hsueh-Chien et. al. [13] used
CNN techniques to assist users in volume visualization designing
through facilitating user interaction with high-dimensional DL fea-
tures. In RetainVis [33], an interactive and interpretable RNN model
was designed for electronic medical records analysis and patient
risk predictions, which can be steered interactively by domain ex-
perts. Gehrmann et al. [23] proposed a framework of collaborative
semantic inference that enables the visual collaboration between
humans and DL algorithms. Sharkzor [49] is an interactive deep
learning system for image sorting and summary, based on users’
semantic interactions. Of these, Sharkzor is the most similar to
our DeepSlg, ctune- Both works provide users with semantic inter-
actions to tune the DL model interactively. However, our work
emphasizes a general solution to integrate DL models into SI sys-
tems to improve inference. While Sharkzor is only designed for
image analysis, DeepSIg  .iune can be applied to other data analytic
tasks and relevant DL models.

3 BACKGROUND

In order to frame our discussion of our model DeepSIg . ne- this
section briefly describes DeepVA, the state-of-the-art SI model with
pretrained DL [8]. For the purpose of comparison, we implement
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a specific version of DeepVA that uses BERT, which we denote
as DeepSI,, ii1a- For reference, Table 1 describes frequently used
variables throughout this paper. We use the pretrained BERT model
as a representative DL model in DeepSI system designs. Note that
WMDS is used as the default interactive DR in DeepSI frameworks
for three reasons. First, the WMDS is a simple linear DR algorithm,
so that we can focus on assessing the effects of data representa-
tions on the model performance. Second, WMDS is agnostic to the
choice of the weighted distance function. Third, WMDS enables
analysts to express their synthesis process by manipulating data
point proximities to reflect their perceived similarity [57].

DeepSI, .. Uses the DL model as only a feature extractor in
the SI pipeline. As shown in Fig. 3, the pretrained parameters inside
the BERT model are frozen. Thereby, for an input, BERT provides
a fixed general-purpose representation, which is then used as the
data features in the interactive training loop. The BERT model is
outside of the interactive loop. Therefore, the interactive DR model,
WMDS, is responsible for updating dimension weights wmension t0
capture the analyst’s intent as a weighting of the BERT features.
The complete process of the pipeline is as follows.

Before entering the interactive training loop, the data repre-
sentations are initialized by the BERT model with the pretrained
parameters wyggr:

x = BERT(d, Wizxr) oy

In the forward model-prediction direction, WMDS is performed to
project high-dimensional data points (x) into the two-dimensional
spatialization (y), with current dimension weights Wgjpension (initially,
all weights are equal). This provides a new projection for the analyst
to perceive and interact.

2
y = arg min Z (dlStL(yl, y]) - diStH(X'i, X'j, wdimension)) (2)
Y  i<j<N

In the backward model-updating direction, the analyst provides vi-
sual feedback by repositioning n data points within the projection.
WMDS™! uses the low-dimensional pairwise distances between
the moved n data points as input, to learn new dimension weights
Waimension t0 make sure these moved data points have similar rela-
tionships in the high-dimensional space, based on the following
optimization criterion:

w = arg min Z (distL(yi, yj) — distg(xi, xj, deemion))z (3)

W i<j<n
Therefore, through this loop, the dimension weights Wmension are
trained interactively and incrementally based on analysts’ interac-
tions to capture their intents.

DeepSI, . has been well-evaluated previously. DeepVA [8]
used ResNet [26] as an image data feature extractor in the SI system
that assists users performing visual concepts analysis using DL
representations. In [7], Bian et al. compared SI systems that use
embedding vectors as features and those that use bag-of-words as
features in visual text analysis tasks. Experiments in both works
show that even the general-purpose representations of pretrained
DL models can enable SI to better capture the analyst’s intent
than hand-crafted features. However, using the general-purpose
pretrained representations still restricts SI inference. In the next
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Table 1: A list of variables used throughout this paper and their descriptions.

