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a b s t r a c t 

Traditional microstructure classification requires human annotations provided by a subject matter expert. 

The requirement of human input is both costly and subjective and cannot keep up with the current vol- 

ume of experimentally and computationally generated microstructure images. In this work, we develop a 

framework that is capable of reducing the cost of human annotation in this process by leveraging novel 

machine learning procedures for class discovery and label assignment. To reduce the penalty of a poor la- 

bel assignment made by this automated process, labels are only assigned to high-confidence observations 

while ambiguous data are left unlabeled. Semi-supervised classification is then employed to leverage the 

high- and low-confidence label assignments, and a novel generalization of an established semi-supervised 

error estimation technique to the multi-class context is introduced to assess the resulting classifiers. Fi- 

nally, it is shown that this framework can be used to produce highly accurate classifiers over microstruc- 

ture image class taxonomies which are discovered solely through data-driven methods and which display 

consistent structural trends within and distinct morphological differences between classes. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

As evidenced by recent attention given to the Materials Genome 

1] and Integrated Computational Materials Engineering (ICME) 

2] initiatives and the advent of materials informatics as a well- 

stablished sub-field within Materials Science, the new scientific 

aradigm of (big) data-driven discovery has become a staple of 

esearch focusing on materials design [3] . ICME specifically aims 

o accelerate the discovery and design of new materials through 

uantitative modeling and exploitation of processing-structure- 

roperty (PSP) relationships. The recent explosion of available data 

ue to advances in experimental, theoretical, and computational 

apabilities has necessitated the use of automated frameworks 

o assist in both discovering and quantitatively establishing these 

inkages. Indeed, a recent US Government report [4] identified the 

evelopment of such automated frameworks in the data-driven 

iscovery context as a pressing research interest for accelerating 

he materials discovery process. 

While quantitatively capturing processing conditions and ma- 

erial properties for use in machine learning frameworks tends 

o be a straight-forward exercise, characterizing microstructure is 
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onsiderably less trivial. This is due to microstructural information 

enerally being provided in the form of images. These images vary 

rom atomistic to macroscopic length scales and often only contain 

tructural features of interest to a specific application, resulting in 

nconsistent and incomplete reports of quantitative microstructure 

haracterizations [5] . The challenges that image data presents to 

niformity and completeness of microstructure characterizations 

ave led to classification being the automated tool of choice for 

nalyzing and navigating the microstructure space [6–9] . 

Traditional classification algorithms are supervised learning 

ethods which are trained to map numerical inputs to categori- 

al outputs. The advantage of such predictors is that the method 

f image characterization can be quite abstract or have very little 

hysical meaning as long as the assigned class label is sufficiently 

escriptive. Indeed, while physical descriptors tend to be used as 

eatures for classification frameworks in the literature [10,11] , pop- 

lar characterization methods also include reduced order represen- 

ations of statistical functions or pre-trained convolutional neural 

etwork (CNN) layers [12–14] that have at best a limited relation- 

hip to physical characteristics of the microstructure. 

Unfortunately, the categorical targets of classification can also 

e a source of great disadvantage. This is because expert human 

nnotation required by supervised frameworks is expensive to de- 

loy and can be quite subjective [15] . If the dataset of interest is 

https://doi.org/10.1016/j.actamat.2021.117434
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.117434&domain=pdf
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xtremely large or growing at a rate that outpaces the expert’s 

bility to assign class labels, then a portion of the data is unus- 

ble to train or validate the model. Furthermore, due to the inher- 

nt subjectivity of the labeling exercise, there is no guarantee that 

he data which is labeled is reliable. These obstacles of expense 

nd subjectivity are further compounded in the face of large and 

tructurally diverse microstructure image datasets collected from 

aterial systems with no established class taxonomy. 

Although annotation using incomplete and/or potentially unre- 

iable data is a reality in the new paradigm of (big) data science, 

here is not much work addressing this problem in the context of 

icrostructure classification in materials science. While a recent 

ork by a subset of the present authors demonstrated an approach 

o semi-supervised classification of ambiguous (to the annotator) 

icrostructures [15] , the majority of existing frameworks simply 

pply supervised classification algorithms to well-studied datasets 

or purposes of automating tedious analysis tasks. Thus, there are 

ignificant opportunities to develop and demonstrate data-driven 

i.e. unsupervised) microstructure classification methodologies ca- 

able of uncovering underlying relationships and features in com- 

lex, unlabeled, microstructure spaces. Looking at how other fields 

ave incorporated unlabeled data into their classification schemes 

ould provide valuable insight as to how to proceed. 

For example, semi-supervised learning methods, a category of 

achine learning tools which use both labeled and unlabeled data 

o train predictive models, are popular in studies building image 

lassifiers for remote sensing applications [16–18] . However, simi- 

ar to the traditional supervised case, a limitation of these meth- 

ds is that they still require an established all-encompassing class 

axonomy with labeled examples of each class. Positive unlabeled 

earning trains binary classifiers using unlabeled data and only la- 

eled examples of the positive class and has been used for disease 

dentification and data stream classification [19,20] . However, the 

iscovery of the “negative” class is difficult to generalize to the dis- 

overy of multiple latent classes, and these methods still require 

rior knowledge of at least one present class. Thus, while these 

ethods may be helpful in addressing this problem, we still need 

 tool which provides insights into a possible class taxonomy be- 

ore they can be applied. 

Unsupervised learning methods provide a promising answer to 

he class discovery dilemma. At a high level, unsupervised learn- 

ng aims to provide inferences into the underlying structure of un- 

abeled data. In general, these algorithms provide these inferences 

n a data-driven fashion governed by rule-based assumptions about 

he ground-truth data distribution. Because these methods oper- 

te in an unsupervised environment, it can be difficult to deter- 

ine if the inferences that they provide are valid or not; thus, cau- 

ion should be taken to ensure that algorithm assumptions agree 

ith what is known about the data and that drawn inferences 

bout underlying structure are not blindly accepted. There are a 

ew studies concerning image classification which boast success in 

he unsupervised context [21–23] . However, similar to the short- 

omings of many popular clustering algorithms such as K-Means 

nd Self-Organizing Maps, these methods require a priori knowl- 

dge in the form of a user-specified number of classes. Due to this 

oncern, the bioinformatics community has employed class discov- 

ry techniques which only require the user to specify a range of 

he number of classes to be considered [24,25] . A further appeal 

f many of these methods is that they provide an objective level 

f confidence for each class taxonomy discovered (the method in 

26] even provides confidence levels for each data point within its 

ssigned class). But, as alluded to earlier, these confidence mea- 

ures must be accepted with caution because they are based on 

ncorroborated assumptions made about the underlying structure 

f the data. 
e

2 
The discussion above highlights the need, opportunities, and 

hallenges associated with applying the data-driven scientific dis- 

overy paradigm to the microstructure classification problem. In 

his work, we aim to develop a general framework of microstruc- 

ure classification in the unsupervised context which leverages the 

erits of plentiful data, automated systems, and human reason. 

e are not yet at the point where we can blindly trust the an- 

wers and inferences which automated systems produce, but we 

an use their suggestions as starting points for our own investiga- 

ions in order to accelerate the discovery and design process. 

