
Premier: A Concurrency-Aware Pseudo-Partitioning
Framework for Shared Last-Level Cache

Xiaoyang Lu, Rujia Wang, Xian-He Sun
Department of Compute Science, Illinois Institute of Technology, Chicago, IL

xlu40@hawk.iit.edu, rwang67@iit.edu, sun@iit.edu

Abstract—As the number of on-chip cores and application de-
mands increase, efficient management of shared cache resources
becomes imperative. Cache partitioning techniques have been
studied for decades to reduce interference between applications in
a shared cache and provide performance and fairness guarantees.
However, there are few studies on how concurrent memory
accesses affect the effectiveness of partitioning. When concurrent
memory requests exist, cache miss does not reflect concurrency
overlapping well. In this work, we first introduce pure misses
per kilo instructions (PMPKI), a metric that quantifies the
cache efficiency considering concurrent access activities. Then
we propose Premier, a dynamically adaptive concurrency-aware
cache pseudo-partitioning framework. Premier provides insertion
and promotion policies based on PMPKI curves to achieve the
benefits of cache partitioning. Finally, our evaluation of various
workloads shows that Premier outperforms state-of-the-art cache
partitioning schemes in terms of performance and fairness.
In an 8-core system, Premier achieves 15.45% higher system
performance and 10.91% better fairness than the UCP scheme.

I. INTRODUCTION

In most multi-core systems, applications running on differ-

ent cores share the last-level cache (LLC). As the number of

cores on the chip increases, applications increasingly compete

for the shared cache, which is detrimental to the overall system

performance. As a result, it is critical to manage the shared

cache to achieve high performance and fairness. Cache parti-

tioning is an effective method to manage cache capacity per

core and enforce access isolation between different workloads,

thus mitigating contention and interference in shared LLCs.

Due to historical reasons, conventional cache partitioning

schemes are designed to reduce cache misses, which may or

may not be the best for concurrent cache memory accesses.

Data access concurrency and overlapping are common in

modern computing systems. In such cases, some cache misses

occur concurrently with other hits (hit-miss overlapping), and

the penalty of the misses could be reduced or hidden. As a re-

sult, classifying miss types may lead to a better understanding

of miss penalty and a better optimized system performance.

In this work, we first introduce the concept and a formal

definition of Pure Misses Per Kilo Instructions (PMPKI). Un-

like the classical misses per kilo instructions metric (MPKI),

which only focuses on data locality, PMPKI takes into account

overlapping in concurrent memory systems and reflects the

number of pure misses (§II-A) that hurt the performance

most. Next, we present Premier, a concurrency-aware shared

cache management framework that takes both data locality and

concurrency into account. Based on PMPKI curves, Premier

provides insertion and promotion policies for each applica-

tion to achieve efficient pseudo-partitioning. Our experimental

results show that Premier outperforms state-of-the-art cache

partitioning schemes in both performance and fairness.

II. BACKGROUND AND MOTIVATION

A. Concurrent Cache Accesses

Concurrent data accesses provide overlapping [10], which

helps hide data access latency. At the same cache level, when

the cache miss-access cycles overlap with the hit-access cycles,

the cache miss penalty can be hidden because hit accesses

continue to feed data to the processor [4]. Note that since each

core has its own workload, memory accesses from different

cores are not related. Only the overlapping of accesses from

the same core is considered meaningful.

The term Pure Miss was introduced to identify the misses

that are more harmful to performance when considering data

access concurrency. In multi-core systems, pure miss in the

shared cache is the miss access that contains at least one

miss-access cycle, which does not have any hit access activity

from the same core to overlap. Reducing the number of pure

misses has proven to be an effective way to improve the overall

memory system performance [5].