Variable Description
d A set of documents for analysis
N,M Number of samples in d, number of dimensions of d
n Number of samples moved by the analyst, n < N
x High-dimensional feature of d. DL representations (768 dimension-size BERT embeddings)
y Coordinates in the 2D visual spatialization of d.
Set either by analysts’ interactions on the visualization, or by the underlying SI model, which maps x to y
Wiimension Parameters of dimension weights of x. (a 768 dimension-size vector)
‘WRERT Internal parameters of the pretrained BERT model. BERT}, ;5 is used in this paper, which contains 110 million parameters
dist Euclidean distance between data samples in d. Weighted Euclidean distance is used if Wgimension applied.

disty defines the high-dimensional similarity. disty defines the low-dimensional similarity

D Frozen Component

Updatable Component = model prediction =3 model updating

N
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Figure 3: DeepSI,, ..i1. Pipeline, adapted from [7]: using the pretrained BERT as only a feature extractor pre-processed outside
of the interactive loop in SI pipeline. All parameters inside the pretrained BERT model are frozen and the output data repre-
sentations are fixed. WMDS is the interactive DR, which is responsible to tune the dimension weights W4,ension to capture the

analyst’s intent.

section, we propose DeepSIg  .1une» Which exploits fine-tuned repre-
sentations to further improve SI inference. As the best-performing
model from previous studies, DeepSI is the baseline model for
comparison.

vanilla

4 MODEL DESCRIPTION

This section outlines the main design, model pipeline, and imple-
mentation details of DeepSIg ctune-

4.1 Model Design

We propose two main design goals to address the two research
questions discussed in Sec. 1.

Design goal 1- Integrating DL into the human-in-the-loop
interactive sensemaking pipeline. To get user- and task-specific
representations, it is necessary to iteratively train the DL model
with semantic interactions during the human-in-the-loop process.
Inspired by multi-model SI systems [10, 18, 65], we inserted the
DL model update and prediction process into the bidirectional
semantic interaction loop, as shown in Fig. 4. The DL model update
and prediction process occurs before the interactive DR model. The
interactive DR model passes the analyst’s visual feedback from the
human spatialization to the DL model. The visual feedback is then
used to update the parameters inside the DL model (wgggr) through
the DL backpropagation [52] (red arrows inside the DL component).
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With updated parameters wygr, the BERT model calculates new
representations for input data by the forward propagation [69]
through the internal transformer layers (black arrows inside the DL
component). Through the interactive sensemaking process, the DL
model is trained by semantic interactions in an interactive machine
learning setting [2, 22]. Thereby, improved representations are
generated to accurately capture the analyst’s intent.

Design goal 2 - Introducing minimal parameters into the
interactive DL training pipeline. To solve analytic tasks effi-
ciently, the analyst prefers to perform fewer interactions in each
sensemaking loop. However, DL model training typically needs a
relatively large amount of training data. To reduce the number of
interactions needed for training, we should introduce minimal pa-
rameters into the pipeline while integrating the DL model training.
For this design goal, we made specific modifications to both the DL
and the interactive DR components. First, we used the fine-tuning
approach to adapt the pretrained BERT model with semantic in-
teractions. Unlike the feature-based method, fine-tuning approach
introduced minimal task-specific paramters [25]. This drastically re-
duced the required training data. Further, we used MDS/MDS™! as
the interactive DR component. During the interactive BERT model
training, representations are updated to capture analysts’ intents.
It is unnecessary to tune extra parameters for the same purpose in
the interactive DR model. Therefore, we used MDS/MDS ™! without
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Figure 4: DeepSlg, ctune PiPeline: embedding BERT within the SI loop. Semantic interactions are exploited to fine-tune BERT
interactively through backpropagation. The tuned BERT is responsible for generating new representations, so as to capture
the analyst’s intent. Thereby, no external parameters are needed.

dimension weights W gension as the interactive DR component. There
are no parameters to tune in this component. Therefore, users’ inter-
actions can be passed directly to DL training without information
loss.