. Problem definition 

The problem of microstructure classification in the unsuper- 

ised context (i.e. no available a prori label information) is 

chematically represented in Fig. 1 . At the most general level, we 

ould like to be able to present an unknown microstructure image 

ataset to an “oracle” capable of: elucidating the class taxonomy 

f the microstructure set and making reliable predictions about 

hether a specific image belongs to one of the discrete classes in 

he taxonomy. To build confidence in such an oracle it would also 

e necessary to have a reliable metric for stability of the discov- 

red taxonomy—i.e. how stable is the discovered set of classes—as 

ell as a reliable estimation of the error in the (multi-class) clas- 

ifier itself. Ultimately, the fundamental problem is to categorize 

icrostructures that have not yet been labeled by humans and the 

olution should make use, as much as possible, of automated tools 

or class discovery. 

A more granular description of such framework involves the so- 

ution to several problems. First, the microstructure space should 

e featurized and the corresponding microstructure information 

hould be reduced in order to improve computational performance 

f the classification algorithms and reduce as much as possible 

edundancy. It is important to note that since we want to make 

he process generalizable, the microstructure featurization scheme 

hould not rely on microstructural features specific to any one ma- 

erial class. A second element of the framework is the robust dis- 

overy of the class taxonomy, that is, the intrinsic categorical or- 

anization of the microstructure space. Such a categorical organi- 

ation should be stable against the choice of training/testing sets 

nd must also be capable of carrying out this class discovery op- 

ration with as little a priori knowledge of the number of discrete 

icrostructure classes in the set as possible. A third element of 

he framework is the deployment and evaluation of classification 

chemes capable of accurately predicting, with an objective mea- 

ure of confidence, the category of a given microstructure instance. 

inally, a proper error metric in this multi-class classification prob- 

em must be developed, noting that the evaluation of classification 

rror against unlabeled data is a non-trivial task [15] . The ultimate 

oal is to have a predictor with a low error rate constructed over 

 class taxonomy with a high class confidence metric. If the error 

ate is low but our confidence in our class taxonomy’s ability to 

epresent the structural diversity of the material system of inter- 

st is also low, then the low error rate of the predictor has very 

ittle meaning. Likewise, we can be very confident that the discov- 

red class taxonomy is sufficiently descriptive, but if the error rate 

f the predictor is high, then the usefulness of the framework is, 

gain, questionable. 

In order to demonstrate our framework, we require a large 

urated microstructure dataset. We decided to use a synthetic 

icrostructure dataset generated with an elasto-chemical phase 

eld model [27] —available in the Open Phase-field Microstructure 

atabase (OPMD) [28] —developed by a subset of the co-authors of 

he present work. Several example microstructures to illustrate the 

iversity of the microstructures in the OPMD Database with ref- 

rence to the experimental cases are shown in Fig. 2 . The bene- 
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Fig. 1. Schematic representation of the unsupervised microstructure classification problem. 

Fig. 2. Display of the structural diversity of the image dataset obtained by means of propagating uncertainty in input parameters of the phase-field equation [27,28] . Exper- 

imental microstructures of a) SEM micrograph of γ + γ ′ structure of Co-9.2Al-10.2W(at.%) reproduced from [29] with permission, b) ring-shaped pattern and droplets ap- 

peared in Polystyrene, reproduced from Ref. [30] with permission, c) Mg 2 Sn 0 . 3 Si 0 . 7 after high energy ball milling and isothermal heat treatment reproduced from Ref. [31] with 

permission, and d) SEM micrograph of the Cu 50 Zr 45 A l5 bulk metallic glass immersed in the 0.05 M HF solution for 1 days, reproduced from Ref. [32] with permission. d) 

CLSM micrograph of phase-separated gel systems composed of whey protein isolate and gellan gum incubated at 5 ◦C, reproduced from Ref. [33] with permission. e,f,g,h) 

Selected synthetic microstructures corresponding to the experimental observations (Figure is reprinted with permission from [27] .).. 
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ts of this dataset include its relatively large size, constant length 

cale, and lack of predetermined labels (prior annotations have the 

otential to bias our evaluations of the class taxonomies discov- 

red through our framework). Furthermore, these images are struc- 

urally diverse, which implies that the suggested class taxonomies 

ave a high chance of containing multiple interesting classes. Each 

f the microstructure images are associated with a set of mate- 

ial parameters and processing conditions. Additionally, since the 

mages are synthetic, we do not need to worry about noise, instru- 

ent limitations, or human error inherent in experimental imaging 

rocesses. 

The dataset consists of over 20 0,0 0 0 of these images to choose 

rom. Thus, in the interest of computational tractability, we initially 

arrowed our search to microstructures generated from 10,0 0 0 

imulations evaluated after a constant time lapse with various 

ombinations of the processing parameters. The list was further 

creened to only include microstructures which experienced phase 

eparation. After applying the constraints above, we were left with 

 dataset of 1925 images. A human annotator could potentially dis- 

over clusters of similar-looking images in order to start building a 

lass taxonomy, but the complexity of this task increases as the 

umber of considered images and associated structural morpholo- 

ies increases, causing considerable uncertainty as to which class 

n image may belong to. 
3 
. Methods 

.1. Featurization and data reduction 

In order to convert the generated microstructure images into 

seful information, the images must undergo the process of fea- 

urization. When the catalog of morphological motifs in the mi- 

rostructural systems is well known, image characterization can 

e successfully conducted using various physical descriptor metrics 

uch as volume fraction, eccentricity, aspect ratio, etc. [10,34,35] . 

owever, the proposed framework is intended to work in cases in 

hich no a priori knowledge of the discriminative structural fea- 

ures present in the dataset is available. In such cases, featuriza- 

ion based on approaches such as statistical metrics, bag of words 

r pre-trained CNN layers could be used. 

Reduced order representations of statistical functions, such as 

he n-point correlation and lineal path functions, have been shown 

o be effective methods of featurization for the microstructure clas- 

ification problem [6,9,36] . However, these methods require a priori 

nowledge about the microstructure (e.g. what phases are repre- 

ented by what pixel values in the images) which we do not have. 

Bag of visual words [37] approaches could be used, as demon- 

trated by DeCost and Holm in a microstructure classification set- 

ing [8] . While this technique does not require a priori knowledge 
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f the features most relevant for characterization, it does get very 

omputationally expensive as it requires considerable user input to 

une the hyper-parameters and select the appropriate clustering al- 

orithms and corresponding cluster numbers used to build the vi- 

ual dictionary’s vocabulary. 

Another approach to featurization is to use pre-trained CNN ar- 

hitectures, such as VGG [38] , ResNet [39] , and Inception [40] . In

14] , DeCost et al. successfully used the VGG16 architecture to fea- 

urize hundreds of images in the UHCSDB database. With VGG16, 

mage featurization is conducted by extracting information from 

he convolutional or max pool layers of the network. As with bag 

f visual words, this featurization approach does not require any a 

priori knowledge of the most discriminative structural attributes. 

urthermore, there are no hyper-parameters to tune since the ar- 

hitecture is pre-trained. One downside of this method, however, 

s that the convolutional layers can present very high-dimensional 

eature spaces, which can be problematic for many classification 

lgorithms. Another downside is that it is difficult to know ex- 

ctly which layer in the pre-trained network would provide the 

ost discriminative feature space, but it has been shown that deep 

NNs trained on sufficiently large and diverse datasets can gener- 

lize well to categories of images on which they have not been 

rained [41] , with studies in medical imaging [42] , pest detection 

43] , and crack detection [44] successfully employing the last layer 

f the fifth convolutional block of the VGG16 architecture. 