B. Cache Partitioning

Strict partitioning: Strict partitioning schemes in set-

associative caches are typically implemented through way-

partitioning, which provides each application with exclusive

ownership of a specific partition. Qureshi and Patt proposed

utility-based cache partitioning (UCP) [8]. UCP uses miss

curves to determine partitioning decisions, which capture the

core’s misses for each possible partition size. Subramanian et

al. proposed ASM cache partitioning [9]. ASM partitions the

shared cache to achieve minimizing slowdown. However, to

estimate the slowdown of the applications, the scheduler of the

memory controller needs to be modified, which may negatively

impact performance. Although strict partitioning schemes are

straightforward, they may lead to low cache utilization [7].

Pseudo-partitioning: Pseudo-partitioning techniques implic-

itly partition the cache by managing the cache insertion and

promotion policies. Xie and Loh proposed PIPP [11], which

uses UCP’s monitoring circuit to determine the insertion points

for all new incoming lines from each core. PIPP only promotes

the cache hit line by a single position with a certain probability

when a cache line is hit. Kaseridis et al. proposed MCFQ [3],

391

2021 IEEE 39th International Conference on Computer Design (ICCD)

978-1-6654-3219-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICCD53106.2021.00068

20
21

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r D
es

ig
n

(I
C

C
D

) |
 9

78
-1

-6
65

4-
32

19
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

D
53

10
6.

20
21

.0
00

68

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 04,2022 at 21:21:09 UTC from IEEE Xplore. Restrictions apply.

(a) 605.mcf (b) 649.fotonik3d

Fig. 1: MPKI and CPI for SPEC CPU2017 benchmarks as

the cache size is varied. (The x-axis is the number of ways

allocated from a 16-way 2MB L3 cache to this workload.)

an MLP-aware pseudo-partitioning scheme. However, MCFQ

does not realize that the miss penalty can be hidden when miss

accesses overlap with hit accesses. Therefore, MCFQ analyzes

concurrent memory accesses in a coarse-grained manner.

C. Motivation

Current cache partitioning schemes mainly aim at reducing

the absolute number of cache misses and assume there is

a high correlation between miss reduction and performance

improvement [8]. Figure 1 demonstrates when concurrent

memory requests exist, the correlation between the saved

misses by additional cache capacity and the overall system

performance is weak. For 605.mcf, the number of misses

tends to stabilize when the way is allocated exceeds 6.

However, as the allocated cache increases, the CPI of the

605.mcf continues to decrease. For 649.fotonik3d, as

the number of allocated ways increases from 1 to 5, the

number of misses is significantly decreased. However, the CPI

of 649.fotonik3d stays constant from 1 way to 5 ways.

Therefore, by monitoring the missing curves, cache partition-

ing schemes with the goal of reducing the total number of

misses cannot ensure the highest performance gains. We are

motivated to design a new cache partitioning scheme with

a different performance optimization goal by considering the

cache misses that harm the performance the most.

III. PURE MISSES PER KILO INSTRUCTIONS (PMPKI)

A. Definition and Measurement

We first introduce PMPKI to quantify the cache efficiency

of a program in concurrent access activities. Different from

the definition of MPKI, which relies on the ratio of miss

accesses to evaluate the cache performance, PMPKI focuses

on quantifying the ratio of pure misses (§II-A). PMPKI is

definded as the number of pure misses per kilo instructions

over a given time interval:

Pure Misses Per Kilo Instructions = 1000× Num. of Pure Misses
Num. of Total Instructions

B. Accuracy of PMPKI Metric

To verify the correctness of the PMPKI metric, we first

measure the L3 PMPKI, L3 MPKI, and CPI for 20 evaluated

workloads from SPEC CPU 2017 benchmark suite [2] in

single-core configurations as the L3 cache size is varied.

Then for each workload, we show the correlation (r) of

PMPKI-CPI and MPKI-CPI. Figure 2 indicates that compare

Fig. 2: Correlation coefficient analysis.

to MPKI, PMPKI shows a much higher positive correlation

with CPI. For all workloads, the majority of r(PMPKI, CPI)

are more than 0.99. The geometric mean of r(PMPKI, CPI)s

is around 0.99, which is much larger than the geometric mean

of r(MPKI, CPI)s. The strong correlation between PMPKI

and CPI shows that PMPKI has advantages in capturing

the concurrency/locality combined characteristics of modern

memory systems.