4.2 Model Pipeline

We illustrate the DeepSlg, .rune PiPeline (Fig. 4) in detail through
the human-in-the-loop sensemaking process. In the forward model-
prediction direction, new representations are generated for the
dataset d through the forward propagation calculation of the BERT
model, with current BERT parameters (Wgggr):

x = BERT(d, Wizxr) ()

The high-dimensional DL representations x are then projected to
the 2D spatialization (model spatialization) by MDS through the
following equation:

2
y=argmin y (distL(yi, yj) - distH(x,-,xj)) )
Y i<jsN
In contrast to Eq. 2, the high-dimensional distance function is not
explicitly weighted. Instead, the updates to y in each loop are cap-
tured by the fine-tuned representation x itself. The analyst perceives
the updated spatialization and gains insight.

In the backward model-updating direction, the analyst modi-
fies the visual layout (human spatialization) by repositioning some
samples to express the preferred similarities between them. Then,
MDS™! uses the human-defined similarities between n moved data
points, disty (yi, y;)), to steer the BERT model parameters to gener-
ate better high-dimensional representations x, such that the simi-
larity of the representations reflects the proximity of the points in
the modified projection, as follows:

2
w = arg min Z (distL(yi,yj) — disty (BERT(d;, w),BERT(dj,w)))

WBERT < j<n
(6)

The optimization objective is to fine-tune BERT weights wyggr
to minimize the difference between low-dimensional and high-
dimensional distances of n moved data points through backprop-
agation. All internal parameters of the BERT model (Wgg:) are

updated in order, from last transformer layers to previous layers,
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by a gradient descent optimization algorithm [51]. After the back-
propagation, the updated wyg; is used in the forward propagation
to calculate new representations x in Eq. 4.

Through this human-in-the-loop interactive DL process, the
BERT model is tuned properly to generate user- and task-specific
representations, so as to capture analysts’ precise intents: samples
that should be closer to each other in the visualization obtain similar
features, while more distant samples gain differing features.

4.3 Prototyping Detail

Here, we describe the implementation details of DeepSI proto-
types used in our experiments, including model settings and vi-
sualization design. These implementations are applicable for both
DeepSlg, etune and DeepSI

vanilla*

4.3.1 Model Settings. We use Pytorch [43], a well-known Python
DL framework, to implement the DeepSI system. For the forward
DR component, MDS is adapted from Scikit-Learn [44]. The MDS™!
is implemented in Pytorch as a neural network layer. The pretrained
BERT model is adapted from the publicly available Python library,
Transformers [67]. Transformers provides two sizes of pretrained
BERT models: BERTgasg, and BERTy arGg. We used the small BERT
model (BERTp 4sE) (bert-base-uncased, 12-layers, 768-hidden, 12-
heads, 110M parameters), because it is more stable on small datasets.
For a document containing a list of tokens, BERTpASE can convert
each of the tokens into a 768-dimensional vector. To generate fixed-
length encoding vectors from documents of different lengths, we
appended a MEAN pooling layer to the last transformer layer of
the BERT model, such that the output representation for a docu-
ment was a 768-dimensional vector. Therefore, the Wgyension Used in
DeepSI,,, i1, is also a 768 dimension vector. We also tested other
pooling strategies, such as MAX pooling and CLS pooling [50].
However, there was no obvious performance difference, and the
MEAN pooling showed slightly better performance. In addition,
we used the Adam optimizer [32] to optimize the DeepSI model
parameters in the model-updating direction. We also explored other
optimizers provided by PyTorch. Across all our experiments, we
found that Adam optimizer performed the best. Further, we found
that the suggested learning rate (3e~°) for finetuning BERT models
in [15] led to optimal DeepSIg  .;une Performance in experiments.
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4.3.2  Visualization Design. We drew inspiration for visualization
design from SI-enabled VA applications, including Andromeda [57],
ForSPIRE [20], and Dis-Function [11]. As shown in Fig. 1, the vi-
sual interface mainly uses a scatterplot as the projection layout.
This scatterplot not only displays the relationships between data
updated by the underlying projection model, but also allows the
analyst to intervene and modify the layout. Specifically, in the for-
ward model-prediction direction, the positions between data points
on the scatterplot reflect the points’ relative similarity learned by
underlying models, either by the projection method or by the fine-
tuned BERT model, shown in Fig. 1-1 (model spatialization). In
the backward model-updating direction, the user can drag several
data points to new positions to modify similarities between points
based on their preference, shown in Fig. 1-2 (human spatialization).
Having both the underlying models and analysts work on the same
visualization provides direct and effective communication between
humans and computation. In addition to the scatterplot view, the
prototype also provides a sidebar view to help analysts review the
content of a selected document when exploring in the scatterplot
view. In this paper, we intentionally focus on the scatterplot view in
the screenshots, to focus on the analysis of the model performance.