Given its advantages, and considering the success of prior ef- 

orts [42–44] , in this work we featurize the microstructure im- 

ge dataset via a pre-trained VGG16 architecture and extract the 

ast layer of the fifth convolutional block. Two different work- 

ble and computationally tractable feature spaces are then cre- 

ted by applying two data reduction techniques to this very high- 

imensional extracted layer. Data reduction on CNN convolutional 

ayers is often performed through max pooling [45] or average 

ooling [46] (taking the maximum or average of each filter out- 

ut, respectively). Wishing to have all elements of the convolu- 

ional layer contribute to the final feature space, we choose to use 

verage pooling as our first dimension reduction method. For the 

econd dimension reduction technique, we consider applying Prin- 

ipal Component Analysis (PCA) [47] . PCA coupled with CNN layer 

eaturization is not nearly as common as max or average pooling, 

ut it has been used in recent studies [4 8,4 9] . PCA not only con-

titutes a useful dimensional reduction tool, but its linear charac- 

er makes it possible to project new data into the new orthogonal 

eature space, which is not possible with other non-linear dimen- 

ional reduction methods such as Multidimensional Scaling [50] . 

.2. Class discovery 

Once the dataset is featurized and reduced into a workable 

pace, the class taxonomy must be discovered. Clustering methods 

re often used to find underlying data groupings in the unsuper- 

ised context, and can be divided into two broad categories: par- 

itional and hierarchical. Partitional techniques, such as K-means, 

elf organizing maps, and mixture-resolving algorithms require the 

ser to specify the number of clusters (denoted as K) and return 

 single partition of the dataset into K groups. In contrast, hier- 

rchical methods return nested groupings of the data that allow 

he user to choose the number of clusters through consideration 

f the defined distance between clusters or through inspection of 

he resulting dendrogram, a visual representation of the clustering 

tructure [51] . Unfortunately, both categories of clustering methods 

ave some serious shortcomings for the class discovery problem. 

or partitional methods, there must be a priori knowledge of the 

alue of K, and this information is often not available. Hierarchi- 

al clustering sidesteps this issue, but it does make a big assump- 

ion that the class structure is hierarchical. Additionally, cutting the 
4 
endrogram based on visual inspection alone is a highly subjective 

xercise which can be very misleading [52] . 

To address these concerns, Monti et al. developed a technique 

nown as consensus clustering [26] . The main idea behind the con- 

ensus clustering method is that the stability of a given number 

f clusters ( K) can be evaluated through iterative resampling and 

lustering, and the optimal value of K for the data is that whose 

lusters are most robust to sampling variability. This method first 

equires the choice of an internal clustering algorithm. The feature 

pace is then sub-sampled a prescribed number of times and clus- 

ered for each value of K being considered. For all pairs of data 

oints i, j, the proportion of clustering runs in which i and j are 

rouped together when also sampled together is recorded, and this 

nformation, known as the consensus index for points i, j is stored 

n element (i, j) of the consensus matrix, M. Hierarchical clustering 

s then performed on a distance matrix defined as 1 − M , and the 

esulting dendrogram is cut at the specified value of K to provide 

nal cluster assignments. The consensus matrix can also be used 

o calculate confidence measures for each proposed cluster and for 

ach data point assigned to each cluster. For k = 2 , 3 , . . . , K, the

luster consensus for cluster k is defined as the average consensus 

ndex for data point pair i, j both assigned to k . Similarly, the item 

onsensus of data point i for cluster k is defined as the average 

onsensus index of i with all points in k . These additional mea- 

ures are extremely useful because they provide objective mea- 

ures of confidence for the proposed class taxonomy and for each 

ata point within each class, respectively. 

A consensus matrix containing only 0 ′ s and 1 ′ s would imply 

erfect consensus and high level of robustness to sampling vari- 

bility. Real data, however, rarely results in perfect consensus. In 

hese cases, a method to obtain the optimal K number of clusters 

s necessary. Qualitative methods that rely on the assumption that 

he cumulative distribution function (CDF) of an ideal consensus 

atrix is a step function exist. However, they tend to be highly 

ubjective and have issues with dividing unimodal data into appar- 

ntly stable clusters, as shown by Senbabaoglu et al. [53] . An ob- 

ective metric developed by Senbabaoglu et al. [53] is the propor- 

ion of ambiguously clustered pairs ( PAC ), defined as the fraction 

f consensus indices in the open interval (x 1 , x 2 ) ∈ [0 , 1] , and the

ptimal K is that with the lowest PAC. However, this method still 

oes not test the null hypothesis of K = 1 , and in [54] , John et al.

emonstrated that the PAC is often biased towards higher values 

f K. To rectify these concerns, John et al. formulated a technique 

nown as Monte Carlo Consensus Clustering (M3C) for choosing 

he optimal K that includes a Monte Carlo reference procedure to 

liminate bias towards higher values of K and to test the null hy- 

othesis K = 1 . In this work, as will be shown below, we used con-

ensus clustering coupled with the M3C method for class discov- 

ry. 

.3. Classification and error estimation 

Once the class taxonomy is discovered and confidence mea- 

ures associated with class membership are assigned to each im- 

ge, the next step is to build an automated classifier to accurately 

redict the class label of future images. While there are a num- 

er of supervised classification schemes [55] , a major drawback is 

hat the entire training set must be labeled and these labels must 

e “hard” (that is, class membership is mutually exclusive), which 

eans that these algorithms cannot incorporate the item consen- 

us values produced by the class discovery step. While fuzzy clas- 

ifiers, trained with “soft” labels [56,57] could be used, in general 

here is the assumption that the sum of the “soft” labels for any 

raining point over all possible classes must add to 1 (i.e. the labels 

re analogous to probability of class membership). This is a prob- 

em, however, because the sum of the item consensus values for a 
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Fig. 3. The ratio of explained variance as a function of principal component. 
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iven point over all clusters does not necessarily equal 1 because 

tem consensus is not probability of cluster membership [26] . 

Semi-supervised classification methods provide a potential so- 

ution. These algorithms use both labeled and unlabeled data to 

rain classification models [58] . Thus, we could use the item con- 

ensus information to break the data into two categories: high- 

onfidence (labeled) data and low-confidence (unlabeled) data. In 

his way, we can still incorporate the item consensus information 

rovided by the class discovery step. However, similar to unsuper- 

ised methods, there is always the concern that a poor matching 

f semi-supervised algorithm assumptions with latent data struc- 

ure can lead to degraded classifier performance [59] . Furthermore, 

any semi-supervised methods are transductive, so they need to 

e paired with a supervised algorithm to train an inductive pre- 

ictor. Recently, we addressed these shortcomings by construct- 

ng a semi-supervised framework that applies a collection of semi- 

upervised methods to a partially labeled training set, identifies 

he subset of unlabeled data points which receive a labeling con- 

ensus, adds this subset to the labeled data, and then trains a SVM 

ver this appended training set [15] . In that work we also showed 

hat adding this “safe” subset of the unlabeled data to the labeled 

raining set did not deteriorate classification performance on the 

igh-confidence data. Moreover, that work provided a method of 

emi-supervised error estimation, although in that work the clas- 

ification problem was binary, and thus needs to be generalized to 

he multi-class case. 