C. Classify Workloads with PMPKI

The PMPKI curves also capture the sensitivity of the

application performance with different cache sizes. We can

classify workloads into different categories by directly moni-

toring the runtime PMPKI. Cache-insensitive applications are

characterized by the fact that their PMPKI hardly changes

as the cache size increases. The PMPKI of cache-sensitive
applications continues to decrease as the cache size increases.

Cache-fitting applications are also sensitive to allocated cache

size. These applications benefit from the additional cache

capacity until they are allocated enough cache space to fit their

working sets. An increase in cache resources beyond their ideal

capacity hardly further reduces pure misses.

IV. PREMIER: A CONCURRENCY-AWARE

PSEUDO-PARTITION FRAMEWORK

A. Design Overview

Fig. 3: Block diagram of Premier.

Figure 3 shows the overview of the Premier framework. The

grey shaded modules are designs we added to a typical multi-

core architecture. First, each core has a PMPKI monitoring

circuit (PMON) to estimate the number of pure misses for

each core when allocated in all possible cache partition sizes

(in terms of cache ways) without interfering other running

applications (§IV-B). Second, the applications are classified

as cache-insensitive, cache-sensitive, or cache-fitting (§IV-C).

Then, the partitioning algorithm utilizes the PMPKI curves

392

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 04,2022 at 21:21:09 UTC from IEEE Xplore. Restrictions apply.

estimated by PMONs to determine the cache size allocated

to each core to minimize the number of pure misses in the

system (§IV-D). Finally, Premier uses the pseudo-partitioning

technique to sidestep the limitation of strict partitioning. At the

end of each period (16K LLC misses), based on the category

of each application provided by PMONs and the partitioning

plan provided by the partitioning algorithm, Premier dynam-

ically decides the insertion policy for cache misses and the

promotion policy for hit accesses (§IV-E).

B. PMPKI Monitor (PMON)
To estimate the PMPKI curve when different numbers of

ways are assigned to applications, an auxiliary tag directory

(ATD) [8], [11] is assigned to each core, tracking the state of

the cache if the core has exclusive access to the shared cache.

The ATD has the same associativity as the main tag directory

of the shared cache. Based on the stack property, a hit access

at the i-th most recent position in the LRU stack indicates that

the hit will be converted to a miss in the cache with less than

i ways (for the same set count). Hit counters are assigned to

each recency position ranging from MRU to LRU. By counting

the number of hits corresponding to the LRU stack positions,

a single ATD can provide the hit and miss information for

all possible partition sizes at once. Each ATD is also attached

with a miss holding buffer (MHB) which has the same entries

of MSHR, to simulate the functions of MSHR. At the end of

each period, PMON further estimates the number of pure miss

accesses based on the hit/miss information provided by ATD,

MHB, and the cycle information of each access.

C. Application Classification
Assuming there is an N -way set-associative shared cache,

to reduce the computational complexity, Premier classifies

applications based on the PMPKI value when the application

is assigned only 1 cache way, N − 1 ways, and N ways

(noted as PMPKI1, PMPKIN-1 and PMPKIN respectively). If

the ratio of PMPKIN and PMPKI1 of an application is greater

than a threshold Tinsen, we consider the application is cache-

insensitive. If an application is not cache-insensitive, and the

difference between PMPKIN-1 and PMPKIN is greater than

a threshold Tsen, it is characterized as cache-sensitive. The

remaining applications are classified as cache-fitting. Based on

the analysis of the SPEC CPU 2017 benchmarks we evaluated,

Tinsen is set to 0.95 and Tsen is set to 0.1.

D. Partitioning Algorithm
Once PMON has completed the computation of the PMPKI

curve for each application, Premier uses the PMPKI curves

to feed into the Lookahead algorithm [8]. Due to the high

correlation between PMPKI and performance, the lookahead

algorithm is used to calculate the ideal partition cache sizes

for each application online, intending to minimize the total

number of pure misses incurred by all applications in the

shared cache. The partitioning plan provided by the lookahead

algorithm for k cores can be denoted as Ω={ω0, ω1, ... , ωk-1}
and

∑k-1
i=0 ωi = N , where N is the associativity of the shared

cache.