5 EXPERIMENTS

To evaluate DeepSlg .iunes We conducted the following experi-
ments. To examine how well DeepSlg .iune @ddresses the goals,
we measured its performance in two respects:

e Accuracy: How accurately can DeepSlg, .iune capture the
analyst’s intent?

¢ Efficiency: How many interactions does DeepSIg  .iune Need
to capture the analyst’s intent properly?

We use DeepSI, i1, described in Sec. 3, as the baseline model to
evaluate the advantage of DeepSIg .i.ne s task-specific, instead of
general-purpose, representations. Boukhelifa et al. [9] proposed the
complementary evaluation of interactive machine learning systems
by using both algorithm-centered and human-centered evaluation
methods. We perform both evaluation methods in our experiments:
the case study in Sec. 5.1 is the human-centered qualitative analy-
sis, and the simulation-based evaluation method in Sec. 5.2 is the
algorithm-centered quantitative analysis.

5.1 Case Study: COVID-19

Recently, COVID-19 [60] has become a global pandemic. It is es-
sential that medical researchers quickly find relevant documents
about a specific research question, given the extensive coronavirus
literature. We used an analysis task on academic articles related to
COVID-19 in this case study to examine our proposed DeepSIg, .tunes
compared with the baseline model DeepSI, , i1, In this study, we
performed the same task with the help of both DeepSI prototypes
and then measure the model performance in the following two
perspectives:

e Accuracy: the quality of the projection updated by the un-
derlying model given the task’s ground truth.

¢ Efficiency: how many interactions are needed for the un-
derlying model to provide a useful projection.
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5.1.1 Dataset and Task. The COVID-19 Open Research Dataset
(CORD-19)! contains a collection of more than 200, 000 academic
articles about COVID-19. CORD-19 also proposes a series of tasks
in the form of important research questions about the coronavirus.
One of the research tasks focuses on identifying COVID-19 risk fac-
tors 2. In this case study, we selected a task that requires identifying
articles related to specific risk factors for COVID-19. We asked an
expert to choose as many research papers as possible about risk
factors from CORD-19. We found four main risk factors: cancer (15
articles), chronic kidney disease (13 articles), neurological disor-
ders (23 articles), and smoking status (11 articles). We used these
four risk factors as the ground truth for the test task, and loaded
all these 62 articles into our DeepSI prototypes. Therefore, the test
task was to organize these 62 articles into four clusters with our
DeepSI prototype such that each cluster represented articles of a
specific risk factor.

This particular ground truth is just one possible way an analyst
might want to organize this group of documents. So our goal is to
see if this particular set of expert knowledge can be easily injected
using SI to help re-organize the documents in this particular way.
To help judge the quality of the visual layout in organizing this
particular ground truth, we color the dots according to the ground-
truth risk factors in the visualization: cancer (black dot ), chronic
kidney disease (red dot ), neurological disorders (blue dot e),
Smoking status (green dot e). It should be noted that the un-
derlying model was not provided with the ground truth or color
information. The ground truth is only injected via semantic inter-
action from the human in the form of partial groupings of only a
few of the documents.