. Implemented informatics framework 

The following discussion delves into the details of and the con- 

ections between the computational tools which comprise the fi- 

al framework for the classification of microstructure images in the 

nsupervised context. As outlined above, we start with featurizing 

he data. 

.1. Featurization using the VGG16 architecture 

VGG16 is a pre-trained CNN proposed by Simoyan and Zisser- 

an [38] . The full network is used for classification, but any im- 

ge can be featurized in a very general fashion with no a priori 

nowledge of the important structural motifs by extracting infor- 

ation from internal convolutional or pooling layers. The convolu- 

ional layers are the output of employing various filters over the 

mages, and the pooling layers reduce these high-dimensional vol- 

mes by performing a transformation on each filter slice. In this 

ork, we input 384 x 384 pixel images and extracted the final 

ayer of the fifth convolutional block using the keras application 

or python. This led to a 24 x 24 x 512- dimensional feature space,

hich required further dimensional reduction. 

.2. Dimension reduction 

In this work, we used two different dimensional reduction ap- 

roaches: In the first, pooling -based scheme, the 24 x 24 x 512 out- 

ut of the VGG16 featurization process was down-sampled to a 1 x 

12 feature space consisting of the average [46] of each 24 x 24 fil-

er slice in the original feature space. We also used PCA [47] on the

eature space generated from the VGG16 using scikit-learn [60] —

he resulting scree plot is shown in Fig. 3 . Application of PCA over

he VGG16-derived feature space shows that even using the 100 

rincipal components only explains about 36% of the variance in 

he data, but we still used this cutoff of 100 principal components 

s the maximum dimension size for the PCA-based dimension re- 

uction approach. 
5 
.3. Class discovery 

As discussed above, consensus clustering [26] was used to 

rovide automated class taxonomy suggestions for both feature 

paces. Consensus clustering operates under the premise that the 

rue clusters in the data should be robust to sampling variability; 

hus, the optimal value of K for a given clustering method should 

e that which produces the most robust clusters. The pseudo code 

s given in Algorithm 1 . 

Algorithm 1: Consensus Clustering. 

Input : a set of items D = { e 1 , e 2 , . . . , e N } 
a clustering algorithm C lust er 

a resampling scheme Resample 

number of resampling iterations H 

set of cluster numbers to try, K = { K 1 , . . . , K max } 
for K ∈ K do 

M ← ∅ {set of connectivity matrices, initially empty} 

for h = 1 , 2 , . . . , H do 

D 
(h ) ← Resample (D ) {generate perturbed versions of D } 

M 
(h ) ← C lust er(D 

(h ) , K) {cluster D 
(h ) into K clusters} 

M ← M ∪ M 
(h ) 

end 

M 
(K) ← compute consensus matrix from 

M = { M 
(1) , . . . , M 

(H) } 
end 

ˆ K ← best K ∈ K based on consensus distribution of M 
(K) s 

P ← partition D into ˆ K clusters based on M 
( ̂ K ) 

return P and {M 
(K) : K ∈ K} 

As highlighted in Algorithm 1 , the degrees of freedom afforded 

y this method include choice of internal clustering method, re- 

ampling scheme, number of resampling iterations, and the set of 

luster numbers ( K) to try. The output of this procedure is a set 

f consensus matrices where each consensus matrix ( M 
(K) ) corre- 

ponds to a considered cluster number. For observations i, j and 

luster number K, the consensus index M 
(K) (i, j) is the number of 

terations in which i, j are clustered together divided by the num- 

er of iterations in which i, j are both sampled. Final cluster as- 

ignments are then determined by performing hierarchical cluster- 

ng on the distance matrix 1 − M 
(K) and cutting the resulting den- 

rogram to produce K clusters. This result is often visualized using 

eatmaps (see Fig. 5 below for examples) where perfect consensus 

ould look like K sharp blocks along the diagonal. 
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Fig. 4. RCSI plots for each feature space/clustering algorithm combination. 
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As mentioned previously, objective metrics which assess the 

tability of each suggested cluster and each observation relative to 

ach cluster can be calculated from M 
(K) . For k = 1 , 2 , . . . , K, the

luster consensus for cluster k is defined as the average consen- 

us index between observations both assigned to cluster k . Thus, 

he closer the cluster consensus is to 1, the more confident we are 

hat this cluster represents true structure in the data. Similarly, as 

 function of observation i and cluster k , the item consensus is de- 

ned as the average consensus index between i and all observa- 

ions in k (excluding i ). Thus, the closer the item consensus is to 

 for a given i and k , the more confident we are that observation

 belongs to cluster k . Subsequent sections will provide details to 

he application of both of these metrics to the problem at hand. 

For this study, we decided to employ consensus clustering with 

n 80% subsampling resampling scheme, 10 0 0 iterations, and a 

ange of cluster numbers from 2 to 15. Once the consensus ma- 

rices were computed, average linkage was used for the outer hi- 

rarchical clustering step. Three internal clustering algorithms – K- 

eans [51] , partitioning around medoids (PAM) [61] , and hierarchi- 

al clustering with Ward linkage [62] – were used for both feature 

paces, resulting in six feature space/clustering algorithm combina- 
6 
ions. All consensus clustering calculations were performed using 

he ConsensusClusterPlus package in R [63] . 

As mentioned above, consensus clustering works as a meta- 

pproach towards class discovery, which in principle can use dif- 

erent approaches to clustering. In this work, we used three differ- 

nt clustering methods. Each of the three clustering methods make 

ifferent assum ptions about the structure of the data; thus, each 

eature space/clustering algorithm pair can result in very different 

uggested class taxonomies. Note that in this study, all of the inter- 

al clustering used euclidean distance as the dissimilarity measure. 

In order to determine the optimal cluster number K for 

ach feature space/clustering algorithm combination, we used the 

onte Carlo Consensus Clustering (M3C) technique [54] . M3C en- 

ances the Monti et al. consensus clustering method [26] by pro- 

iding statistically rigorous procedures for testing the null hypoth- 

sis K = 1 and for choosing the optimal cluster number K. This is 

ccomplished by using Monte Carlo methods to generate a collec- 

ion of null datasets with no clusters ( K = 1 ) and with the same

eature correlation structure as the real data. Traditional consensus 

lustering is used on each reference dataset, and the proportion of 

mbiguously clustered pairs ( PAC , described above) is calculated for 
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Fig. 5. Consensus clustering heat maps for the chosen K for each feature space/clustering algorithm combination which passed the sanity check. 
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ll cluster numbers of interest for each dataset. This creates empir- 

cal distributions of PAC values for data with the same correlation 

tructure as the real dataset, but where K = 1 . Consensus cluster- 

ng is also performed on the real data and the same PAC metric is 

alculated. From here, the hypothesis test flows quite naturally: the 

ull hypothesis is that the PAC score comes from data with a sin- 

le cluster, and the alternative is that the PAC score does not come 

rom data with a single cluster. Thus, extreme values of the PAC 

core for the real data relative to the empirical distribution created 

rom the null datasets indicate multi-cluster structure. 