Fig. 4: The insertion positions for four applications.

TABLE I: Simulated system configurations

Processor 2 to 8 cores, 4GHz, 8-issue width, 256-entry ROB

L1 Cache
private, split 32KB I/D-cache/core, 64B line,
8-way, 4-cycle latency, 8-entry MSHR, LRU

L2 Cache
private, 256KB/core, 64B line. 8-way,
10-cycle latency, 32-entry MSHR, LRU

L3 Cache
(LLC)

shared, 2MB/core, 64B line, 16-way,
20-cycle latency, 64-entry MSHR

DRAM
8GB 2 channels, 64-bit channel, 2400MT/s,
tRP=15ns, tRCD=15ns, tCAS=12.5ns

E. Pseudo-Partitioning Policies

Insertion policy: Premier first assigns priorities to applica-

tions based on how sensitive they are to cache size. Premier as-

signs the lowest priority to cache-insensitive applications and

provides the highest priority to cache-sensitive applications.

If there are multiple applications in the same category, the

priority between these applications is determined according to

the PMPKI1 of each application. Then, Premier combines the

priority of the applications with the partition sizes calculated

by the lookahead algorithm to determine the insertion point

for each application. Figure 4 illustrates the insertion positions

for a 16-way cache shared between four cores. Suppose the

target partitioning plan is Ω={7, 5, 3, 1}; core0 has the

highest priority, followed by core1 and core2, and core3 has

the lowest priority. Premier only inserts new cache blocks

near MRU positions for higher priority applications to ensure

that higher priority applications get the cache capacity they

require and encourage them to steal cache capacity from

other applications. New cache blocks from lower priority

applications are inserted close to the LRU position.

Hit-promotion policy: In order to improve the data locality,

for cache-sensitive and cache-fitting applications, if a cache

block receives a hit, Premier moves the cache block to the

MRU position in the LRU stack. Otherwise, Premier only

promotes the cache block to its insertion position.

V. EXPERIMENTAL METHODOLOGY

We use the ChampSim [1] simulator to evaluate Premier in

multi-core systems. Table I describes the configuration used

in our study. We select benchmarks randomly from the SPEC

CPU 2017 benchmarks [2] to generate mixed-copy workloads

as shown in Table II. We warm the cache for 50M instructions

and measure the behavior of the next 200M instructions.

For each workload we evaluate the throughput (sum of IPCs,∑
IPCi) and fairness (harmonic mean of normalized IPCs,

N/
∑

(IPCi,alone/IPCi), where IPCi,alone is the IPC when

the application executes in isolation under the ownership of all

cache resources [6]). We select UCP [8] as the baseline for

comparison. We further compare Premier against three state-

of-the-art cache partitioning schemes: MCFQ [3], PIPP [11],

and ASM [9].

393

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 04,2022 at 21:21:09 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Evaluated workloads

2-core 4-core 8-core

MIX 1: 603,623 MIX 1: 605,621,627,654 MIX 1: 607,619,620,
623,625,628,638,657MIX 2: 603,654 MIX 2: 607,619,628,620

MIX 3: 605,607 MIX 3: 621,605,602,603 MIX 2: 605,621,627,
649,654,620,623,628MIX 4: 605,627 MIX 4: 619,623,602,603

MIX 5: 607,619 MIX 5: 605,621,654,623 MIX 3: 605,621,654,
607,619,623,625,628MIX 6: 619,623 MIX 6: 605,621,619,623

MIX 7: 621,627 MIX 7: 621,619,623,620 MIX 4: 605,627,649,
654,619,628,602,603MIX 8: 623,649 MIX 8: 621,649,623,603

MIX 9: 627,654 MIX 9: 621,619,623,603 MIX 5: 605,654,607,
619,620,657,602,603MIX 10: 649,654 MIX 10: 605,623,602,603

Fig. 5: Throughput speedup over UCP for 2-core workloads.