5.1.2  Study Procedure. To compare the projection layouts updated
by two models based on the same input interactions, semantic inter-
actions based on the ground truth are performed in the shared visual
projection and then applied to the two models separately. Fig. 1
and Fig. 5 show the process of interactions applied separately to
DeepSlgpetune and DeepSI, 1, prototypes. In both figures, frame
1 and frame 2 are from the shared visual projection. Frame 1 in
both figures (Fig. 1-1 and Fig. 5-1) shows the same initial layout
updated by the default pretrained BERT model. In the initial pro-
jection layout, all the articles are combined. This means that the
pretrained BERT model cannot distinguish these articles by their
related risk factors. Interactions were performed within the projec-
tion based on the ground truth to reflect the perceived connections
between articles: grouping three articles about cancer to the top-
left region of the projection, indicated by the black arrows; three
articles about chronic kidney disease to the top-right region in-
dicated by red arrows; three articles about smoking status to the
bottom-left part indicated by green arrows; and three articles about
about neurological disorders to the bottom-right part indicated by
blue arrows.

Frame 2 (Fig. 1-2 and Fig. 5-2) is the same human spatializa-
tion and shows four clusters created by the ground truth. After
we clicked the ‘model update’ button on the menu bar to start the
model training process. Then, the same human spatialization was

!https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-
challenge/tasks?taskId=558
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Frame 1 and 2 show the similar initial steps performed by the

analyst in Fig. 1. Frame 3 shows the resulting projection updated by DeepSI,, .j1.-
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Figure 6: Further case study using DeepSI,, .1

used to train both models. After the two models had been updated,
the updated projections of these two models showed the perfor-
mance difference in frame 3 (Fig. 1-3 and Fig. 5-3). Subsequently,
the performance of the model could be assessed based on how
reasonable the layout was in comparison with the ground truth.

DeepSlg, ctune SPatialization: Fig. 1-3 shows the projection
updated by DeepSlg otune- There are four clear clusters, and all
articles are clearly grouped into the correct clusters. The top left
cluster contains all the articles about cancer (e), the top right cluster
contains articles about kidney disease (), the bottom left contains
articles about smoking status (e), and the bottom right contains
articles about neurological disorders (e). This means the new rep-
resentations generated by the fine-tuned BERT model are able to
accurately capture the semantic meanings behind users’ interac-
tions.

DeepSI,,.il1a SPatialization: With the same interactions as in-
put, the updated DeepSI, , .11, shows a different layout. As shown
in Fig. 5-3, there are no clear clusters in the updated layout com-
pared with Fig. 1-3. Articles about different risk factors still over-
lap. Even after continued interactions based on the ground truth,
DeepSI, ,il1a is unable to properly capture the user’s semantic in-
tent and differentiate these articles.

Further study for DeepSI,,  i;j.: However, DeepSI, .1, did
work well at separating articles into two clusters in two opposite
positions in the projection. For example, in Fig 5-3, smoking status
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in grouping two clusters: Frame 1 is the initial projection layout, Frame 2
shows interactions performed within the projection, and Frame 3 shows the resulting projection updated by DeepSI
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articles (#) are separated from kidney disease articles (o). Explor-
ing further, after resetting the model as shown in Fig. 6-2, three
neurological disorders articles (e) are dragged to the bottom-left
and three chronic kidney disease articles (o) are dragged to the
top-right on the scatterplot view. After the layout updates, articles
from these two dragged clusters are well placed in two opposite
sides of the visualization in Fig. 6-3, ignoring articles in the other
two clusters (about cancer e and smoking status e).