These reference PAC scores are also used to calculate the Rela- 

ive Cluster Stability Index (RCSI), an objective metric metric used 

o rank the clusters returned from the cluster numbers of interest 

n order to choose the optimal K. For each cluster number K, the 

CSI is expressed as 

CSI K = log 10 

( 

1 

B 

B ∑ 

b=1 

P re f K,b 

) 

− log 10 P real K (1) 

here B is the number of generated reference datasets, P re f K,b 
is 

he PAC score for null dataset b generated for cluster number K, 

nd P real K is the PAC score for the real data for cluster number K.

ccording to John et al., incorporating the reference PAC scores re- 

oves the bias toward higher values of K exhibited by the original 

AC metric. In this work, we used the M3C method with 100 ref- 

rence datasets, 100 consensus clustering iterations, an interval of 

0.1,0.9) for calculation of the PAC, and a significance level of 0.05 

or the hypothesis test (all other parameters for consensus clus- 

ering were identical to those given above). All RCSI values and p- 

alues (both empirical and those derived from beta distribution es- 
7 
imations) were calculated using the M3C package in R [64] . Plots 

f the RCSI are provided below in Fig. 4 . 

Once all of the RCSI and p-values were calculated for the 

ix feature space/clustering algorithm combinations, we needed to 

hoose the best K for each combination. While a reasonable de- 

ision would be to simply go with the class taxonomy associated 

ith the highest RCSI value, we recognize that blindly trusting 

he suggestions of this automated process could produce results 

hich appear nonsensical under visual inspection. Furthermore, 

hile very small clusters may truly exist in the data, we cannot 

rain a well-functioning classifier with too few examples of a class. 

ith these concerns in mind, we established the procedure pre- 

ented in Algorithm 2 to choose the optimal K for each combina- 

ion. 

Note that if none of the suggested class taxonomies correspond- 

ng to the cluster numbers in K pass the sanity check, it is con- 

luded that there is poor agreement between the feature space and 

lustering algorithm for the application at hand, and this combina- 

ion is discarded. 

Once the optimal cluster numbers were determined for each 

eature space/clustering algorithm combination, we needed to sep- 

rate the data into high-confidence and ambiguous categories in 

reparation for semi-supervised classification. To do so, we used 

he item consensus corresponding to the cluster that each obser- 

ation was assigned to. Since item consensus values are not prob- 

bilities of cluster membership, using a constant threshold value 

i.e. all observations with an item consensus corresponding to their 

ssigned cluster below this value is ambiguous) could completely 

liminate some clusters and leave others almost completely intact. 

hus, we decided to label the bottom third of each cluster (about 

43 observations in total) as ambiguous (this decision also sim- 
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Algorithm 2: Sanity Check. 

Data : set of cluster numbers K = { K 1 , . . . , K max } and 
associated RCSI K , p-value K , and data partition P K for 

each K ∈ K 

item consensus values for each cluster k = 1 , . . . , K in 

P K for each K ∈ K 

check ← False {optimal K not yet found} 

while ( check == False) or ( K == ∅ ) do 
K̄ ← K ∈ K such that RCSI K is maximized 

if p-value K̄ > 0 . 05 then 

K ← K − { ̄K } 
else if any cluster k = 1 , . . . , K̄ has 50 or fewer members 

then 

K ← K − { ̄K } 
else 

v isual ← Visual_Inspection( ̄K ) 

if v isual == False then 

K ← K − { ̄K } 
K opt ← none 

else 
check ← True 

K opt ← K̄ 

end 

return K opt Function Visual_Inspection( K) : 

v isual ← True 

for k = 1 , . . . , K do 
Visually inspect the images in cluster k with the 10 

highest item consensus values 

if the 10 images do not appear to share structural 

similarities then 

v isual ← False 

end 

end 

Further inspect images within and across clusters 

if clusters appear redundant or too diverse then 

v isual ← False 

end 

return v isual 
end 
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lifies the semi-supervised error estimation discussed above). The 

emaining labeled data was then split into training and validation 

ets consisting of 75% (about 961 observations) and 25% (about 321 

bservations) of the high-confidence labeled data, respectively. 

.4. Classification framework 

As mentioned in the previous section, we are using the semi- 

upervised classification framework proposed in [15] . This frame- 

ork uses both high-confidence labeled and ambiguous unla- 

eled data to train and assess five classifiers using a vari- 

ty of semi-supervised learning methods as transductive predic- 

ors for the ambiguous data and trains support vector machines 

SVM) [65] over these results to produce five inductive classifiers. 

he four semi-supervised methods are the Modified Yarowsky al- 

orithm (MY) [66] , Safe Semi-Supervised Support Vector Machines 

S4VM) [67] , Label Propagation [68] , and COP K-MEANS [69] . Four 

f the classifiers are trained over the original high-confidence 

raining set along with the output of a single semi-supervised 

ethod applied to the ambiguous set, and the fifth is trained over 

he labeled training set along with the subset of the ambiguous set 

hich receives a labeling consensus from all four semi-supervised 

ethods. This fifth classifier is known as the “updated” classifier. 
8 
t must be noted that the framework presented in [15] was used 

n a binary classification problem, although all aspects, except for 

he error estimation portion are readily generalizable to the multi- 

lass problem. The following section details how the error estima- 

ion method can be generalized to the multi-class case. 

.5. Error estimation 

The semi-supervised error estimation technique established by 

unselman et al. requires independent estimates of classification 

rror on the labeled and unlabeled sub-populations of the data. 

hese independent estimates are then combined into a total er- 

or estimate through a convex combination in which the associ- 

ted weights are the probabilities of a given feature vector being 

ampled from the corresponding sub-population. That is, 

ˆ = 
ˆ P ( X ∈ πU ) ̂  εU + 

ˆ P ( X ∈ πL ) ̂  εL (2) 

here ˆ ε is the total error rate estimate, ˆ P ( X ∈ πU ) is the estimate 

f the probability of a given feature vector X belonging to the unla- 

eled sub-population πU , ˆ P ( X ∈ πL ) is the estimate of the probabil- 

ty of X belonging to the labeled sub-population πL , and ˆ εU , ˆ εL are 
rror rate estimates of the unlabeled and labeled sub-populations, 

espectively. Since we decided that one third of the data would be 

mbiguous, we have ˆ P ( X ∈ πU ) = 1 / 3 and ˆ P ( X ∈ πL ) = 2 / 3 . 

In this work, the labeled error estimate was determined for 

ach feature space/clustering algorithm/classifier combination us- 

ng the corresponding labeled validation set derived from the data 

ith matching feature space and clustering algorithm. We cannot 

laim that this error estimate is completely unbiased since each 

alidation set was used for the five classifiers trained on each fea- 

ure space/clustering algorithm combination, but it should be less 

iased than estimates which employ the training data. Further- 

ore, all validation sets contain approximately 321 observations, 

o the variance should be small. 