VI. EXPERIMENTAL RESULTS

A. Performance Evaluation

Figure 5 shows that on the 2-core system, Premier outper-

forms existing schemes across the board, with a geometric

mean speedup of 8.50% over UCP. For 4-core mixed work-

loads, Figure 6 shows Premier offers a speedup of 9.17%

on average, an improvement of 7.62% over MCFQ, 4.95%

over PIPP, 7.49% over ASM. Figure 7 shows that the Premier

performance advantage comes from the fact that Premier

significantly reduces LLC pure misses compared to the state-

of-the-art schemes. Premier yields 4.13%, 3.32%, 2.09%, and

2.97% average pure miss reduction over UCP, MCFQ, PIPP,

and ASM. Figure 8 shows that the advantage of Premier

further increases on an 8-core system. Premier provides a

15.45% higher geometric mean throughput over the baseline

UCP, 10.79% over MCFQ, 6.54% over PIPP, and 15.07% over

ASM. When LLC cache size increases and the contention

(core number) increases, we observe that Premier has a better

opportunity to improve performance.

B. Fairness Evaluation

Figure 9 summarizes the fairness comparison as we in-

crease the number of cores. Premier provides higher fairness

than every state-of-the-art cache partitioning scheme in all

configurations. Concurrency increases as the number of cores

increases, and since Premier is concurrency-aware, the fairness

advantage of Premier becomes greater. In the 8-core configu-

ration, Premier achieves a fairness improvement over UCP by

10.91% on average.

VII. CONCLUSIONS

In this paper, we propose pure miss per kilo instructions
(PMPKI), a metric that considers both data locality and con-

currency. We present Premier, a concurrency-aware pseudo-

partitioning framework based on monitoring the PMPKI of

each application to provide the benefit of dynamic capacity

allocation, adaptive insertion, and interference mitigation. Our

evaluations across a wide variety of workloads and system

Fig. 6: Throughput speedup over UCP for 4-core workloads.

Fig. 7: Pure miss reduction over UCP for 4-core workloads.

Fig. 8: Throughput speedup over UCP for 8-core workloads.

Fig. 9: Fairness improvement over UCP for 2, 4, 8 cores.

configurations show that Premier is superior to the state-of-

the-art cache partitioning schemes in terms of performance

and fairness.
ACKNOWLEDGMENT

This research is supported in part by the National Science

Foundation under Grants CCF-2029014, CCF-2008907, CNS-

1730488, and by the NSF supported Chameleon testbed facil-

ity.
REFERENCES

[1] The champsim simulator. https://github.com/ChampSim/ChampSim.
[2] Spec cpu2017 benchmark suite. http://www.spec.org/cpu2017/.
[3] D. Kaseridis, M. F. Iqbal, and L. K. John. Cache friendliness-aware

management of shared last-level caches for high performance multi-core
systems. IEEE transactions on computers, 63(4):874–887, 2013.

[4] J. Liu, P. Espina, and X.-H. Sun. A study on modeling and optimization
of memory systems. Journal of Computer Science and Technology,
36(1):71–89, 2021.

[5] X. Lu, R. Wang, and X.-H. Sun. Apac: An accurate and adaptive prefetch
framework with concurrent memory access analysis. In ICCD-38, 2020.

[6] K. Luo, J. Gummaraju, and M. Franklin. Balancing thoughput and
fairness in smt processors. In ISPASS’01, 2001.

[7] S. Mittal. A survey of techniques for cache partitioning in multicore
processors. ACM Computing Surveys (CSUR), 50(2):1–39, 2017.

[8] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO-39, 2006.

[9] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The
application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory. In
MICRO-48, 2015.

[10] X.-H. Sun and D. Wang. Concurrent average memory access time.
Computer, 47(5):74–80, 2013.

[11] Y. Xie and G. H. Loh. Pipp: Promotion/insertion pseudo-partitioning of
multi-core shared caches. 2009.

394

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 04,2022 at 21:21:09 UTC from IEEE Xplore. Restrictions apply.