5.1.3  Qualitative Results. For accuracy, DeepSlg, .iune grouped ar-
ticles correctly based on the user-defined risk factors. In contrast,
DeepSI,, 411, did not provide a useful projection. The further study
also confirmed that DeepSI,, i1, can handle more straightforward
tasks with only two clusters. The semantics of the ground truth
knowledge provided by the contest organizers are more recogniz-
able in the DeepSIg . une Projection. Articles in each group are
clearly clustered. However, DeepSI,,.;j, only partially separated
in two separate directions, instead of into distinct clusters, which
requires more cognitive effort to identify the boundary between
the groups. In terms of efficiency, DeepSIg, .une is more efficient
than DeepSI , i12- DeepSlgyetune Needed a small number of inter-
actions (moving three articles in each cluster, 12 dots movement
in total) in one interactive SI loop to fine-tune the BERT model
properly for this task. In contrast, in DeepSI,, ., the same amount
of interactions only supported the simpler task with two clusters,
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Figure 7: Simulation-based evaluation pipeline. The analyst is replaced by the ‘simulated analyst’ component where: analyst
perception is simulated by the kNN classifier and analyst interaction by sampling a subset of ground truth. In each SI loop,
the kNN classification is employed to calculate the accuracy of the model spatialization, which is updated by the underlying

model DeepSIg, .tune 2and reflects the model performance.

and additional rounds of interaction still did not uncover all four
clusters.

5.2 Simulation-based Evaluation

From the machine learning algorithm perspective, DeepSI systems
are transductive models [70] that interactively learn projections
provided by the analyst. Therefore, the performance of DeepSI sys-
tems can be measured by the predicted projections. To conduct
the quantitative comparisons between the predicted projections
from DeepSI systems, we replaced the analyst with a simulation
component (simulated analyst). As shown in Fig. 7, the simulated
analyst uses the interaction simulator to generate a training projec-
tion (human spatialization) based on data labels, and the evaluation
simulator to evaluate the accuracy of the predicted projection. After
training iteration, the simulated analyst outputs a current projec-
tion accuracy. The projection accuracy over iterations reflects the
learning curve [45] of the DeepSI model. Therefore, performances
of both DeepSI models could be compared through their learning
curves in both accuracy and efficiency perspectives.

5.2.1 Simulated Analyst. As shown in the simulation pipeline (Fig.
7), data labels are the ground truth to support both interaction
simulator and evaluation simulator. First, the interaction simulator
uses these labels to calculate the pairwise distances between a
subset of data samples, simulating the human-defined similarities
between these samples. Further, the evaluation simulator uses these
class labels to measure how well the predicted projection grouped
data samples into correct classes based on their labels.

Interaction simulator: In each interaction, three samples from
each class are selected using random sampling [59]. Then the in-
teraction simulator calculates the pairwise distance distz (y;, y;j) of
these selected samples based on:

0
V2

As shown in the above Equation, if two selected samples have
different labels, the distance between them is dist; (d;, dj) = V2,
because the analyst should move them away from each other to
obtain the farthest distance on the 2D spatialization. If the two
samples have the same label, the analyst should move them as close
as possible (disty (d;, dj) = 0) in the projection, because they belong
to the same cluster. Therefore, the interaction simulator provides

if d; and d; have the same label

dist (d;, dj) = { otherwise
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the calculated pairwise distances between the selected samples as
the training projection for DeepSI models.

Evaluation simulator: After the interaction simulator trains
the DeepSI model, the trained model predicts a new projection. The
predicted projection reflects the similarity relationships between
samples in the low-dimensional spatialization. We used a kNN (K-
nearest-neighbour) classifier [14] as the evaluation simulator to
measure the predicted projection [7, 11]. The kNN classifier uses
the neighbor information on the projection to train and predict
the data classes. The performance of the learned kNN classifier
can directly reflect the quality of the projection [63]. Concretely,
we used the leave-one-out cross-validation [41] and set k = 5 clos-
est training examples to predict the unlabelled sample. We also
explored other values for k, such as 3, 7, 9, 11, but these did not
produce significant changes in the results. We could thus obtain the
trained kNN classifier accuracy by comparing the predicted output
with the ground truth.