While the labeled sub-population error estimates were quite 

traight-forward to compute, the unlabeled error estimates re- 

uired a more complicated approach. In accordance with [15] , in 

his work the basis of the unlabeled sub-population error estima- 

ion was the constrained optimization approach introduced by Pla- 

anios et al. in [70] , but generalized to the multi-class context, us- 

ng the argument below: 

As in [70] , let A be a set of classifiers, a A be the probability

hat all of the classifiers in A assign the same label (i.e. the agree- 

ent rate) and let e A be the probability that all of the classifiers 

n A make an error (not necessarily the same error). Additionally, 

e will introduce C A , the event that all classifiers in A assign the 

orrect label. Through the rules of probability, we note that 

 = P (C A ) + P ( ̄C A ) . (3) 

That is, either all of the classifiers assign the correct label or at 

east one of them assigns the wrong label. Through application of 

he inclusion-exclusion principle, we see that 

 ( ̄C A ) = −
| A | ∑ 

k =1 

⎡ 

⎢ ⎣ (−1) k 
∑ 

I⊂A | I | = k 

e I 

⎤ 

⎥ ⎦ . (4) 

Now, let p A be the probability that all of the classifiers in A 

ake the same error. Then 

 (C A ) = a A − p A . (5) 

Substituting Eqs. 4 and 5 into 3 , we have 

 = a A − p A −
| A | ∑ 

k =1 

⎡ 

⎢ ⎣ (−1) k 
∑ 

I⊂A | I | = k 

e I 

⎤ 

⎥ ⎦ , (6) 
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Table 1 

Master table of cluster consensus, optimal cluster number, beta distribution p-values, and 

classifier total error rates for all six feature space/clustering algorithm combinations. The 

minimum cluster consensus and minimum classifier total error rate will be used as objec- 

tives to make the final design choice. 

Feature Space Avg Pool PCA Avg Pool PCA PCA 

Cluster Alg HC HC PAM PAM KM 

Optimal K 5 4 5 4 4 

Optimal K p-value 5.30e-33 1.35e-67 8.74e-10 3.17e-46 1.19e-18 

Cluster 1 Consensus 0.7207 0.7391 0.9439 0.8710 0.9604 

Cluster 2 Consensus 0.9006 0.7133 0.9138 0.9067 0.9162 

Cluster 3 Consensus 0.7132 0.8869 0.9734 0.9606 0.9287 

Cluster 4 Consensus 0.6534 0.8297 0.9891 0.9869 0.8908 

Cluster 5 Consensus 0.7963 N/A 0.9511 N/A N/A 

Min Cluster Consensus 0.6534 0.7133 0.9138 0.8710 0.8908 

MY Total Error 0.0170 0.0648 0.0191 0.0288 0.0382 

S4VM Total Error 0.0137 0.0632 0.0181 0.0283 0.0382 

LP Total Error 0.0578 0.1635 0.0668 0.0983 0.1039 

CKM Total Error 0.1001 0.0747 0.0611 0.1253 0.0334 

Updated Total Error 0.0394 0.0485 0.0403 0.0210 0.0225 

Min Total Error 0.0137 0.0485 0.0181 0.0210 0.0225 

Classifier S4VM Updated S4VM Updated Updated 

Table 2 

Classifier labeled sub-population error rate estimates for each feature 

space/clustering algorithm combination. 

Feature Space Avg Pool PCA Avg Pool PCA PCA 

Cluster Alg HC HC PAM PAM KM 

MY Labeled Error 0 0.0312 0.0062 0.0031 0.0062 

S4VM Labeled 0 0.0312 0.0062 0.0031 0.0062 

LP Labeled Error 0 0.0592 0.0187 0.0374 0.0312 

CKM Labeled Error 0.0125 0.0405 0.0093 0.0405 0.0125 

Updated Labeled Error 0 0.0374 0.0062 0.0093 0.0093 
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hich reduces to the agreement rate constraints in [70] when 

 A = p A (i.e. the binary class case). Since p A is a probability of all

lassifiers in A making an error in a specific fashion, we can in- 

lude the additional inequality constraints 

p A ≤ e A . (7) 

In this work, we used the method of Platanios et al. (including 

he objective which aims to minimize error rate dependence), but 

e replaced the agreement rate constraints with Eq. 6 , added the 

onstraints given in Eq. 7 , and added the appropriate p A variables 

o the design vector. Furthermore, in line with Kunselman et al., 

e added the constraint that at least one of the individual error 

ates must be less than 0.5. The optimization was carried out using 

equential quadratic programming in MATLAB with 30 0 0 different 

tarting points to avoid local minima. 

We note that a collection of scripts giving an example of this 

orkflow on an abridged dataset can be found in [71] . 

. Results and discussion 

Table 1 provides the optimal cluster number, cluster consen- 

us values, p-values associated with optimal cluster numbers, 

nd semi-supervised classification error estimates for each fea- 

ure space/clustering algorithm combination which had a sug- 

ested class taxonomy that passed the sanity check (for a break- 

own of the error estimates for the labeled and unlabeled sub- 

opulations, see Table 2 and Table 3 , respectively). All of the sug- 

ested class taxonomies for the Avg Pool/KM combination failed 

he sanity check ( K = 2 , 3 generated clusters with too much struc-

ural diversity; K = 4 , 5 , 6 , 8 generated clusters in which the 10

icrostructures with the highest item consensus values looked 

ery different; K = 7 generated very redundant clusters; and K = 
9 
 , 10 , 11 , 12 , 13 , 14 , 15 generated at least one class with fewer than

0 members). It is worth noting that the consensus clustering im- 

lementation that we used gave a warning that the K-means algo- 

ithm failed to converge for the data in the feature space produced 

hrough average pooling, and no such warning was given for any 

ther combination. While it is difficult to determine precisely why 

nsupervised methods perform poorly, this struggle to converge is 

otential evidence of poor agreement between latent data struc- 

ure and clustering algorithm assumptions (e.g. the higher dimen- 

ional data could have been an obstacle for K-means). This poor 

greement could have caused the class discovery process to ter- 

inate prematurely, resulting in no class taxonomies which could 

ass the sanity check. 

Interestingly, the two remaining combinations with the feature 

pace produced through average pooling have optimal K = 5 , and 

ll three combinations with the feature space produced through 

CA have optimal K = 4 . On the surface, it would appear that the

eature space has a much greater influence on the cluster number 

han the clustering algorithm. However, as illustrated in the discus- 

ion above, we must remember that the sanity check can be quite 

estrictive. 

Fig. 4 provides plots of RCSI as a function of K for all six feature 

pace/clustering algorithm combinations. Remember that the RCSI 

s the objective metric which ranks the cluster numbers and guides 

he order of our sanity check. We see that for all three clustering 

lgorithms operating in the feature space made from average pool- 

ng, K = 5 had the highest RCSI. Even though the final class tax- 

nomy corresponding to K = 5 for the K-means combination did 

ot pass the sanity check, the consistency in the RCSI across three 

lustering algorithms provides some evidence that, for the average 

ool feature space, five robust clusters could exist. Note that K = 5 

assed the sanity check for both the hierarchical and partitioning 

round medoids clustering algorithms in this feature space; thus, 

o other cluster numbers had to be tested. 

The RCSI plots for the PCA feature space tell a much different 

tory. We see that each clustering algorithm produced a maximum 

CSI at a different value of K and that the partitioning around 

edoids clustering method was the only one whose K correspond- 

ng to the highest RCSI passed the sanity check. When hierarchical 

lustering was used, smaller cluster numbers had higher RCSI val- 

es, but K = 2 and K = 3 had microstructures that looked very dif-

erent in the same cluster with very high item consensus values. 

n contrast, when K-means was used, larger cluster numbers had 
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Table 3 

Classifier unlabeled sub-population error rate estimates for each feature space/clustering algorithm combination. 