Performance over iteration: A new accuracy from the kNN
classifier was returned from the simulation pipeline in each iter-
ation loop. These are accumulated into a plot of kNN classifier
performance over the iterations of the simulated interaction loop.
This learning curve shows how rapidly the DeepSI model learned
during the interactive process.

5.2.2 Dataset and Task. We explored three commonly used text
corpora in natural language processing and visual text analysis
tasks. These corpora contain different numbers of labels and are
from different domains, providing a comprehensive evaluation of
performance comparisons.

SST with two clusters: The SST dataset [58] is a collection of
movie reviews with both fine-grained labels (out of five stars) and
binary labels (positive and negative reviews). We used the binary
version of the dataset, which contains 1821 reviews in total: 909
positive and 912 negative. The task, denoted as Tgst, used the SST
dataset to train the DeepSI methods to obtain two clusters (positive
and negative).

Vispubdata with three clusters: The Vispubdata dataset [30]
contains academic papers published in the IEEE VIS conference
series. These papers belong to one of the three conferences: In-
foVis (Information Visualization), SciVis (Scientific Visualization),
and VAST (Visual Analytics Science and Technology). We used the
papers published between 2008 and 2018 (including 397 papers
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Figure 8: The accuracies of both DeepSIg, ciune and DeepSI,, ..;1, updated projections over 200 iterations across the three
tasks (Tsst, Tvis, and Thews) during the simulation-based experiment.

from InfoVis, 534 papers from SciVis, and 521 papers from VAST)
in this task, denoted as Tyjs. In Tyis, the simulated analyst need
to iteratively drag papers into these three conferences clusters to
evaluate the DeepSL

20 Newsgroups with four clusters: The 20 Newsgroup dataset’
is a collection of newsgroup posts on 20 topics. Based on this dataset,
we create the task (Thews) to classify four topics into different clus-
ters in the spatialization. We picked four topics from the same
sub-category ‘rec’ including: 594 reports from ‘rec.autos’, 598 re-
ports from ‘rec.motorcycles’, 597 reports from ‘rec.sport.baseball’,
and 600 reports from ‘res.sport.hockey’.

5.2.3 Quantitative Results. Fig. 8 shows the learning curves of
both DeepSI methods in all three tasks. There is no crossing of the
curves between these two models, and the performance curve of
DeepSlg,erune 1S @above the curve of DeepSI, ., through all itera-
tions. This means DeepSIg ,.tune Showed better performance on all
three tasks than DeepSI,, i1, For model accuracy, DeepSlg, ciune
converged to more than or nearly 90% accuracy in all three tasks.
On the contrary, the best performance of DeepSI,, .1, only showed
slightly higher accuracy (less than 80%) than the initial performance
in the first task (Tgst) with two clusters. For tasks with more than
two clusters (Ty;s in Fig. 8(b) and Tews in Fig. 8(c)), DeepSI,,, ., did
not show noticeable accuracy increases. This is consistent with our
findings in the case study (Sec. 5.1). For model efficiency, the per-
formance over iterations of DeepSIg .une i all three tasks showed
steeper increases and quickly approximated peak accuracy. Fur-
thermore, the performance of DeepSIg, .iune increased fairly consis-
tently compared to DeepSI,, i;1,- This provides analysts with more
consistent feedback over iterations.

6 DISCUSSION

6.1 Generality and Applicability

In this paper, we use pretrained BERT as the specific DL model
in DeepSIgctune to advance SI-enabled applications. Considering
DeepSlgerune a8 @ framework, it is general enough to apply other
pretrained DL models into the semantic interaction pipeline for
other VA tasks. First, other transformer-based models, such as

3http://qwone.com/ jason/20Newsgroups/
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RoBERTa [37] and XLNet [68], can be applied directly in the DeepSI
pipeline without any special configuration. In addition, fine-tunable
DL models with other structures, such as CNN and RNN models [1],
can also be integrated into a DeepSI pipeline by appending a special
pooling layer to transform hidden states into proper representa-
tions. Further, other feature-based DL models could also be applied
to the inteactive fine-tune process with specific designs. For ex-
ample, ELMo [46] could be fine-tuned by using max-pool over the
model’s internal states and adding a softmax layer [47].