Feature Space Avg Pool PCA Avg Pool PCA PCA 

Cluster Alg HC HC PAM PAM KM 

MY Unlabeled Error 0.0511 0.1321 0.0449 0.0800 0.1021 

S4VM Unlabeled 0.0412 0.1274 0.0418 0.0786 0.1021 

LP Unlabeled Error 0.1734 0.3721 0.1631 0.2201 0.2495 

CKM Unlabeled Error 0.2755 0.1431 0.1647 0.2948 0.0754 

Updated Unlabeled Error 0.1181 0.0707 0.1086 0.0443 0.0489 

t

d  

v  

H

a

d

t

c

t

K

t

m

c

i

t

t

s

i

t

t

P

o

 

b

c

t

r

t

m

l

t

t

a

c

m

i

t

S

m

o

s

c

t

a

f

t

F

e

m

t

t

fi

c

o

t

f

g

b

p

o

s

m

 

c

c

s

s

l

c

t

6

c

r

s

b

a

d

d

t

a

w

s

t

b

e

i

t

t

w

u

c

c

a

r

d

d

l

r

f

a

c  

W

t

he highest RCSI index values, but at least one of the clusters pro- 

uced for K = 5 , 10 , 11 , 12 , 13 , 14 , 15 (all cluster numbers with RCSI

alues greater than that at K = 4 ) contained 50 or fewer members.

owever, visual inspection showed that the proposed clusters with 

 small number of members were not unreasonable or overly re- 

undant, implying that there could be small groups of outliers in 

his dataset. However, as stated above, clusters which are too small 

ould create a very large class imbalance, and it is very difficult 

o train well-functioning classifiers under this condition. Note that 

 = 4 was the cluster number with the largest RCSI that passed 

he sanity check for all clustering algorithms in this feature space, 

aking it the optimal cluster number. 

The fourth row of Table 1 shows that all of the p-values asso- 

iated with the optimal cluster numbers chosen through the san- 

ty check are significantly less than 0.05. Thus, all proposed class 

axonomies which passed our sanity check also resulted in a rejec- 

ion of the null hypothesis that the data comes from data with a 

ingle cluster. Note that all of these p-values were calculated us- 

ng the estimated beta distribution method detailed in [54] rather 

han the empirical method. This is because, for all optimal clusters, 

here were no reference PAC scores less than or equal to the real 

AC score, and the empirical p-value calculation relies on at least 

ne reference PAC score being less than or equal to the real score. 

As we continue to move down the rows in Table 1 , we see that

oth sets of clusters found with hierarchical clustering produced 

lusters with relatively low cluster consensus values. This observa- 

ion is supported graphically in Fig. 5 where the heat maps cor- 

esponding to the hierarchical clustering method have more noise 

han those heat maps associated with the other two clustering 

ethods. This implies that the objective level of confidence for at 

east one of the clusters found with hierarchical clustering is rela- 

ively low. In contrast, the cluster consensus values for the clus- 

er sets produced by partitioning around medoids and K-means 

re quite high. In further contrast to the hierarchical clustering 

ombinations, the average pool feature space has a higher mini- 

um (worst case) value than the PCA feature space for partition- 

ng around medoids combinations. 

The last important conclusions to draw from Table 1 come from 

he information on classifier performance. As a general trend, the 

VMs trained using the labeling results from the MY and S4VM 

ethods and from the consensus of all four semi-supervised meth- 

ds tended to have lower total error rate estimates than those clas- 

ifiers trained using the results from LP and CKM (the one ex- 

eption is CKM for the PCA/KM combination). Another notewor- 

hy trend is that the classifiers trained with the results from MY 

nd S4VM consistently had lower error rates for the average pool 

eature space (compared to the PCA feature space) for the parti- 

ioning around medoids and hierachical clustering combinations. 

urthermore, the classifiers trained on the S4VM results in the av- 

rage pool feature space all had the lowest total error rate esti- 

ates while the classifiers trained on the labeling consensus had 

he lowest rates for the PCA feature space. However, for all fea- 

ure space/clustering algorithm combinations, the updated classi- 

ers never had a total error rate estimate above 0.0485 whereas a 

lassifier trained on S4VM results did reach an estimated error rate 

f 0.0632. 
f

10 
As stressed by Kunselman et al., the above discussion highlights 

he importance of considering multiple semi-supervised methods 

or classification. Some methods may be particularly suited to a 

iven problem (e.g. S4VM for the average pool feature space com- 

inations) while some methods may be quite unsuitable for the 

roblem at hand (e.g. LP for the PCA/HC combination). On the 

ther hand, as with the PCA feature space combinations, the con- 

ensus among multiple methods could lead to the best perfor- 

ance. 

Lastly, we see from Tables 2 and 3 that most of the total classifi-

ation error for all feature space/clustering algorithm combinations 

omes from the unlabeled sub-population. On the surface this may 

eem troubling, but we must remember that most methods of clas- 

ification error estimation do not take high- and low-confidence 

abel assignments into account, and it makes sense that the low- 

onfidence or ambiguous data would be the source of a large por- 

ion of the error relative to the high-confidence data. 

. Choosing the final design of unsupervised microstructure 

lassifier 

The design choices consist of all feature space/clustering algo- 

ithm/classifier combinations. As mentioned above, the final de- 

ign choice is based on the multi-objective approach of optimizing 

oth some metric of confidence in the discovered class taxonomy 

nd some measure of classifier performance. For the class confi- 

ence metric, we decided to use the cluster consensus values pro- 

uced through the consensus clustering process. Because the op- 

imal number of clusters varies between feature space/clustering 

lgorithm combinations and because the numbering of clusters 

ithin a suggested class taxonomy is arbitrary (i.e. it makes no 

ense to compare the cluster associated with k = 1 across fea- 

ure space/clustering algorithm combinations), some statistic must 

e calculated over the cluster consensus values associated with 

ach combination before any comparisons can be made. Decid- 

ng that we wanted to optimize a worst case measure, we took 

he minimum of the cluster consensus distribution corresponding 

o each feature space/clustering algorithm combination. Whereas a 

eighted average could mask one or two low-confidence clusters, 

sing the minimum cluster consensus as an objective to maximize 

an provide a clear warning that at least one questionable cluster 

ould exist. 

For the classifier performance objective, we chose to minimize 

n error metric. As displayed in Table 1 , the semi-supervised er- 

or estimation method produced an overall error estimate for five 

ifferent classifiers. Since the final design requires only one pre- 

iction model, we chose to consider only the classifier with the 

owest total error estimate for each feature space/clustering algo- 

ithm combination. This narrowed down our design choices to five 

eature space/clustering algorithm/classifier combinations. 

The two objectives associated with each of these five designs 

re plotted in Fig. 6 . To further assist in our decision-making pro- 

ess, Table 1 is summarized graphically in a radar chart in Fig. 7 .

e see from Fig. 6 that there are only two non-dominated solu- 

ions (emphasized in the plot with the blue ellipse), and the in- 

ormation in Table 1 tells us that, moving from low to high er- 



C. Kunselman, S. Sheikh, M. Mikkelsen et al. Acta Materialia 223 (2022) 117434 

Fig. 6. Plot of both objectives for each of the considered designs. From the informa- 

tion in Table 1 , we see that the Avg Pool/HC/S4VM and Avg Pool/PAM/S4VM com- 

binations are the non-dominated solutions. 
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or estimates, these solutions are the Avg Pool/HC/S4VM and Avg 

ool/PAM/S4VM combinations, respectively. We now must choose 

etween these two designs. Both options have quite low total er- 

or rate estimates (less than 2%), but the error estimate of the Avg 

ool/HC/S4VM combination is more optimal. Furthermore, inspec- 

ion of Fig. 7 shows us that classifiers trained on the suggested 

lass taxonomy for the Avg Pool/HC combination tend to have 

igher accuracies than those trained on the Avg Pool/PAM class 

axonomy. This could suggest that classifiers trained on the Avg 

ool/HC class taxonomy are more robust to label changes (or even 

ncorrect label assignments) for the more ambiguous microstruc- 

ures in the training set. 