6.2 Scalability

Beyond measuring accuracy and efficiency, our two experiments
also illuminated scalability. All our experiments were conducted
on a desktop computer with an Intel i9-9900k processor, 32G Ram,
and one NVIDIA GeForce RTX 2080Ti GPU, running Windows 10.
In the case study, DeepSIg  .;une captured the analyst’s intent and
provided an accurate projection with 62 data points in real time.
In the simulation-based experiment, DeepSlg, .iune @lso provided
accurate projections that contains thousands of data points. During
the simulation, MDS projection calculation (O(n?) algorithm) con-
sumed the majority of the time. The amount of time required for the
DL model update and prediction was negligible in comparison. This
highlights the potential for improving the DR method in DeepSIL.

6.3 Interactive Deep Metric Learning

Dis-Function [11] describes the WMDS-based SI model as an in-
teractive distance function learning model from the interactive
machine learning perspective. Likewise, DeepSIg  .tune €an be re-
garded as an interactive deep metric learning model [31]. As shown
in Fig. 4, in the model-updating direction, the underlying pretrained
BERT model is trained interactively to output better presentations
that can capture the analyst-desired distance relationships. Deep
metric learning methods usually use metric loss functions [31] for
labelled data, such as contrastive loss [25], triplet loss [27] and angu-
lar loss [62]. In contrast, DeepSIg oiune Uses a metric loss function
specially designed for semantic interactions based on MDS™1.
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6.4 Limitations and Future Work

Our DeepSlg, etune Proved effective in capturing analysts’ precise
intents and displaying intuitive projections. However, current pro-
totypes could be extended in two directions. First, it is important to
make the internal status of the underlying model interpretable to an-
alysts in order to facilitate them making hypotheses and decisions
during the sensemaking process, which is known as interpretable
machine learning [42]. Other than the projection scatterplot, the
current DeepSIg .1 ne Prototype does not provide any other visual
hints about the status of the DL model. Therefore, we plan to add
more specific visual designs in future work to better expose the
effects of tuning the DL model.

In addition, DeepSlg, ctune Uses the traditional metric learning
method [4] as the interactive DR component to communicate be-
tween the DL model and the analyst. As discussed above (Sec. 6.3), a
MDS-based loss function Lossg is used to interactively tune the DL
model. Inversely, these deep metric learning loss functions, such as
contrastive loss and triplet loss, could also be used as interactive DR
components. We plan in future work to use deep metric learning
loss functions as the interactive DR component in DeepSIg  .iune-

7 CONCLUSION

In this work, we focused on DeepSI and the research question of
how to integrate the DL model into the SI pipeline to leverage its
capability to better capture the semantics behind user interactions.
We identified two design requirements of effective DeepSI systems:
the DL model is trained interactively in the SI pipeline and the DL
model can be tuned properly with a small number of interactions.
We presented DeepSlg, .tune; Which incorporates DL fine-tuning
and MDS-based interactive DR methods into the DeepSI pipeline
to meet these requirements. We performed two complementary
experiments to measure the effectiveness of DeepSlg,, cyne» includ-
ing a case study of a real-world task relating to COVID-19 and
a simulation-based quantitative evaluation method on three com-
monly used text corpora. The results of these two experiments
demonstrated that DeepSIg .iune improves performance over the
state-of-the-art alternative that uses DL only as a pre-processed
feature extractor, indicating the importance of integrating the DL
into the interactive loop.With a small number of semantic interac-
tions as input, DeepSIg , .tune better captures the semantic intent of
the analyst behind these interactions.
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