However, we cannot ignore the fact that the minimum clus- 

er consensus value for the Avg Pool/HC/S4VM solution is sig- 

ificantly lower than that of the Avg Pool/PAM/S4VM design. In- 

eed, the Avg Pool/HC/S4VM design actually has the lowest min- 

mum cluster consensus value of all considered designs displayed 

n Fig. 6 . As mentioned above, this is a warning to us that at least

ne of the proposed clusters could be questionable. To explore 

his concern, we go back to the high-confidence examples of each 
ig. 7. Radar chart of metrics of interest for each feature space/clustering algorithm co

nterpretation, accuracy estimates are displayed instead of error estimates, and the data a

11 
lass and scrutinize them more closely. Fig. 8 displays the ten mi- 

rostructures for each cluster with the highest ten item consensus 

alues corresponding to that cluster. We note that Cluster 4 has 

he lowest cluster consensus value. From Fig. 8 , we can see that 

hese images show very distinct structural patterns upon which a 

lass could be defined. That is, Cluster 1 contains bicontinuous or 

ranched, tortuous motifs; Cluster 2 boasts a darker matrix with 

 plethora of small, light particles; the images representing Clus- 

er 3 have a scattering of light and/or dark particles in a mid-gray 

atrix; Cluster 4 consists of mid-sized, light, circular and ellip- 

oidal particles in a dark matrix; and finally, the images of Cluster 

 show an assortment of highly circular light particles in a dark 

atrix where the contrast between particle and matrix is relatively 

igh. 

From this limited examination, it appears that the warning pro- 

ided by the low cluster consensus values could be a false alarm. 

o be thorough, we examine the Avg Pool/PAM/S4VM design in a 

imilar fashion and compare. The example microstructure images 

re given in Fig. 9 . Clusters 1 and 3 share structural similarities 

ith their counterparts in Fig. 8 ; the structural elements in the 

mages representing Cluster 2 consist mainly of small-to-mid-sized 

ight, circular or ellipsoidal particles in a dark matrix; Cluster 4 

as light particles of a variety of sizes and shapes which are very 

pace-filling; and Cluster 5 contains larger, more regularly shaped 

ight particles in a dark matrix. Although these general trends are 

iscernible (which is why this class taxonomy passed the sanity 

heck) there are images which look somewhat out of place. For ex- 

mple, the seventh image from the left in Cluster 1 does have elon- 

ated domains, but they appear as striations within the particle- 

ike structures (see Fig. 10 ), and it could be argued that the first 

mage from the left in Cluster 4 is more similar to the images in 

luster 1. 

From this visual comparison, it is difficult to say why the clus- 

er consensus values for the Avg Pool/HC/S4VM design are so low. 

t could be that our visual inspection was too superficial or that 

luster consensus is not an extremely helpful method of com- 

arison across different clustering algorithms. It is also possible 

hat there is a complex level of structural features present in this 

ataset that our objective framework is finding that is not neces- 

arily detectable by human inspection. Regardless, in choosing our 
mbination which passed the sanity check. Note that for ease of visualization and 

long each axis has been scaled to the same mean and variance. 



C. Kunselman, S. Sheikh, M. Mikkelsen et al. Acta Materialia 223 (2022) 117434 

Fig. 8. Microstructure images with the ten highest item consensus values for each of the five clusters found for the Avg Pool/HC combination. 

Fig. 9. Microstructure images with the ten highest item consensus values for each of the five clusters found for the Avg Pool/PAM combination. 

12 
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Fig. 10. A zoomed-in view of the suspicious microstructure image in Cluster 1 of 

Fig. 9 . 
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nal design we must remember that the premise of this study is to 

se data-driven methods to suggest class taxonomies and to guide 

ur inspection and classification of these suggestions. That is, the 

utomated framework leads us to a small number of acceptable 

olutions in an objective and timely manner, but in the end we 

till want to choose a design with a class taxonomy that could 

ave been discovered through visual inspection (i.e. the struc- 

ural similarities that define a class have to make sense to a hu- 

an). Since the Avg Pool/HC/S4VM design has the lowest classifi- 

ation error rate and high-confidence class representatives which 

how more consistent morphological trends than those of the Avg 

ool/PAM/S4VM solution, we choose the Avg Pool/HC/S4VM frame- 

ork as our final design, for this specific microstructure set 

. Conclusions and future work 

The aim of this work was to develop a data-driven framework 

or microstructure classification in the unsupervised context. While 

e are not yet at the point that we can blindly trust the decisions

ade by automated systems for completely unannotated data, we 

an certainly use their suggestions as starting points in our own in- 

estigations in order to accelerate the process of materials discov- 

ry and design. In this work, we rigorously established the forward 

apping from raw microstructure images to class taxonomies to 

rained classifiers and finally to performance metrics. Pre-trained 

NN architectures allow for informative image featurization which 

equires no a priori knowledge of important structural motifs, and 

imension reduction techniques such as average pooling and PCA 

ransform the massive outputs of CNN architectures into workable 

paces. Once the data is transformed, consensus clustering offers a 

ethod of class discovery which does not require any prior knowl- 

dge of the class taxonomy. Furthermore, this method provides 

aluable objective confidence measures for each suggested clus- 

er and for each assigned data point. Choosing the optimal K from 

he results of consensus clustering has historically been more of 

n art than a science, but we are confident that the RCSI ranking 

roduced through M3C provides a mathematically rigorous mecha- 

ism for guiding class taxonomy decision-making. Semi-supervised 

lassification allowed us to leverage the confidence measures for 

ach assigned data point in order to produce more accurate clas- 

ifiers for these suggested class taxonomies, and we were able to 

ssess the accuracy of these classifiers through a novel generaliza- 

ion of an established semi-supervised error estimation technique 

o the multi-class problem. Lastly, the class discovery and classifi- 

ation processes produced performance metrics which guided our 

xploitation of the design space by narrowing down the candidate 

ool to two non-dominated solutions, and our choice of final de- 

ign corresponded to that solution with both a low classification 
13 
rror and a class taxonomy which shows consistent morphological 

rends within and distinct structural differences between classes. 

Although the present results are promising, we concede that 

ur sanity check was quite constrained by requiring all classes in 

ny passing class taxonomy to be of a certain size, and we would 

ike to find a method of incorporating extremely small classes 

nto the classifier training process. We postulate that this could be 

chieved through some sort of rare event simulation [72,73] which 

ould create more examples of these smaller classes for training. 

lternatively, resampling schemes for improved class unbalancing 

ould be used. Additionally, finding a more mathematically rigor- 

us metric for class confidence which has been proven to be ap- 

ropriate for comparing suggested class taxonomies across cluster- 

ng algorithms would help make the design space exploitation and 

nal design choice processes more robust and less subjective, re- 

pectively. 
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